Agreeing on disagreement

ter Ellen, Saskia; Verschoor, Willem F.C.; Zwinkels, Remco C.J.

published in
Journal of Financial Markets
2019

DOI (link to publisher)
10.1016/j.finmar.2019.02.002

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
https://doi.org/10.1016/j.finmar.2019.02.002

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 31. Dec. 2023
Agreeing on disagreement: Heterogeneity or uncertainty?

Saskia ter Ellen a, Willem F.C. Verschoor b, Remco C.J. Zwinkels b,∗

a Norges Bank Research, Bankplassen 2, 0107, Oslo, Norway
b Vrije Universiteit Amsterdam and Tinbergen Institute, De Boelelaan 1105, 1081HV, Amsterdam, the Netherlands

1. Introduction

Although uncertainty is theoretically an appealing concept, the debate regarding the empirical measurement of uncertainty is a long-standing one. Since uncertainty is essentially unobservable, one needs to rely on proxies. In the past, several authors have argued that disagreement (or ‘dispersion’) among forecasters is a natural and useful proxy for uncertainty. Miller (1977) argues that uncertainty about future price levels implies that agents disagree about their point forecasts. Zarnowitz and Lambros (1987) note that, in the case of high uncertainty, there will be disagreement, but individual forecasters will also be uncertain about their own forecasts. They demonstrate this through wide confidence bounds around the point forecasts.

The more recent empirical literature, however, casts doubt on the propriety of using disagreement as a proxy for uncertainty. For instance, Bomberger (1996) analyzes the relation between disagreement and uncertainty using inflation forecasts and concludes that the two often comove but are not the same. Giordani and Soderlind (2003) show, however, that disagreement is a better proxy of inflation uncertainty than what previous studies have indicated. Furthermore, Lahiri and Sheng (2010) argue that disagreement is only a good proxy for uncertainty when the variance of aggregate shocks is small, and Rossi et al. (2016) find that disagreement only captures a tiny fraction of uncertainty.
In this article, we extend the analysis of whether disagreement is an appropriate proxy for uncertainty by considering a survey dataset of market participant and analyst forecasts that covers the euro, British pound, and Japanese yen vis-à-vis the U.S. dollar over four forecast horizons spanning the 2001–2017 sample period. This represents a particularly long period, with several tranquil and turbulent episodes and, to the best of our knowledge, a different economic variable than typically studied for this question. One of the main benefits of focusing our analysis on the foreign exchange market is that our results will not be affected by short sale constraints. This reason was also brought forward by Beber et al. (2010).

The foreign exchange market is an important but relatively overlooked asset class in regard to measurements of uncertainty and disagreement. It is important due to its sheer size, and because several authors have linked disagreement to foreign exchange puzzles and risk premia. For instance, Fisher (2006) proposes a model where the forward premium of the foreign exchange depends on the diversity of prior beliefs about a country’s inflation process. Gourinchas and Tornell (2004) propose investors’ distorted beliefs about interest rates as an explanation for both the forward premium puzzle and the delayed overshooting puzzle. Similarly, Beber et al. (2010) show that disagreement about future currency returns has a large impact on currency risk premia, while Spronk et al. (2013) demonstrate that carry traders in a heterogeneous agent model are part of the explanation of foreign exchange rate puzzles. The foreign exchange market is relatively unnoticed, as most studies evaluating measures of uncertainty and disagreement tend to focus on macroeconomic variables such as inflation and economic output (Lahiri and Sheng, 2010; Jurado et al., 2015; Rossi et al., 2016), or company earnings and stock returns (Diether et al., 2002; Johnson, 2004). Our study thus provides an interesting complement to previous work.

Following Lahiri and Sheng (2010), Jurado et al. (2015), and Rossi et al. (2016), we define uncertainty as the variance of the unforecastable component of exchange rates (i.e., the variance of the forecast error). We calculate the measures of disagreement and uncertainty based on a monthly exchange rate survey database that includes the three most actively traded currencies vis-à-vis the U.S. dollar. With these explicit measures for disagreement and uncertainty, we directly assess their relation while controlling for market risk, which might also affect disagreement.

 Whereas uncertainty is one cause for disagreement, the alternative explanation is that disagreement reflects heterogeneous probability beliefs (Varian, 1985). This heterogeneity might arise, for example, when individual forecasters use different forecasting models, or have access to asymmetric information. Under such circumstances, individual forecasters will disagree and, hence, give dispersed point forecasts. In contrast to uncertainty-driven disagreement, heterogeneity-driven disagreement does not necessarily coincide with individual forecasters being uncertain about their point forecasts.

A number of researchers have studied how heterogeneity in agents’ expectations affects asset prices (Diether et al., 2002; Fama and French, 2007; Hong and Sraer, 2016). Jongen et al. (2012) find that dispersion in beliefs about foreign exchange rates is driven by heterogeneous and time-varying weights on subsets of public information, such as the interest differential, past returns, and fundamental value estimates. Heterogeneity can also be based on information asymmetry (Shalen, 1993). Finally, even if agents have access to the same information and use the same models, limited attention to public information might cause forecasts to be dispersed (DellaVigna and Pollet, 2009).

To assess the extent to which disagreement captures heterogeneity, we test the impact of disagreement on foreign exchange trading activity and market liquidity. Heterogeneity has a potentially positive effect on trade by creating scope for transactions between agents with different views (Naes and Skjeltorp, 2006; Hong and Sraer, 2016). It is by now well established that the large volume of foreign exchange markets cannot be explained by international trade alone (Frankel and Froot, 1990) and that heterogeneity of market participants is necessary to explain such large volumes. A positive relation between heterogeneity and volume is documented by, among others, Harris and Raviv (1993), Buraschi and Jiltsov (2006), and Banerjee and Kremer (2010). Lee and Swaminathan (2000) use high trading volume as a proxy for differences of opinion. Carlin et al. (2014) find that higher levels of disagreement in the mortgage-backed securities market are followed by higher volume and higher volatility.

Whereas heterogeneity may have a positive effect on volume, market conditions generally deteriorate when there is high uncertainty, leading to lower trade volumes and lower liquidity. Overall, investors become more hesitant to update their portfolios (de Castro and Chateauneuf, 2011) given that, in times of high uncertainty, valuation is more difficult and agents might not be able to consistently order portfolio preferences (Easley and O’Hara, 2010). There is also some evidence that uncertainty affects nonparticipation in equity markets (Easley and O’Hara, 2009). We therefore hypothesize that uncertainty should have a negative effect on trading activity and market liquidity, whereas heterogeneity should have a positive effect on these measures.

In this article, we provide several contributions to the literature and corroborate some of the earlier results from different markets and asset classes. We find that disagreement is an unstable proxy for uncertainty, as the results are conditional on the forecast horizon. Only for relatively short forecast horizons is disagreement related to uncertainty. These results are consistent with the findings of Bomberger (1996), Lahiri and Sheng (2010), and Rossi et al. (2016) for macroeconomic variables. Moreover, consistent with Hong and Stein (2007), we find that disagreement is positively related to both trading volume and market

1 As Goetzmann and Massa (2005) note, the impact of differences of opinion on returns is conditional on the existence of short selling constraints.

2 See Hong and Stein (2007) for an overview of the literature on disagreement and volume.
liquidity. These results are especially strong for the longer forecast horizons and become stronger once we control for risk and uncertainty. This confirms our earlier findings that disagreement is not a stable proxy for uncertainty and suggests that it is more akin to heterogeneity.

The remainder of this article is organized as follows. In Section 2, we derive our measures of disagreement, uncertainty, and risk. We also postulate hypotheses for the relations between those variables, and their impact on foreign exchange trading volume and market liquidity. In addition, the construction of the exchange rate survey is outlined. Our empirical results are provided and discussed in Section 3. Finally, Section 4 concludes the article.

2. Methods and data

In this section, we first describe how we measure disagreement, uncertainty, and risk. We then proceed with the description of the data we employ, specifically the survey data that is central to our measures. We finally explain the empirical tests used to lay bare the relations between disagreement, uncertainty, and risk.

2.1. Disagreement, uncertainty, and risk

Following Jurado et al. (2015) (JLN), we assume that uncertainty about a certain economic variable, y_t, is related to the unpredictability of that variable rather than its variability and can therefore be defined as “the conditional volatility of the purely unforecastable component of the series”. Similar to Scotti (2016), then, we normalize uncertainty in exchange rate y by the standard deviation:

$$U_y(t) = \sqrt{\frac{\left(\frac{1}{J} \sum_{j=1}^{J} \left(E_y[y_{t+h} \mid I_{jt}] - E_y[y_{t+h} \mid I_t] \right) \right)^2}{\sigma_t}},$$

where σ_t is the 12-month rolling standard deviation of the numerator and I_t is the information set available at time t.

In JLN, the forecastable component $E_y[y_{t+h} \mid I_t]$ is obtained by forming factors from a large set of predictor variables and using these in a diffusion index forecast. Aggregate macroeconomic uncertainty is then computed as a weighted average of the uncertainties of individual macroeconomic series. To mimic the methodology of JLN as closely as possible, we could have calculated our measure of uncertainty by generating forecast errors from a large number of forecasting models. However, as Scotti (2016) argues, survey responses are public information, and thus market participants have access to them. In addition, it is well-known that macrovariables are more predictable than exchange rates (Rossi, 2013), and thus the methodology of JLN is more suitable for such variables.

We modify the JLN methodology by taking survey forecasts rather than model-generated forecasts. Specifically, each survey respondent j has an expectation at time t, $E_y[y_{t+h} \mid I_{jt}]$, of the exchange rate y at horizon h, based on all information available to him/her at time t, denoted by I_{jt}. The aggregate expectation is then equal to the unweighted average over all respondents:

$$E_y[y_{t+h} \mid I_t] = \frac{1}{J} \sum_{j=1}^{J} (E_y[y_{t+h} \mid I_{jt}]).$$

Note that our proposed measure of uncertainty is quite similar to the decomposition in Bomberger (1996) and Lahiri and Sheng (2010). However, they label the common components, or the variance of aggregate shocks, as ‘mean forecast uncertainty’ (i.e., the uncertainty of choosing the mean forecast), and the total of the variance of aggregate shocks and disagreement as ‘individual uncertainty’ (Bomberger) or ‘aggregate uncertainty’ (Lahiri and Sheng). Scotti (2016) also computes an uncertainty index based on forecast errors from survey participants. However, she uses the mean forecast of Bloomberg responses and aggregates the forecast errors of several macroeconomic variables.

Finally, we measure disagreement using the cross-sectional standard deviation of forecasts:

$$\text{Disagree}_{th} = \sqrt{\frac{1}{J} \sum_{j=1}^{J} \left(E_y[y_{t+h} \mid I_{jt}] - E_y[y_{t+h} \mid I_t] \right)^2}.$$
Table 1
Descriptive statistics: number of survey forecasts.

<table>
<thead>
<tr>
<th></th>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>55.2</td>
<td>53.7</td>
<td>54.3</td>
</tr>
<tr>
<td>Median</td>
<td>55.5</td>
<td>54.0</td>
<td>54.5</td>
</tr>
<tr>
<td>Min.</td>
<td>41.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Max.</td>
<td>66.0</td>
<td>64.0</td>
<td>65.0</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>4.8</td>
<td>4.9</td>
<td>4.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>58.7</td>
<td>57.0</td>
<td>57.8</td>
</tr>
<tr>
<td>Median</td>
<td>60.0</td>
<td>58.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Min.</td>
<td>39.0</td>
<td>38.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Max.</td>
<td>72.0</td>
<td>68.0</td>
<td>71.0</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>6.0</td>
<td>5.7</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>57.8</td>
<td>56.1</td>
<td>57.0</td>
</tr>
<tr>
<td>Median</td>
<td>58.0</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Min.</td>
<td>40.0</td>
<td>38.0</td>
<td>38.0</td>
</tr>
<tr>
<td>Max.</td>
<td>71.0</td>
<td>68.0</td>
<td>70.0</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>5.7</td>
<td>5.4</td>
<td>5.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>57.8</td>
<td>56.2</td>
<td>57.0</td>
</tr>
<tr>
<td>Median</td>
<td>58.0</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Min.</td>
<td>39.0</td>
<td>38.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Max.</td>
<td>71.0</td>
<td>68.0</td>
<td>70.0</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>5.8</td>
<td>5.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Notes: This table presents descriptive statistics on the number of survey forecasts per currency-horizon pair in our sample.

2.2. Data

Based on the methodology above, we use a dataset with foreign exchange forecasts, the realized outcomes of those forecasts, and data on volatility and trading activity.

There are several reasons why foreign exchange survey data are appropriate when studying disagreement. Expectations are not directly observable, as they are an input to an investment decision. As such, we need to rely on revealed or stated beliefs when constructing a measure of disagreement. Given that financial decisions are typically the result of a combination of preferences and beliefs and are therefore difficult to disentangle, we opt for stated beliefs. One possible issue with surveys is that forecasters might not report their true expectations (i.e., their survey responses may not coincide with their stated beliefs). This issue is mitigated by the specific survey we use, as the names (companies) are revealed and the forecasters’ reputations are therefore affected. In a recent paper, Gennaioli et al. (2015) illustrate the substantial informational content of survey data. Survey data are similar in nature to the analyst forecasts, which is used in many studies to measure disagreement as it captures the forecasts of market participants about a financial variable (e.g., Diether et al., 2002; Anderson et al., 2005).

We obtain forecasts from a large survey executed among foreign exchange dealers and analysts by Thomson Reuters. The forecasters are representatives from 84 major financial institutions; the full list of names is given in the Appendix A. The survey data contains point forecasts of the exchange rate for three of the largest and most liquid currency pairs: the euro, British pound, and Japanese yen against the U.S. dollar from 2001 to mid-2017 at the monthly frequency. On average, approximately 60 forecasters participate in the survey and give their forecast for one, three, six, and 12 months ahead. At the start of the sample, the average number of forecasters is approximately 50; this increases to 60 in 2008 (see the Appendix A). Table 1 gives the number of forecasters per currency-horizon pair. The numbers are highly similar across currencies and horizons, suggesting that the forecasters either give all their forecasts or none. The number of forecasts ranges between 40 and 70. Given that the total number of surveyed institutions is 84, the response rate is rather high. In general, the forecasters give their forecast by the first Tuesday of the month, which is then published by Thomson Reuters the following day. We have the full list of dates available upon request. From this data set, we compute measures of disagreement and uncertainty, as defined in the previous subsection.

We extract realized exchange rates and implied volatilities from Thomson Reuters (obtained through Datastream). Intraday data are obtained from the Reuters Tick Capture Engine (RTCE). Because the foreign exchange market is decentralized, there is no direct measure of trading volume that captures the volume of the whole market. The RTCE data provide us with the number of trades, which is a good proxy for volume since trade size is highly standardized in the currency markets that we consider. In line with previous literature on volume, we work with excess trading activity rather than gross trading activity (Llorente et al., 2002). In this way, we control for the trend in trading volume. Specifically, we obtain:

\[
\text{Vol}_t = \log(\text{volume}_t) - \log\left(\frac{\sum_{s=1}^{N} \text{volume}_{t-s}}{N}\right),
\]

in which we take \(N\) equal to the forecast horizon \(h\).

4 The interest in studies using survey data in financial economics has been increasing in recent years (e.g., Ben-David et al., 2013; Greenwood and Shleifer, 2014; Gennaioli et al., 2015).
5 Thomson Reuters provides FX implied volatility indices per currency based on at-the-money call and put options at constant maturity points for a set of different maturities. We match the maturity of the implied volatility with the forecast horizons as closely as possible.
6 For most of our sample period, most interdealer FX trading is executed on either the Reuters or EBS platform. Although EBS is the main trading platform for the large currencies, a substantial amount of trading for these currency pairs takes place via RTCE. This is less the case for the USDJPY currency pair, so the trade activity and liquidity measures for the yen are slightly lower and less representative of the entire market.
Table 2
Descriptive statistics: survey-based variables.

<table>
<thead>
<tr>
<th></th>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1M</td>
<td>3M</td>
<td>6M</td>
</tr>
<tr>
<td>Disagreement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.021</td>
<td>0.036</td>
<td>0.052</td>
</tr>
<tr>
<td>Median</td>
<td>0.020</td>
<td>0.034</td>
<td>0.048</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.049</td>
<td>0.102</td>
<td>0.199</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.011</td>
<td>0.020</td>
<td>0.027</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.006</td>
<td>0.011</td>
<td>0.021</td>
</tr>
<tr>
<td>Observations</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>Uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.023</td>
<td>0.044</td>
<td>0.063</td>
</tr>
<tr>
<td>Median</td>
<td>0.019</td>
<td>0.040</td>
<td>0.062</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.107</td>
<td>0.192</td>
<td>0.185</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.019</td>
<td>0.033</td>
<td>0.041</td>
</tr>
<tr>
<td>Observations</td>
<td>210</td>
<td>209</td>
<td>206</td>
</tr>
</tbody>
</table>

Notes: This table presents the descriptive statistics of the survey-based variables. Disagreement is given by equation (3) and uncertainty by equation (1).

In addition, we consider the effects of disagreement on FX market liquidity. We measure market liquidity as the bid-ask spread (relative to the mid-quote):

$$\text{Liq}_t = 100 \times \frac{S_{ask} - S_{bid}}{S_{mid}}.$$

(5)

The measures for trading volume and liquidity are calculated over the exact same period as the forecasting horizon for the FX polls. We match the forecast horizon by obtaining the number of days between each poll date and forecasted date and calculate trading volume or liquidity over that same period. For example, if there are 24 trading days between today’s poll and the date for which the (one-month) forecast is made, trading volume (cumulative) and liquidity (average) are calculated over the next 24 trading days.

The descriptive statistics in Table 2 show a number of interesting patterns. First, we find that disagreement and uncertainty consistently increase as the forecast horizon increases. This suggests that forecasting becomes increasingly challenging as the horizon expands (Andrade et al., 2016). This is also reflected in the increasing range and standard deviations over the forecast horizons. Although the differences are relatively small, it is interesting to compare uncertainty across the currencies. We find that the forecasters are the least uncertain about the British pound, and the most uncertain about the yen. This ranking is in line with the volatilities of the currencies.

The descriptive statistics of the market-based variables in Table 3 also reveal a number of interesting patterns. First, there is a clear ranking in liquidity: the pound is the most liquid, followed by the euro and the yen. This might reflect the characteristics of the RTCE platform, on which the commonwealth currencies are heavily traded. Implied volatility increases with maturity, reflecting the volatility skew of foreign exchange options. The British pound is the least volatile currency; the euro and yen have slightly higher but comparable volatilities. Trading volume is generally negative. This implies a downward sloping trend in the number of trades over our sample period for all three currencies. This finding is particularly strong for the yen.

Fig. 1 provides a graphical representation of our main variables of interest: Disagree, Uncertainty, and Risk (implied volatility). We show the variables for the one-month forecast horizon; patterns are qualitatively similar for the other forecast horizons. First, we observe that the time-series trends are quite similar across the variables, for all currencies. This reflects the fact that the three variables measure related concepts. The main difference between the variables appears to be in variability; uncertainty is the most volatile, followed by disagreement and implied volatility. Large spikes in the variables can be matched with important economic events. For example, all variables clearly jump at the end of 2008, corresponding to the Lehman Brothers bankruptcy. The Lehman effect appears to be somewhat less important for the yen, especially its disagreement. The euro measures subsequently show sharp increases in 2010 and 2011. This coincides with the developments related to the Greek debt crisis. After the “Whatever it takes” speech by European Central Bank president Mario Draghi in July 2012, we observe that all measures drop to historical lows for the euro. Clearly recognizable for the British pound is the jump in mid-2016, coinciding with the European Union referendum. The yen also shows a remarkable jump at the end of 2016. This coincides with the election of Donald Trump as president of the U.S., which was perceived as an important factor for the Japanese international trade position and, thereby, its currency.

7 Disagreement cannot be compared across currencies as it is not unit free.
on the other hand, can have a positive effect on trade by creating scope for transactions between agents with different views. High uncertainty makes valuation more difficult and agents might not be able to consistently order portfolio preferences (Easley and O’Hara, 2010). There is also some evidence that uncertainty affects nonparticipation (Easley and O’Hara, 2009). Heterogeneity, on the other hand, can have a positive effect on trade by creating scope for transactions between agents with different views.

Disagree

Table 3 presents the correlations between disagreement, uncertainty, risk, as well as trade and liquidity. Within the three currencies, the correlations are quite consistent: Risk, uncertainty, and disagreement are positively correlated with each other, confirming the results from Fig. 1. Risk and disagreement show an especially strong correlation of approximately 60%. All three measures are weakly negatively correlated with trading volume and strongly positively correlated to liquidity. Hence, it appears that all three measures are negatively related to market activity using data from the 1-month forecast horizon. Trading volume and liquidity, finally, are negatively correlated, which is expected. Across currencies, we observe that the variables have a strong and positive correlation. This finding suggests that there is a positive association between the economic circumstances in the three markets.

2.3. Methodology

To evaluate the extent to which disagreement proxies uncertainty, we run two sets of tests. First, we compare disagreement with our measure of uncertainty. Second, we look into the implications that risk, uncertainty, and heterogeneity might have for market trading activity and liquidity. Specifically, for the first set of tests we use ordinary least squares (OLS) to estimate the relation between disagreement and uncertainty, controlling for risk. We include risk in the model because it can also affect disagreement by the same reasoning as uncertainty. We estimate different forms of the following empirical model:

\[\text{Disagree}_t = \alpha + \sum_{i=1}^I \beta^\text{Lag} \text{Disagree}_{t-i} + \beta^\text{Unc} \text{Uncertainty}_t + \beta^\text{Risk} \text{Risk}_t + \epsilon_t, \]

where Disagree is the cross-sectional standard deviation over the survey respondents, Uncertainty is the survey-based uncertainty measure given by equation (1), and Risk is measured by implied volatility. For all measures, we match the forecasting horizon of the survey respondents to the horizon over which the measures are computed. We include lags of Disagree to account for the autocorrelation and heteroskedasticity caused by the fact that the forecast horizon extends the data frequency for \(h > 1 \), where we set \(I = 3 \) for all forecasting horizons and currencies. Furthermore, we calculate robust standard errors to account for the remaining autocorrelation and heteroskedasticity.

To further assess the relation between disagreement and uncertainty, we study the effects of uncertainty on trading activity and liquidity. Market conditions generally deteriorate when there is high uncertainty, leading to less trade and lower liquidity. Overall, investors become more hesitant to update their portfolios (de Castro and Chateauneuf, 2011), given that, in times of high uncertainty, valuation is more difficult and agents might not be able to consistently order portfolio preferences (Easley and O’Hara, 2010). There is also some evidence that uncertainty affects nonparticipation (Easley and O’Hara, 2009). Heterogeneity, on the other hand, can have a positive effect on trade by creating scope for transactions between agents with different views.

<table>
<thead>
<tr>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>3M</td>
<td>6M</td>
</tr>
<tr>
<td>Bid-ask spread</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.134</td>
<td>0.137</td>
</tr>
<tr>
<td>Median</td>
<td>0.056</td>
<td>0.058</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.396</td>
<td>0.934</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.016</td>
<td>0.020</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.210</td>
<td>0.174</td>
</tr>
<tr>
<td>Observations</td>
<td>210</td>
<td>209</td>
</tr>
</tbody>
</table>

Implied volatility

<table>
<thead>
<tr>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>23.750</td>
<td>22.150</td>
</tr>
<tr>
<td>Minimum</td>
<td>4.350</td>
<td>4.890</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3.041</td>
<td>2.812</td>
</tr>
<tr>
<td>Observations</td>
<td>210</td>
<td>210</td>
</tr>
</tbody>
</table>

Excess trade

<table>
<thead>
<tr>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>8.810</td>
<td>6.286</td>
</tr>
<tr>
<td>Observations</td>
<td>210</td>
<td>209</td>
</tr>
</tbody>
</table>

Notes: This table presents the descriptive statistics of the market-based variables. Liquidity, as measured by the bid-ask spread, is given by equation (5). Implied volatility is the volatility implied from the currency options with maturity corresponding to the forecast horizons. Trading volume, measured by excess trade, is given by equation (4).
Fig. 1. Uncertainty, risk, and disagreement.

Notes: This figure presents the disagreement, uncertainty, and implied volatility for all three currency pairs. We used the 1-month forecast horizon to calculate the measures in these figures.

(see Diether et al., 2002). A positive relation between heterogeneity and volume is documented by, among others, Harris and Raviv (1993), Buraschi and Jiltsov (2006), and Banerjee and Kremer (2010). In the model of Harris and Raviv (1993), differences of opinion arise from the heterogeneous interpretation of common information. Likewise, Lee and Swaminathan (2000) even use high trading volume as a proxy for differences of opinion.

We look into the effect of risk, uncertainty, disagreement, and two measures of FX market trading activity: the trading volume and liquidity. This is estimated using:

\[X_{t,t+h} = \alpha + \beta_{\text{Disagreement}_t} + \beta_{\text{Uncertainty}_t} + \beta_{\text{Risk}_t} + \epsilon_t, \]

(7)

where \(X_{t,t+h} \) is a measure for trading volume or liquidity in the foreign exchange market from time \(t \) to \(t + h \). Note that we take \(X_{t,t+h} \) over the exact forecasting horizon; in other words, the survey is taken at the start of the period, whereas the market variables represent trading volume and liquidity over the remaining days of the same period. This timing reduces potential endogeneity concerns.
Table 4
Descriptive statistics: Correlations.

<table>
<thead>
<tr>
<th></th>
<th>Dis</th>
<th>Unc</th>
<th>Risk</th>
<th>Trade</th>
<th>Liq</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURUSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GBPLUSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDJPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDJPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EURUSD</td>
<td>1.000</td>
<td>0.160</td>
<td>0.649</td>
<td>−0.050</td>
<td>0.229</td>
<td>0.630</td>
<td>0.120</td>
<td>0.597</td>
<td>−0.051</td>
<td>0.276</td>
<td>0.180</td>
<td>0.079</td>
<td>0.432</td>
<td>−0.102</td>
<td>−0.038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unc</td>
<td>1.000</td>
<td>0.287</td>
<td>−0.053</td>
<td>0.313</td>
<td></td>
<td>0.075</td>
<td>0.470</td>
<td>0.217</td>
<td>−0.023</td>
<td>0.354</td>
<td>0.111</td>
<td>0.167</td>
<td>0.199</td>
<td>−0.010</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>1.000</td>
<td>−0.093</td>
<td>0.445</td>
<td></td>
<td></td>
<td>0.416</td>
<td>0.179</td>
<td>0.759</td>
<td>−0.026</td>
<td>0.483</td>
<td>0.258</td>
<td>0.094</td>
<td>0.609</td>
<td>−0.115</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>1.000</td>
<td>−0.071</td>
<td></td>
<td></td>
<td></td>
<td>−0.037</td>
<td>0.021</td>
<td>−0.032</td>
<td>0.783</td>
<td>−0.342</td>
<td>−0.189</td>
<td>−0.050</td>
<td>−0.065</td>
<td>0.559</td>
<td>−0.075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liq</td>
<td>1.000</td>
<td></td>
<td>0.124</td>
<td>0.108</td>
<td>0.299</td>
<td>−0.023</td>
<td>0.475</td>
<td></td>
<td></td>
<td></td>
<td>0.204</td>
<td>0.139</td>
<td>0.373</td>
<td>−0.060</td>
<td>0.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dis</td>
<td>1.000</td>
<td></td>
<td>0.065</td>
<td>0.236</td>
<td>0.082</td>
<td>0.236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.301</td>
<td>0.062</td>
<td>0.469</td>
<td>−0.146</td>
<td>−0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unc</td>
<td>1.000</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.065</td>
<td>0.199</td>
<td>0.139</td>
<td>0.024</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.301</td>
<td>0.062</td>
<td>0.469</td>
<td>−0.146</td>
<td>−0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.354</td>
<td>0.154</td>
<td>0.746</td>
<td>−0.129</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liq</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.573</td>
<td>0.573</td>
<td>−0.104</td>
<td>0.573</td>
<td>−0.104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dis</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.319</td>
<td>0.244</td>
<td>0.429</td>
<td>−0.291</td>
<td>0.370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unc</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.100</td>
<td>0.144</td>
<td>0.544</td>
<td>−0.201</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.188</td>
<td>0.031</td>
<td>0.111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>−0.209</td>
<td>0.055</td>
<td>0.081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liq</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table presents the correlations between our variables of interest including liquidity and trading volume. “Dis” denotes disagreement; “Unc” uncertainty; “Risk” implied volatility; “Trade” trading volume; “Liq” liquidity measured as the bid-ask spread.
Table 5
Disagreement, uncertainty, and risk.

<table>
<thead>
<tr>
<th></th>
<th>EURUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.004***</td>
<td>0.000</td>
<td>−0.0091***</td>
</tr>
<tr>
<td></td>
<td>(3.546)</td>
<td>(0.054)</td>
<td>(−2.612)</td>
</tr>
<tr>
<td>β^{Unc}</td>
<td>0.004***</td>
<td>0.000</td>
<td>−0.0084***</td>
</tr>
<tr>
<td></td>
<td>(5.518)</td>
<td>(0.092)</td>
<td>(−2.908)</td>
</tr>
<tr>
<td>β^{Risk}</td>
<td>0.008***</td>
<td>0.006***</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>(3.951)</td>
<td>(3.216)</td>
<td>(5.025)</td>
</tr>
<tr>
<td>R²</td>
<td>0.52</td>
<td>0.63</td>
<td>0.59</td>
</tr>
</tbody>
</table>

3 month forecasts			
α	0.005***	0.003	−0.012***
	(2.476)	(1.252)	(−2.692)
β^{Unc}	0.001	0.000	−0.014***
	(1.523)	(0.950)	(−3.090)
β^{Risk}	0.010***	0.010***	0.013***
	(3.842)	(4.109)	(3.229)
R²	0.69	0.70	0.72

6 month forecasts			
α	0.008*	0.008	−0.020***
	(1.723)	(1.632)	(−2.588)
β^{Unc}	0.000	0.000	−0.023***
	(0.325)	(0.950)	(−2.838)
β^{Risk}	0.015***	0.015***	0.010***
	(3.314)	(3.447)	(2.422)
R²	0.70	0.70	0.72

12 month forecasts			
α	0.010**	0.012**	−0.030***
	(2.191)	(2.155)	(−2.504)
β^{Unc}	−0.001	0.000	−0.037***
	(−0.806)	(2.287)	(−2.613)
β^{Risk}	0.021***	0.024***	0.012***
	(3.843)	(4.098)	(2.397)
R²	0.74	0.75	0.77

Notes: This table presents the estimation results of equation (6). The estimated values for β^{αx1}, β^{αx2}, and β^{αx3} are suppressed for reasons of space. Robust T-values in parentheses; *, **, *** represents statistical significance at the 10%, 5%, and 1% level, respectively.
We hypothesize that β_{Unc} and β_{Risk} are negative when $X_{t,h}$ represents trading volume, and positive when $X_{t,h}$ represents liquidity. These hypotheses are inspired by Bollerslev and Melvin (1994), who find a positive relation between uncertainty and bid-ask spreads in the foreign exchange market, and Pastor and Stambaugh (2003), who finds a correlation of -0.57 between market-wide liquidity and volatility. As explained above, we further hypothesize that, if disagreement captures uncertainty, then we should find a negative β_{Unc} when $X_{t,h}$ represents trading volume, and a positive β_{Unc} when $X_{t,h}$ represents liquidity as measured by the bid-ask spread.

3. Results

In this section, we present our empirical results. We start with the direct comparison between the disagreement, risk, and uncertainty measures, followed by the results of the analysis of the consequences for trade and liquidity.

3.1. Disagreement and uncertainty

Overall, the estimation results in Table 5 reveal that disagreement is positively associated with risk and, in some cases, also with uncertainty. The relation between disagreement and uncertainty is significant in five out of 12 univariate currency-horizon pairs. The results are particularly strong at the shorter forecast horizons for all three currency pairs. The β_{Unc} estimates are significant at the 1-month horizon for all currencies, for two out of three at the 3-month horizon, and for none at longer horizons. The same result holds for the multivariate regression results. The latter implies that the relation between disagreement and uncertainty is not affected by the inclusion of risk.

Disagreement has a strong correlation with risk measured as implied volatility. In all but one case, both univariate and multivariate, we find a positive and significant estimate for β_{Risk}. The 12-month forecast horizon for the USDJPY is the exception. Our results suggest that disagreement is not a robust measure of uncertainty because the relation is highly sensitive to the forecast horizon. These results are consistent with the findings of Bomberger (1996), Lahiri and Sheng (2010), and Rossi et al. (2016) for macroeconomic variables. To further understand the relation between disagreement and uncertainty, we now turn to our tests based on the implications of uncertainty on trading volume and market liquidity.

3.2. Implications for trading activity and market liquidity

Our results from Subsection 3.1 show that disagreement is not robustly associated with uncertainty. However, as summarized in Section 1, there is ample evidence in the literature that disagreement has implications for asset pricing and trading activity. We therefore turn to analyzing the effects of uncertainty on trading volume and liquidity.

The estimation results in Table 6 reveal that the relation between disagreement and trading volume is significant in eight out of 12 cases in the univariate case. This is consistent with the findings of Hong and Stein (2007) for the equity market. For the euro and the pound, the sign is positive, indicating that disagreement does not proxy for uncertainty but for heterogeneity. For the yen, the sign is negative, suggesting that disagreement captures uncertainty in that case. We also find that the relation between disagreement and trading volume generally becomes stronger as the forecast horizon increases. In addition, the relation becomes stronger in the multivariate model when we control for uncertainty and risk. This is in line with what we would expect, as controlling for uncertainty should capture the uncertainty component in disagreement such that the heterogeneity component remains. It is only for the yen at the six and 12-month horizons that disagreement has a negative effect. The opposite result for the yen could be driven by the fact that the coverage of the yen on the RTCE platform is lower than for the other two currencies. As observed in Table 5, trading in the yen decreases over our sample period. At the same time, we find that disagreement is relatively flat for the yen, with a single peak toward the end of the sample. This combination could be driving the negative coefficient and should therefore be interpreted with caution.

For neither of the currencies do we find a strong relation between uncertainty and trading volume. For the majority of the horizon-currency combinations, the sign for uncertainty is negative, as expected, but typically not significant. For the yen, β_{Unc} is positive and significant for the longer forecast horizons. This is interesting given that β_{Unc} is negative and significant for these cases. This might again be explained by the decay in trade in the yen on the RTCE platform.

The most robust result is the negative relation between trading volume and risk: for almost all specifications and horizon-currency combinations, especially in the multivariate cases, higher risk is associated with lower trading volume. This is in line with our hypothesis, as implied volatility is a direct measure of risk, which causes risk-averse agents to trade less.

Finally, we examine how market liquidity is related to disagreement, risk, and uncertainty. The results in Table 7 show that, for the short horizon forecasts (the 1- and 3-month forecasts), there is no clear relation between disagreement and liquidity. Disagreement about the 6- to 12-month horizons, however, is negatively associated with bid-ask spreads and, thus, positively associated with FX market liquidity. This confirms our earlier findings that disagreement does not represent uncertainty. Similar

8 Trading volume and the bid-ask spread are negatively correlated, as seen in Table 4.
9 The estimated coefficients for the USDJPY are an order of magnitude larger than the other currency pairs. This is because disagreement is measured as the cross-sectional standard deviation of price forecasts, which is not unit free.
Table 6
Trading volume, disagreement, uncertainty, and risk.

<table>
<thead>
<tr>
<th></th>
<th>EUUSD</th>
<th>GBPUSD</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-1.488**</td>
<td>-1.90***</td>
<td>1.305</td>
</tr>
<tr>
<td></td>
<td>(-1.879)</td>
<td>(-4.312)</td>
<td>(0.806)</td>
</tr>
<tr>
<td>(\beta_{\text{Dis}})</td>
<td>-24.04</td>
<td>32.34</td>
<td>-0.652</td>
</tr>
<tr>
<td></td>
<td>(-0.652)</td>
<td>(0.605)</td>
<td>(-0.560)</td>
</tr>
<tr>
<td>(\beta_{\text{Unc}})</td>
<td>-0.103</td>
<td>-0.062</td>
<td>-0.146</td>
</tr>
<tr>
<td></td>
<td>(-0.259)</td>
<td>(-0.146)</td>
<td>(-1.502)</td>
</tr>
<tr>
<td>(\beta_{\text{Risk}})</td>
<td>-1.445**</td>
<td>-1.925*</td>
<td>-0.153</td>
</tr>
<tr>
<td></td>
<td>(-1.981)</td>
<td>(-1.863)</td>
<td>(-2.020)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>3 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-14.24***</td>
<td>-7.580***</td>
<td>-2.990</td>
</tr>
<tr>
<td></td>
<td>(-5.311)</td>
<td>(-5.150)</td>
<td>(-0.381)</td>
</tr>
<tr>
<td>(\beta_{\text{Dis}})</td>
<td>155.9**</td>
<td>303.7***</td>
<td>0.886</td>
</tr>
<tr>
<td></td>
<td>(2.190)</td>
<td>(3.630)</td>
<td>(1.017)</td>
</tr>
<tr>
<td>(\beta_{\text{Unc}})</td>
<td>-0.895</td>
<td>-0.824</td>
<td>-1.133</td>
</tr>
<tr>
<td></td>
<td>(-0.887)</td>
<td>(-0.802)</td>
<td>(-1.325)</td>
</tr>
<tr>
<td>(\beta_{\text{Risk}})</td>
<td>-2.437</td>
<td>-10.72***</td>
<td>-2.020</td>
</tr>
<tr>
<td></td>
<td>(-0.691)</td>
<td>(-3.132)</td>
<td>(-0.749)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-36.31***</td>
<td>-12.02***</td>
<td>-39.23</td>
</tr>
<tr>
<td></td>
<td>(-6.740)</td>
<td>(-2.563)</td>
<td>(-1.628)</td>
</tr>
<tr>
<td>(\beta_{\text{Dis}})</td>
<td>316.8***</td>
<td>338.2**</td>
<td>136.7*</td>
</tr>
<tr>
<td></td>
<td>(3.731)</td>
<td>(4.132)</td>
<td>(1.956)</td>
</tr>
<tr>
<td>(\beta_{\text{Unc}})</td>
<td>-5.566*</td>
<td>-4.858*</td>
<td>-1.863</td>
</tr>
<tr>
<td></td>
<td>(-1.942)</td>
<td>(-1.699)</td>
<td>(-1.242)</td>
</tr>
<tr>
<td>(\beta_{\text{Risk}})</td>
<td>8.430</td>
<td>-7.990</td>
<td>-4.603</td>
</tr>
<tr>
<td></td>
<td>(0.788)</td>
<td>(-0.821)</td>
<td>(-0.856)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.10</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>12 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-113.6***</td>
<td>-29.58**</td>
<td>-239.8***</td>
</tr>
<tr>
<td></td>
<td>(-5.403)</td>
<td>(-2.127)</td>
<td>(-3.021)</td>
</tr>
<tr>
<td>(\beta_{\text{Dis}})</td>
<td>839.6***</td>
<td>554.8**</td>
<td>77.73</td>
</tr>
<tr>
<td></td>
<td>(3.294)</td>
<td>(2.569)</td>
<td>(0.433)</td>
</tr>
<tr>
<td>(\beta_{\text{Unc}})</td>
<td>-13.59</td>
<td>-7.842</td>
<td>7.919***</td>
</tr>
<tr>
<td></td>
<td>(-1.611)</td>
<td>(-0.988)</td>
<td>(2.840)</td>
</tr>
<tr>
<td>(\beta_{\text{Risk}})</td>
<td>80.49***</td>
<td>34.68</td>
<td>-20.92</td>
</tr>
<tr>
<td></td>
<td>(2.406)</td>
<td>(0.995)</td>
<td>(-1.312)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.17</td>
<td>0.09</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Notes: This table presents the estimation results of equation (7) with trading volume as given by equation (4) as the dependent variable. Robust T-values in parentheses; *, **, *** represents statistical significance at the 10%, 5%, and 1% level, respectively.
<table>
<thead>
<tr>
<th></th>
<th>EUR/USD</th>
<th>GBP/USD</th>
<th>USD/JPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>-0.011</td>
<td>-0.127^*</td>
<td>-0.005^*</td>
</tr>
<tr>
<td></td>
<td>(2.156)</td>
<td>(2.435)</td>
<td>(1.542)</td>
</tr>
<tr>
<td>β_{Disp}</td>
<td>1.862</td>
<td>0.003^*</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(1.388)</td>
<td>(1.711)</td>
<td>(0.846)</td>
</tr>
<tr>
<td>β_{Unc}</td>
<td>0.005</td>
<td>0.000</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.631)</td>
<td>(1.151)</td>
<td>(0.869)</td>
</tr>
<tr>
<td>β_{Risk}</td>
<td>0.067^*</td>
<td>0.068^*</td>
<td>0.005^*</td>
</tr>
<tr>
<td></td>
<td>(2.206)</td>
<td>(2.667)</td>
<td>(3.943)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.09</td>
<td>0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>3 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.034</td>
<td>-0.307</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(4.715)</td>
<td>(3.078)</td>
<td>(1.542)</td>
</tr>
<tr>
<td>β_{Disp}</td>
<td>1.752</td>
<td>0.018^*</td>
<td>-0.071</td>
</tr>
<tr>
<td></td>
<td>(0.959)</td>
<td>(1.839)</td>
<td>(1.595)</td>
</tr>
<tr>
<td>β_{Unc}</td>
<td>0.024^*</td>
<td>0.002</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(1.171)</td>
<td>(1.013)</td>
<td>(0.764)</td>
</tr>
<tr>
<td>β_{Risk}</td>
<td>0.152^*</td>
<td>0.177^*</td>
<td>0.013^*</td>
</tr>
<tr>
<td></td>
<td>(1.951)</td>
<td>(2.295)</td>
<td>(4.142)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.03</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>6 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.211^*</td>
<td>-0.191</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(4.076)</td>
<td>(1.838)</td>
<td>(1.542)</td>
</tr>
<tr>
<td>β_{Disp}</td>
<td>-0.185</td>
<td>-0.246^*</td>
<td>-0.097</td>
</tr>
<tr>
<td></td>
<td>(0.222)</td>
<td>(2.590)</td>
<td>(0.902)</td>
</tr>
<tr>
<td>β_{Unc}</td>
<td>0.072^*</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(1.916)</td>
<td>(0.464)</td>
<td>(0.464)</td>
</tr>
<tr>
<td>β_{Risk}</td>
<td>0.170</td>
<td>0.266^*</td>
<td>0.018^*</td>
</tr>
<tr>
<td></td>
<td>(1.541)</td>
<td>(1.929)</td>
<td>(3.390)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>12 month forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.653^*</td>
<td>0.770</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(4.885)</td>
<td>(1.545)</td>
<td>(1.542)</td>
</tr>
<tr>
<td>β_{Disp}</td>
<td>-2.968^*</td>
<td>-0.097</td>
<td>-0.097</td>
</tr>
<tr>
<td></td>
<td>(2.608)</td>
<td>(0.674)</td>
<td>(0.902)</td>
</tr>
<tr>
<td>β_{Unc}</td>
<td>0.136^*</td>
<td>0.006^*</td>
<td>0.007^*</td>
</tr>
<tr>
<td></td>
<td>(2.383)</td>
<td>(2.600)</td>
<td>(2.829)</td>
</tr>
<tr>
<td>β_{Risk}</td>
<td>-0.154</td>
<td>0.014</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(-0.742)</td>
<td>(1.863)</td>
<td>(0.230)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.06</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Notes: This table presents the estimation results of equation (7) with liquidity given by equation (5) as the dependent variable. T-values in parentheses; *, **, *** represents statistical significance at the 10%, 5%, and 1% level, respectively.
to the results on trading volume in Table 6, for liquidity we again find the opposite effect for the yen. Higher disagreement is related to higher bid-ask spreads, thus indicating that, in the case of the USDJPY, disagreement behaves more like an uncertainty measure; although the results for the yen should be interpreted with caution, as explained above.

The contrast between the results for disagreement with those for risk and uncertainty are striking; whereas disagreement is typically positively associated with liquidity, both risk and uncertainty tend to be negatively related to market liquidity, consistent with Bollerslev and Melvin (1994) and Pastor and Stambaugh (2003). Uncertainty has a consistent positive effect on bid-ask spreads over the next h months for the euro and the pound, implying that higher uncertainty is related to poorer market liquidity. The relation between risk and liquidity is somewhat less strong but is always negative. In the multivariate model, we find that uncertainty tends to dominate risk.

4. Conclusion

We examine whether disagreement is a proxy for uncertainty in the foreign exchange market using survey data for a set of bilateral exchange rates relative to the U.S. dollar over the 2001–2017 period. We measure uncertainty in the style of Jurado et al. (2015) and Scotti (2016) based on forecast error variance, along with implied volatility as a proxy for risk, to explain the variation in disagreement. We find that disagreement is a poor proxy for uncertainty, as our results are sensitive to the forecast horizon.

We also investigate in what way disagreement, uncertainty, and risk impact foreign exchange trading volume and market liquidity. We find that disagreement is associated with both higher market liquidity and higher trading volume, especially for the longer forecast horizons. This confirms our findings that disagreement is different from uncertainty and suggests that disagreement is more akin to heterogeneity.

Based on these results, we can conclude that disagreement is not a robust measure of uncertainty, but does have a tendency to be a measure of heterogeneity. Our results have broad implications for various actors. First, academics should be cautious about relying too much on disagreement as a measure for uncertainty, as this is not always the case and may have opposite implications for markets and market participants. Second, uncertainty-averse agents do not necessarily have to avoid periods of high disagreement, ceteris paribus, as it may also indicate quite advantageous market circumstances. Finally, policy makers attempting to gauge the state of the market should take disagreement as a positive indicator, rather than a negative indicator, of market quality.

Appendix A

<table>
<thead>
<tr>
<th>List of forecasters</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CAST</td>
</tr>
<tr>
<td>ABN AMRO</td>
</tr>
<tr>
<td>AIB</td>
</tr>
<tr>
<td>ALLIED IRISH</td>
</tr>
<tr>
<td>Alpha Bank</td>
</tr>
<tr>
<td>ANZ Bank</td>
</tr>
<tr>
<td>Aurel BGC</td>
</tr>
<tr>
<td>Banco BPI</td>
</tr>
<tr>
<td>Banco Santander</td>
</tr>
<tr>
<td>Barclays</td>
</tr>
<tr>
<td>BayernLB</td>
</tr>
<tr>
<td>BBVA</td>
</tr>
<tr>
<td>BMO</td>
</tr>
<tr>
<td>BNP Paribas</td>
</tr>
<tr>
<td>BofAML</td>
</tr>
<tr>
<td>BTMU</td>
</tr>
<tr>
<td>CA CIB</td>
</tr>
<tr>
<td>CBA</td>
</tr>
<tr>
<td>CIBC</td>
</tr>
<tr>
<td>Citi</td>
</tr>
<tr>
<td>Commerzbank</td>
</tr>
<tr>
<td>Continuum</td>
</tr>
<tr>
<td>Credit Suisse</td>
</tr>
<tr>
<td>Danske Bank</td>
</tr>
<tr>
<td>DBS Bk</td>
</tr>
<tr>
<td>DekaBank</td>
</tr>
<tr>
<td>Desjardins</td>
</tr>
<tr>
<td>Deutsche Bank</td>
</tr>
</tbody>
</table>
References

Notes: This figure presents the average number of forecasters in our sample over the sample period.