Setting: \(f \) Morse on \((W^n, V_0, V_1) \) with cist. points \(p, p' \) of index \(2, 2' \), e.t. \(f(p) < \frac{1}{2} < f(p') \).

A GLVF \(\xi \) for \(f \) deteminis a right hand where \(S_R \) for \(p \) in \(V = f^{-1}(1/2) \) and left hand where \(S_L \) for \(p' \).

Then, \(S_R \triangle S_L' = \xi \) pt \(3 \) then we have a product coloring.
Last week: Pávlo insisted we can find \(\frac{\partial}{\partial x_i} \) among our technical hypothesis.

Hypothesis: There is a bundle \(UT \) of \(T: p \rightarrow p' \) and a chart \(g : UT \rightarrow \mathbb{R}^n \), e.g.

1) \(p, p' \) correspond to \((0, \ldots, 0)\) and \((1, \ldots, 0)\) respectively.

2) \(g \circ \xi(g) = \hat{x} (\hat{x}) = (v(x_1), -x_2, \ldots, -x_{2+1}, x_{2+2}, \ldots, x_n) \)
 where \(\xi(g) = \hat{x} \), and where

3) \(v(x_1) \) is smooth, positive on \((0, 1)\),
 0 at \(x_1 = 0, 1 \) and negative elsewhere, and
 also \(1 \frac{\partial v}{\partial x_1} (x_1) \leq 1 \) near \(x_1 = 0, 1 \)

\[y = v(x_1) \]

\[y = v'(x_1) \]
Thus (Amater 6 last week): We may choose a new $GLVF \tilde{z}'$ such that the hypothesis holds.

Proof steps: 1) Reduce to a technical lemma (on \mathbb{R}^n)
2) Prove this lemma.

Reduction: Let $\tilde{z}(\tilde{x})$ be a VF on \mathbb{R}^n, so:

$$\tilde{z}(\tilde{x}) = (v(x_1), -x_2, ..., -x_{2n}, x_{2n+1}, ..., x_n),$$

where:

$v(x_1)$ smooth, positive on $(0, 1)$,

0 at $x_1 = 0$, 1 and negative elsewhere, and

also $\left| \frac{dv}{dx_1} (x_1) \right| = 1$ near $x_1 = 0$, 1.

\Rightarrow Then \tilde{z} is a $GLVF$ on \mathbb{R}^n, namely w.r.t.

$$F(\tilde{x}) = f(p) + 2 \int_0^{x_1} v(t) dt - x_1^2 - ... - x_{2n}^2 + x_{2n+1}^2 + ... + x_n^2.$$

\Rightarrow Writing $e := (1, ..., 0)$, we can show V

such that $F(e) := 2 \int_0^1 v(t) dt + f(p) = f(p')$.

So on \mathbb{R}^n it is okay. We left to a nullset of T.
We can choose \(f(p) < b_1 < b_2 < f(p') \) and closed, disjoint neighborhoods \(L_1 \ni 0, L_2 \ni 0 \) with diffeos \(L_1 \rightarrow U(p) \), \(L_2 \rightarrow U(p') \).

\[\text{c.t.} \quad 1) \quad g_1, g_2 \text{ vary} \quad \overset{\rightarrow}{\rightarrow} \text{ to} \quad \varepsilon \]

\[-\overset{\rightarrow}{\rightarrow} \text{ to} \quad f \]

\[-[0, e] \text{ to} \quad T \]

2) Writing \(p_c := T \circ f^{-1}(b_c) \), we have that

\[-g_1(L_1) \leq f^{-1}([b(p), b_1]) \] is a

\[\text{valled of} \quad [p, p_1] \leq T \]

\[-g_2(L_2) \leq f^{-1}([b_2, f(p')]) \] is a

\[\text{valled of} \quad [p_2, p'] \leq T. \]

Recall: Around critical points \(p, p' \) \(f, \varepsilon \) look like:

\[f \sim \pm x_1^2 + \ldots + \pm x_n^2 \]

\[\varepsilon \sim (\pm x_1, \ldots, \pm x_n) \]

for some system \(x_1, \ldots, x_n \) of coordinates.
What does stuff in the middle? $[b_1, b_2]$.

In a nbhd $U_1 \ni b_1$, it takes pairs to a nbhd $U_2 \ni b_2$, differentiably to U.

Concluding all these pairs and their trajectories, we get...
a null set L_0 of $[b_1, b_2]$ differenti to $U_x \times [0,1]$

$L_0 \cup L_0$ is a null set of $[0,1]$.

We can extend $g_1 : L \to U_x(p)$ to

$\tilde{g}_1 : L \cup L_0 \to W$ (embedding)

again take F to f on $\tilde{\eta}$ to 3 (in terms of trajectories)

Suppose \tilde{g}_1 agrees with g_2 on some null null set of b_2 in U_2.

Gluing \tilde{g}_1 to g_2 gives a differ \tilde{g} of a null set V of $[0, e_3]$ onto a null set of T

preserving limits and trajectories.

For l $\tilde{\eta} \to 3$

There is a null set positive for $k : \tilde{g}(V) \to \mathbb{R}$

such that

$\tilde{g} \cdot \tilde{\eta} = k \cdot \tilde{\eta}$ on $\tilde{g}(V)$

By maybe taking V a bit, k can be extended positively to W

Setting $\bar{z} = k \cdot \tilde{\eta}$ gives the required CLVF.
When does \(\bar{g}_1 \) agree with \(g_1 \) on some null winding of \(b_2 \) in \(U_2 \)?

\(\Rightarrow \) \(\bar{g}_1 \) gives a diffeo \(h : f^{-1}(b_1) \to f^{-1}(b_2) \)

\(\Rightarrow \) \(\bar{g}_1 \) gives a diffeo \(h : U_1 \to U_2 \)

\(\Rightarrow \) \((*) \) holds iff \(h \) coincides with \(h_0 := g_2 \cdot h \cdot g_1^{-1} \) near \(p_1 \).

\(\Rightarrow \) Any diffeo isotopic to \(h \) corresponds to a GLVF only differing from \(f \) in \(f^{-1}(\{b_1, b_2\}) \) (Lemma 4.7).

\(\Rightarrow \) So we need to deform \(h \) to \(\bar{h} \) which agrees with \(h_0 \) near \(p_1 \), and for which:

\[\bar{h}(S_{p_1}(b_1)) \cap S_{p_2}(b_2) = \{ p_2 \} \]

\(\Rightarrow \) Equivalently, we give an isotopy of \(h_0 \cdot h \)
on a null of \(p_1 \) that deforms \(h_0 \cdot h \) to the identity on (perhaps small) null of \(p_1 \).
We can choose \(g_2 : L^2 \rightarrow H_2(p') \) such that \(h_0^{-1} h \)
is orientation preserving at \(p' \) and \(h_0^{-1} h \) and \(S_K(b_i), S_L(b_i) \)have the same intersection number with \(S_L(b_i) \) at \(p' \).

Def. Let \(M, M' \in V \). \(M \) orientable, \(V(M') \) non-orientable. M & M' at \(p' \). Choose a pair of intersecting hypersurfaces \(T_M \). This gives a basis for \(V(M') \) at \(p' \), intersecting under an orientation of this basis.

We are done if the following holds:

Thus. Let \(a, b \in \mathbb{N}, a + b = n \). View \(\mathbb{R}^n = \mathbb{R}^a + \mathbb{R}^b \)

\[
(u, v) = (u, 0) + (0, v)
\]

Suppose \(h \) is an orientation preserving embedding of \(\mathbb{R}^n \) into \(\mathbb{R}^n \) such that:

1) \(h(0) = 0 \)

2) \(h(\mathbb{R}^a) \cap \mathbb{R}^b = \{0\} \) with int. number + 1

Then: For any ruled \(N \) of \(\{0\} \), there is a smooth isotopy \(h' : \mathbb{R}^n \rightarrow \mathbb{R}^n \), \(t \in [0, 1] \) with \(h'_0 = h \) such that
$\text{(I) } h_t^\epsilon(x) = x \text{ for } x = 0 \text{ or } x \neq N$

$\text{(II) } h_t'(x) = x \text{ for } x \text{ in neighborhood of } 0.$

$\text{(III) } h_t'(R^a) \cap R^b = \emptyset.$

Proof

$\exists h_t \text{ such that } h_t = I \text{ on } R^a$ and $h_t(R^a) \cap R^b = \emptyset.$
Choose $E \supseteq \mathbb{E} \subseteq E$ and set:

$$h_t = \begin{cases} h_t(x) \quad x \in \mathbb{E} \\ h(x) \quad x \not\in \mathbb{E} \end{cases}$$

which is an interior only on $\overline{E} \cup (\mathbb{R}^n \setminus E)$.

How to extend to \mathbb{R}^n?

h_t converges to the VF: $\frac{\partial}{\partial t} (t, y) = 1$, $\frac{\partial h_t}{\partial t}(h_t^{-1}(y))$ on $[0, 1] \times \mathbb{R}^n$.

\[\ldots \]
Extend \(\tilde{h}(t, y) \) to \([0, 1] \times \mathbb{R}^n\), resulting in an immersion \(\tilde{h}_t \):

For \(t_0 \) small enough, \(\tilde{h}_{t_0} \) has no new intersection with \(\mathbb{R}^b \) (well in well for \(t \in [0, t_0 + c] \))

Now repeat the above process starting at \(h_{t_0} \)

Yields an isotopy which is obeyed on \([0, t_0 + c] \)
By a compactness argument, only finitely many steps needed.