Levels of Cafestol, Kahweol, and Related Diterpenoids in Wild Species of the Coffee Plant Coffea

Baukle de Roos,† Guido van der Weg,† Rob Urgert,† Peter van de Bovenkamp,† André Charrier,‡ and Martijn B. Katan*,†

Division of Human Nutrition and Epidemiology, Wageningen Agricultural University, Bomenweg 2, 6703 HD Wageningen, The Netherlands, and ÉNSA/INRA, Montpellier, Cedex, France

Coffee beans of commercially important Coffea species contain the diterpene cafestol, which raises serum cholesterol in humans. Coffee diterpenes also have shown anticarcinogenic properties in experimental animals. We determined levels of cafestol and other diterpenes in nine wild African Coffea species, in a search for a species without the cholesterol-raising cafestol. In addition, data on diterpene profiles might assist in the taxonomic grouping of Coffea species. Each Coffea species we investigated contained cafestol. Kahweol concentrations may be related to the geographical distribution of the Coffea species. 16-O-Methylcafestol was only present in Coffea canephora, Coffea stenophylla, and Coffea liberica var. dewevrei. A new diterpene was found in C. stenophylla and tentatively identified as 16-O-methylkahweol. Another four new diterpenes, which seem to contain an additional double bond compared to kahweol, were found in Coffea salvatrix and Coffea pseudozanguebariae, suggesting that these two species are closely related. In conclusion, cafestol is universally present in Coffea species. Amounts of kahweol, 16-O-methylcafestol, 16-O-methylkahweol, and the four newly found diterpenes present in various coffee beans may prove useful in the taxonomic classification of Coffea species.

Keywords: Coffee diterpenes; African coffee beans; cholesterol; taxonomy

INTRODUCTION

All coffee plants belong to the tribe Coffea of the Rubiaceae subfamily Cinchonoideae. Coffea is one of the two genera of the Coffea tribe, and it has three recognized subgenera. Coffea subgenus Coffea contains about 85 species, including all the commercially useful species. The beans of these commercially important species have been analyzed extensively. The unsaponifiable lipid fraction of these beans is rich in two diterpenes specific for coffee: cafestol and kahweol (Figure 1) (Viani, 1988; Urgert et al., 1995). The total diterpene content ranges from 1.3% to 1.9% (w/w) in green beans of Coffea arabica (commonly known as Arabica) and from 0.2% to 1.5% in beans of Coffea canephora (commonly known as Robusta) (Viani, 1988; Ratnayake et al., 1993). Cafestol potently raises serum cholesterol in humans (Weusten-van der Wouw et al., 1994; Urgert et al., 1997). We estimated in a meta-analysis of 11 experiments with cafestol-rich preparations that each 10 mg of cafestol consumed per day (equivalent to 2–3 cups of coffee brewed without the use of a paper filter) raises serum cholesterol by 0.15 mmol/L (Urgert and Katan, 1997). As C. arabica and C. canephora represent 99% of the world coffee market (Debry, 1994), coffee beans of commercial blends will inevitably contain the cholesterol-raising compound cafestol. Filtered coffee does not contain cafestol or kahweol, as the diterpenes are retained by a paper filter (Van Dusseldorp et al., 1991). Diterpene levels in instant coffee are also negligible (Urgert et al., 1995). However, levels of cafestol and kahweol are high in Turkish/Greek coffee—brewed by boiling very finely ground coffee in water—and in cafetiere coffee (also known as 'French press' or 'plunger' coffee)—brewed by pouring hot water onto coffee grounds in a glass jug after which a metal screen strainer is pushed down to separate the grounds from the brew (Urgert et al., 1995, 1996).

Intake of diterpene-rich coffee is associated with a higher risk of heart disease (Tverdal et al., 1990), but there are also tentative indications for a protective effect against cancer. Some epidemiological studies revealed a lower incidence of colon cancer with increasing coffee intake (as reviewed by the IARC Working Group, 1991). Moreover, intake of coffee diterpenes reduced the frequency of adenocarcinoma of the colon induced by 1,2-dimethylhydrazine in rats (Gershbein, 1994). A biological mechanism has not been established (Rosenberg, 1990), but the effect might be mediated by glutathione S-transferase, as both cafestol and kahweol raised the

*Author to whom correspondence should be addressed (phone, +31 317 482646 or 484681; fax, +31 317 483342).
† Wageningen Agricultural University.
‡ ENSA/INRA.
activity of this detoxifying enzyme in the liver and mucosa of the small bowel in mice and rats (Lam et al., 1987).

Determination of diterpene contents in commercial coffee species has proven useful in the grouping of Coffea strains. A diterpene typically present in Robusta but not in Arabica is 16-O-methylcafestol (Figure 1). Kahweol occurs in Arabica but barely in Robusta. 16-O-Methylcafestol and kahweol are therefore used as indicators of the proportion of Robustas in commercial blends (Speer and Montag, 1989).

We wished to establish the level of cafestol and other diterpenes in samples of wild Coffea species because there might exist a Coffea species which does not contain the cholesterol-elevating diterpene cafestol. Availability of such a species might help to breed new commercial species free from cafestol. We also speculated that other diterpenes, which might have anticardiovascular properties, could be present in such species. Finally, data on diterpene profiles might assist in the taxonomic grouping of Coffea species. The morphological criteria traditionally used by taxonomists to distinguish the species in Coffea are subject to much variation, and additional information on biochemical and molecular diversity of species within subgenus Coffea is needed (Clifford et al., 1989; Anthony et al., 1993; Lasherms et al., 1997). We therefore determined the identity and levels of various diterpenes in coffee beans of nine wild Coffea species from Africa.

METHODS

Origin of the Samples. All samples were provided by the Orstom Station de Génétique du Caféier, Man, Ivory Coast, where the plants were cultivated. Beans of Coffea liberica var. liberica, C. racemosa, and Coffea salvarix were collected from a number of plants, whereas beans of the other species were collected from a single plant. About 100 beans were collected per sample. They were sent to the Wageningen laboratory in a sealed plastic bag and stored at room temperature until analysis. C. canephora samples represent the Coffea species which is used for Robusta coffee production.

Chemical Analyses. Analysis of diterpenes was performed as described by Urgert et al. (1995). Briefly, ground green beans combined with the internal standard 5α-cholestanol were dissolved in ethanolic potassium hydroxide and saponified at 80 °C for 60 min. After cooling, lipids were extracted by diisopropyl ether and washed by demineralized water. The ether phase was dried, and the residue was dissolved in dried pyridine. We added a mixture of hexamethyldisilazane and trichlororomethylsilane to silylate hydroxyl groups. After incubation at room temperature, excess pyridine was removed. The sample was diluted in hexane. We injected 1 µL of this sample splitless into a gas chromatograph equipped with a 25 m × 0.22 mm fused silica and CP Sil 5 column. The initial oven temperature was 70 °C for 2.5 min followed by a rise to 200 °C at a rate of 40 °C/min. After 10 min the temperature was raised to 235 °C at a rate of 6 °C/min and then to 285 °C at a rate of 40 °C/min. After 10 min the temperature was raised to 235 °C at a rate of 6 °C/min and then to 285 °C at a rate of 30 °C/min, at which it was held for 6.75 min. Other conditions: carrier gas, hydrogen; pressure, 100 kPa; makeup gas, nitrogen; splitless injection, after 2.5 min with an injector purge flow of 300 mL/min. A flame ionization detector temperature, 305 °C. Authenticity and purity of peaks were verified on a combined gas chromatography mass spectrometer. The coefficients of variation for a control pool of boiled coffee were 2.5% within and 9.5% between runs over a 6-month period for cafestol, and 2.3% and 7.2% for kahweol, respectively.

We compared gas chromatography traces and mass spectra of unknown compounds before and after hydrogenation in order to investigate the presence of double bonds. For this purpose, we dissolved a fat fraction containing about 100 mg of diterpenes and 50 mg of Pd–Pb–CaCO₃ catalyst (5:5:5% w:w:w) in Merck, Germany, no. 40687248) in 2.5 mL of ethanol. Hydrogen was supplied under vigorous stirring at a flow of 10 mL/min for 15–30 min. Samples were then centrifuged for 10 min. The ethanol phase was collected, evaporated, and silylated as described by Urgert et al. (1995).

RESULTS AND DISCUSSION

Levels of Cafestol, Kahweol, and 16-O-Methylcafestol. Cafestol was present in all species (Table 1). Its amount ranged from 239 mg/100 g of bean mass in C. canephora to 616 mg/100 g of bean mass in C. liberica var. dewewre. This is the same range as found in commercial Coffea species (Vianii, 1988; Urgert et al., 1995). As all species exhibited a high cafestol content with a large range of variation, this component is not discriminant for taxonomy.

Levels of kahweol were lowest in C. canephora. One sample of this Coffea species contained 5 mg and another one 8 mg of this diterpene per 100 g of bean mass. A similarly low concentration of kahweol in C. canephora was reported by Vianii (1988). Levels of kahweol were also low in two other species: about 75 mg/100 g in C. liberica var. dewewre and about 150 mg/100 g in C. liberica var. liberica. Kahweol levels in the remaining species ranged from 505 to 1065 mg/100 g (Table 1). The kahweol contents of Coffea species may be related to their geographical distribution: some

<table>
<thead>
<tr>
<th>species</th>
<th>samplea</th>
<th>origin</th>
<th>amount (mg/100 g of bean mass)</th>
<th>16-O-methylcafestol</th>
<th>16-O-methylkahweol</th>
<th>unknown a, b, c, and d</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. canephora (Robusta)</td>
<td>IF425</td>
<td>Ivory Coast</td>
<td>8 × 6 239 ± 10</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. canephora (Robusta)</td>
<td>IF461</td>
<td>Ivory Coast</td>
<td>8 × 6 239 ± 10</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. stenophylla</td>
<td>04L10A18</td>
<td>Ivory Coast</td>
<td>7 × 5 314 ± 11</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. liberica var. liberica</td>
<td>bulk</td>
<td>Ivory Coast</td>
<td>9 × 6 283 ± 11</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. liberica var. liberica</td>
<td>bulk</td>
<td>Central African Republic</td>
<td>8 × 6 334 ± 10</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. liberica var. dewewre</td>
<td>005402</td>
<td>Central African Republic</td>
<td>7 × 5 361 ± 4</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. congensis</td>
<td>031627</td>
<td>Central African Republic</td>
<td>8 × 6 344 ± 11</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. racemosa</td>
<td>bulk</td>
<td>Mozambique</td>
<td>5 × 4 436 ± 10</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. racemosa</td>
<td>bulk</td>
<td>Mozambique</td>
<td>5 × 4 459 ± 9</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. salvarix</td>
<td>bulk</td>
<td>Mozambique</td>
<td>5 × 4 488 ± 15</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. pseudozanguebriana</td>
<td>D15L39A39</td>
<td>Kenya</td>
<td>4 × 3 394 ± 22</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
<tr>
<td>C. sessiliflora</td>
<td>0LS17A2</td>
<td>Kenya</td>
<td>5 × 4 542 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
<td>0 ± 1 145 ± 3</td>
</tr>
</tbody>
</table>

a Mean levels ± SD. For each species sample, duplicate analyses were performed. b Bulk: beans obtained from a number of coffee plants of the same species. Beans from the other samples were obtained from a single plant.
species widely distributed in West and Central African forests, such as C. canephora and C. liberica, had a low kahweol content. Other species endemic in the same Guineo-Congolean area, namely, C. stenophylla from the Ivory Coast and C. consensis from the Central African Republic, contained 5–200 times more kahweol (Table 1). Ecological and genetic isolation of these species may explain a drift in biochemical components. C. racemosa, C. salvatrix, C. sessiliflora, and C. pseudozanguebariae, originating from East Africa, all showed high levels of kahweol.

16-O-Methylcafestol was present in C. canephora (Robusta) species, as reported previously (Speer and Montag, 1989), but was also found in C. stenophylla and C. liberica var. dewevrei. Amounts ranged from 19 mg/100 g in one sample of C. liberica var. dewevrei to 154 mg/100 g in one sample of C. canephora (Table 1).

Identification and Levels of 16-O-Methylkahweol. We found a new diterpene in C. stenophylla, with a silylated molecular weight of 400 atomic mass units (amu) (Table 2). A fragment with a mass of 297 amu probably resulted from the loss of a trichloromethylsilane-O-CH₂ fragment. The fragment mass, probably produced by the loss of a trichloromethylsilane-OH fragment, was determined kahweol and 16-methylcafestol, which showed ionic fragment masses of 276 and 265, which are probably derived from the loss of two additional trichloromethylsilane-OH fragments. This suggests that both in the newly found diterpene and in kahweol the trichloromethylsilane-O-CH₂ fragment at the C17 position is easily cleaved off, while in the diterpenes a and c a second trichloromethylsilane-O-CH₂ fragment is also easily separated. Therefore, it seems likely that in the newly found diterpenes the second hydroxyl group is not situated at C16, as it is in kahweol.

The four peaks a, b, c, and d disappeared after catalytic hydrogenation of the silylated samples, yielding a single new peak e with a retention time slightly shorter than that of kahweol (Figure 3). This hydrogenated diterpene e had the same mass as kahweol, i.e., 458 amu, and it showed ionic fragments of m/z 368, 355, 278, and 265, which are all 2 amu heavier than the fragments in the spectra of the original diterpenes a, b, and c. It thus appears that one double bond of the unknown components can easily be hydrogenated, while the other double bond is inaccessible to H₂, perhaps because of steric hindrance. We suggest that the latter double bond is situated in between C13 and C14, as all other possibilities yield double bonds that are easily accessible to H₂ or that are structurally impossible. As only one peak e arose after hydrogenation, the position of the second hydroxyl group is probably the same for diterpenes a, b, and c. Diterpene d probably contains one double bond which can easily be hydrogenated and is not situated in between C1 and C2.

We could not identify the origin of the new peaks eluting between 24.44 and 26.38 min, which appeared after hydrogenation of silylated samples of C. salvatrix and C. pseudozanguebariae (Figure 3) and also of silylated samples of C. stenophylla.

The presence of all four diterpenes in both C. salvatrix and C. pseudozanguebariae is in agreement with their ecological and botanical affinities (Hamon et al., 1984). These closely related species from Mozambique and Kenya are differentiated by their caffeine contents; C. pseudozanguebariae is the first caffeine-free species discovered in Africa (Hamon, 1984).

Table 2. Atomic Masses of Molecular Ions and Diterpene Specific Ionic Fragments as Trichloromethylsilane Derivatives of Various Coffee Diterpenes

<table>
<thead>
<tr>
<th>diterpene</th>
<th>molecular mass (amu)</th>
<th>ionic fragment masses (amu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cafestol</td>
<td>460</td>
<td>145<sup>a</sup> 131<sup>a</sup></td>
</tr>
<tr>
<td>kahweol</td>
<td>458</td>
<td>299<sup>b</sup> 145<sup>a</sup> 131<sup>a</sup></td>
</tr>
<tr>
<td>16-O-methylcafestol</td>
<td>402</td>
<td>299<sup>b</sup> 145<sup>a</sup> 131<sup>a</sup></td>
</tr>
<tr>
<td>16-O-methylkahweol</td>
<td>400</td>
<td>297<sup>b</sup> 145<sup>a</sup> 131<sup>a</sup></td>
</tr>
<tr>
<td>diterpene α, β, and γ</td>
<td>456</td>
<td>366<sup>c</sup> 353<sup>c</sup> 276<sup>c</sup> 263<sup>c</sup></td>
</tr>
<tr>
<td>diterpene δ</td>
<td>458</td>
<td>368<sup>c</sup> 355<sup>c</sup> 278<sup>c</sup> 265<sup>c</sup></td>
</tr>
</tbody>
</table>

^a See Figure 2. ^b Ion fragment mass, probably produced by the loss of a trichloromethylsilane-O-CH₂ fragment. ^c Ion fragment mass, probably produced by the loss of a trichloromethylsilane-OH fragment.

Figure 2. Proposed structures of two fragments found in the mass spectra of both kahweol and the new diterpene 16-O-methylkahweol.

from beans of C. salvatrix and C. pseudozanguebariae were practically the same. Both had four unknown peaks which were unique for these two Coffeea species (Figure 3). Mass spectra of three of these unknown diterpenes, a, b, and c, strongly resembled each other; each had a mass of 456 amu. As this is 2 amu less than that of kahweol, the unknown components may contain one more double bond than kahweol. The position of this additional double bond is probably different for each of the three diterpenes a, b, and c, as the retention times of these diterpenes differed. Gas chromatography traces also suggested a fourth unknown peak d, which was overlapped by the kahweol peak. This peak had a mass of 458 amu, the same as kahweol. We therefore determined kahweol and d by comparing levels of cafestol and e before and after hydrogenation, because during hydrogenation kahweol is converted into cafestol and d is converted into e.
Diterpenes present in coffee beans might possibly have anticarcinogenic properties, but this benefit will be overshadowed by the cholesterol-raising effect of cafestol, which seems universally present in coffee beans of *Coffea* species. As previously reported for kahweol and 16-O-methylcafestol, 16-O-methylkahweol and the other newly found diterpenes present in the coffee beans may also prove useful in the taxonomic classification of *Coffea* species.

ACKNOWLEDGMENT

We thank Dr. Louarn, Orstom Station de Génétique du Caféier, Man, Ivory Coast, for providing us with the coffee beans and Dr. L. Fay for contributions to the chemical work.

LITERATURE CITED

Hamon, S.; Anthony, F.; LePierres, D. La variabilité génétique des caféiers spontanés de la section Mazambicoffea I/Précisions sur deux espèces affines *Coffea pseudozanguebariae* et *C. sp. A. Andansonia* (Genetic variability of wild coffee plants of the section Mazambicoffea I/Details on two related species: *Coffea pseudozanguebariae* and *C. sp. A. Andansonia*) *Andansonia* 1984, 4e série (6), 207–223.

Lam, L. K. T.; Sparnins, V. L.; Wattenberg L. W. Isolation and identification of kahweol palmiate and cafestol palmitate as active constituents of green coffee beans than enhance...
Lashermes, P.; Combes, M. C.; Trouslot, P.; Charrier, A.
Polygenetic relationships of coffee-tree species (Coffea L.) as inferred from ITS sequences of nuclear ribosomal DNA.
Appl. Genet., in press.
Lercker, G.; Frega, N.; Bocci, F.; Rodriguez-Estrada, M. T.
Ratnayake, W. M. N.; Hollywood, R.; O’Grady, E.; Stavric, B.

Received for review January 30, 1997. Accepted June 3, 1997. These studies were supported by The Netherlands Heart Foundation (Grant 900-562-091 of The Netherlands Organization of Scientific Research) and the Foundation for Nutrition and Health Research.
JF9700900