Q. When is cc' (i.e., elementary, index 2.14) a product cobordism?

Setting f Morse on $(W^n; N_0, V_1)$ at crit pts p, p' index 1, s.t. $\frac{1}{3} < f(p) < f(p')$. A glv S for f determines a right hand sphere S_R for p in $V = f^{-1}(\frac{1}{2})$ and the S_L' for p'.

Def $M^m, N^n \subset V$ intersect transversely $M \cap N$ if $\forall p \in M \cap N$, we have $T_p V = T_p M + T_p N$.

Thm. If $S_R \pitchfork S_L' = S_R \pitchfork S_L'$, then cc' is product.

Thm. We can choose $S, S_1, S_R \pitchfork S_L'$ in V.

"Pt1" Lemma 1: If $M \subset V$ has a product nbhd, then f differs $h: V \cap V$ smoothly isotopic to id, s.t. $h(M) \pitchfork N$. Hence $h(S_R) \pitchfork S_L'$ and by a lemma, one can choose S', S_1', s.t. $h(S_R)$ is $h(S_R)$ and S_L' is unchanged. QED
Note \(\dim S_g + \dim S_g' = n-k-1 + k = n-1 = \dim V \) and so the intersection is a finite set of points.

In fact, we can call \(S \) in a weak of \(T \) yielding \(S', \) s. t. \(S' \) is nowhere 0, all its trajs go from \(U_0 \) to \(U_1 \) and \(f' \) Morse function on \(W \) s. t. \(S' \) is glid for \(f' \) and it has no crit. pts. and equals \(f \) near \(\partial W \)
Given $U \cap T$ open nbhd of T (single traj $p \rightarrow p'$), we can find $U' \subset U$ st. no traj leads from U' outside U, back to U'.

Proof. Assume not. Then there are trajectories T_0, T_1, \ldots from T_0 through S_T outside of U, to T_U and S_T, T_U converge to T.

and $S_T \rightarrow s \in W \setminus U$. Now the traj $\Psi(t, s)$ through s must come from V_0. Since T depends cont. on the A, s, all traj. through s' near s come from V_0. The traj. from V_0 to s', t, Ψ_0 is cont and so its least distance to T exists and is non-zero. This distance depends cont on s'. But $T_U \rightarrow T$.
We can alter \(\mathcal{E} \) on a cpt nbhd of \(U' \), yielding \(\mathcal{E}' \) nowhere 0 at every traj of \(\mathcal{E}' \) through a point in \(U \) was outside of \(U \) for \(t < 0 \) and will be outside of \(U \) for \(t > 0 \).

Proof:

Assume \(\exists \mathcal{E}' \in \mathcal{U} \) st. \(\exists \) chart

\[
g: U_+ \to \mathbb{R}^n
\]

1. \(g(p) = 0, g(p') = (1, 0, \ldots) \)
2. \(g \circ \mathcal{E}(\varphi) = g(x) = (v(x_1), -x_2, \ldots, -x_{2+\epsilon}, x_{i+2}, \ldots, x_n) \)
 \[
 \text{Let } x = g(\varphi)
 \]
3. \(v(x_1) \) is smooth and

Then replace \(g(x) \) by

\[
g'(x) = (v'(x, P(x)), -x_2, \ldots, x_n)
\]

where

\[
P(x) = \Pi(x_2, \ldots, x_n) \quad \text{with} \quad v'(x, P(x)) = v(x_1) \text{ outside a cpt nbhd of } g(\varphi) \text{ and } g(\varphi) \text{ nowhere 0 at } 0, \text{ so } v'(x, 0) < 0
\]

This defines \(\mathcal{E}' \) which is nowhere zero.
In local coord. the traj. satisfy
\[\dot{x}_1 = v'(x_1, p(x)) \quad \dot{x}_2 = -x_2, \ldots \]
\[\dot{x}_{n+2} = x_2 + x_3 + \ldots \]

Let \(x(u) \) be an int. curve with initial cond
\[x^0 = (x_1^0, \ldots, x_n^0). \]
Then
If a) one of \(x_{2+1}, \ldots, x_n^0 \) is non-zero, then
\[x_n(\tau) = x_n^0 e^\tau \] increases exponentially
leaving \(g(u) \).

b) \[x_1^0 = \ldots = x_n^0 = 0, \quad p(x(\tau)) = p(x_0) e^{-\tau} \]
decreases exp. If it remains in \(g(u) \)
then since \(v'(x_1, p(x)) \geq 0 \) on the \(x_1 \)-axis
there is \(\delta > 0 \) s.t. \(x \in g(u) \) at \(p(x) \leq \delta \)
\[v'(x_1, p(x)) \leq 0. \]
Hence at some point
\[\dot{x}_1 \leq 0 \] and \(x(\tau) \) leaves \(g(u) \) after all.
A3. Every traj. of S' goes from V_0 to V_1.

If a traj. is in P', it leaves U by A_2, and will follow a traj. of S. It cannot come back to U (A1), hence it follows a traj. of S to V_1. Sim. it comes from V_0.
All \(\xi \) determines a diffeo \\
\[\phi : (\mathbb{R}, \mathbb{R} \times V_0 : 0 \times V_0, 1 \times V_0) \to (\mathbb{W}, V_0, V_1) \]

Let \(4(C, \xi) \) be an int. curve of \(\xi \). Since \(\xi \) is not tangent \(\mathbb{W} \), the int. curve tells us that \(T_1 : \mathbb{W} \to \mathbb{R} \) is the time at which \(4(C, \xi) \) reaches \(V_1 \). Let \(\pi_0 : \mathbb{W} \to V_0 \)

\[q \mapsto \pi_0(C, \xi, q) \in V_0 \text{ smooth.} \]

Now \(\phi : \mathbb{R}, \mathbb{R} \times V_0 \to \mathbb{W}, (t, q) \to 4(t + q) \) and \(\phi^{-1}(q) = (\pi_0(q), \pi(q)) \)

\[\text{smooth.} \] \[\square \]
A5 ξ is a glit for a t' Morse on W which equals f near ∂W and has no crit. pts.

By A4, only need to find Morse $f' : [0,1] \times V_0 \to f_t$ f'_t equals $f \circ \phi$ near $0 \times V_0 \cup 1 \times V_0$ and $f' > 0$.

Now $\exists \delta > 0 \forall t, (f_t)'(\xi) > 0$ for $t < \delta$ or $t > 1 - \delta$.

Let $l : \Sigma_0 \to \Sigma_3$ be as in the picture in W_0.

Let $k(q) = c \int_0^1 (1 - S_0 x(s))(f_t \phi)(5,q)(ds)$.

Let δ be small enough for $k_{q_0} > 0$.

Then $f'(t,q_0) = \int_0^1 A(6x(t, \phi)(5,q_0) + (1 - A(\theta)k(q_0)ds$.
Assumptions (*) can be made when
\[S_R + S_L' = 3 \text{ pt}^3. \]