

VU Research Portal

Aberrant cancer	glycosylation: a potent	regulator of tumor	growth and	anti-tumor
immunity		•		

Blanas, A.

2021

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Blanas, A. (2021). Aberrant cancer glycosylation: a potent regulator of tumor growth and anti-tumor immunity. [PhD-Thesis - Research and graduation internal, Vrije Universiteit Amsterdam].

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

vuresearchportal.ub@vu.nl

Download date: 11. Jul. 2025

Chapters

1.	Introduction	11
2.	Method comparison for <i>N</i> -glycan profiling: Towards the standardization of glycoanalytical technologies for cell line analysis <i>PLoS One.</i> (2019) doi: 10.1371/journal.pone.0223270	35
3.	Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis Int J Cancer. (2019) doi: 10.1002/ijc.32084	55
4.	Tn antigen expression contributes to an immune suppressive microenvironment and drives tumor growth in colorectal cancer Front Oncol. (2020) doi: 10.3389/fonc.2020.01622	85
5.	Fucosylated antigens in cancer: an alliance toward tumor progression, metastasis, and resistance to chemotherapy Front Oncol. (2018) doi: 10.3389/fonc.2018.00039	115
6.	Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent <i>N</i> -glycome alterations in colorectal cancer cells Glycobiology. (2019) doi: 10.1093/glycob/cwy096	141
7.	FUT9-driven programming of colon cancer cells towards a stem cell-like state Cancers. (2020) doi: 10.3390/cancers12092580	175
8.	FUT9 expression drives <i>in vivo</i> tumor growth and is associated with downregulated IFN signaling and decreased MHC-I expression in colon cancer cells Manuscript in preparation	213
9.	Discussion- The past, present and future of glycan-based cancer research	231
10	. Appendix Thesis summary List of publications Acknowledgements Curriculum Vitae	245