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Chapter 8

Conclusion

The models that researchers estimate are necessarily an idealization of a

complex reality. Advances in our capacity to compute, along with contin-

ued increases in the dimensions of datasets, have enormously increased

both the complexity of what we attempt to achieve in analysis and the

models that we use to pursue those goals. The aim of the basic theory

with which we opened the introduction of this thesis was to provide clearly

formulated and generalizable interpretation to standard empirical results.

Given the advances in data and complexity, it is clear that analysis must

acknowledge that the models ideally estimated aim at achieving a greater

degree of idealization than was held possible when the theory of linear

estimation of a parameter from a modest numbers of observations was

first developed. With the general Consistency and Normality results for

M -estimators that were introduced, there was much more freedom to

think about more complex models that might provide a better description

of reality. This thesis was devoted to exploring dynamic spatial time

series models that can provide a better fit to the data using minimal

complexity.

Chapter 3 first characterized spatial heterogeneity. This was done from

the perspective of the data generating process itself. Specifically, we

used a spatial model based on an economic rationale and parametrized

it based on estimates from the literature. This was used to simulate
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310 Chapter 8. Conclusion

likely economic outcomes at a grid-cell level. While inherently not a

problem related to statistical inference in the way it was discussed in the

introduction of this thesis, the analysis produced several useful insights.

Specifically, we saw that by imposing simple linear relationships at a

high resolution, aggregate system behavior tended to follow nonlinear

patterns. This is important as, in reality, we tend to observe economic

outcomes at a coarse scale while processes are arguably driven by the

total sum of interactions between a large number of individual economic

actors. Furthermore, we saw that the geophysical nature of our landscape

plays an important role in economic processes. In particular, the natural

organization in geological factors tends to contribute to spatial clustering,

even when spatial interdependencies across various distances are not

explicitly parameterized in the data generating process. This is also

important, as it is easy to miss out on one or several unobserved common

factors, that may follow this type of spatial organization, in empirical

applications. This immediately implies that the residuals in simple cross-

sectional regressions are likely to be spatially correlated and may follow

structural patterns that vary by types of regimes. In the introduction of

this thesis we had already emphasized the crucial role that neutralizing

residuals plays in rendering the parameter distributions approximately

normal.

In Chapter 4, we tackled the problem of spatial dependence in time

series. Specifically, we specified the spatial autoregressive time series

model discussed in the introduction of the thesis and studied it in more

detail. Building on our notion that the linearity assumption may be

too restrictive, especially as the spatial dimensions grow, we extended

the model to allow the parameter that determines dependence between

neighbors to vary across time and space in an idiosyncratic manner. This

allows dependence to vary over different regimes that may be covered by

the cross-sectional data. The model allowed each observation in the cross-

section to have a different history of attraction to its neighbors and the
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magnitude of the induced feedback effects to vary continuously over time.

This type of dynamic behavior could not be understood under standard

dynamic time series theory provided in the introduction. We therefore

extended the theory to allow for dynamic multivariate time series and

provided a general theory that allowed the nonlinear dynamics to become

spatial. We applied the model to a short spatial time series of urban

densities and saw that the linear spatial model was not able to handle

both the urban and rural dynamics in a single framework, causing the

model to severely underestimate urban densities and overestimate rural

densities. These regime-specific dependencies could, however, correctly

be captured by the nonlinear model, allowing to analyze transitory effects

across both the urban, rural, and urban gradients in one single framework.

We also applied the nonlinear model to a long financial time series, and

saw that it was able to fit both periods of financial stability during which

spatial dependence was flat and periods of financial unrest in which there

was substantially stronger idiosyncratic behavior.

In Chapter 5 we dropped the parametric assumption, and worked in a

non-parametric framework in which the exact form of the nonlinearities

did not have to be assumed. Instead of modeling the dependence between

spatial observations to describe clustering in the data endogenously, we

allowed for the flexibility to let dependence on exogenous variables vary

nonlinearly across levels in the data. This resulted in rich dependence

structures in which individual observations are part of different spatial

and temporal regimes, each having possibly unique relationships with

the outcome variable. We learned that there are methods that can ap-

proximate any type of nonlinearities arbitrarily well, while the estimation

problem could still be solved linearly. In particular, the Kernel model

mapped the input to a higher dimensional feature space, from where

linear relationships could be established with the outcome variable. The

growing number of local parameters used in those type of approximation

strategies, however, violate the standard compactness assumption intro-
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duced in the introduction of the thesis that was used to obtain existence

and measurability of the estimator. Hence, the uniform convergence that

was obtained from point-wise convergence and stochastic equicontinuity

on a compact parameter space was also lost. We saw that to estimate

these models, it was necessary to regulate the size of the parameter space

appropriately which ensured that there was sufficient data to support

the degrees of freedom. The regularization method effectively ensured

that the parameter space grew at an appropriate rate as the data grew.

This delivered a type of consistency that had a different interpretation

than what was discussed in the introduction of the thesis. In particular,

the limit result depended on the user-defined tolerance for complexity,

which was determined by a hyper-parameter that was not estimated by

the criterion function itself. The appendix of this chapter discussed the

implication of this external influence on the interpretation of the result

and concluded that standard interpretation to the results is supported

as long as the hyper-parameter was tuned by optimizing the criterion

out-of-sample.

Chapter 6 moved away from the nonlinear world, and moved back into the

linear one. In this chapter we focused on multivariate interactions between

multiple spatial time-series. Naturally, once the asymptotic results for

multivariate nonlinear time series models put forward in Chapter 3 and the

penalization from Chapter 4 are understood, it is straightforward to apply

these ideas together to the setting of multiple nonlinear spatial time-series.

From a practical standpoint we, unfortunately, are still quite constrained

by modern computing capacity to work with such complex descriptions

of reality. Interesting linear dynamics between multiple spatial time

series could still be modeled though, which admittedly already results in

detailed dynamics at the observational level. In particular, the spatial

spillover effects implied heterogeneous relationships at the local level, and

the multiple variable setting thus allowed us to explore cause and effect

between interrelated cross-sectional time series while taking into account
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that different cross-sectional variables themselves exhibit spatial feedback

between observations that result in heterogeneous local impacts after

shocks occur. We saw that models that do not factor in the cross-sectional

dependences were likely to over-estimate the temporal effects and provided

a generally poorer fit to the data that violated the martingale difference

sequence assumption imposed on the score. Finally, the chapter explored

the kernel trick from Chapter 4 as a mechanism to generate data-driven

spatial weight matrices. The analysis showed that appropriate network

structures could be estimated using Maximum Likelihood. This allowed

generalizing the spatial dependencies discussed in this thesis and apply

them to settings in which cross-sectional dependencies arise because of

economic similarities or through other non-geographic channels.

Finally, in Chapter 7 we moved back to our starting discussion around

estimators, and to the notion of correct specification specifically. Only

this time, we approached the topic from a more general angle. We

reconsidered the basic idea of inference and considered why flexible

models, such as the ones introduced in this thesis, are desirable tools for

inference in the first place. While the assumption of correct specification

surfaced many times in parts of this thesis, it is easy to admit that this

is possibly the most difficult assumption of all. In Chapter 4 and 6 we

made use of different strategies to verify whether our estimated models

provide an appropriate fit to the data. Nevertheless, when formulating

empirical models we naturally abstract from reality and work with a

description that is only an approximation to a complex reality. While

mis-specification is often accepted in practice, it should not be a reason

to opt for simple approximations merely because it is difficult to describe

reality in fullness and easy to acknowledge that a simple model does

not appropriately reflect that fullness. Particularly, when a result is

taken as causal and representative of the real world, then that statement

must reflect a belief that reality could be produced by a model that

is reasonably similar to the estimated one. This means that if one is
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interested in making causal statements, then the estimated model used to

build the arguments should at least be able to produce dynamics that we

believe are relevant in the real world. In particular, the Stationarity and

Ergodicity of the data introduced as an assumption in the introduction if

this thesis must come from the model itself. If one is willing to verify all

the stability conditions of the possibly complex analyzed dynamics, as

we did in Chapter 3, then one must also be ensured that the empirical

strategy that is followed inherently ensures that the estimator finds the

correct causal structure. Critical here is that increasing model complexity

leads to a higher number of parameters, hence an increased overall model

uncertainty. We discussed approximation of causal structures in more

detail and provided an argument that minimizing complexity penalized

criteria such as the AIC, as we did in Chapters 4 and 6, is the right

objective in empirical settings.

8.1 Final remarks

With the theory and methods introduced in this thesis, researchers can

now estimate a wide range of flexible models that take into account

possible heterogeneity in dependencies across time and space. While

there are many thoroughly developed options for analysis of spatial time

series data, there are still many possible other research methodologies

left to cover. A few directions for future research are the following.

First, the applications in thesis focused primarily on modeling conditional

mean sequences, possibly with observation-driven nonlinear dynamics.

The notions put forward in this work can easily be extended to higher

moments. For example, the nonlinear dynamics explored in the context

of the smooth transition spatial autoregressive model could be extended

to allow for nonlinear cross-sectional dependence in multivariate GARCH

models to allow instantaneous transmission of volatility spillovers in an


