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Stochastic economic processes are often characterized by dynamic interactions 
between variables that are dependent in both space and time. Analyzing these 
processes raises a number of questions about the econometric methods used that 
are both practically and theoretically interesting. This work studies econometric 
approaches to analyze spatial data that evolves dynamically over time.

The book provides a background on least squares and maximum likelihood 
estimators, and discusses some of the limits of basic econometric theory. 
It then discusses the importance of addressing spatial heterogeneity in policies. 
The next chapters cover parametric modeling of linear and nonlinear spatial 
time series, non-parametric modeling of nonlinearities in panel data, modeling 
of multiple spatial time series variables that exhibit long and short memory, 
and probabilistic causality in spatial time series settings.

Bo P.J. Andrée holds a BSc in Geology and Economics and an MSc in Spatial, 
Transport and Environmental Economics from the Free University Amsterdam. 
He performed studies for the World Bank, United Nations, OECD, European 
Commission, Asian Development Bank and the Dutch Government. His most 
recent project was on food crisis prediction with the Chief Economist of the 
World Bank.  He currently lives in Amsterdam with his wife.
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Preface

This morning’s headline on CNN read “30 Days that changed the world”.

It is now 10 days since the WHO has declared a global pandemic. Over

the past month, the world has been ravaged by an aggressive virus,

businesses have come to a sudden stop, and financial markets have shown

unprecedented turmoil. The Dow Jones is down -35% in the month, Gold

is down -7.5%, Crude Brent is down -55%. At least there is one silver

lining, incoming data is showing us that pollution and carbon output is

also down along with markets.

In continuation of the trend, central banks and governments are unleash-

ing a new storm of interest rate cuts, tax cuts, loan guarantees and new

spending, tapping emergency powers in an attempt to cushion the shock

to companies and workers and reassure investors. Will “unlimited liquid-

ity” preserve the foundations of a functioning economy for the future?

Future generations will be to judge.

While much of the moment seems gloomy, this must all somehow also lead

to new thinking. I finished high school during the downturn of the 2008

financial crisis, and now sign this book amidst a new deepening divide. I

realize that my thinking around the importance of feedback, spillovers,

and nonlinearity have been greatly shaped by the events following 2008,

and so will the thinking of those that come after me be shaped by

today’s events. We have never had more brains connected and focused

on shared problems. I cannot help but turn to David Hilbert for wisdom.

I am rereading the preamble to his “Mathematical Problems” and find

vii
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comforting words (adapted):

“History teaches the continuity of the development of science. We know

that every age has its own problems, which the following age either solves

or casts aside as profitless and replaces by new ones. If we would obtain an

idea of the probable development of knowledge in the immediate future, we

must let the unsettled questions pass before our minds and look over the

problems which the science of today sets and whose solution we expect from

the future.

As long as a branch of science offers an abundance of problems, so long

is it alive; a lack of problems foreshadows extinction or the cessation of

independent development. Just as every human undertaking pursues certain

objects, so also research requires its problems. It is by the solution of

problems that the investigator tests the temper of his steel; he finds new

methods and new outlooks, and gains a wider and freer horizon.”

— Hilbert, David (1902).

He goes on to warn us about the dangers of conducting research in

isolation from experience, and shapes our expectations about probable

development of knowledge:

“In the meantime, while the creative power of pure reason is at work, the

outer world comes into play, forces upon us new questions from actual

experience, opens up new branches of science, and while we seek to conquer

these new fields of knowledge for the realm of pure thought, we often find

the answers to old unsolved problems and thus at the same time advance

most successfully the old theories. And it seems to me that the numerous

and surprising analogies and that apparently pre-arranged harmony which

the mathematicians so often perceives in the questions, methods and ideas

of the various branches of his science, have their origin in this ever-recurring

interplay between thought and experience.”

— Hilbert, David (1902).

Looking back on my own research, I realize heavily that this ever-recurring

interplay between thought and experience is an infinite process, and that

any one person’s individual efforts are only ever a finite undertaking. So

was writing this book. This is good, because it leaves room for future
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books to address the problems set by today’s science. However, it implies

that the work here is by no means comprehensive, which would require an

entire book series to be written. Luckily, good books and papers already

exist that cover related topics in detail.

First, the publication of Cliff and Ord (1969) marked a turning point

in the treatment of spatial autocorrelation in quantitative geography.

The issues related to spatial correlation in regression disturbances were

explored further and spatial econometrics as a subfield of econometrics

was rapidly developed, for a large part Europe in the early 1970s because

of the need to analyze sub-country data in regional econometric models

(Cliff and Ord, 1972; Hordijk, 1974; Hordijk and Paelinck, 1976; Paelinck

and Klaasen, 1979). Apart from the classic work of Anselin (1988), a

good introduction to spatial econometrics is provided by LeSage and Pace

(2009). A bridge between spatial models for cross-sectional data and

panel data is made in Elhorst (2010b). A recent book by Beenstock and

Felsenstein (2019) analyzes linear spatial time series, and develops useful

tests for panel co-integration. Other recent exciting developments will be

discussed throughout the chapters of this book. In such a fast-developing

field I will surely have missed things (or omitted them for lack of space)

which a few comments below may help to fill in.

First, some reviewers have commented that the work covers surprisingly

little elements from classical spatial panel econometrics, but this repre-

sents a misunderstanding of the contribution I am seeking to make; I

would not expect a book on the current state of spatial econometrics

to concentrate only on spatial autoregressions but rather on interest-

ing problems that one can analyze using spatial data and econometric

techniques. In a similar fashion, I do not aim to advance the field by

providing an exhaustive description of existing dynamic spatio-temporal

regression problems, instead my interest is in relevant emerging analysis

problems that involve dynamics between multiple spatial variables over
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time and on the econometric approaches to addressing those analytical

problems.

Second, some books take a specific-to-general approach, and start with

a simple problem gradually making it more complex across successive

chapters. In this work, I instead aim to approach related problems from

different angles. Naturally, the techniques introduced throughout the

chapters can be combined, but I don’t necessarily see the value in doing so

exhaustively. It would lead to a massively complicated analysis problem

and distract from the relatively simple points I am trying to make in the

different chapters. Naturally, the approach of the thesis then implies that

in some cases the analyses presented in the individual chapters could be

extended even further. This could lead to improved results. But I believe

these improvements would be locally and not globally when looking at

the book as a whole.

For example, Chapter 3 highlights the importance of spatial heterogeneity.

Chapter 4 then aims to capture a great deal of heterogeneity in an

estimation problem using a relatively simple non-linear function. This

does not imply that the data heterogeneity could not be captured by

simple approaches that rely on spatial and temporal dummies. Nor does

it refute that an exhaustive dummy approach may be sufficient for some

analysis problems. The contribution of the chapter instead lies in the

fact that the traditional dummy approach may not be optimal for some

problems, such as forecasting, stochastic simulation, or analysis of the

drivers behind heterogeneous dynamics and that nonlinear modeling of

dependence can provide an attractive alternative in those cases.

Chapter 5 focuses on non-parametric modeling of trends in panel data,

but does not focus explicitly on spatial autoregressive dependence. As

one can read in the book, one important reason for appropriately mod-

eling spatial dependence is to improve model specification. In a similar

spirit, non-parametric approaches are designed for a large part to reduce
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mis-specification bias. A semi-parametric model could be specified that

combines both a non-parametric component for nonlinearity and a para-

metric spatial component for simultaneity, but this would result in a

complicated model that distracts from a simple but useful point; that

non-parametric techniques can be successfully applied in a panel setting

to capture complex dynamics while providing interpretable results.

After paying particular focus to heterogeneity and nonlinearity, Chapter

6 analyzes data using linear parameters. While this may seem to counter

some of the notions previously introduced, this chapter is not about het-

erogeneity and nonlinearity per se. Instead, the focus is on inter-temporal

dynamics between multiple variables within a spatial system. Linear

interdependencies among multiple time series are often analyzed in mul-

tivariate time series analysis, but many panel methods have traditionally

been developed with inferential questions about a single dependent vari-

able in mind. The value of the chapter thus lies in introducing methods

to analyze how finite impulse responses flow through a spatial system in

the presence of both spatial and temporal forms of feedback. Such an

analytical framework can easily accommodate nonlinear dynamics, for

example by using the tools developed in Chapter 4 in a multiple variable

setting.

With regard to how this work came about, a few final words are in

order. Carrying out the research and then writing this thesis was one of

the most arduous task I have undertaken. However, one of the joys of

having completed this is looking back at everyone who has helped me

over the past years. I would first like to thank my promotor prof.dr. Henk

Scholten for giving me this chance, my co-promotor dr. Eric Koomen for

his instrumental role in shaping my thinking and dr. Francisco Blasques

for guiding me through some of the difficult challenges on my theoretical

journey. They have all become good friends. I am also thankful to the

co-authors of the research papers on which the individual chapters are



xii CONTENTS

based. They not only contributed writing and insights, but also made

carrying out the research enjoyable. I would like to thank the members

of the reading and assessment committee, prof.dr. C. Fischer, prof.dr.

S.J. Koopman, prof.dr. S. Bhulai, prof.dr. L. Hordijk and prof.dr. J.P.

Elhorst for their careful reading of the manuscript.

To my family, particularly my parents, sister and grandparents, thank

you for your love, support, and unwavering belief in me. Without you,

I would not be the person I am today and this book would not have

been here. Above all I would like to thank my wife Ilona for her love

and unconditional support, and for keeping me sane. Thank you for your

patience and understanding. But most of all, thank you for being my

best friend. I owe you everything.

Finally, despite my love for pure thought, the work reported in this thesis

would not have been possible without the practical support of the Vrije

Universiteit and the World Bank. Thank you for providing a space to

do research. To my (ex-) World Bank colleagues, my sincere thanks

and gratitude for guarding what is an incredibly valuable international
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Chapter 1

Introduction

This thesis sets out to develop econometric theory and methods to analyze

dynamic interactions between observations that are interrelated across

space and time. This type of modeling is becoming increasingly important

as sensors and institutions continue to gather rich subnational spatial

time series of remotely sensed or surveyed economic variables. Going

from finance, to macro-economics or the environment, nearly all policy

relevant phenomena in the socio-economic domain involve multivariate

interactions across both spatial and temporal dimensions. Analyzing these

problems raises a number of inquiries about the econometric methods

used that are both practically and theoretically interesting. In particular,

cross-sectional data is often spatially dependent. From a data generating

perspective, this implies that we may be concerned with models that

exhibit instantaneous forms of feedback in space. Together with possible

endogenous interactions between the observations of the different variables

that are collected sequentially over the time dimension, this produces

complex feedback properties that may violate various assumptions made

by standard econometric models. Second, as the dimensions of datasets

grow, it becomes increasingly unlikely that linear relationships provide a

realistic description of these phenomena. The tendency of nonlinearities

and the complex feedback properties that characterize spatial time series,

render many related estimation problems non-standard.

1



2 Chapter 1. Introduction

In many cases, deriving the properties of estimators for multivariate mod-

els that have complex nonlinearities over both temporal as well as spatial

dimensions, can be achieved by extending the theories used to analyze

the estimators of dynamic time series models. In particular, spatial feed-

back renders the standard Least Squares Estimator (LSE) inconsistent

or inefficient depending on the situation, but estimating models that

explicitly factor in the dependence and feedback between neighbors can

be done within the framework of Maximum Likelihood. Other interesting

problems, such as exogenous or non-contemporaneous endogenous nonlin-

earities, can be estimated in the Least Squares framework. In both cases,

this requires modifications to the standard criterion functions used. In

particular, nonlinear parametric models of spatial time series introduce

new components to the likelihood function that correct for the fact that

the conditional densities are derived from a nonlinear transformation of

the residuals. This requires new proofs that the well-known theoretical

results associated with the standard Maximum Likelihood Estimator

(MLE) nonetheless apply. Non-parametric Least Squares estimation of

nonlinearities over the levels of cross-sectional observations can be solved

as a locally linear problem, but requires penalization techniques to ensure

that convergences essentially operate within simple spaces. This may

change the interpretation of the limiting result all together. We will

further investigate these issues in this thesis.

Many of the ideas produced in this thesis build heavily on the theory that

underlies the analysis of time series data. This is a natural angle to view

many problems. Early spatial models have been developed primarily to

analyze cross-sectional data. As such, the underlying theory relied on

taking the number of cross-sectional observations to infinity. While this

may be sufficient to establish consistency and normality theoretically, in

most real world applications it occurs seldom that new cross-sectional

observations are made. Often, new observations are only collected over

time while the number of spatial units remains fixed. In addition, when
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new cross-sectional observations are in fact made, it is difficult to perceive

that this change does not somehow involve also an extension in the time

dimension.

The analysis of spatial data over time is a concept that is gaining in

popularity, but it is still relatively new. It is only since recent that a

significant part of our cross-sectional datasets have grown substantially

enough in the time dimension to exhibit interesting temporal dynamics.

For example, with modern compute it is still not possible for everyone to

analyze remotely sensed data at high temporal resolution. Many publicly

available datasets are therefore summarized as annual statistics that span

only a modest number of years. Economic surveys that are consistently

gathered across regions are often expensive. As an effect, surveyed data

usually have a similar low temporal frequency. Finance data can be

available at higher frequency, but many time series only start after the

digital infrastructures that support modern systems matured. When one

wishes to analyze a problem that involves multiple sources of data, then

the data on which the analysis rests will often be constrained in both

frequency and dimension. However, we are now at a point that sufficient

data can in many cases be found, resulting in interesting problems that

one can analyze with basic theory. In particular, with existing time

series theory it is possible to analyze the properties of complex nonlinear

dynamic time series models and understand the behavior of general

estimators in these settings. However, this theory was not developed with

spatial dependence and possible multivariate cross-sectional nonlinearities

in mind. Many of the existing spatial analysis techniques have on the

other hand not been developed with non-linear, possibly observation-

driven, dynamics in mind. Moreover, panel techniques often focus on

a single dependent variable, and are less concerned with describing the

state transitions and dynamics between multiple spatial variables over

time, which is needed for multivariate spatial time series forecasting,

stochastic simulation, and impulse response analysis.



4 Chapter 1. Introduction

Before exploring spatial relationships explicitly, we will first review several

important standard theoretical results for the estimation of dependencies

in cross-sectional time series. We will use this as a basis to discuss

what is further needed to analyze dynamic spatial time series problems.

This background theory will be confined to what is needed to read

the remainder of this thesis in a relatively self-contained manner. The

remainder of this thesis then touches upon five key topics:

i Spatial heterogeneity

ii Parametric spatial nonlinearities

iii Non-parametric cross-sectional nonlinearities

iv Vector spatial time series

v Probability and causality in spatial time series

Chapter 3 analyzes spatial heterogeneity. Specifically, it uses simple linear

relationships and spatial explicit data to simulate economic outcomes

at high spatial resolution. The analysis highlights how economic out-

comes can cluster in space due to the natural clustering of independent

geophysical variables that may be of economic importance. Moreover, it

reveals that simple relationships at a high spatial resolution can produce

nonlinear patterns at aggregated levels.

The concepts of spatial heterogeneity, dependence, and nonlinearity form

the basis of Chapter 4 that looks into parametric spatial nonlinearities.

This chapter covers the econometric application of spatial autoregressive

time series models and extends the theory to cover nonlinear spatial

dependence. The model that is introduced allows dependence to vary

smoothly across levels in the data in an idiosyncratic manner. It will

be shown that this type of spatial modeling captures both spatial and

temporal dynamics and performs better than the standard linear spatial

autoregressive model on a number of widely used diagnostics. Moreover,
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the chapter will show that this type of modeling can produce interesting

results when both T is large and N is small, or when N is large and T is

still relatively modest.

Chapter 5 drops the parametric assumption, and looks at the case of

non-parametric panel relationships. In this case, the focus is on nonlinear

dependence of spatial time series variables on independent data in a

manner that is appropriate when a researcher wishes to impose only mild

assumptions about the shape of the functional relationships. This allows

for a wide range of functional relationships in the data, but, as we shall

see, it is necessary to add additional structure to the criterion function to

estimate these type of models. The chapter discusses how this impacts

the interpretation of basic estimated quantities, and discusses how an

appropriate functional form can be estimated while jointly addressing the

need for possible fixed effects. It will then be shown how the resulting

models can be used to produce alternative future scenarios that take into

account historical nonlinear patterns.

In Chapter 6, the discussion moves away from nonlinearities, and shifts the

focus toward inter-temporal dynamics between multiple variables within a

spatial system. Estimation of interdependence among multiple time series

is often at the center of time series analysis, but many panel methods

have traditionally been developed with inferential questions about a

single dependent variable in mind. The model introduced in this chapter

extends the standard spatial time series model to the multiple variable

setting and introduces methods to analyze how finite impulse responses

flow through a spatial system in the presence of both spatial and temporal

forms of feedback. This is useful to address questions about the order

in which effects occur over time when variables are not only temporally,

but also spatially dependent. While the chapter introduces the analytical

framework in a linear way, focusing on a relatively homogeneous subset

of locations, the nonlinear concepts introduced in Chapter 4 and 5
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can naturally be applied in similar settings to study nonlinear impulse

response behavior in heterogeneous systems.

Finally, Chapter 7 circles back to some of the fundamental concepts that

are introduced in Chapter 2 that covers background theory. Only this

time, the discussion stays at a more general level and focuses on the

concepts of probability and causal inference in dynamical systems. The

discussion highlights why using flexible models, such as the ones intro-

duced in this thesis, are desirable in the first place when one is interested

in answering basic questions about cause and effect in a multivariate

setting. An argument will be provided for flexible specification of the

possible time dynamics in a spatial system together with estimation

strategies that minimize distance to the true probability measure that

underlies the observed data. In practice, this implies a general to specific

approach to exclude irrelevant dependencies. The particular case of max-

imizing penalized Maximum Likelihood will be discussed further, which

provides additional support for the estimation strategies used throughout

this thesis.



Chapter 2

Background Theory

Asymptotic theory is the cornerstone of inferential statistics. The limiting

distribution of a basic quantity of interest delivers properties that are

accurate in large samples and often reasonable when there is moderate

data. In particular, limiting distributions can be used for approximate

inference based on approximate confidence intervals and their associated

test statistics. The benefit of the limiting distribution over exact distri-

butional results is that it can often be derived following general rules

that are valid even for complicated models that include heterogeneity,

interaction and nonlinearity. The exact distributions are, however, often

difficult to derive, and may not even apply in certain cases of interest.

Asymptotic distribution theory is centered around the notion of an ex-

pected mean and an expected variance. The general steps to establish

these quantities of interest are to establish convergence of the mean and

convergence of the variance under a notion of growing data.

Because asymptotic theory is crucial for econometric analysis, it is useful

to have general results with conditions that can be applied to as many

estimators as possible to deliver standard and identical interpretation

to a wide range of empirical results. The purpose of this chapter is

to present such results in a brief and common format adapted to the

setting of spatial time series. The basic exposition sets the table for the

later chapters that establish and discuss properties of complex models,

7
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including some that have not been used in existing literature. References

to literature on specific results and proofs, but also to advanced textbooks

that have wide coverage, will be provided in the relevant sections in later

chapters.

2.1 Linear estimators

In introductory econometrics books, the properties of standard estimators

have been extensively studied. However, basic theory only works in

the simplistic setting of linear models and requires the very restrictive

assumption that the model is an exact description of reality (i.e. that the

model is correctly specified). Generally, as the dimensions of the data

grow in time, space, and number of variables, it becomes increasingly

unlikely that the same average description appropriately describes local

processes across all dimensions and levels in the data. It is more likely

that the derivatives that describe marginal effects between dependent and

independent data vary from one local mean to another across regions or

regimes. While flexibility to cope with these transitions may be a natural

idea, it is not always possible to simply allow for more complex model

dynamics without breaking assumptions that are made under standard

theory. In particular, the linearity of the standard regression model was

key to obtaining an analytical expression for a simple estimator and the

assumption of correct specification of the model was used to express the

estimator in terms of deviations around the true parameter. The linearity

of the model also made it straightforward to derive stationary conditions

and ensure that a Law of Large Numbers and Central Limit Theorems

can be applied to obtain the consistency and asymptotic normality of the

estimator. For example, the LSE of the linear autoregressive parameter

β in the model given by yt = βyt−1 + εt takes the form:
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β̂T =

∑T
t=2 ytyt−1∑T
t=2 y

2
t−1

. (2.1)

Deriving this expression was only possible because the model is linear,

which drastically reduced the complexity of the calculus involved. Due

to the simplicity, the properties of this estimator can also easily be

analyzed if we assume that this linear description is correct, e.g. that our

parametrization corresponds exactly with the true model that produced

the observed data. This allows us to rewrite the estimator in terms of

the true parameter β0 and a remainder, βr:

β̂T = β0 + βr, βr =

∑T
t=2 εtyt−1

y2
t−1

. (2.2)

Furthermore, when dependence is linear, we can straightforwardly show

that if |β0| < 1, then the model is stationary. Stationarity then allows us

to apply the LLN and CLT to βr and as a result, following these simple

steps, we can conclude that:

1. The remainder, βr, vanishes to 0 as the time dimension T approaches

infinity:

∑T
t=2 εtyt−1∑T
t=2 y

2
t−1

p−→ 0 as T →∞,

hence the estimator β̂T is consistent toward β0.

2. The remainder, βr, is asymptotically normally distributed:

∑T
t=2 εtyt−1∑T
t=2 y

2
t−1

d−→ N(0, σ2) as T →∞,

hence the estimator β̂T is asymptotically normally distributed around

β0.
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These simple results have proved extremely useful over time. For good

reasons, the Law of Large Numbers, which took more than a staggering

300 years to complete, has been coined the Golden Theorem. In many

cases, these simple results are more than just interesting, and remain

the work horse of standard analysis approaches that are widely used to

support policies and interventions across many domains. However, they

are applicable only in the limited setting of linear models and under the

very restrictive assumption that this linear relationship describes reality

correctly.

2.1.1 The linear Least Squares Estimator

Many empirical problems dealing with repeated cross-sectional data can

be analyzed by the linear regression model:

yt = α + Xtβ + εt ∀t ∈ N, (2.3)

where yt is the dependent vector variable at time t containing i ∈
{1, ..., N} values each observed at a different location, Xt is a d-

dimensional matrix containing the independent or explanatory variables

similarly observed at locations i ∈ {1, ..., N} and time t, and εt are

the unobserved residuals. The parameter α is a constant, and β is a

vector of length d containing the marginal effects, or slope parameters,

for each variable included in Xt. The error term is assumed to satisfy

E(εt|Xt) = 0. Under this assumption, the linear regression model is a

model of the conditional expectations of yt given the observed Xt. In

particular, one can decompose the problem as follows:

E(yt|Xt) = E(α + Xtβ + εt|Xt). (2.4)

Naturally, given that the expectation of a static parameter is simply

the value of that parameter, the right hand side can be separated in
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individual parts, α, E(Xt|Xt)β, and E(εt|Xt). Furthermore,

E(Xt|Xt) = Xt, (2.5)

and by assumption,

E(εt|Xt) = 0. (2.6)

Hence, the expectation of yt conditional on observables is simply:

E(yt|Xt) = α + Xtβ. (2.7)

This interpretation will turn out to remain incredibly useful in the

nonlinear case as well, as, no matter how complex the model gets, the

modeled data can often be interpreted as local conditional expectations

rather than global (average) expectations, which is still an intuitively

accessible concept. The key exogeneity assumption used for this, can be

summarized as follows:

ASSUMPTION. 1 (Exogeneity of the Regressors). E(εt|Xt) = 0 ∀ t ∈ N.

REMARK. 1. Note that by a Law of Total Expectation, the Exogeneity of
Regressors assumption also implies

E(εtxt) = E(E(εtxt|xt)) = E(xtE(εt|xt)) = E(xt0) = 0 ∀ t ∈ N.

Note that εt is a vector of residuals at time t for locations i ∈ {1, ..., N}.
The conditional expectation condition is stated for vectors indexed by

time intervals. Essentially, the parameters in the vector β measure the

expected changes in the cross-section yt given the changes in Xt. While

it may well be that E(εit|xit) = 0 ∀ t ∈ N for certain locations (or

the cross-sectional mean), E(εt|Xt) = 0 ∀ t ∈ N may still break, if for

example local errors have non-zero expectation (εit|xit) 6= 0, which for

example occurs when there are expectations about missing components

conditional on the data locally in the cross-section. One such example is

clustering of residuals in regions in the cross-section, particularly if those

clusters tend to remain in place over time. There are many reasons why
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this assumption may be difficult to hold in practice. Advanced modeling

techniques, including those discussed in later chapters, are in fact often

aimed at mitigating these violations.

Let us now first consider the simple LSE that chooses the parameters

that minimize the sum of squared residuals from a compact collection of

potential solutions (A,B). Specifically:

(α̂, β̂) = arg min
(α,β)∈(A,B)

T∑

t=1

ε2
t = arg min

(α,β)∈(A,B)

T∑

t=1

(yt − α + Xtβ)2.

(2.8)

As always, the parameters can be found by simply taking the derivative of

this Least Squares criterion with respect to it’s parameters, and equating

0. Supposing we omit α for a moment, for example because we have

demeaned the data such that the average is 0, and focus on the simple

case of just one regressor, we can find β̂ using the derivative:

∂
∑T

t=1(yt − βxt)
2

∂β
=

T∑

t=1

(yt − βxt)xt, (2.9)

which can be rearranged to obtain our estimate explicitly:

β̂T =

∑T
t=1 ytxt∑T
t=1 x2

t

. (2.10)

Deriving estimators for multiple parameters, each being a marginal effect

with respect to a different variable or a simple constant, only involves

longer derivations. The linear LSE can always be derived analytically.

This is incredibly useful. Even in the nonlinear case we often use flexible

functionals that generate parameterizations that are locally linear, in

which case the same strategies can be applied for the resulting locally

linear expressions only at the cost of longer equations.

The first important step now is to establish that the estimator is consistent

toward the parameter of interest. That is, that it converges in probability

toward te set of parameters, (α0,β0), that deliver a correct description of
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the data, as T →∞. This requires us to assume that this set of correct

parameters is in fact included in the space of considered parameters

(A,B). We will return to this assumption in later chapters and try to

get an understanding of what this truly means, and more importantly,

what it means if this assumption breaks. For now, let us summarize:

ASSUMPTION. 2 (Correct Specification of the Model). The regression
yt = α + Xtβ + εt ∀ t ∈ N is correctly specified.

As before, this allows us to write the estimator in terms of the true

parameter and a remainder that involves the residuals, from where we

can show that this remainder term converges to 0 as T grows, leaving us

with an estimator that converges to the correct result. Let us now state

the exact Theorem.

THEOREM. 1 (Bernoulli’s Law of Large Numbers for Independent and
Identically Distributed Data). Let z1, z2, zT be an Independent and Iden-
tically Distributed random variable with finite first moment, E|zt| <∞.
Then,

1

T

∑T
t=1 zt

p−→ E(zt) as T →∞.

This Theorem tells us that disregard of the distribution of z, the sample

average is a consistent estimator of the true mean. It is easy to see that

this Theorem can also be applied to cross-sectional data, in which case

we would index the observations cross-sectionally. The main issue that

results is that observations are often not independent across space as by

the definition of neighborhood relationships, independence is violated.

This similarly applies to the endogenous time series case, in which we

assume dependence of observations over time. For now, this Theorem is

sufficient as we are interested in the relationship between yt and exogenous

variables Xt for which no process has been defined at this point. The

application to the LSE follows by first noting that the criterion is a

function of random variables, hence noting that it is itself is a random
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variable, and then multiplying the numerator and the denominator of

the remainder term by 1
T , and applying the LLN to both components. In

particular, again for the simple case,

βr =

∑T
t=2 εtxt∑T
t=2 x2

t

=

1

T

∑T
t=2 εtxt

1

T

∑T
t=2 x2

t

, (2.11)

and if both {εtxt} and {x2
t} are i.i.d. with finite first moment |εtxt| <∞

and |x2
t | <∞, then

1

T

∑T
t=2 εtxt

p−→ E(εtxt) and
1

T

∑T
t=2 x2

t
p−→ E(x2

t ) as T →∞.

Note that by our first assumption, E(εtxt) = 0, and because the Least

Squares criterion is continuous, and functions are limit-preserving even if

their arguments are sequences of random variables, the LLN thus delivers

βr =

1

T

∑T
t=2 εtxt

1

T

∑T
t=2 x2

t

p−→ 0

E(x2
t )

= 0 as T →∞.

We have now proven that the estimator is consistent because the error in

our estimation converges to zero as we collect more and more data over

the time dimension. Note that the above derivations shows the criticality

of assuming that the regressors are exogenous E(εt|xt) = 0, otherwise

βr =

1

T

∑T
t=2 εtxt

1

T

∑T
t=2 x2

t

p−→ η

E(x2
t )

= ε 6= 0 as T →∞.

With η and ε being unknown non-zero components, hence βr, and there-

fore β̂T , converge to unknown real-valued constants. In other words, we

can’t really tell what limit our criterion converges to, which renders the

entire estimation result quite arbitrary.

Often, the finite moments of lower constituents of complex regression

models are introduced as a separate assumption, and we shall see that
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instead of assuming these conditions it is often possible to verify the

assumptions by defining a process for the endogenous regressors and vali-

dating that certain stability conditions and moment-preserving properties

hold within specified parameter ranges. For now, let us collect our simple

assumption as follows:

ASSUMPTION. 3 (Finite First Moments). Assume that

1. |εtxt| <∞,

2. and |x2
t | <∞.

for each xt contained in Xt.

We can collect the general consistency result of the LSE.

COROLLARY. 1 (Consistency of the Correctly Specified Least Squares
Estimator). Let {yt}t∈N and {Xt}t∈N be observed sequences, and the
model

yt = α + Xtβ + εt ∀ t ∈ N,

be correctly specified. Furthermore, let {εtxt}t∈N and {x2
t}t∈N be i.i.d.

with E(εt|xt) = 0 ∀ t ∈ N and |εtxt| < ∞ and |x2
t | < ∞ for each xt

contained in Xt. Then, the Least Squares estimator of (α̂, β̂) defined as

(α̂, β̂) = arg min(α,β)∈(A,B)

∑T
t=1 (yt − α + Xtβ)2

is consistent

(α̂, β̂)
p−→ (α0,β0) as T →∞.

In practice, one is also interested in making statements about the proba-

bility that our estimates of individual components in (α0,β0) are different

from 0. That allows us to say that estimated economic effects are signifi-

cantly different from 0, e.g. that an intervention had effect. This requires

us to know the distribution of the estimator, which in practice is unknown.

Luckily, we can approximate this distribution by appealing to the Central

Limit Theorem and showing that the estimator is approximately normally

distributed when T is large.
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THEOREM. 2 (Lindeberg-Levy’s Central Limit Theorem for Independent
and Identically Distributed Data). Let z1, z2, zT be an Independent and
Identically Distributed random variable with E|zt| = µ <∞ and Var(zt) =
σ2 <∞, then

√
T

(
1

T

∑T
t=1(zt − µ)

)
d−→ N(0, σ2) as T →∞.

We can now use the CLT to obtain the asymptotic normality of our correct

LSE of any parameter by first writing
√
T (β̂ − β0) and then plugging in

our estimator in terms of the true parameter and the remainder term:

√
T (β̂−β0) =

√
T
(
(β0+βr)−β0

)
=
√
T (βr) =

√
T




1

T

∑T
t=2 εtxt − E(εtxt)

1

T

∑T
t=2 x2

t


 .

(2.12)

The term E(εtxt) can be added, as by our first assumption, exogeneity

of the regressors, this term equals 0. We can now apply the CLT to the

numerator:

√
T

(
1

T

∑T
t=2 εtxt − E(εtxt)

)
d−→ N

(
0, σ2E

(
x2
t

))
as T →∞,

and the LLN to the denominator:
(

1

T

∑T
t=2 x2

t

)
p−→ E

(
x2
t

)
as T →∞.

By Slutsky’s Theorem, we now have

√
T (β̂ − β0)

d−→ N
(
0, σ2E

(
x2
t

))

E (x2
t )

N
(

0, σ2E
[
x2
t

]−1
)
.

This is the standard strategy to deliver asymptotic normality, which we

can summarize in the following general result. First, note that the CLT

imposes a stricter moment assumption. In particular:

ASSUMPTION. 4 (Finite Second Moments). Assume that

1. Var(εtxt) < σ2 <∞,
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for each xt contained in Xt.

While this assumption is stated in terms of the second moment, variance,

of εtxt, it is sometimes stated in terms of higher moments of the lower

constituents εt and xt individually. In particular, since the variance

involves squared terms, it can be shown that this assumption involves

the finiteness of the fourth moments of εt and each xt contained in

Xt. Intuitively, if the fourth moments are finite, then the tails of the

distributions are relatively short, so the probability that an unusually

large observations occurs is small. In that regard, this is interpreted by

many as an indication that Least Squares estimates are very sensitive

to the presence of outliers. Similar assumptions are however made when

establishing the properties of other estimators, including those that

aim at outliers-robustness by assuming non-Gaussian distributions that

can better accommodate tail events. It turns out that many proofs of

multivariate nonlinear estimators require even higher moments to exist.

COROLLARY. 2 (Asymptotic Normality of the Correctly Specified Least
Squares Estimator). Let {yt}t∈N and {Xt}t∈N be observed sequences, and
the model

yt = α + Xtβ + εt ∀ t ∈ N,

be correctly specified. Let {εtxt}t∈N and {x2
t}t∈N be i.i.d. with E(εt|xt) =

0 ∀ t ∈ N and |εtxt| < ∞ and |x2
t | < ∞ for each xt contained in Xt.

Suppose furthermore that the variances Var(εtxt) < σ2 < ∞ are finite
for each xt contained in Xt. Then, the Least Squares estimator of (α̂, β̂)
defined as

(α̂, β̂) = arg min(α,β)∈(A,B)

∑T
t=1 (yt − α + Xtβ)2

is asymptotically normally distributed for each parameter θ ∈ (α,β) and
variable xt associated with that parameter

θ̂T
approx−−−−→ N

(
θ0, σ

2
[∑T

t=1 x2
t

]−1
)

.
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Similar results can also be obtained when focusing on the case where

xt is replaced by a lag of the endogenous variable yt−1. In this case,

the exogenous regressors assumption is stated E(εt|yt−1) = 0 ∀ t ∈
Z. This implies that conditional on the past, no further information

about the residuals can be available. This essentially requires that the

residual process must be free from further correlations after filtering the

time-dependencies conditional on lags and observable components from

the dependent variable. In many cases there may still be correlations

in the innovations, for example because policies impact a process not

only idiosyncratically but for prolonged periods. Models therefore often

include lagged residuals as explanatory variables. Apart from the need

to render an observed time series free from time correlations to fulfill the

assumptions needed to apply the LLN and CLT, finite moments can also

not simply be assumed when the model is correct. In fact, we know that

for certain parameter values the process is explosive such that yt is in

fact expected to tend to infinity. To prevent this from occurring, we need

an additional result that ensures that yt is Stationary. The following

result specifically, is useful in standard settings.

THEOREM. 3 (Strict Stationarity of a Linear Recursion). Let {yt}t∈Z be
generated by:

yt = α + φyt−1 + εt ∀ t ∈ Z.

If |φ| < 1 and εt are innovations drawn from NID(0, σ2
ε), then {yt}t∈Z

is Strictly Stationary, that is the distribution of every finite sub-vector is
invariant in time

FY (y1, ...,yτ) = FY (yt+1, ...,yt+τ) ∀ (t, τ) ∈ N× N.

where FY (yt+1, ...,yt+τ) represents the cumulative distribution function
of the unconditional joint distribution of {yt}t∈Z at times t+ 1, ..., t+ τ .

This stationarity property is incredibly important to obtain properties of

estimators because it allows us to make use of the Laws of Large Numbers
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for Stationary and Ergodic data, and if the model is correctly specified the

Central Limit Theorem for Stationary and Ergodic Martingale Difference

Sequences, rather than appealing to the Theorems for i.i.d. data. This

extension will be discussed in more detail in the next section. If the model

remains linear, but multiple (cross-sectional) variables are included, or

a single cross-sectional time series is modeled with multiple locational

autoregressive parameters Φyt−1 collected in the N ×N matrix Φ, the

linear Stationarity condition can be generalized as ‖Φ‖ < 1, using some

norm or a spectral radius. However, when the process turns nonlinear, and

we can no longer condition on static parameters, proofs for Stationarity

become more complex. Particularly when analyzing cross-sectional time

series we not only want observations to depend possibly on unique

local histories, but also on those of neighbors and possibly even on the

contemporaneous values of neighbors. In these cases, models begin to

exhibit more complex feedback properties for which proving stability

may turn out to be a nontrivial task. At this point, one may start to

make explicit distinctions between various types of stability as sometimes

weaker forms of stability, that are easier to verify, may already be sufficient

to obtain useful properties of estimators.

We shall return extensively to both the stability conditions and the resid-

ual dependencies in later chapters. For now, let us explore what happens

to our LSE if we would want to model contemporaneous dependencies on

neighbors in addition to the exogenous covariates of interest. This will

highlight what can already be done with the simple theory that we have

developed so far and expose some of its limitations. Suppose we extend

our regression model:

yt = α + ρWyt + Xtβ + εt ∀ t ∈ N, (2.13)

in which W is an N by N pre-defined parameter matrix with zero diagonal.

We reserve discussion about this matrix, that defines contemporaneous

relations with neighboring observations, for later chapters. For now it
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is sufficient to see that yt occurs on both sides of the equation and

the exogenous regressors assumption is thus now stated E(yt − α −
Xtβ − ρWyt|Wyt) = 0 ∀ t ∈ N, which obviously makes little sense to

impose since Wyt occurs on both sides. Only if ρ = 0, and the model

is non-spatial, the expectation is zero by the fact that the residuals are

i.i.d. In other words, Wyt is an endogenous regressor. Contrary to

the time series case, where the lagged term of the dependent variable

can be uncorrelated with the residual term if there is no serial residual

correlation, e.g. if the model is correct, in the spatially lagged case,

this correlation occurs regardless of the properties of the residual term.

We had already seen that the Least Squares criterion converges to an

unknown limit if the exogenous regressor assumption breaks, implying

that standard application of the Least Squares criterion delivers arbitrary

results.

One option is to invert the equation, and ensure that yt only enters on

the left side of the equation:

(I − ρW )yt = α + Xtβ + εt ∀ t ∈ N, (2.14)

with I being an identity matrix. At this point, our dependent variable

contains unknown parameters. We can get rid of (I − ρW ) on the left

side by devision:

yt = (I − ρW )−1α + (I − ρW )−1Xtβ + (I − ρW )−1εt ∀ t ∈ N. (2.15)

This highlights that when yt is in part a function of Wyt, e.g. when

|ρ| > 0, yt is a nonlinear function of the data and residuals. The model

cannot be parameterized and estimated in this form because the residuals

result as a product of estimation, hence their values are not available a

priori as regressors. Chapter 4 discusses that the nonlinearity can be

approximated using an infinite power series approximation, which reveals

that yt not only depends on local observations and neighbors, but also
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on the values of residuals and covariates of distant neighbors.

yt = (I + ρW + ρ2W 2 + ...) (α + Xtβ + εt) ∀ t ∈ N. (2.16)

The influence of distant neighbors will be small if ρ is not too high. This

suggests that when spatial dependence is mild and residuals are small, a

considerable share of the dependencies can be captured with a first order

approximation of the spillover dynamics.

yt ∼ (I + ρW ) (α + Xtβ + εt) + µt

∼ (I + ρW ) (α + Xtβ) + εt + µt + ξt ∀ t ∈ N, (2.17)

in which µt is an approximation error that results from restricting to

dependence on first order neighbors, and ξt is an additional approxi-

mation error that results from neglecting the residual spillovers. The

magnitude of both errors increases with |ρ|, and the magnitude of ξt

increases with the magnitude of residuals εt. The aim is then to spec-

ify as many lower-level constituents of the residuals by incorporating

many covariates to ensure that residuals are small, and parameterize

spatial dependence on covariates directly to capture the important first

order spatial dependence dynamics. The resulting simplified model can

consistently be estimated using Least Squares as it is simply equal to a

standard regression introduced in the previous section:

yt = α + Xtβ +WXtβ2 + εt ∀ t ∈ N. (2.18)

In this equation, we made use of the fact that (I + ρW )α simply remains

a linear constant and introduced a new unknown set of parameters β2 to

capture dependence on neighboring values of the exogenous covariates.

Note that our simple estimation theorems at this point still require the

correct specification assumption to be satisfied, which is unrealistic since

we have already established sources of approximation error that stem

from neglecting the spatial effects in residuals and dependence on distant
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observations.

While the validity of the correct specification assumption can be verified

by diagnosing εt, the approach may be seen as a dis-satisfactory as it

provides no empirical strategy to dealing with residual spatial correlation

or pure SAR processes in which exogenous covariates play no role. The

question naturally arises if other, alternative, estimators can be thought

of that are not prone to this problem and that can handle estimation of

spatial disturbance terms directly. It turns out that the problem can be

tackled with the framework of Maximum Likelihood.

2.1.2 The linear Maximum Likelihood Estimator

Given T observations y1, ...,yT from the time series {yt}t∈Z, generated

by the model

yt = φyt−1 + εt ∀ t ∈ Z, (2.19)

with εt being drawn from a standardized normal distribution with zero

mean. Suppose we have a correctly specified regression. The likelihood

function `(y1, ...,yT ;θ) is simply the joint density function of the se-

quence y1, ...,yT under the parameter vector θ = (φ, σ2
ε) that defines the

distribution of the data. Note that if our model would include more or

other parameters, they would simply be part of this parameter vector

(for example, if we would include a constant as we did earlier, it would

be θ = (α, φ, σ2
ε)). The MLE is the parameter vector that the maximizes

the likelihood function:

θ̂T = arg max
θ∈Θ

`(y1, ...,yT ;θ). (2.20)

A useful property of joint density functions is that they can be factorized

into the product of conditional and marginal densities:

`(y1,y2;θ) = `(y1;θ)× `(y2;θ),
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`(y1,y2,y3;θ) = `(y1;θ)× `(y2|y1;θ)× `(y3|y2,y1;θ),

...

`(y1, ...,yT ;θ) = `(y1;θ)×
T∏

t=2

`(yt|yt−1, ...,y1;θ). (2.21)

Writing the likelihood as a product of conditional densities is useful

because we impose the distribution of yt conditional on yt−1 through our

parameterized model. For example, in the linear autoregressive case that

we have assumed, with φ being the linear autoregressive parameter, it is

yt|yt−1 ∼ N(φyt−1, σ
2
ε). (2.22)

It may also be possible to work with different distributions, for example

distributions that can accommodate fatter tails. Different distributional

assumptions or models will merely imply that the densities are of another

form, which can be accounted for. Under the Gaussian assumption, it is

given by the well-known formula:

`(yt|yt−1;θ) =
1√

2πσ2
ε

exp

[
−(yt − φyt−1)

2

2σ2
ε

]
. (2.23)

Taking logs allows us to express the products as sums, hence we have

that the MLE can be written as

θ̂ = arg max
θ∈Θ

T∑

t=2

− log
√

2πσ2
ε −

(yt − φyt−1)
2

2σ2
ε

. (2.24)

Just as in the Least Squares case, we can find the estimator by calculating

the derivative and setting it to zero. Since in this simple example we

have assumed σ = 1, we will set it to unit. In practice, the variance is

often estimated, in which case the derivations have to take into account

that σ is itself a free parameter. For now, the estimator for φ is simply:

∂`(y1, ...,yT ;φ)

φ
=

T∑

t=2

(yt − φyt−1)yt−1. (2.25)
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Equating to zero and rearranging gives us a familiar expression:

φ̂ =

∑T
t=2 ytyt−1∑T
t=2 y2

t−1

. (2.26)

In this particular case, in which we have assumed the same model and

distributional form of the residuals, the MLE is identical to the LSE

that we explored earlier. Since we now have an analytical expression,

and have again assumed correct specification, we might expect that that

the proofs for consistency and normality will follow the exact same steps

from here. This is almost correct. In the early Least Squares example,

we worked with a model yt = Xtβ + εt, ∀ t ∈ N in which our dependent

variable is generated by exogenous, independent, data Xt. In the current

example yt = φyt−1 + εt, ∀t ∈ Z, our dependent variable is generated

only by innovations and temporal dependence. This implies that unlike

in the exogenous regressor case, where we can assume that Xt is i.i.d., we

can now no longer assume that yt−1 is i.i.d. as we model its dependence

explicitly. This implies that we can no longer make use of Bernoulli’s

LLN and the Lidneberg-Levy’s CLT. Note that this is an issue that is

not related to the MLE itself, or the LSE vice-versa, it is just because

we are now formally considering a time series process. We already hinted

earlier that stability of the time series was intuitively important to ensure

that yt does not wander off to infinity, in which case the expectations

are infinite and moment assumptions would surely break. It turns out

that the Stationarity property is also key to applying an LLN and CLT.

Particularly, since the derivations are identical to the Least Squares

example, we want to show that by application of an LLN that

φr =

1

T

∑T
t=2 εtyt−1

1

T

∑T
t=2 y2

t−1

p−→ 0

E(y2
t )

= 0 as T →∞,

and by application of a CLT to the numerator and a LLN to the denomi-

nator, that
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√
T (φr) =

√
T




1

T

∑T
t=2 εtyt−1 − E(εtyt−1)

1

T

∑T
t=2 y2

t−1


 d−→ N(0, σ2

εE(y2
t ))

E(y2
t−1)

∼

N
(
0, σ2

εE[y2
t−1]

−1
)
,

as T →∞.

We can do so by appealing to the following LLN for Strictly Stationary

and Ergodic sequences and CLT for Martingale Difference Sequences.

THEOREM. 4 (Birkhoff-Khinchin’s Law of Large Numbers for Strictly
Stationary and Ergodic data). Let the random sequence {zt}t∈Z be Strictly
Stationary and Ergodic with finite first moment E|zt| <∞, then we have

1

T

∑T
t=2 zt

p−→ Ezt as T →∞.

THEOREM. 5 (Billingsley’s Central Limit Theorem for Stationary and
Ergodic Martingale Difference Sequences). Let the sequence {zt}t∈Z
be Strictly Stationary and Ergodic with first moment E(zt) = µ <

∞ and second moment Var(zt) = σ2 < ∞. Suppose furthermore
that {zt}t∈Z is a Martingale Difference Sequence of random variables,
E(zt|zt−1, zt−2, ...) ∀ t ∈ Z, then we have

√
T

(
1

T

∑T
t=2 zt − µ

)
d−→ N(0, σ2) as T →∞.

Using these Theorems, together with the stationarity property, we come

to the following results.

COROLLARY. 3 (Consistency of the MLE for the Correctly Specified
Autoregressive Model). Let the time series {yt}t∈Z be generated by the
Strictly Stationary autoregressive model yt = φ0yt−1 + εt ∀ t ∈ Z, |φ0| <
1, with exogenous innovations E(εt|yt−1) = 0 that satisfy {εt}t∈Z ∼
NID(0, σ2

ε) with finite variance σ2
ε <∞. Suppose furthermore that the

regression model is correctly specified φ0 ∈ Θ, then

φ̂T → φ0 as T →∞.
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COROLLARY. 4 (Asymptotic Normality of the MLE for the Correctly
Specified Autoregressive Model). Let the time series {yt}t∈Z be generated
by the Strictly Stationary autoregressive model yt = φ0yt−1 + εt ∀ t ∈ Z,
|φ0| < 1, with exogenous innovations E(εt|yt−1) = 0 that satisfy {εt}t∈Z ∼
NID(0, σ2

ε) with finite variance σ2
ε <∞. Suppose furthermore that the

regression model is correctly specified φ0 ∈ Θ, then

√
T (φ̂T − φ0)

d−→ N
(
0, σ2

ε[Ey2
t−1]

−1
)

as T →∞.

Note that the consistency results from applying an LLN to 1
T

∑T
t=2 εtyt−1

and 1
T

∑T
t=2 y2

t−1, which easily follows from the fact that when {yt}t∈Z
is Stationary and Ergodic, the sequences {y2

t}t∈Z and {εtyt−1}t∈Z
are trivially also Stationary and Ergodic. Furthermore, as long

as σ2
ε < ∞ then E|y2

t | < ∞ and E|εtyt−1| < ∞. Application

of the the CLT to
√
T 1
T

∑T
t=2 εtyt−1 − E(εtyt−1) requires first that

Var(εtyt−1) is finite and that εtyt−1 is a Martingale Difference Sequence,

E(εtyt−1|εt−1yt−2, εt−2yt−3, ...) = 0. The finiteness of the variance can

naturally be stated in terms of a moment conditions on the innovations.

In particular, if |ε4
t | < ∞, then |y4

t | < ∞ and |(εtyt)2| < ∞ are eas-

ily verified. The martingale difference property follows trivially by the

fact that the true innovations are exogenous E(εt|yt−1) = 0 and the

model is correctly specified and consistent. Hence, the residuals of the

regression around the correct parameter are also exogenous and NID.

To verify the martingale difference property, we only have to define

Ft−1 := (εt−1yt−2, εt−2yt−3, ...) and then need that E(εtyt−1|Ft−1) = 0.

This follows by application of a Law of Total Expectation,

E(εtyt−1|Ft−1) = E
(
E(εtyt−1|yt−1,Ft−1)|Ft−1

)

= E
(
yt−1E(εt|yt−1,Ft−1)|Ft−1

)

= E
(
yt−1E(εt)|Ft−1

)
= E

(
yt−10|Ft−1

)
= 0. (2.27)

Note that again, this result relies on the fact that we can substitute

E(εt) = 0 which holds by the fact that our autoregressive parameter is
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consistent with respect to the correct parameter. Hence, the result only

follows due to the critical assumption that our simple model correctly

reflects reality. Furthermore, Stationarity of the correctly specified model

was crucial but simple to show because φ0 is a linear parameter. As soon

as we replace φ0 with a nonlinear observation-driven function, the theory

that we used to obtain stationarity no longer applies.

Maximum Likelihood is a very flexible framework, and a wide variety

of models can be estimated as long as the conditional densities implied

by the model can be expressed to derive the log likelihood function. In

the case of the spatial autoregressive model, for which the Least Squares

assumptions broke down, a likelihood function is also available. In this

particular case, one can derive the joint distribution of the dependent

variable from that of the residuals using the determinant of the first

order derivatives of the functional relationship between the two. Doing

the derivations, one will find that the log likelihood function contains

new components that account for the feedback term (I − ρW )−1 that

multiplies with the residuals. Several additional assumptions are now

needed to show that the likelihood function with these additional terms

is still continuous, such that it is limit-preserving. In addition, slightly

more demanding stability conditions are needed to obtain Stationarity

of the model. This has to factor in that stable feedback now has to

account for dependence on both past observations and current neighbor

values. The last difficulty is then that the added complexities to the log

likelihood function result in difficult derivatives, that once set to zero,

do not have analytical solutions. This prevents us from obtaining the

analytical expression of the estimator, and in particular, showing that

the remainder term vanishes as T grows. Analytical intractability is a

key problem to solve before we can start to tackle the MLE’s of the more

complicate spatial autoregressive time series processes.
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2.2 General Extremum Estimators

In practice, it is often the case that only simple econometric models

lead to analytically tractable estimators. From a practical point of view,

the estimation can be easily carried out using numerical methods that

approximate the optima and derivatives of interest. However, from a

theoretical perspective, the absence of an expression for the estimator

implies that we can no longer analyze its properties in the manner that we

have done earlier. As an effect, we might numerically find the parameters

that maximize likelihood of the spatial autoregressive time series model,

but without establishing consistency and normality, we can’t really tell

how the obtained results can be interpreted. This obviously calls for the

need of a more general theory to establish the desired properties. In

particular, we can classify most of the estimators of interest as extremum

estimators, and state general conditions to verify their properties.

2.2.1 General Consistency

Given a probability space (Ω,F , P ), a random sample yT , shorthand for

the entire sequence (y1, ...,yT ), and a parameter space Θ, we can define

an extremum estimator as the measurable map θ̂T : Ω→ Θ

θ̂T ∈ arg max
θ∈Θ

QT (yT ;θ). (2.28)

The criterion function QT : RT × Θ → R is real-valued and random

because it is a function of the random sample yT , which is itself a

measurable map yT : Ω→ RT , hence QT is a map QT (yT , ·) : Ω×Θ→ R.

When the random sample is realized and we observe yT (ω) ∈ RT for some

event ω ∈ Ω, then QT (yT (ω), ·) is a real valued function QT (yT (ω), ·) :

Ω × Θ → R. Hence, for every realization we get a new function to

maximize, and we obtain a new maximizer that is our parameter estimate.

Hence, the estimators we consider are random.
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Note that the maximizer is a set in the arg max as at this point we have

not yet said anything about the uniqueness of a maximum. Extremum

estimators that take the form of a sum are called an M -estimator, while

those with criterion functionsQT (yT , ·) : Ω×Θ→ R that are differentiable

on the parameter space Θ can also be written as Z-estimators that directly

set the derivative of the criterion to zero. If QT (yT , ·) : Ω×Θ→ R is also

strictly concave, then it ensures that the point where ∇QT (yT , ·) = 0 is

really the global, rather than a local, maximum of the function QT (yT , ·).
Strict concavity is not necessary, for a twice differentiable criterion one

may also use the second derivative to infer which solution corresponds

to the global maximum. In any case, one can define the estimate as an

element

θ̂T ∈ {θ ∈ Θ : ∇QT (yT , ·) = 0}. (2.29)

The first thing that one generally wants to ensure is that θ̂T /∈ ∅, which

can be shown by applying a Bolzano-Weierstrass Theorem. In particular,

this Theorem tells us that every function that is continuous, has a

maximum on a compact set. This leads us to the following standard

assumption and the implied useful result.

ASSUMPTION. 5 (Compactness of the Parameter Space). Let Θ be a com-
pact space in Rn∈N.

The compactness assumption is standard, and apart from it’s critical role

in establishing existence and measurability, it will again play a crucial

role in the uniform convergence of the estimator.

THEOREM. 6 (Existence and Measurability of the Estimator). Let Θ be a
compact space in Rn∈N and QT (·; ·) be continuous in its arguments, then
there exists a measurable map θ̂T : Ω→ Θ satisfying

θ̂T ∈ arg maxθ∈ΘQT (yT ;θ).

Apart from Existence and Measurability, one typically wants the maxi-

mizing point θ0 to be identifiable and unique.
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ASSUMPTION. 6 (Identifiable Uniqueness of the Maximizer of the Limit
Criterion). Let θ0 ∈ Θ be the identifiable unique maximizer of the limit
criterion Q∞ : Θ→ R.

There are different definitions with varying mathematical detail. Typi-

cally, we mean that θ0 not only maximizes the limit criterion Q∞ , i.e.

that Q∞(θ0) ≥ Q∞(θ) ∀ θ ∈ Θ, but that this point is well separated from

other points. If S(θ0, r) is the set of points contained in a ball with fixed

radius r > 0 and center-point θ0 and Sc(θ0, r) denotes its complement

set in Θ, i.e

S(θ0, r) := {θ ∈ Θ : ‖θ−θ0‖ < r} and Sc(θ0, r) := {θ ∈ Θ : θ /∈ S(θ0, r)},

then θ0 is not only the maximizer of Q∞, but also the identifiable unique

maximizer if

sup
θ∈Sc(θ0,r)

Q∞(θ0) > Q∞(θ). (2.30)

Essentially, this says that if we draw a sphere around the correct param-

eter θ0 with any positive real valued radius, then the criterion always

judges that any parameter outside of that sphere is not optimal, even

as the radius of that sphere becomes arbitrarily small. Note that the

identifiability is thus a property of the criterion, and characterizes it’s

ability to differentiate between possible likely solutions.

We now have the right conditions in place to establish consistency of the

extremum estimator. In particular, an estimator is (weakly) consistent,

if and only if it convergences in probability θ̂T
p−→ θ0 as T → ∞, and

strongly consistent, if and only if it convergences almost surely θ̂T
a.s.−−→ θ0

as T → ∞. Weak consistency states that for a specified large T , the

estimator θ̂T is likely to be near it’s correct value θ0, leaving open the

possibility that one can find some arbitrary ε > 0 for which |θ̂T − θ0| > ε

still happens an infinite number of times, although at infrequent intervals.

Strong consistency instead states that this will in fact almost surely not

occur. In particular, it implies that with probability 1, we have that
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for any ε > 0 the inequality |θ̂T − θ0| < ε holds when T has become

large enough. Either result can be obtained following a similar strategy,

though strong consistency requires a stricter condition that may in some

cases not hold while the conditions for (weak) consistency may still be

verified.

The general consistency theorem for the criterion of an extremum esti-

mator requires uniform convergence of the criterion function to a limit

deterministic function. We say that the criterion function QT converges

point-wise in probability over Θ to a limit function Q∞ if it holds true

that |QT (yT ;θ)−Q∞(θ)| p−→ 0 ∀ θ ∈ Θ as T →∞. Moreover, we say that

the criterion function QT converges uniformly in probability over Θ to a

limit function Q∞ if it holds true that supθ∈Θ |QT (yT ;θ)−Q∞(θ)| p−→ 0

as T → ∞. The difference lies in the fact that the latter is expressed

for the supremum, which can loosely be interpreted as the “worst case”-

convergence across all elements in Θ. The point-wise convergence is

thus a much weaker condition than the uniform convergence, since for

point-wise convergence the rate of convergence can be different for each

element in Θ. More so, while uniform convergence implies point-wise

convergence, point-wise convergence does not imply uniform convergence.

Unfortunately, directly establishing uniform convergence is often not easy.

However, due to a remarkable result known as the stochastic Arzelà-

Ascoli Theorem, it is known that point-wise convergence of the criterion

function over a compact parameter space implies uniform convergence if

the estimator is stochastically equicontinuous. A family of functions is

equicontinuous if all the functions are continuous and they have equal

variation over a given neighborhood. By itself, stochastic equiconti-

nuity is not an easy to use concept, but a Lipschitz condition implies

stochastic uniform equicontinuity. This gives us the very easy to use

condition that if supT E supθ∈Θ ‖∂QT (θ)/∂θ‖ <∞, then the sequence of

random criterion functions at sample size T generated under ω ∈ Ω is

stochastically equicontinuous. Furthermore, in order to obtain strong
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uniform convergence of QT to Q∞ we need it to be strongly stochastically

equicontinuous, which requires that the derivative be uniformly bounded

rather than bounded in expectation supT supθ∈Θ ‖∂QT (θ)/∂θ‖ <∞ al-

most surely. As a result, it is quite straightforward to verify that the

criterion function of an extremum estimator is (strongly) consistent. In

particular by applying a suitable LLN to obtain point-wise convergence

and using the bounded expectation of the derivative of the criterion to

obtain the uniform convergence. Strong consistency of the criterion can

be obtained by applying an LLN to obtain point-wise convergence and

using the uniform boundedness of the derivative of the criterion to obtain

strong uniform convergence. This can be summarized as follows.

THEOREM. 7 (General Consistency for M-estimators). Let (Ω,F , P ) be
a probability space, and let the criterion function QT : Ω×Θ→ R be a
sequence of random continuous functions that take the form

QT (yT ;θ) =
∑T

t=2 q(yt,yt−1;θ),

and q be differentiable on a convex compact parameter space Θ. Assume
that also that q(yt,yt−1;θ) is Stationary and Ergodic and has bounded
first moment E|q(yt,yt−1;θ)| <∞. Then the criterion satisfies a Law of
Large Numbers

1

T

∑T
t=2 q(yt,yt−1;θ)

p−→ E(q(yt,yt−1;θ)) as T →∞ ∀ θ ∈ Θ,

hence the sequence {QT}T∈N converges point-wise in probability to a limit
function Q∞ = E(q(yt,yt−1;θ)) ∀ θ ∈ Θ. If furthermore, q(yt,yt−1;θ)
has a derivative with bounded expectation,

E supθ∈Θ ‖∂q(yt,yt−1;θ)/∂θ‖ <∞,

then {QT}T∈N is stochastically equicontinuous. Together with the point-
wise convergence this implies that {QT}T∈N then converges uniformly in
probability to the limit function Q∞

supθ∈Θ |QT (yT ;θ)−Q∞(θ)| p−→ 0 as T →∞.
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The compactness of Θ together with the continuity of q implies that the
measurable map θ̂T : Ω→ Θ exists, satisfying

θ̂T ∈ arg maxθ∈ΘQT (yT ;θ).

If furthermore the parameter θ0 is the identifiably unique maximizer of
the limit criterion function Q∞

supθ∈Sc(θ0,r)Q∞(θ0) > Q∞(θ),

then the uniform convergence implies that θ̂T is consistent for θ0 since

|θ̂T − θ0| p−→ 0 as T →∞.

If finally, the derivative is also uniformly bounded,

supθ∈Θ ‖∂q(yt,yt−1;θ)/∂θ‖ <∞ a.s.

then {QT}T∈N is strongly stochastically equicontinuous. The strong
stochastic equicontinuity together with the established point-wise con-
vergence implies that {QT}T∈N converges uniformly almost surely to the
limit function Q∞

supθ∈Θ |QT (yT ;θ)−Q∞(θ)| a.s.−−→ 0 as T →∞,

hence that θ̂T is also strongly consistent for the identifiably unique maxi-
mizer of the limit criterion function θ0 since

|θ̂T − θ0| a.s.−−→ 0 as T →∞.

2.2.2 General asymptotic Normality

The general consistency theorem can be applied in a wide range of set-

tings. The asymptotic normality follows by a very similar argument. In

particular, we can show uniform convergence of the second derivative

in turn obtained from the point-wise convergence of the second deriva-

tive together with boundedness of the third derivative that implies the

stochastic equicontinuity of the second derivative.
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The reason behind the central role of the second derivative can be easily

understood. First, focus on the fact that we are interested in obtaining

an approximate limit distribution for
√
θ̂ − θ0. Remember that by

construction of our estimate as the optimum of the criterion, it holds that,

at the estimate, the derivative of the criterion is zero ∇QT (yT , θ̂) = 0.

Suppose we introduce a new point θ∗T that lies between θ̂T and θ0, then

we can use the Mean Value Theorem to write the derivative as

∇QT (yT , θ̂T ) = ∇QT (yT ,θ0) +∇2QT (yT ,θ
∗
T )(θ̂T − θ0) = 0. (2.31)

We can now obtain an expression for
√

(θ̂T −θ0) by rewriting the second

equality and multiplying both sides by the square root of T .

√
(θ̂T − θ0) =

(
∇2QT (yT ,θ

∗
T )
)−1 ×

√
T∇QT (yT ,θ0). (2.32)

This immediately suggests that obtaining the asymptotic normal-

ity of θ̂T at θ0 follows in three steps. First, by showing that√
T∇QT (yT ,θ0) converges in distribution to N(0,Σ). Second, by show-

ing that
(
∇2QT (yT ,θ

∗
T )
)−1

converges in probability to
(
∇2QT (θ0)

)−1

as T → ∞. Since θ∗T is evaluated between θ̂T and θ0, the consis-

tency of θ̂T implies that θ∗T approaches θ0. Hence, the convergence

of
(
∇2QT (yT ,θ

∗
T )
)−1

to
(
∇2QT (θ0)

)−1
in probability, follows by showing

that ∇2QT converges uniformly over Θ to ∇2Q∞. Finally, to obtain

the convergence to
(
∇2QT (θ0)

)−1
, we must establish that the limit is

invertible.

The first condition, that the scaled criterion derivative
√

(T )∇QT (yT ,θ0)

converges in distribution to N(0,Σ) can be obtained by applying a CLT

to the derivative ∇q(yt,yt−1,θ). This is straightforward because

√
T∇QT (yT ,θ0) =

√
T

1

T

T∑

t=2

∇q(yt,yt−1,θ0)
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=
√
T

(
1

T

T∑

t=2

∇q(yt,yt−1,θ0)− E
(
∇q(yt,yt−1,θ0)

)
)

(2.33)

where, just as before, E
(
∇q(yt,yt−1,θ0) can be added as it equals zero by

construction. Recall that the CLT will require the derivative of the crite-

rion ∇q(yt,yt−1,θ0) to be Stationary and Ergodic Martingale Difference

Sequence and be bounded in second moment E‖∇q(yt,yt−1,θ0)‖2 <∞.

The uniform convergence of the second derivative of the criterion function

supθ∈Θ ‖∇2QT (yT ,θ)−∇2Q∞(θ)‖ p−→ 0 as T →∞ can be obtained by

the same strategy as followed in the consistency Theorem. In particular,

the stochastic Arzelà-Ascoli Theorem tells us we can focus the argument

on the point-wise convergence of

‖∇2QT (yT ,θ)−∇2Q∞(θ)‖ p−→ 0 ∀ θ ∈ Θ as T →∞,

and the stochastic equicontinuity of {∇2QT}, in turn implied by a Lips-

chitz condition ensured by a bounds on it’s derivative

supT E supθ∈Θ ‖∇3QT (yT ,θ)‖ <∞.

The final invertibility requirement is strongly related to the identification

of θ0. In particular, when θ0 is well-separated, then the limit criterion

Q∞ must have strong curvature around θ0. This strong curvature implies

that Q∞ accelerates moving from θ0 to any point around it, hence that

the second derivative ∇2Q∞ is non-singular and invertible. If, on the

other hand, Q∞ is flat around θ0, then ∇2Q∞ is singular and hence not

invertible.

We can thus summarize the general normality theorem for extremum

estimators as follows.

THEOREM. 8 (General Asymptotic Normality for M-estimators). Let Θ
be a compact parameter space and θ̂T be a consistent M-estimator for an
identifiable unique point θ0 ∈ Θ.
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Suppose that the derivative of the criterion ∇q(yt,yt−1,θ0) is a Station-
ary and Ergodic Martingale Difference Sequence and bounded in second
moment E‖∇q(yt,yt−1,θ0)‖2 <∞, then it is asymptotically normal at

√
T

(
1

T

∑T
t=2∇q(yt,yt−1,θ0)

)) d−→ N(0,Σ) as T →∞.

Suppose also that the second derivative is Stationary and Ergodic and
bounded

supT E supθ∈Θ ‖∇2q(yt,yt−1,θ0)‖ <∞,

then application of a Law of Large Numbers yields that that the second
derivative converges point-wise

‖ 1

T

∑T
t=2∇2q(yt,yt−1,θ)− E∇2q(yt,yt−1,θ)‖ p−→ 0 ∀ θ ∈ Θ as

T →∞.

Suppose furthermore that the third derivative is bounded

supT E supθ∈Θ ‖∇3q(yt,yt−1,θ0)‖ <∞,

then the point-wise convergence and the stochastic equicontinuity of the
second derivative imply that it also converges uniformly

supθ∈Θ ‖
1

T

∑T
t=2∇2q(yt,yt−1,θ)− E∇2q(yt,yt−1,θ)‖ p−→ 0.

Finally, by the invertibility of the limit E∇2q(yt,yt−1,θ), implied by
a strong curvature of the criterion around θ0 in turn ensured by the
identifiability of θ0, together with the established uniform convergence
and asymptotic normality at θ0, implies that

√
T (θ̂T − θ0)

d−→ N(0, EΣE ′) as T →∞,

with E =
(
E∇2q(yt,yt−1,θ0)

)−1
.

We now have a general theory that can be applied to show the consistency

and normality of possibly complex models like the spatial autoregressive
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time series model. All the exact derivations of the conditions and steps

will not be provided here. Instead, Chapter 4 provides a more general

proof that covers the linear spatial autoregressive model but also allows

for the possible failure of several simplifying assumptions that have been

made here. In particular, the result also covers cases in which the spatial

autoregressive parameter is nonlinear, possibly observation-driven, and

under a more general distributional assumption than the Gaussian one.

The theory there shall also detail what happens in the case of multiple

optima.

2.3 Further complications when modeling dynamic

spatial time series

To conclude this chapter, we will look at the steps of the General Consis-

tency and Normality Theorems more closely and discuss them further

with regard to the MLE of a general, unparameterized, nonlinear au-

toregressive model. This broad setting covers, among possible other

dynamics, the spatial autoregressive ones that we were particularly inter-

ested in. We then discuss each of the assumptions that were made and

aim to provide relevant meaning to them for the cases in which one would

consider certain parameterizations. We then wish to find out what might

still be easily violated or difficult to show, and set several theoretical

objectives to remedy those situations.

Suppose we have possibly nonlinear model that depends on both past

and current values

yt = ψ(yt,yt−1, εt;θ) ∀ t ∈ Z. (2.34)

Note that this includes also popular linear spatial time series, for example

of the form

yt = α + ρWyt + φyt−1 + φ2Wyt−1 + εt ∀ t ∈ Z. (2.35)
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In this model, the values of yt depend on past local and neighbor values,

and spillover contemporaneously across regions. The extension to depen-

dence on past residuals, and possible spatial lags thereof, will be made

in Chapter 4. In 6, extensions will also be made that allow dependence

on past residuals of a different spatial variable. We already noted that

models currently discussed can be written in the following form

yt = f(yt−1,θ) + v(εt,θ) ∀ t ∈ Z. (2.36)

This highlights that the current notation is general enough to also ac-

count for an additional spatial error process. In contrast to the earlier,

more simplistic, example in which the residuals were not nonlinearly

transformed such that we could obtained the density directly from the

dependencies implied by the regression model, we now obtain the density

εt ∼ pε(θ) by inverting v. In general, for a regression model that has

instantaneous dependence

yt = h(θ)yt + g(yt−1,θ) + εt ∀ t ∈ Z, (2.37)

one can define the contribution to the log likelihood at time t as

`t(θ,yt,yt−1) = log det |I − h(θ)|+ log pε

((
I − h(θ)

)
yt− f(yt−1,θ),θ

)
.

(2.38)

The log likelihood function is again defined as `T (yT ,θ) =∑T
t=2 `t(θ,yt,yt−1). The component log det |I − h(θ)| stems from the

fact that inverting the model leads to a residual dynamic (I − h(θ))−1εt.

Hence, if no autoregressive dynamics would be modeled but only a spatial

error process, a similar component would enter the log likelihood function.

In the standard nonlinear case, without feedback, I − h(θ) = I − 0 = I,

hence log det |I − h(θ)| = log det |I| = 0. We thus obtain the standard

nonlinear log likelihood contribution log pε(yt− f(yt−1,θ),θ) in the stan-

dard case in which h(θ) does not transform the data. When h(θ) does

transform the data, then immediately, the established continuity prop-
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erties of many density functions that are used in empirical applications

are complicated by the additional component log det |I −h(θ)|. We must

thus ensure the non-singularity and boundedness of this additional term

before we can obtain any result that relies on the continuity of `T (yT ,θ).

Furthermore, calculating the derivatives of the log likelihood function can

get particularly complicated. To apply an LLN, we need `t(θ,yt,yt−1)

to be differentiable, Stationary and Ergodic, and be bounded in first

moment. In contrast to the standard case, the verification of these prop-

erties has to take into account the additional component h(θ) that would

normally not complicate any result. In particular, proving a suitable

stationarity result under θ0, that cannot be assumed as this is now a

property of the model, can be significantly more complex when we need

to control for both temporal dependence and instantaneous feedback.

The stationarity results known in time series literature that only focus on

stability of f(yt−1,θ) are not sufficient, neither are the stability results

from spatial literature that only focus on h(θ). Suppose, however, that

suitable forms of stability across the space-time dimension have been

verified, then we could obtain the point-wise convergence

1

T

∑T
t=2(`t(θ,yt,yt−1))

p−→ E(`t(θ,yt,yt−1)) as T →∞ ∀ θ ∈ Θ,

hence we would establish that the sequence {`T (yT ,θ)}T∈N converges

point-wise to a limit deterministic function `∞(θ) = E(`t(θ,yt,yt−1)).

Next we need the derivative of the log likelihood, the score, at each step

`t(θ,yt,yt−1)′ to be bounded and the parameter space, that also includes

any components part of h(θ), to be compact, to obtain strong stochastic

equicontinuity and thus the uniform convergence of the log likelihood

function

supθ∈Θ |`T (yT ,θ)− `∞(θ)| a.s.−−→ 0 as T →∞.

For example, if the score is uniformly bounded we have almost sure

uniform convergence by the strong stochastic equicontinuity and point-
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wise convergence. If θ0 is the identifiable unique maximizer in a compact

space Θ we then obtain strong consistency of the estimator θ̂T for θ0.

Remember that if the weaker stochastic equicontinuity is obtained instead,

we can still show the point-wise convergence of the log likelihood function

and obtain the weak consistency result. It is not uncommon for nonlinear

models to introduce identification complications, particularly when the

data is in fact linear. For example, for a function δ/(γ(yt)), the parameter

δ can be any value if γ(yt) = 0, or, if instead δ = 0, the quantity γ(yt)

can take on any value without affecting the value of the criterion function.

We will see in Chapter 4 that the estimator can still be set-consistent,

but for normality, however, identification is critical.

In particular, to establish normality we need first that the score is a

Stationary and Ergodic Martingale Difference Sequence and bounded in

second moment.

E‖`t(θ,yt,yt−1)
′‖2 <∞.

The stationarity and ergodicity can be obtained by continuous differen-

tiability of ` and the stationarity and ergodicity of {`t(θ,yt,yt−1)}t∈Z.

The second moment can be similarly obtained from {`t(θ,yt,yt−1)}t∈Z by

deriving moment preserving properties that again have to factor in the

properties of h(θ). The score is a Martingale Difference Sequence if the

model is correctly specified and the criterion is consistent. Naturally, h(θ)

can tremendously improve the fit and help ensure the appropriateness of

the Martingale Difference Sequence assumption. Application of a CLT

then delivers

√
T

1

T

∑T
t=2 `t(θ,yt,yt−1)

′ d−→ N(0,Σ) ∀ θ ∈ Θ.

Twice continuous differentiability of ` delivers stationarity and ergodicity

of {`t(θ,yt,yt−1)
′′}t∈Z, and together with the moment bound

E‖`t(θ,yt,yt−1)
′′‖ <∞,
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this allows us to apply an LLN for every θ ∈ Θ to obtain

1

T

∑T
t=2 `t(θ,yt,yt−1)

′′ p−→ E`t(θ,yt,yt−1)
′′ as T →∞ ∀ θ ∈ Θ.

Three times continuous differentiability of ` together with a uniform

bound on the third derivative ensures the stochastic equicontinuity of the

second derivative and thus the uniform convergence. Together with the

invertibility of the limit second derivative, this deliver the asymptotic

normality of the estimator. Again, the invertibility relies on parameter

identification that can be complicated by identification problems of

nonlinear functions. This is especially problematic since one would

normally use the approximate distribution to infer whether a parameter

is significantly different from zero. In many cases, nonlinear models

are only asymptotically normal under the alternative assumption that

the data is nonlinear. If one needs to assume nonlinearity to test for

nonlinearity, then that test statistic is deeply flawed in some sense.

The proof for normality relies heavily on continuity and bounds of deriva-

tives of the log likelihood function. In some sense this can be understood

as smoothness, or, well-behavedness properties. The additional compo-

nent log det |I − h(θ)| can complicate the derivations significantly which

may make verifying these properties quite unpleasant. At a high level, one

can easily understand that the smoothness of the log likelihood function

depends on the type of nonlinearities generated by h(θ) and g(yt−1,θ).

In these cases one may note that the stochastic equicontinuity, in turn im-

plied by Lipschitz conditions, is only used as an optional tool that allows

one to exploit the often easier to obtain point-wise convergence. It may

naturally be possible to show uniform convergence directly. For example,

instead of stochastically bounding the derivatives, such computations can

be avoided when the Ergodic Theorem for random elements with values

in a separable Banach space is applied. This is the strategy that we will

take in Chapter 4. In other situations, one may try to show that the

Lipschitz conditions are themselves ensured by higher-level smoothness
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properties such as higher moment bounds of a function. For a sufficient

degree of smoothness, the Lipschitz conditions may stretch out across a

sufficient number of derivatives to immediately ensure that the second

derivative of the log likelihood function is stochastically equicontinuous

without the need of taking the derivations.

Finally, the discussions here all circled around compact parameter spaces.

It was mentioned that in Chapter 4, set-consistency would be developed

for the case of multiple solutions to the criterion. Nevertheless, stochastic

equicontinuity relied on compactness, hence it was a crucial ingredient

for normality too. We already analyzed that intuitively, there must

be strong curvature around the solution to the criterion function to

obtain an approximate distribution around a parameter estimate. In

Chapter 6 we will consider a simple penalty modification to the criterion

function that remedies a known form of non-identifiability and whose

effect becomes negligible in the limit. However, non-parametric models

may need penalization that does not vanish in the limit. In Chapter 5 we

will analyze this. It turns out that penalties force the criterion function

to favor simple solutions over complex ones. This, similar to the strategy

of obtaining boundedness of derivatives through high-level smoothness

conditions, essentially limits possible solutions of the criterion function

to only those that are available in lower frequency domains, which again

emphasizes that understanding the properties of h(θ) and g(yt−1,θ) is

critical to establish the desired theoretical results needed to apply them

to analyze spatial time series data.



Chapter 3

Spatial Heterogeneity

Chapter Summary

Policy schemes that aim to stimulate the cultivation of biofuel crops typically ignore the

spatial heterogeneity in costs and benefits associated with their production. Because

of spatial heterogeneity in biophysical, and current agricultural production factors,

potential gains from stimulating biofuel crops are non-uniformly distributed across

space. This paper explores implications of this type of heterogeneity for the net benefits

associated with different subsidy schemes. We present a simple framework based

on discounted cash flows, to assess potential gains from introducing the notion of

heterogeneity into stimulation schemes. We show that agricultural subsidy spending can

be reduced in a Pareto efficient way and simultaneously improve the total stimulation

potential of biofuel policies, when schemes: 1) are production based instead of land

based; 2) accommodate differences in opportunity costs, and 3) target sites where

subsidies for conventional agricultural land-use types are high. These results are robust

for a range of different bioenergy prices and the relative gains of addressing these key

elements in policy compared to conventional stimulation schemes increase with lower

bioenergy prices, and are largest when low prices coincide with high emission reduction

ambitions.1

1This chapter is based on “Efficiency of second-generation biofuel crop subsidy schemes: Spatial
heterogeneity and policy design” published in the Journal of Renewable and Sustainable Energy Reviews,
and is reproduced with kind permission from Elsevier. The full reference is Andree et al. (2017b). The
material is reproduced in this chapter with kind permission from Elsevier. This work was part of a
research initiative funded by the Dutch National Research Programme Knowledge for Climate.

43
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3.1 Introduction

The constraints of finite natural resources in combination with concerns

about global warming have led researchers and policymakers to pay

increased attention to the topic of sustainable energy policies and the

reduction of greenhouse gas emissions. The switch to biofuels as a trans-

portation fuel source has been put forward as a possible contribution to

carbon emission reduction plans and overall sustainable energy strategies

(Farrell et al., 2006; Ragauskas et al., 2006; Koçar and Civaş, 2013).

Second-generation ethanol production from lignocellulosic material is

generally considered to avoid (partly) social and environmental impacts

linked to biofuel production (Singh et al., 2010), and could become a

key contributor to emission reductions. Although lignocellulosic ethanol

production from biomass may become a suitable option in the future,

large-scale production is not economically feasible at present and stimu-

lation policies have to be implemented to achieve future bioenergy usage

ambitions (Wiesenthal et al., 2009). Many countries are struggling to

achieve 2020 goals for fuel standards. In 2015, the average European

blending share of crop based ethanol and biodiesel was estimated at

respectively 3.3% and 4.3%, and at about 0.6% for non-food based bio-

fuels (Flach et al., 2015). Though the sector has achieved considerable

growth worldwide in recent years (REN21, 2015), the strong decline

in crude oil prices that started in the second half of 2014 has put the

competitiveness of biofuels under severe pressure, and the current policy

ambitions are not expected to lead to significant higher production in

the next decade (OECD and FAO, 2015). Because economic benefit is

arguably the most important incentive for adoption, efficient subsidy

strategies are of relevance for the future of biofuels and might not only

be key in reaching 2020 fuel standards, but might determine when, or

whether, we ever get a viable model for large scale production.

The focus of this paper is to explore possibilities to minimize subsidy
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spending and simultaneously increase the total stimulation potential of

biofuel policies, while maintaining the income levels of farmers. Such

possibilities allow for Pareto improvement with respect to the current

situation as society can both save money on subsidies and gain from

environmental benefits related to biofuel production, while profits of

farmers would be unaffected by the subsidy reform. Reducing spending

and increasing the stimulation potential of schemes can contribute to

the overall cost-effectiveness of policies and might strengthen the case

of bioenergy production in the political arena. In past years, different

studies proposed heterogeneous allocation of resources under different

environmental policies, for example carbon sequestration contracts (Antle

et al., 2003), air pollution emission trading programs (Fowlie and Muller,

2013), vehicle emission abatement (Mérel and Wimberger, 2012), and

policies that promote investment in renewable electricity generators (Fell

and Linn, 2013). Current bioenergy stimulation policies typically do

not recognize that there is substantial spatial variation in costs and

benefits associated with biofuel crop production. This heterogeneity

relates to interaction between policies stimulating the production of

bioenergy, spatially heterogeneous production factors, agricultural land-

use patterns, and other agricultural policies. The central thesis of this

paper is that introducing the notion of spatial heterogeneity into subsidy

schemes allows for more efficient allocation of subsidies, and potentially

increases net social benefits by decreasing subsidy costs and increasing

positive externalities. We build our analysis on the following three

elements: first we assess spatial heterogeneity in Net Present Value

(NPV) of current agricultural production systems; we then estimate

site specific net social costs and benefits of stimulation schemes; and

finally, we compare the relative efficiency of alternative subsidy schemes

in terms of associated potential net benefits. We repeat the analysis

for a range of different bioenergy prices to show how the results change

when the relative competitiveness of conventional land use and bioenergy
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production changes. We apply our analysis to explore production of a

specific second-generation bioenergy crop – Miscanthus (Miscanthus ×
Giganteus) – in the Netherlands, a country with an advanced agricultural

sector that has a high economic value per hectare. The Netherlands is

currently far behind the European average for sustainable energy usage,

and as we shall see in our application of the developed theory, could

benefit from more effective bioenergy policy design.

The remaining part of this paper is organized as follows. In section 3.2,

we discuss inefficiencies that arise due to land heterogeneity. Section 3.3

details our methods. Section 3.4 describes our application to Miscanthus

in the Netherlands. Section 3.5 presents the results, followed by a

discussion and conclusion in section 3.6.

3.2 The importance of spatial heterogeneity in agri-

cultural policy

Agricultural systems are strongly determined by spatially heterogeneous

agro-economic, socio-economic, and local biophysical conditions (Diogo

et al., 2013). Spatial economic models that build upon this heterogeneity

confirm that biomass is able to provide a substantial contribution to

the overall energy supply. This future bioenergy potential has been

assessed on the global scale (Hoogwijk et al., 2005; Smeets and Faaij,

2007), at the European level (van Dam et al., 2007; de Wit and Faaij,

2010; Fischer et al., 2010a,b), and at national levels (Batidzirai et al.,

2006; Styles and Jones, 2007; van den Broek et al., 2001). An overview of

the different assessments and their respective strengths and weaknesses

is given by Dornburg et al. (2008), who point out that spatial variation

in production characteristics is the most important aspect in assessing

bioenergy potentials. Recent studies focusing on local opportunities

for biofuel production were able to pinpoint specific areas of interest
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by using micro data on production characteristics (van der Hilst et al.,

2010; Diogo et al., 2012). Understanding the economic implications

of spatial variability in local production factors might help researchers

and policymakers in the field of environmental economics and resource

management work towards more efficient forms of policy. However,

existing agro-economic and bioenergy stimulation policies often do not

explicitly address spatial heterogeneity and abstain from insights gained

from bioenergy potential assessments.

Two examples illustrate this lack of attention to spatial aspects. The

governments of Canada and the United States have proposed policies in

which farmers are paid for the adoption of certain management practices

to sequester carbon dioxide in agricultural soils (Agriculture and Agri-

Food Canada, 2003; Young, 2003). In the European Union, farmers

who grow bioenergy crops can apply for a standard land based subsidy

(European Commission, 2007). Such a subsidy scheme is analogous to

the proposed Canadian and United States government subsidy scheme

as farmers are paid for adopting site-specific practices. Market-based

incentives, however, are generally seen as more efficient than command-

and-control or environmental design standard policies because there are

cost-efficiency differences in abatement strategies among the entities

within a sector, for example when both costs and environmental benefits

differ among plots (Tietenberg, 1990; Stavins, 1998). Efficient agricultural

policies that aim to increase environmental benefits by influencing the

management decisions of farmers, must therefore take into account the

heterogeneity of the biophysical and economic factors that determine

the agricultural system (Just and Antle, 1990). Paying farmers to adopt

certain management practices in a land based system, disregarding the

biophysical differences among their production sites, is generally seen as

inefficient (Helfand and House, 1995; Babcock et al., 1996; Fleming and

Adams, 1997).
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We particularize by distinguishing between two types of inefficiencies

in bioenergy stimulation schemes: over-funding and mis-allocation of

funds. When a farmer produces biofuel under a (government-funded)

carbon contract, the contract value is part of the farmer’s private profit

function. In the economic environment of an emission trading market,

contract values are conditional on a spatially varying factor, that is, the

quantity of biomass produced in specific locations, and an exogenous

factor that is equal among farmers, the price of one unit of carbon. It

follows that the income generated by farmers through carbon contracting

is a monotonic transformation of the spatial distribution of production

quantities, which has a direct relation not to local production costs

but to the local biophysical conditions that determine biomass yields.

Farmers with comparative advantages thus possibly receive aids that

greatly exceed the marginal costs of bioenergy crop production, resulting

in allocation of excessive funds and ex post inequalities.

Mis-allocation of funds occurs when spatial characteristics that are not

part of the private profit function appear in the social welfare function.

This difference can originate from both the cost and the benefit side of

the economy. One mechanism through which the social cost function

differs from the private cost function, is that the production of bioenergy

crops can reduce subsidy distributed elsewhere in the market. Subsidies

for crops are mutually exclusive, meaning that farmers can only opt for a

single crop subsidy per plot at a time. Under the assumption that avoided

subsidies for conventional land uses will return efficiently to society, low

social costs do not necessarily coincide with low private costs in their joint

spatial distribution. The possibility exists that for any given farmer, the

private bioenergy production profits are below zero (a subsidy is required,

disregarding the potential profits related to other land-use types), while

the net social cost of sustaining the required subsidy is negative. This

happens for example when farmers receive subsidies for conventional land-

use types that exceed the subsidy requirements to produce bioenergy,
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while the private profits, after subsidy, of both alternatives are equal. In

this case there is room for a Pareto-efficient reduction in conventional

subsidies. Generally, if positive private opportunity costs for biomass

production at a certain point in the spatial distribution coincide with

negative social costs for sustaining local bioenergy production in the

joint spatial distribution, possibilities for Pareto improvement exist and

it could be said that society is allocating its funds to the wrong sites.

A similar issue arises on the benefit side of social welfare. Since the

production of bioenergy crops is associated with positive external effects

– perennial crops sequester carbon in their root systems and the use of

biofuels reduces carbon emissions – a strictly positive spatial distribution

of externalities exists conditional on the local biophysical conditions. This

spatial distribution, part of the spatial social benefit distribution, is not

internalized in the spatial distribution of private benefits. The optimal

land-use patterns from a societal perspective will thus differ from patterns

that arise from private decisions. Summarizing, spatial heterogeneity in

local production characteristics under a policy that inadequately accounts

for spatial differences leads to inefficient outcomes due to two principles:

◦ A non-uniform spatial distribution of marginal production costs

leads to over-funding at production sites that have comparative

advantages, when subsidies are distributed uniformly across plots.

◦ If the spatial distributions of social and private costs and social and

private benefits differ, schemes that do not promote internalization

of externalities and instead follow private optimization decisions,

misallocate funds from a societal perspective.

3.3 Methodology

We develop a spatially explicit economic assessment strategy to evaluate

potential net benefits of subsidizing bioenergy at the grid-cell level.
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Both the cost and the benefit side of the model build upon an explicit

representation of land heterogeneity and require micro-data on biophysical

conditions, market prices, and agricultural land use. By combining this

information, we estimate the NPV of the currently existing agricultural

land uses and of bioenergy crop production using a multiple-year time

span, thus incorporating long-term decision processes related to perennial

crop management and start-up investment costs. The difference in the

economic performance of bioenergy crop production and conventional

agricultural production types is used to determine a minimum required

contract value for each plot. The net social cost of the stimulation policy

is calculated by comparing the minimum required subsidies with subsidies

distributed among conventional land uses. The spatial distribution of

potential social benefits of bioenergy production is based on the emission

offsets provided by local biomass production quantities, and the amount of

carbon sequestered in the root systems of perennial crops. By comparing

the net costs of subsidizing with the benefits associated with the subsidized

sites, we are able to evaluate the effectiveness of different types of policies.

The next section introduces the seven stimulation schemes that we shall

explore in our application. Section 3.3.2 provides further details to the

structure of the model.

3.3.1 Different spatial policies

A government that engages in bioenergy stimulation can either subsidize

farmers directly through a periodical land based payment or introduce a

carbon contracting system in which farmers receive funds by providing

carbon emission offsets to entities, including the government, that are

willing to buy such contracts to suppress their carbon rating.2 Contracts

or subsidies based on emission offsets are referred to as production based

2We use contracts and subsidies somewhat interchangeably throughout the paper because we do
not explicitly differentiate between types of entities, but view society as the final entity that pays for
such contracts.
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schemes as they directly relate to the quantities of produced biomass.

Both types of periodical payments can be homogeneous across space, as

in conventional schemes, or they can be altered to account for spatial

heterogeneity. Heterogeneous subsidy schemes allocate the exact amount

of funds to each farmer needed to sustain the local production of bioenergy

crops.

We analyze seven alternative bioenergy stimulation schemes table 3.1 that

address heterogeneity to various degrees. We first distinguish between

spatially heterogeneous and conventional (homogeneously distributed)

subsidies. Within the category of heterogeneous subsidies, a second

distinction is made between: 1) single focus (SF) schemes that subsidize

plots where the local opportunity costs for biofuel production are lowest,

and minimize the total funds spent on bioenergy stimulation; and 2)

integrated agricultural focus (IAF) schemes that also take into account

how conventional agricultural subsidies are spatially distributed. IAF

schemes aim to limit total aggregate spending on agricultural subsidies by

subsidizing plots where net social costs for biofuel production stimulation

are lowest. This integrated approach is more efficient as it captures

reductions in the aggregate agricultural subsidy spending by decreasing

the, often excessive, subsidies for other types of production. Both SF and

IAF schemes offer farmers a single subsidy that does not depend on the

farmer’s choice of production type. Under the assumption that farmers

optimize profits, and that land conversion occurs accordingly, farmers

that receive less subsidy after the policy reform are reconciled by increased

productivity associated with the alternative production system. So, in our

simple framework, both SF and IAF schemes reduce spending in an Pareto

efficient way. These stimulation strategies are particularly interesting for

biofuel stimulation schemes that generate positive externalities associated

with emission reductions, but the implications of the results stretch

out over other conventional agricultural subsidy schemes. In a sense,

heterogeneous schemes undo a policy induced market failure. By offering
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farmers site-specific financial support, agricultural land-use patterns are

generated by profit maximization principles that follow the productivity

of farmers. Under homogeneous subsidies that vary per crop type, this

equilibrium land-use pattern is distorted and farmers have an incentive

to move away from optimum and produce crops for which their land is

not suited, as long as they are sufficiently reconciled by the crop-specific

subsidy.

Both heterogeneous and conventional subsidies are analyzed under per-

hectare and per-tonne contracts. Additionally, we analyze policy that is

fully directed at minimizing land-use change by allocating subsidies on a

command-and-control basis to the sites associated with highest biomass

production potentials.

Table 3.1: Overview of the alternative subsidy schemes distinguished in this study.

Heterogeneous Conventional

Land Based
Production
Based

Land Based
Production
Based

Single Focus SFLB1 SFPB2 CLB3 CPB4

Integrated Focus IAFLB5 IAFBP6

Minimize LUC MLPB7

1 Single focus land based, 2 single focus production based, 3 conventional
land based, 4 conventional production based, 5 integrated agricultural focus
land based, 6 integrated agricultural focus production based, 7 minimized
land-use change production based.

3.3.2 Spatial economic model

The model that we apply consists of several elements, and we first detail

the overall structure before providing the equations. The underlying

assumption of our approach is that farmers operate under optimal in-

puts and subsequently allocate their land between alternative crops in

order to maximize their profits. We therefore, similar to other land-use

allocation models, start with a profit maximization problem. From this

maximization problem, we derive a simple land-use allocation rule that
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serves as a starting point for constructing an indifference surface con-

ditional on site-specific subsidy levels. We then formulate restrictions

for homogeneity and heterogeneity of stimulation schemes. Given these

restrictions and the spatial indifference surface, we derive spatial distri-

butions for the minimum required subsidies under heterogeneous and

conventional schemes. These are compared to current subsidy spending

on conventional crops to derive plot-specific social costs of sustaining

the required subsidy to convert a given plot to a bioenergy production

site. We separately construct a spatial distribution of external benefits

associated with fossil fuel savings and carbon sequestered in the root

system of the bioenergy crop using a carbon price. The site-specific

net social costs of sustaining biofuel production is than compared to

the benefits associated with production to map site-specific potential

net benefits of biofuel production. Finally, we aggregate the local net

benefits of those sites that are covered under a specific stimulation scheme

to enable a comparison of the total potential benefits associated with

different schemes. The remaining part of this section details all of the

analysis steps.

In our simplified land-use allocation model, we view the study area as

consisting of a number of production sites indexed by i ∈ I. We assume

that in order to maximize their profits, farmers make a choice between

two types of land use l = [c, e], where c denotes conventional agricultural

land use and e denotes the allocation of energy crops. The economic

decision process for a multiple-year period that farmers face can thus be

described as the following multi-period profit-maximization problem:3

3In this paper we make use of the following notation: (discounted) summations of any symbol are

given by its respective capital, e.g. Z ≡∑I
i=1 zi, similarly for sets, capitals contain their lowercase

as elements, we index variables by land-usetype with a superscript such that ze ≡ zl=e is identical
and reads as the variable z under bioenergy production, and write constraints between braces {}, e.g.
i{A} ∈ IA reads as “all elements i for which rule “A” holds, are members of the set IA”.
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arg max
l∈L

Πl
i =

T∑

t=0

πlit
(1 + r)t

, (3.1)

where profits are generated according to the spatial time series:

πlit = plitq
l
it(ϕ

l
it) + slit − wl

ith
l
it − klit − olit(qlit) ∀ it ∈ N× Z. (3.2)

Where plit are the plot-level prices for the vector of outputs of land-use

types l at time t, qlit is the vector of outputs, which is a function of local

yield factors ϕlit, w
l
it are prices for the vector of inputs, slit are plot-level

subsidies, klit are fixed costs containing start-up investments, equipment

costs and yearly fixed costs, and finally olit are the field operation costs,

which may vary with output qit
l.

Let Πe
i and Πc

i be real variables and Π
′
i denote any particular set of

values of these two variables. Any such set is represented by a point in a

two-dimensional Cartesian space. Let Π ⊇ Π
′
i be the superset of all such

points and let Πc and Πe be the subsets of Π including points for which

Π
′
i produces either a conventional crop production site contained in Ic, or

an energy crop production site contained in Ie. To be able to assign set

membership to I l based on Πl
i, we require that some further logic exists.

The profit maximization by land-use choice under mutually exclusive

land-use types provides a rule “A(Π
′
i)” that defines the subset Ie ⊆ I.

This rule “A(Π
′
i)” ascribes to each production site contained in I, the

property of belonging to Ie or not, based on any set of values Π
′
i for the

two land use types. The profit-maximization problem in Equation (3.1)

leads to the following rule:

i{Πe
i > Πc

i} ∈ Ie. (3.3)

Note that if profits would instead have been stochastic, this and subse-

quent results follow similarly under expected value theory if Πe
i and Πc

i are

consistent estimates of the first moments of their stochastic counterparts.
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Note also that, though prices are given in a competitive market, a farmer

has the ability to choose the level of inputs and that a government can

choose to change slit, such that any pair Π
′
i is possible, which in turn

according to the time series system Equations (3.1) to (3.3) can produce

any agricultural landscape. If we keep Πc
i constant, that is, assuming

optimal private inputs and fixed conventional subsidies, Πe
i (s

e
it) > Πc

i has

a unique asymptotic lower bound, Πe
i (s

e
it) = Πc

i , on which rational farmers

are indifferent between biofuel and conventional agricultural production.

All sets Π
′
i that produce membership in I \Ie\Ic = I0 together constitute

this spatial indifference surface on which profit maximizing farmers are

indifferent between production types. From Equation (3.1) it is clear

that under these assumptions it is a straightforward approach to find the

local subsidy values seit that establish this indifference surface, e.g. to

find the lower bound of required subsidies to sustain biofuel stimulation.

Depending on the policy type, the spatial distribution of the bioenergy

subsidy seit can either be spatially homogeneous s̄ent, which we indicate

with an overbar and index by n ∈ N with N ⊆ [1, ..., |I|] being a

subset of the ordered sequence from 1 to the cardinality of the entire

set of plots, or spatially heterogeneous šeit, which we indicate with a

check. We index by n to distinguish from heterogeneous schemes. More

specifically, heterogeneous subsidies can be uniquely indexed over the

entire set of plots, whereas homogeneous subsidies are equal among plots

and indexed by the cardinality of the set of bioenergy production sites,

n := |Ie|, i.e. homogeneous subsidies increase as the amount of plots

converted to bioenergy production sites increases. Spatially homogeneous

subsidies s̄ent are identical across i and must satisfy s̄ei−1,nt := s̄eint ∀ i ∈ I,

hence we shall continue without subscripting i for spatially homogeneous

variables. The criterion carries that when n plots are subsidized, the

marginal increase in the aggregate subsidy by subsidizing the next plot

i + 1 that is contained in an extended set of n + 1 production sites,

equals s̄en+1,t + n(s̄en+1,t − s̄ent). Thus, if there are differences in subsidy
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requirements between a newly subsidized plot and the most efficient

plot of all formerly subsidized plots, the marginal increase in aggregate

subsidy does not only increase by the subsidy amount required at the

new plot but also by the efficiency difference multiplied by the amount

of plots that already received aids. Spatially heterogeneous subsidies, on

the other hand, are flexible and allow for any finite difference between

subsidies at any two points within the distribution and satisfy 0 ≤
|šeit − šei+1,t| < ∞. The marginal increase in the aggregate subsidy of

subsidizing the next plot i+1 when the subsidies are heterogeneous is just

šei+1,t, the subsidy required for production at the new site. The difference

in the marginal increase in the aggregate homogeneous subsidy and

aggregate heterogeneous subsidy is s̄en+1,t + n(s̄en+1,t− s̄ent)− šei=n+1,t. The

requirements of the newly subsidized plot under both schemes are equal,

thus the marginal increase in total subsidy costs is given by n(s̄en+1,t− s̄ent)
and thus depends on the amount of heterogeneity between plots that

drives the difference between (s̄en+1,t− s̄en,t), and the size of the policy area

n before increasing its extent. The marginal cost function of converting an

additional production site to energy crop production under homogeneous

schemes, thus depends on the site-specific exogenous determinants that

enter any private profit function within the entire policy area, whereas the

marginal cost function under a heterogeneous scheme is just a function

of local variables. In our application we shall study how the impact of

heterogeneity changes as the size of the policy area grows to the size of

the entire set of potential production sites |Ie| → |I|.
To derive the minimum spatially homogeneous subsidies s̄ent, it is necessary

to write down the exact relationship between the total area of sites

dedicated to bioenergy production and the decision rule of Equation (3.3),

so that we can determine n. Assuming optimal private inputs under

both land-use types, the total bioenergy production area is given by

summing over the individual sizes of the plots for which the decision rule

of Equation (3.3) holds.
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Y e =
Ie∑

i=1

yei , (3.4)

where yei is the individual plot size and Y e the aggregate production size

dedicated to bioenergy production. Suppose that a government aims to

have a total area of Y e devoted to the production of bioenergy crops, than

Equation (3.4) inversely provides the amount of required plots to achieve

that level of coverage. To find the minimum spatially homogeneous

subsidy s̄ent required to stimulate n plots, we need to establish indifference

in the least efficient production site i = j, j ∈ [1, ..., n], e.g. the production

site that requires the highest aid. Thus, in the j-th plot, we need Πe
j = Πc

j

to hold and then solve for sejt. As Πe
j is the subsidized profit, we can write

it as a function of the unsubsidized profit and a subsidy component:

Πe
i = Π̃e

i + Sei , (3.5)

where

Sei =
T∑

t=0

seit
(1 + r)t

.

There are multiple solutions to seit in Equation (3.5) as cash flows may

vary throughout years, for example a lump sum in the first year can

be the NPV equivalent of an annuity. The discounted total subsidy Sei

is, however, unique, so it follows that indifference Πe
j = Πc

j holds when

Sej = Πc
j − Π̃e

j and bioenergy subsidy is equal to the unsubsidized profit

gap. Using the homogeneity rule, it follows also that the discounted total

homogeneous subsidy for any plot equals that of the least efficient plot

S̄en = Sej . For any production area size Y e containing n plots, we can

write the spatially homogeneous subsidy that minimizes the aggregate

subsidy as a function of the largest unsubsidized profit gap occurring in

all the bioenergy production sites Ie.4

4To confirm that this indeed is a minimum, consider lowering the value of s̄ent for all plots with a
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S̄en = max
i∈Ie

(Πc
i − Π̃e

i ). (3.6)

One important result that we can directly derive from this is that within

the current system, farmers are paid to withhold from innovation, and

the introduction of new subsidy systems is required for any innovative

crop before it can be produced on a large scale.5

Using the decision rule of Equation (3.3), we can similarly construct

a distribution of spatially heterogeneous minimum subsidies at which

farmers are tangent to choosing l = e, by finding the exact values for

Sei that coincide with values of Π
′
i that produce set membership in

I0. Hence, to find the plot-specific discounted spatially heterogeneous

minimum subsidy Šei , we need to establish indifference Πe
i = Πc

i at all

plots i. Straightforward use of Equation (3.5), gives us:

Šei = Πc
i − Π̃e

i . (3.7)

The spatial distribution of net subsidy spending is calculated as the differ-

ence between conventional subsidies and bioenergy stimulation subsidies.

Net subsidy spending is what society pays to produce environmental

benefits through biofuels; therefore, we will refer to it as social costs,

though we do not take into account other potential costs than direct

spending.

Ce
i = Sei − Sci . (3.8)

Apart from the net subsidy spending involved in bioenergy stimulation,

minor fraction just sufficient to cause πej < πcj . This will only be sufficient to stimulate n− 1 plots.
Lowering the value of s̄ent for one or several plots with a minor fraction will break the condition of
spatial homogeneity.

5Note that we can similarly split up net present value profits of conventional agricultural land use
Πc
j . Therefore to obtain indifference in a subsidized agricultural system, Π̃e

i = Π̃c
i =⇒ Sei = Sci , which

means that any positive value for Sci forms an innovation barrier, preventing bioenergy production at
otherwise competitive sites, e.g., where both unsubsidized land-use types would be equally profitable.
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we consider also the benefits associated with avoided carbon emissions.

The potential social benefits at a specific production site are given by

the benefits of emission savings and the difference between benefits from

additionally sequestered carbon.

Be
i =

T∑

t=0

pεε
eqeit + pε(σ

e
it − σcit)

(1 + r)t
, (3.9)

where pε is the carbon price, εe are the emissions saved per unit of

bioenergy production, and σlit are the emission saving equivalents of

sequestered carbon in the root system of perennial crops. Net benefits

are given by the difference between social benefits and social costs.

ωei = Be
i − Ce

i (3.10)

In aggregate, we can quantify the total net benefits by summing up all

the plot-level gains for sites where private profits for growing bioenergy

crops exceed profits from growing conventional crops.

Ωe =
Ie∑

i=1

ωei = Be
i −Ce

i =
T∑

t=0

pεε
eqeit + pε(σ

e
it − σcit)

(1 + r)t
− (Sei − Sci ). (3.11)

In the right side equality in Equation (3.11), we see the direct relation

between the spatially heterogeneous potential benefits and the spatial dis-

tribution of subsidies allocated to production sites Sei , where Sei = S̄en for

homogeneous subsidies or Sei = Šei under heterogeneous subsidies schemes.

It follows directly from Equation (3.11) that under heterogeneous pro-

duction factors, the potential gains under heterogeneous subsidies are

higher than those under homogeneous subsidies.6 This should come as

6Combining Equation (3.6) and Equation (3.7) leads to Šen ≤ S̄en, with Šen < S̄en if there is variation

in Πc
i − Π̃e

i across i. Therefore, Ωe(Šen) > Ωe(S̄en) follows trivially under heterogeneous production
factors.
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no surprise given the expressions of the marginal costs for converting

an additional farmer derived earlier, but it is an empirically interesting

matter to contrast the differences in total potential net benefits of alter-

native schemes using real data for a range of potential production area

sizes. The straightforward equations suggest that a researcher armed

with micro-data on in- and output price vectors, production costs and

quantities, land-use patterns, and current subsidy schemes, is able to do

just that by plugging them in Equation (3.1), and evaluating the total net

benefit potential under different types of policy by substituting Sei with

values of Šei or S̄en and calculating Ωe for the set of sites Ie for which the

subsidy is sufficient to convert profit maximizing farmers into bioenergy

crop producers. Similarly, policy-objective related benefit potentials can

be calculated by summing i over the set of production sites Ietarget for

which the total bioenergy crop production Qe =
∑T

t=0

∑Ie

i=1 q
e
it equals

a target amount Qe
target of the bioenergy product. The corresponding

size of the production area Yt can be evaluated with Equation (3.4), to

compare the potential size of policy areas. Finally, the subsidy is optimal

when the marginal gains to society from subsidizing the least efficient plot

j equals zero ωej = 0. That is where the marginal social benefits equal

the marginal net costs of subsidizing. Since Scj is fixed, we can calculate

the value of Sei that corresponds to the optimum subsidy pattern.

3.3.3 Modeling production quantities

We propose to approximate the output vector of products with crop-

specific yield values, which can be directly mapped from local biophysical

features. We model the yield following van Bakel et al. (2007) by attribut-

ing crop-specific damage scores related to drought Rd and water-logging

Rw according to the local combination of geological and hydrological

conditions. The damage scores are designed to be used with the yield

function below to calculate the crop-specific expected yields.
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qlit = ϕlitq
l
it,max, (3.12)

ϕlit = 100−Rwl
it +Rdlit

(
(100−Rwl

it)

100

)
. (3.13)

The production quantity vector for a specific land-use type in the choice

model of Equation (3.1), qlit, is the crop-specific maximum attainable

yield, qlit,max, multiplied by ϕlit, that is, the local yield conditions factor

ranging from 0-100%. This procedure to quantify expected yields has

been successfully applied to model a variety of crops in studies for

the Netherlands (van der Hilst et al., 2010; Kuhlman et al., 2013) and

Argentina (Diogo et al., 2014). In a similar NPV framework Diogo et al.

(2015) were able to replicate national agricultural land-use patterns in

the Netherlands with 84% degree of correspondence on a pixel by pixel

comparison.7 This shows that Equations (3.1) to (3.3) in combination

with Equations (3.12) to (3.13), is not just practical but also appropriate

to simulate land use.

3.4 The case of Miscanthus in the Netherlands

We illustrate our approach to accounting for spatial heterogeneity in

bioenergy stimulation policies with an application to a second gener-

ation perennial biofuel crop – Miscanthus – in the Netherlands. The

Netherlands is selected as a study area for several reasons. First, it has

an advanced agricultural sector with high economic value per hectare

and a high population density. Consequently, there is high pressure

on land for both urban land uses and intensive agricultural activities,

resulting in strong competition between different types of agricultural

land use (Koomen et al., 2005). Because of this competitiveness, there is

7Weighted average, making use of the fact that 69.1% of agricultural land is dairy farming, and
there was 90.1% degree of pixel by pixel correspondence for dairy farming and 71.7% for arable farming.
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no unused marginal land in the study area, so we do not need to account

for potential variability in the supply of agricultural land conditional

on marginal changes in subsidy patterns.8 Second, application of our

model in the Netherlands allows us to investigate whether possibilities

for Pareto improvements in current subsidy schemes are substantial even

in a small, and highly competitive agricultural system. Moreover, the

small size of the country has the advantage that we can assume biofuel

prices to remain stable when production volumes increase; the additional

production is not likely to influence these prices that follow supply and

demand conditions at far larger scales. The Dutch case is also interesting

for policymakers, as it is an example of a country that is still far behind

current national and European ambitions for sustainable energy, and that

lacks a developed agricultural production system for second generation

biofuels.9 Miscanthus was chosen for our case study because different

studies describe it as potentially high yielding (Elbersen et al., 2005;

van der Wolf, M. de; Klooster, 2006; van der Voort et al., 2008). Van der

Hilst et al. (2010) show that Miscanthus is more economically viable

than sugar beets for ethanol production, validating the usefulness of

Miscanthus as a non-food biofuel source. Bearing in mind the arguments

put forward by different critics of food-based biofuel (Gomiero et al.,

2010; Tait, 2011), Miscanthus could thus be of particular interest for

energy production from an ethical point of view.

Agricultural land use in our study area mainly consist of two dominant

production systems, arable farming and dairy farming, both modeled

with different rotation schemes for sand and clay soils. For arable farming

our model is made operational by using prices and values described by

8An overall decrease in land supply due to ongoing urbanization is more likely and could be
incorporated in our approach but we exclude this as well as it is not likely to change the competition
between different types of agricultural land use, but would only adjust the total amounts per types.

9In 2012, 3.4% of fuel sold in the Netherlands originated from first and second generation sources
and only 20% of these source materials were produced in the Netherlands (Dutch Emission Authority,
2013). The main sources for second generation biofuels of Dutch origin were domestic garbage, recycled
fats and tallow.
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Diogo et al. (2012) for in- and output vectors pcit (prices for agricul-

tural products), qlit,max (maximum attainable yields), hlit (the types and

amounts of production inputs), wl
it (the prices of the various inputs), klit

(fixed costs including start-up investments and equipment costs), and

olit (the farm operation costs). The product prices are updated using

5-year averages of the product prices reported by LEI (2012).10 Local

production quantities qlit are obtained by transforming the maximum

attainable yield quantities qlit,max using yield factors ϕli estimated using

data on local soil and hydrological with Equation (3.13), assuming that

these factor remain stable over time.

Since dairy farming operations do not directly sell grass, but rely on its

yield as an input in milk production, the economic assessment of this

production system relies on additional intermediate steps. Production

quantities, and yield related costs, for dairy farming operations are

modeled based on the assumption that cows require energy, supplied

by grass, to produce milk. The energy (grass) supply is linked to local

grass yields ϕgrassi . Energy shortages are computed at each yield level to

obtain the amount of required supplementary energy. We assume that

farmers supplement their grass supply with silage maize according to local

energy shortages and the digestible energy content of silage maize. Silage

maize is bought at opportunity costs since maize is grown in rotation,

reflecting the costs of not selling it on the market. Milk is sold as the

main product at similar 5-year average prices reported by LEI (2012),

and excess silage maize is sold as a secondary product. Further details

regarding the calculations are contained in table 3.4 in Appendix C.

Specifying the production conditions for Miscanthus is more complex as

less documented experience is available. Soil and groundwater related

yield reduction values, for example are not available for Miscanthus. This

void was filled by relying on the expected local yield values from van der

10The 10-year averages for potatoes.
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Hilst et al. (2010). Also, a market price for Miscanthus is not available as

the market is undeveloped. We account for that by using a price range

based on imported lignocellulosic biomass prices, averaging e 3.25/GJ for

pellets from Latin America, e 4.50/GJ for pellets from Eastern Europe,

and e 5.50–6.50/GJ for pellets from Scandinavia (Hamelinck et al., 2005)

and converting biomass to lignocellulosic energy equivalents (see Appendix

A). Recent projections on the development of the biofuel sector taking

into account the 2014 drop in crude oil prices, indicate that in the short

to medium-term, high energy prices and high investments that could

possibly lead to improved conversion rates are unlikely (OECD and FAO,

2015). We use data on the conventional subsidies scit that are distributed

in the European Union. Depending on the land-use type, farmers in

Europe receive income support of up to e 446 per hectare per year in

the Netherlands according to the CAP (European Commission, 2013).

Since the 2003 CAP reform, subsidies of e 45 per hectare per year are

available to farmers growing energy crops for 70% of their lands deployed

in energy crop farming (European Commission, 2007). 11

We combine all prices and other production-related values and insert

them in Equation (3.1) to compute the economic profitability of land at

each individual grid-cell. To construct a spatial distribution of conven-

tional land use profits Πc
i , we link conventional land-use vector l = c to

agricultural land-use data (Ministerie van Economische Zaken Landbouw

en Innovatie, 2013) registered at the parcel level. Since the land-use

data set reflects the situation at a fixed moment in time, crop cycles

are implemented to simulate the average NPV of various crop rotation

schemes throughout a period of 20 years.12,13 We take a weighted average

of profits according to the share of each crop type in a crop rotation.

11This subsidy system is one of the oldest European policies and is still gradually being transformed.
The total expenditures on CAP have declined in the past decades. In 2011, the total CAP expenditure
accounted for 44% of the total European budget, while in 1986 this was around 75%. Nevertheless, the
CAP remains an important source of income to farmers.

12We use an inflation-adjusted discount rate of 3%.
13The rotation scheme that we use is contained in table 3.3 in Appendix B.
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By Equation (3.6), homogeneous biomass subsidies are determined by the

size of the policy area through the inverse mapping of Equation (3.4). We

link Qe
t,target in our model to the required growth in bioenergy production

to meet the bioenergy market share targets set by the European Union

for 2020 and accordingly determine the required production area that

provides the basis to determine the minimum homogeneous subsidy.14

The benefits of emission savings per unit of biomass product εe are

the amount of fuel savings based on the European reference of 88.3kg

CO2eq/GJ (Dutch Emission Authority, 2013) per energy unit multiplied

by a carbon price pε of e 20 per ton. The carbon sequestration benefits

σeit of Miscanthus are based on 8.8 tons CO2eq reported by Caslin et al.

(2015). Arable crops in our rotation schemes do not consist of perennial

crops and are assumed to store no significant amounts of carbon in

their root systems. Though we are aware of opportunities for carbon

sequestering in the dairy farming sector, we omit them from our analysis

as they are too strongly dependent on site-specific practices.

3.5 Results

3.5.1 Economic performance of production systems

Figure 3.1 presents our assessment of the economic performance of various

crop cycles in the Netherlands for declining soil suitability. A brief

discussion of the robustness of the results, along with the distributions

of estimated economic performance Πl
i, is provided in Appendix D. On

average, clay soils perform better than sandy soils for both arable farming

and dairy farming. The economic performance of arable farming is more

sensitive to yield values than that of dairy farming. This results from the

ability of dairy farmers to import silage maize when the grass yields on

their specific plots are modest and still make profits on the sales of their

14All data and assumptions regarding energy usage are contained in Appendix A.
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Figure 3.1: Economic performance in discounted euros per hectare of different production systems
at declining yield levels. Soil and groundwater table combinations that lead to a Miscanthus yield
higher than 0.95 or lower than 0.45 are non-existent in the Netherlands. Dots represent observed
combinations of soil types and ground water tables, lines are linearly interpolated. The total amount
of locations with a negative NPV accounts for only 2.6% of agricultural land. Possible explanations
are discussed in Appendix D.

final products. Miscanthus is more sensitive to yield than dairy farming,

but less than arable farming.

Figure 3.1 provides important insights into the general trend of land-

use competition between Miscanthus and conventional crops.15 Arable

farming receives high income support through the CAP and requires

high soil suitability to be profitable, as Figure 3.1 shows.16 The NPV

15Plot-specific deviations from the general trend in land-use competition are possible as the yields of
dairy farming production systems and arable farming production systems are not perfectly spatially
correlated. The spatial analysis, on which subsequent sections build, takes this into account but is
difficult to generalize here. The Histograms in Figure 3.7 in Appendix D show the factors used in
Equation (3.7) to model the spatial comparison between Miscanthus and conventional land-use profit
levels. The map in Figure 3.8 in Appendix E shows the resulting spatial distribution of the minimum
required subsidies.

16Not deducible from Figure 3.1, the CAP support includes limited support for dairy farming
production systems through subsidizing maize production, which is a small percentage of the rotation
system. Arable farming production systems receive direct income support for a large part of their
rotation scheme.
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of dairy farming is less sensitive to change in obtainable yield, and its

occurrence is centered mainly on lower suitability soils because arable

farming outcompetes dairy farming on high yielding soils. Dairy farming

simultaneously is less subsidized. This causes a self-selection process in

which areas with productive soils receive higher subsidies while areas with

low suitability intersect with land-use types that receive less financial

support. The implications for bioenergy production are that the oppor-

tunity costs of producing Miscanthus increase on more productive soils,

because: 1) high-suitability areas self-select into areas that receive higher

income support, and 2) high soil suitability is relatively more in favor of

the economic performance of arable farming than that of Miscanthus.

3.5.2 Assessing the impacts of different policies

Figure 3.2 shows how different subsidy schemes that reorder the sequence

in which production sites are subsidized, produce differently shaped

social cost and benefit curves. Single focus schemes (SFLB and SFPB)

tend to mis-allocate funds as can be seen from the erratic cost curves.

Integrated agricultural focus schemes (IAFLB and IAFPB) that take into

account the way in which conventional subsidies Sci are allocated, have

smoothened cost curves and a larger integral area between the social

cost and benefit curves. Targeting production sites by production based

opportunity costs instead of land based opportunity costs generates cost

curves that are very similar, and efficiency differences are not directly

apparent from the cost curves only. Policy that aims to minimize land-use

change, results in a cascading succession of “separate” cost curves for

regimes with similar biophysical conditions, as each biophysical regime

includes production sites with low and high social costs.

Figure 3.2 finally also shows that with high market prices, marginal costs

and benefits have only a few intersections clustered at a high percentage

of land deployed for Miscanthus production. When market prices are low,
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Figure 3.2: Discounted social marginal cost MC (Cei ) and social marginal benefit MB (Bei ) curves
for the five heterogeneous subsidy schemes. Single Focus schemes follow the private opportunity costs
for Miscanthus production, Integrate Agricultural Focus schemes follow social opportunity costs by
taking into account the current allocation of conventional subsidies, ML minimizes land use change.
LB and PB stand for land based and production based schemes respectively. Horizontal axis is the
percentage of total agricultural land deployed for Miscanthus production.
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there are however numerous intersections spread out over a large part of

the graph area. This implies that the effect of spatial heterogeneity on the

relative performance of SF and IAF schemes varies strongly depending

on the market prices for bioenergy crop material. The main implication

is that when market prices are low, and subsidy requirements are high, it

pays more to subsidize the right plots first.

3.5.3 Comparing different policies

The relative performance of different heterogeneous policies varies with

production total. Using Equation (3.10), the total net benefit potentials

are calculated for the entire range of potential production sites.

Figure 3.3 depicts the course of potential net gains for an increasing

total production area under different heterogeneous schemes. As the

total area targeted by the policy increases, the curves diverge as spatial

heterogeneity in the targeted area increases. When the total area targeted

by the policy nears 70% of the entire region, the total net benefits under

different heterogeneous schemes converge; when all the farmers within

a region receive funds, the order of fund allocation or the selection of

plots that receive funds within the region does not matter. The largest

difference between IAF and SFLB schemes at e 4.50/GJ occurs near

a conversion rate of 68% of the region. At this point, potential net

benefits of IAF schemes are 17% higher. At e 4.50/GJ the differences

between heterogeneous schemes are not very impressive, each policy has

its own optimum and these optima produce relatively similar net benefits.

But Figure 3.3 clearly shows an important aspect of heterogeneous

schemes, the foregone benefits of second-best heterogeneous schemes

are approximately hyperbolic with the rate of land-use conversion or

aggregate subsidy spending.
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Figure 3.3: Total discounted net benefits in euros for heterogeneous subsidy schemes with bioenergy
market prices of e 4.50/GJ. Horizontal axis is the percentage of total agricultural land deployed for
Miscanthus production.

To investigate further how different heterogeneous schemes compare,

we repeated the analysis for a range of bioenergy prices with e 0.10

increments. We compare the different policies to obtain information on the

overall convergence or divergence in performance of the different policies

when prices for bioenergy change. For robustness, we are interested in

comparing the performance of policies when each policy is evaluated at its

optimum and when policies are evaluated at the point where they differ

the most in terms of efficiency. Therefore we computed two statistics

for each price level: I) the percentage difference between maximum net

benefits, evaluated for each policy at its respective optimum, and II) the



3.5. Results 71

Figure 3.4: Relative net benefits of heterogeneous schemes compared to SFLB schemes for a range of
bioenergy prices depicted as; I) the percentage difference between the optima of different policies, and
II) the percentage difference evaluated at the widest gap between the potential benefits associated
with the different schemes.

percentage difference between net benefits, evaluated at the widest gap

between the benefit curves. We benchmark the policies against the SFLB

scheme to see how integrated and production based schemes compare

to land based heterogeneous schemes. At low market prices, the second

measurement is associated with negative SFLB benefits. For these cases,

relative differences are computed using an absolute valued denominator.17

Figure 3.4 shows that the relative difference between net benefits, accord-

ing to both measurements, varies strongly with bioenergy prices. Ordinal

performance stays, however, relatively stable over the evaluated price

range. IAF schemes, measured at both optima and widest gaps, perform

better than SFLB schemes, while the MLPB scheme performs less. At

the lowest evaluated price, the SFPB scheme in optimum, performs less

than the SFLB scheme in optimum. It performs however better at low to

mid-range prices. When relative performance is measured at the widest

gap between the net benefit curves, the production based version of

single focus schemes performs better at any evaluated price level. The

largest relative differences in optima occur at low bioenergy prices. A

17As: (Alternativescheme− SFLB)/|(SFLB)|
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Figure 3.5: Aggregate discounted net benefits in euros for each subsidy scheme with bioenergy
market prices of e 4.50/GJ.

striking feature of 4I and 4II is the large spike around a bioenergy price

of e 3.65/GJ. At this price, evaluated at its optimum, the SFLB scheme

is close to the social break-even point. This results in high relative dif-

ferences. As prices increase, both figures I and II show a convergence of

heterogeneous schemes. The general trend of high differences at low prices

and convergence at higher prices, can be attributed to an interaction

between spatial heterogeneity and bioenergy prices. When bioenergy

prices are low, many plots require a subsidy. There are initially high

relative rewards for subsidizing the right plots. When prices increase,

fewer plots require subsidy, and subsequently there is less heterogeneity

in the remaining plots that require aids.

To investigate the potential benefits of implementing spatial variation

in subsidy schemes, we compare the relative performance against spa-

tially homogeneous subsidies aimed at reaching the European 2020 fuel

standards.18 Figure 3.5 depicts net potential benefits associated with

both heterogeneous and conventional schemes. Conventional schemes are

clearly less efficient but outperform the MLPB scheme. At 17 PJ, IAF

18European fuel standards can be reached with further growth of first-generation biofuel crops, in
which case a total production of 17 PJ of second-generation biofuels is required, or without further
growth in first-generation biofuel crops, in which case 37 PJ is the required production growth. See
Appendix A for details on the construction of these figures.
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schemes produce 28% more gains than conventional land based subsidies.

The net benefit curves of conventional schemes in Figure 3.5 are less steep

at the 37 PJ production total than for the 17 PJ production total. This is

in line with what was derived analytically from our model, the marginal

increase in aggregate subsidy spending between the homogeneous schemes

and heterogeneous schemes diverges as the policy area increases. At the

same time, at 37 PJ, an IAF scheme increases net benefits with 20%,

slightly less than at 17 PJ. This means that, while over-funding related

to homogeneous subsidies increases, there is a sharper decline in the

marginal benefits of IAF schemes. For the transition of 17 PJ to 37 PJ,

the decrease in the marginal potential net benefits is thus stronger than

the increase in the forgone benefits of conventional schemes.

The increase in foregone benefits under conventional schemes, however,

might have strong implications for environmental policy. When con-

ventional schemes are in place and international agreements become

more ambitious – energy targets are replaced with more ambitious ones

– subsidy schemes need to adjust to generate the increased supply re-

quired. This means that periodical aids are required to increase such

that additional farmers, with higher opportunity costs, will contribute

to bioenergy production as well. The implication of having conventional

schemes in place is that it can form a disincentive for engaging in new

and more ambitious agreements. The results show that this effect might

even be slightly stronger for land based schemes than for production

based schemes. Under a conventional policy, at 37 PJ, production based

schemes have 5% higher potential net benefits than land based schemes.

At 17 PJ, the difference is only a 2%.

The analysis also shows that minimizing land-use change comes at rel-

atively high costs. At 17 PJ, the potential gains are 33% lower than

those of IAF schemes, while the total land-use change is reduced by

around 11%. At 37 PJ, the gains are 27% lower while the total land-use
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Figure 3.6: Total net benefits of different schemes at bioenergy production levels of 17PJ and 37PJ.

change is reduced by only 5%. In both cases, we do not account for

possible benefits of minimizing total land-use change, but the results

imply that these have to be substantial if MLPB schemes are preferred

over IAF schemes. If the MLPB scheme is, however, benchmarked against

conventional schemes, the additional required benefits from minimizing

the land-use change need to be substantially smaller.

Final analysis shows that the results are robust to a range of different

prices. At both 17PJ and 37PJ we repeated the analysis with e 0.10

bioenergy price increments and noted the percentage difference between

alternative subsidy schemes and CLB schemes to see how heterogeneous

schemes compare to conventional schemes depending on bioenergy market

prices. Figure 3.6 shows that the alternative schemes are especially more

efficient when bioenergy prices are low.

We can observe from the graphs that the initial differences in relative

performance of alternative schemes at low prices, are higher for increased

total bioenergy production. The rate at which the curves converge is

however also higher at increased total production. Whether the relative

performance of heterogeneous schemes improves when bioenergy ambi-

tions go up, thus depends on the market price of bioenergy at which
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policies are evaluated. This nonlinear effect is due to the net effect of

a trade-off between spatial heterogeneous interactions. When bioenergy

prices are low, a large amount of plots require subsidy and subsequently

the heterogeneity in subsidy requirements is high. Furthermore, when

total bioenergy production increases, more plots are required to reach the

target aggregate production quantity and heterogeneity within produc-

tion sites increases. Together, low prices and larger aggregate production

thus result in a high level of heterogeneity due to increased heterogeneity

in subsidy requirements and additional heterogeneity due to the extended

set of production sites required to reach total production quantities. If,

however, bioenergy prices increase, heterogeneity in subsidy requirements

decreases as the amount of plots that require subsidy decreases. Hetero-

geneity decreases disregarding aggregate production quantities, but the

plots that will no longer require financial support at elevated prices, make

up a larger share of the production sites at 17PJ than at an aggregate

production quantity of 37PJ. As an effect, the relative gains of preventing

excessive funding of plots at high prices, is larger at low production quan-

tities, and heterogeneous schemes perform relatively better at lower total

production if bioenergy prices are high. Disregard of this complexity, IAF

schemes are clearly more efficient than conventional schemes at any price

for both aggregate production totals, and MLPB schemes are relatively

costly to society.

3.6 Discussion and conclusions

In this paper, we explored the role of spatial heterogeneity in biofuel

stimulation schemes. Under heterogeneous subsidy allocation, we find

that the potential gains from stimulating Miscanthus production are

distributed according to the differences between potential private profits

and potential net social benefits. The efficiency of a heterogeneous

allocation is therefore strongly determined by the order at which sites
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are targeted. We considered three types of heterogeneous schemes: 1)

Single Focus schemes that allocate subsidy based on private opportunity

costs, 2) Integrated Agricultural Focus schemes that additionally take

into account how conventional agricultural subsidies are distributed, and

3) a scheme that Minimizes Land use change. First, our results show

that conventional subsidy schemes that allocate a fixed amount of funds

on a per-hectare basis, tend to over-fund a large part of the farmers who

engage in biomass production, and that under heterogeneous stimulation

schemes, there is scope for Pareto efficient improvements with respect to

current subsidy spending. While heterogeneous schemes minimize over-

funding, they may mis-allocate funds. Our results show that a scheme

that targets plots based on the expected yields of bioenergy crops, is

less efficient than conventional stimulation schemes in reaching the 2020

mandate. We find that schemes that follow private opportunity costs

mis-allocate funds due to the heterogeneity in both external benefits

of produced carbon offsets and the potential to reduce conventional

agricultural subsidies. The foregone benefits of non-optimal heterogeneous

allocation is hyperbolic with total land conversion. It is found that

integrated agricultural focus schemes optimize benefits by reducing the

conventional subsidy for other agricultural activities, minimizing social

costs of sustaining biofuel stimulation and minimizing both over-funding

and mis-allocation. Alternatively, one can view the differences in efficiency

between single focus and integrated schemes not as properties of the

schemes, but of subsidies that are currently in place for conventional

agricultural activities. The differences between heterogeneous schemes

are fairly small at higher bioenergy prices, but increase substantially in

the lower range. At high prices, many sites do not require a subsidy,

and there is less heterogeneity among potential production sites. The

link between the relative importance of heterogeneity and energy prices

is important considering the 2014 oil price drop. Second, we show that

under both single focus schemes and conventional schemes, production
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based payments generate better results than land area based payments.

Again these differences are small at high bioenergy prices, but increase in

the lower range of energy prices. Third, under heterogeneous schemes, the

marginal costs of engaging in more ambitious environmental agreements

follow only site-specific social costs, while under conventional schemes

they increase rapidly due to increased over-funding of farmers that have

lower minimum subsidy requirements. The most substantial increase in

net benefits can be achieved when market prices for bioenergy are low

and environmental targets are ambitious. This is an important finding

and stresses the relevancy of spatial heterogeneity for policy since many

countries struggle with meeting their ambitious objectives under current

energy prices.

Our results add to the discussion around carbon contracts. In recent

years, agreements such as the Kyoto Protocol and the recent Paris

agreement, have encouraged the global economy to collaborate in creating

emission trading markets. While the recent agreement did not specify

a global carbon price, it does recognize its importance for providing

incentives for emission reduction activities. Furthermore, it mentions

result-based payments as an important way to provide incentives for

emission reductions. It appeals to suggest that biofuel stimulation policies

could be improved by capping and trading. Supporting farmers through

this system can address problems related to the cost-efficiency differences

arising from spatial heterogeneity and shift biofuel production to farmers

that face favorable production characteristics. The cost-effectiveness of

cap-and-trade has been widely discussed already in the 1970s regarding

air pollution policies (Burton and Sanjour, 1967) and more recently

concerning agriculture. Specifically, it has been shown that cap-and-trade

programs outperform tax-based policies (Bakam et al., 2012). A large

body of literature on carbon sequestration also supports integration with

cap-and-trade (Parks and Hardie, 1995; Pautsch et al., 2001; Antle et al.,

2003). In fact, our results corroborate that homogeneous production based
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schemes are more efficient than per-hectare payments. Especially at the

lower range of evaluated prices this improvement is substantial. However,

a problem related to the implementation of carbon sequestration contracts

is the high costs of quantifying the amount of sequestered carbon at every

production site (Stavins, 1999). Obstructions of this kind seem less

stringent in the case of contracts for biomass production, as the output of

these activities can be more easily measured since it is primarily the final

product itself that contributes to emission savings. This suggests that

there is a strong case for policy targeting to reduce emissions by capping

and trading. However, our study reveals that the integration of biofuel

production into cap-and-trade by providing emission offsets remains

prone to inefficiencies that arise from spatial heterogeneity. The results

show that conventional production based schemes over- and mis-allocate

funds, and schemes that explicitly address the heterogeneity in subsidy

requirements, and possibly in the distribution of externalities, increase

benefits substantially. Especially when total production of emission

offsets increases, and market prices for bioenergy are low, the amount of

foregone benefits sum up considerably.

This study contributes to the general debate on the potential contribution

of the agricultural sector in reducing emissions, by offering insights in

more efficient stimulation schemes. Prior to implementing such policies,

more extensive cost-benefit analysis that accounts for additional factors

influencing local production potential is needed. We suggest some exten-

sions to the framework presented in this paper. One potential drawback

of our pixel-by-pixel approach is that sites are treated as identically

and independently distributed, while in reality farmers typically manage

several sites under a single budget construct and can be expected to make

managements decisions based on returns to the whole farm operation.

On a related note, our approach does not account for economies of scale

or risk aversion. As prices and yields are stochastic, profit, or expected

value, maximization might deviate from the true objective function of
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a risk-averse farmer. In this case, the correct objective function will in-

stead maximize expected utility of profit, which could result in portfolio

diversification. Risk is however not only related to volatility of market

prices and yields, but also to irreversibility of some investments. While

NPV methods are an established method for land-use valuation, there

is a wide range of literature citing weaknesses that relate to this type

of risk. NPV methods treat investments as a onetime only opportunity

(Dixit and Pindyck, 1995), based under assumptions concerning future

cash flows under a static investment strategy that a firm starts and com-

pletes as planned (Voeks, 1997). It is more realistic however to subscribe

to the idea that investments become less risky into the future as the

information set on which decisions are based grows, and that information

can alter investment strategies along the way as it becomes available.

For most investment strategies, the horizon is relatively short, as in our

application, and the effect may not pose a significant problem (Pindyck,

2007). But in the case of bioenergy, for which a fully developed market

does not exist, uncertainty regarding future cash flows is high. While

the production of a perennial crop like Miscanthus allows very limited

altering of the investment strategy along the way, irreversibility can be

expected to play an important role in adaption and a better approach

would be to explicitly balance the benefits of immediate investment to

those of waiting in to reduce risk (Pindyck, 1991). Furthermore, our

analysis showed that arable farming, Miscanthus production, and dairy

farming, (here ordered by declining sensitivity to yield) all have a distinct

sensitivity to yield. Risk due to stochastic yields will therefore have a

distinct impact on the expected utility of profit for each land-use type.

Improving the level of detail in the assessment by incorporating the

notions described above will certainly result in a more precise analysis.

However, while the addition of these complexities will impact the exact

amounts of subsidies required to initiate bioenergy production, we expect

our general conclusions to hold these do not depend strongly on the
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accuracy of point estimates, but on the ordinality of efficiency results of

different schemes, which are shown to be robust for a range of different

prices. Future research might consider Real Option Value methods to

explore the impacts of heterogeneity under risk and irreversibility of

investments (see Regan et al. (2015) for more extensive discussion), and

agent based models to explore the impact of moving towards more detailed

representations of farm operations.

3.7 Appendix

3.7.1 A. Energy data

Table 3.2: Input data on the energy-related variables applied in this study.

Variables Values

Required biofuel consumption in transport 611 PJ1

Miscanthus lignocellulosic energy content 5.95 GJ2

First-generation biofuel used 14 PJ3

Second-generation biofuel used 7 PJ3

Weighing factor first-generation fuel 14

Weighing factor second-generation fuel 24

1 10% of the total energy used in the transport sector (Eurostat - Statis-
tical Office of the European Communities, 2009), 2 35% lignocellulosic
energy conversion taken from van der Hilst et al. (2010), 17 GJ energy
per oven dry ton taken from Brosse et al. (2012), 3 Dutch Emission
Authority (2013), 4 Dutch Emission Authority (2013), only half of
bioenergy production may be food-based.
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3.7.2 B. Crop rotation schemes

Table 3.3: Crop rotations for the two major production systems in our study, specified
for soil types.

Clay Sand

Arable farming
Ware potatoes 17.09% 15.06%
Seed potatoes 13.03% 4.07%
Starch potatoes 0.33% 29.30%
Beets 16.10% 21.06%
Winter barley 0.77% 1.42%
Summer barley 2.74% 12.31%
Winter wheat 46.66% 10.27%
Summer wheat 2.85% 5.19%
Fallow 0.44% 1.32%
Dairy farming
Grass 89.0% 70.0%
Silage maize 11.0% 30.0%

3.7.3 C. Modeling the dairy farming production system

Table 3.4: Variables and values used to model local production quantities.

Variables Values

Average number of cows per hectare 2.11

Average litres of milk per cow 81472

Energy need per cow per day Modelled3

Digestible energy content of feeding material 11.6 MJ per kg4

Grass supply Modelled5

Costs of silage maize Opportunity costs
Field operation costs Same as for grass6

Other animal costs (healthcare and breeding) e 189 annual, per cow7

Milk processing costs e 0.21 per litre8

Herd investment costs e 895 per cow9

Average lifetime of cow before replacement 5 years10

1 Based on figures from LEI (2012), 2.1 is slightly above the national average of 1.9 but below
some locally observed values, which go up to 2.6, 2 based on figures from LEI (2012), 3 modeled
following Bouwman et al. (2005), 4 per kg oven dry grass and pelleted whole plant corn, taken
from Stanton, T.L.; LeValley (2010), 5 modelled per month following the method by College of
Agriculture Food and Rural Enterprise (2005) and rescaled using local yield values, 6 taken from
van der Hilst et al. (2010), 7 adjusted for inflation and tax, based on 3-year company survey
performed by PPP Agro Advice (de Jong, 2013), 8 from Evers et al. (2007), 9 four-year average
price of two-year-old calf (LEI, 2012), 10 from Gosselink et al. (2008).
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3.7.4 D. Frequency distribution of agro-economic perfor-
mance

Figure 3.7: Distribution of the economic performance of the agricultural sector and Miscanthus in
the Netherlands.

According to our estimations, the frequency distribution of the NPV of

observed land use is left-skewed with a small number of production sites

facing losses. Several factors may explain this outcome: 1) our estimation

is negatively biased; 2) farmers possibly speculate on product prices

and current land-use types generating long-run losses are profitable in

the short run; 3) plots that face negative NPV benefit from unobserved

comparative advantages such as regional specializations; 4) farmers do

not fully take into account in their decision process all the costs that are

included in our assessment; and 5) the agricultural sector is not fully in
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equilibrium because of a high elasticity of land-use change. The aggregate

amount of production sites with a negative NPV is, however, small and

the overall distribution centers densely closely above zero, which is likely

in a competitive market.

3.7.5 E. Spatial distribution of minimum required subsidies

Figure 3.8: Spatial distribution of minimum required subsidies in the Netherlands.
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The map shows the considerable differences in minimum required subsidies

for bioenergy production. Clay soils, located mainly in the west of the

Netherlands, perform economically better than the sandy soils, located

in the east and north of the Netherlands. Clay soils coincide with areas

where the minimum required subsidies for Miscanthus production are

higher.



Chapter 4

Parametric Spatial Nonlinearities

Chapter Summary

This paper introduces a new model for spatial time series in which cross-sectional

dependence varies nonlinearly over space and time. We refer to it as the Smooth

Transition Spatial Autoregressive (ST-SAR) model. We study the stochastic properties

for the ST-SAR as a data generating process and obtain asymptotic theoretic properties

for the maximum likelihood estimator (MLE) under correct specification and potential

misspecification. The asymptotic consistency of the MLE explicitly allows for failure

of parameter identification, which is a well-known issue of threshold models. To

tackle the implications of the identification issue on the inference of the estimation

results, we propose model selection based on in-sample and validation-sample estimates

of Kullback-Leibler divergence. The methods are valid when the model is correctly

specified, misspecified, over-specified and when parameters are unidentified. Simulations

are presented that support the use of information criteria for model selection when

the true process is linear and parameters of the model are unidentified, and when

the process is nonlinear and the MLE of identified parameters is in fact well-behaved.

These results are shown to be robust to additive outliers and fat-tailed errors. The

model is applied to study space-time dynamics in two cases that differ in spatial and

temporal extent. We study clustering in urban densities and pay particular focus to the

advantages of the ST-SAR over linear spatial models as a way to appropriately filter

out clustering dynamics. In our second study, we apply the ST-SAR to monthly long

term interest rates, and find evidence of asymmetries and cycles in spillover dynamics.

In both applications, we find strong evidence for nonlinearity. The empirical evidence

highlights that the ST-SAR improves significantly over the SAR and is a powerful tool

to understand and predict future values in cross-sectional time series with different

dependence regimes.1

1This chapter is based on “Smooth Transition Spatial Autoregressive Models”, available as part
of the Tinbergen Institute Discussion Papers in the Econometrics and Operations Research research
group. The full reference is Andree et al. (2017a).
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4.1 Introduction

Spatial entanglement of economic agents plays an important role in

the realization of many economic processes measured over space and

time. Spatial autocorrelation models are capable of describing the spatial

dependence between variables measured across space and are widely

adopted in different research fields; see e.g. LeSage and Fischer (2008)

on regional growth, Kostov (2009) on agricultural land prices, Baltagi

et al. (2014) on housing prices, Debarsy et al. (2015) on foreign direct

investments and Hoshino (2016) on crime.

Standard spatial models account for spatial correlation in (un)observed

variables, but commonly assume that the spatial autoregressive param-

eter is constant across space and over time. In particular, models that

allow for spatial (auto)correlation often do not sufficiently relax linearity

constraints on functional representations of spatial spillovers. Specifically,

spillover-processes are represented by “global” dependence parameters

(Fotheringham, 2009). The literature has stressed the importance of rely-

ing on local statistics for spatial dependence instead of global measures

due to parameter heterogeneity; see Anselin (1995) and Fotheringham

(2009). Local statistics allow for variation in spatial correlation across

grouped cross-sectional units. Typically, spatial aggregation into groups

relies on the use of econometric tools to avoid ad-hoc sample divisions.

Researchers have for example relied on Geographically Weighted Re-

gression (GWR) (Fotheringham et al., 2002; Su et al., 2012), boosted

trees (Crase et al., 2012), Bayesian (Glass et al., 2016), nonparametric

(Fŕıas and Ruiz-Medina, 2016), or semiparametric (Basile et al., 2014)

approaches to model heterogeneity.

All of the above approaches, however, treat the spatial dependence pa-

rameter as static. That is, the (local) parameters represent effects that

are fixed (locally) across the data dimensions, rather than introducing

relationships that produce varying effects as a function of data itself.
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Heterogeneity in interaction is instead achieved by using trend surfaces

or sample divisions that allow estimation of separate parameter vectors.

For example, the Spatial Autoregressive Semiparametric Geoadditive

Models discussed by Basile et al. (2014) maintain linearity assumptions

with respect to the spatial autoregressive component, but have smooth

locally linear dependence structures with respect to exogenous variables.

The GWR isolates neighborhoods in a Cartesian coordinate system using

kernels, and estimates weighted parameter vectors for those different

neighborhoods. These approaches typically require many observations

per neighborhood to be effective and numerous studies pointed out se-

rious drawbacks.2 We note that grouping observations not by kernels

but through fixed effect approaches also has its drawbacks because con-

vergence rates depend on the number of observations in groups tending

to infinity (Bonhomme and Manresa, 2015), while in many practical

situations additional observations can only be collected over time with

group sizes remaining fixed.

In this paper we propose a parsimonious model in which cross-sectional

dependence varies nonlinearly over both space and time. The model builds

on the well-known SAR model (Anselin, 1988) and the Smooth Transition

Autoregressive (STAR) framework advocated by Teräsvirta and Anderson

(1992); Granger and Teräsvirta (1993); Teräsvirta (1994); Teräsvirta

et al. (2010). In the resulting ST-SAR, dynamics in the cross-sectional

dimension are driven by a smooth transition function around lagged

cross-sectional variables that are possibly endogenous or “self-exciting”.

This configuration allows for the possibility of regime-specific dynamics

in spillovers with differential in intensity, and allows observations to

move smoothly from one regime to another over time. Feedback loops

2Inadequate modeling of spatial lag and error processes (Leung et al., 2000; Fotheringham et al.,
2002; Paez et al., 2002), spatial patterns revealed by GWR could be attributed to the procedure itself
rather than the data generating process (Wheeler and Tiefelsdorf, 2005; Wheeler, 2007), and finally
problems that relate to bandwidth selection and local violations of least-squares assumptions (Wheeler
and Tiefelsdorf, 2005; Farber and Páez, 2007; Cho et al., 2010).
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that amplify spillovers in the cross-section are also modeled with varying

intensity in this way, both in the cross-sectional and in the temporal

dimension. The entanglement structure remains exogenously determined

through the specification of a spatial weights matrix following standard

procedures in the spatial econometric literature.

We study the stochastic properties for the ST-SAR as a data generating

process and obtain asymptotic theoretic properties for the MLE by taking

the time dimension to infinity. We focus on t-distributed innovations

as a generalization of the Gaussian case and as an attractive way to

achieve robustness to fat tails and outliers. Our theory comes in a variety

of flavors that allow for possible failure of parameter identification and

potential model misspecification. In particular, we develop consistency

when the model is correctly specified or possibly misspecified, and in both

cases develop set-consistency when one or more parameters of the model

are not identified. We establish asymptotic Gaussianity of the MLE of

the correctly specified and identified parameters when the score is a mar-

tingale difference sequence and similarly when the model is mis-specified

but the score it is near epoch dependent. Since the normality breaks

down for unidentified parameters, estimated distributions of parameters

cannot be used directly to infer the presence of nonlinear dynamics in the

data. We therefore develop in-sample and out-of-sample methods that

rely on unbiased estimates of log likelihood, that are still available when

one or more parameters are unidentified and the model is set-consistent,

to diagnose the presence and significance of nonlinearity. In particular, we

investigate the usefulness of information criteria that already have been

applied successfully to distinguish nonlinearity in univariate threshold

time series. We highlight that information criteria consistently rank the

models asymptotically according to Kullback-Leibler divergence, even if

parameters are unidentified. To address possible other sources of bias,

such as over-fitting, we also provide a theoretical argument for model

selection based on a validation-sample estimate of Kullback-Leibler di-
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vergence which is again valid when one ore several parameters of the

model are not identified because it relies on assumptions that are im-

posed directly on the differential in forecast errors and not on model

parameters. Simulations support the use of information criteria for model

selection when the true process is linear and parameters of the model are

unidentified, and when the process is nonlinear and the MLE of identified

parameters is in fact well-behaved. These results are shown to be robust

to additive outliers and fat-tailed errors.

We apply our model to study two cases with different panel dimensions.

In the first application, we study clustering in residential densities in a

large number of districts in the Netherlands. We test two hypotheses

regarding cross-sectional dependencies that cannot be captured by linear

models: (i) that spatial autocorrelation decays along the urban gradient

in line with the distance decay of agglomeration effects (Fotheringham,

1981; Rosenthal and Strange, 2003); and (ii) that the relation between

concentrations of urban densities and household compositions of surround-

ing neighborhoods inverts along the urban gradient, reflecting sorting

patterns that arise under single-crossing assumptions about household

preferences (Epple and Sieg, 1999). We model these nonlinearities with a

threshold function specified around population densities and find strong

evidence for both hypotheses.

Our second application uses a long time series of long term interest rates

of a sample of European sovereigns. We assess the integration of financial

systems by estimating ST-SAR dynamics in co-movements. Linear dy-

namics in co-movement, spillovers, and cross-sectional dependence have

been explored in a number of studies on financial integration Frankel

et al. (2004); Caceres et al. (2016); Kharroubi et al. (2016). We pay

particular focus on the time-varying properties of sovereign-specific cross-

sectional dependence parameters as a way to understand understand

convergence and dispersion in interest rates. Our spatial weights matrix
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is based on pair-wise correlations and allows spillovers to flow based

on non-geographic linkages. We model nonlinearities with a threshold

function specified around ARMA components and find strong evidence

asymmetries and cycles in the spillover dynamics.

In both applications, the ST-SAR is shown to be a powerful tool for both

understanding and predicting future values in cross-sectional time series

in which the dependence of observations on neighbors changes once they

enter a different regime. In particular, the ST-SAR improves substantially

over the SAR in terms of improving log likelihood, (corrected) AIC

and forecasting power. The ST-SAR also renders the residuals free of

significant correlations while the SAR residuals maintain both strong

spatial clustering and temporal correlations. Our most conservative tests

remain significant at the highest level.

The remainder of this paper is organized as follows. Section 4.2 considers

spatial autocorrelation models and proposes our nonlinear framework. It

also highlights the issues related to parameter identification. Asymptotic

theory for the MLE is examined in Section 4.3. Its finite-sample behavior

is studied via simulations in Section 4.4. The model is applied in Sec-

tion 4.5. Section 4.6 summarizes and concludes. Additional results and

proofs are located in the Appendix. Additional theoretical results are

provided in the Supplementary Appendix that comes with this paper.

4.2 Linear and nonlinear spatial autoregressive

models

4.2.1 Linear dynamics: the SAR Model

Spatial data is often highly dependent across space. In order to model this

dependence, Cliff and Ord (1969) proposed the Spatial Autoregressive

(SAR) model. The SAR in the context an Autoregressive Moving Average



4.2. Linear and nonlinear spatial autoregressive models 91

model with Exogenous Regressors (ARMAX) model is given by:

yt = ρWyt+c+
P∑

p=1

yt−pφp+
K∑

k=0

Xt−kβk+εt+

Q∑

q=1

εt−qµq ∀ t ∈ Z , (4.1)

{εt}t∈Z ∼ pε(εt,Σ,λ),

where yt denotes a vector of N cross-sectional observations at time t, c

is an intercept, ρ is the spatial dependence parameter, W is the N ×N
matrix of exogenous spatial weights, φp is the p-th lag autoregressive

parameter, Xt−k is an N ×D matrix of D exogenous regressors at lag

k with βk as the D × 1 vector of coefficients, µq is a q-th lag moving

average parameter and εt is the disturbance vector with multivariate

density pε(εt,Σ,λ) with zero mean and unknown variance-covariance

matrix Σ. Other possible parameters are contained in the vector λ.

In this model structure, each entry yit for i = 1, ..., N , of the vector

yt depends on the local values in the K lags of D individual-specific

regressors {xit−k,d}D,Kd=1,k=0, as well as the neighboring entries of yjt and

thus indirectly on {xjt−k,d}D,Kd=1,k=0 for i 6= j. Similarly, the (moving) error

structure spills over. Spatial dependence modeling is made operational

by specifying the spatial weights matrix W that defines the dependence

structure between cross-sectional entries, for example as a function of

geographic or economic distances. It is standard procedure to row-

normalize W such that
N∑
j=1

wij = 1 ∀ i ∈ N , where wij is the i,j-th

element from W .

The parameter ρ captures the spatially weighted effects of neighboring

values Wyt on λt. In this simple framework, nonlinear feedback effects

across entries can be captured, shown by rewriting the model as:

yt = H−1
(
c+

P∑

p=1

yt−pφp +
K∑

k=0

Xt−kβk + εt +

Q∑

q=1

εt−qµq
)
, (4.2)

{εt}t∈Z ∼ N ID(0, σ2
ε),
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where H := IN−ρW and IN denotes the N×N identity matrix. Following

LeSage (2008) we obtain the following infinite power series expansion

yt = (IN+ρW+ρ2W 2+...)
(
c+

P∑

p=1

yt−pφp+
K∑

k=0

Xt−kβk+εt+
Q∑

q=1

εt−qµq
)
.

(4.3)

Equation (4.3) reveals that when ρ > 0, effects spill over to other regions

j 6= i with a rate that declines as proximity to i increases, via the structure

imposed by W . Feedback occurs for positive wij and wji and mutual

neighbors i and j, as by construction of the matrix W , every observation

is a second order neighbor of itself. A stable process therefore requires

exogenous shocks to die out over space, which for the linear spatial

process without time dynamics is guaranteed if ρ ∈ [−1/|ωmin|, 1/ωmax],
where ωmin/ωmax are the smallest/largest eigenvalues of W (Lee, 2004),

or equivalently |ρ| < 1, if the rows of W sum up to one.3

The endogenous nature of this model causes inconsistencies in the least

squares estimator that increase with N . However, we can consistently

estimate SAR models by Quasi Maximum Likelihood methods (Q)ML

or Generalized Methods of Moments (GMM), e.g. Kelejian and Prucha

(2010). ML estimation of SAR models is pioneered in Ord (1975) and

the asymptotics of the QML estimator are derived in Lee (2004). Finite

sample distributions are investigated by Das et al. (2003); Bao and Ullah

(2007).

4.2.2 The Smooth Transition Spatial Autoregressive model

The linearity of the SAR model imposes the crucial simplifying assumption

that the spatial dependence is fixed for any levels of both yt−p and

Xt−k. Anselin (1995) argues that spatial heterogeneity can complicate

3As we shall see, stability is understood in terms of bound on ||ρW || and depending on the
configuration of W , alternative lower-level parameter restrictions can be obtained, see also Elhorst
(2010a) for a discussion. In the nonlinear setting, these do not apply as ρ becomes non-scalar, several
useful results on the stability of nonlinear spatial systems can be found in the appendix.



4.2. Linear and nonlinear spatial autoregressive models 93

the analysis. His argument is centered on the notion that geographic

phenomena often do not deviate around a constant mean, but likely move

from one local average to another. For this reason, the simple SAR model

may be a problematic model for describing the very phenomenon that

Cliff and Ord (1969) are trying to model; see Fotheringham (2009) for a

discussion. As we shall see in Section 4.5, the linearity assumption is not

supported by the data.

In what follows we allow the spatial dependence parameter ρ to change

as a function of a set of variables Zt that may include (spatial lags of)

yt−p or εt−q for any (p, q) ≥ 1 and or Xt−k for any k ≥ 0. In particular,

we build on the popular smooth transition autoregressive (STAR) model

introduced in Teräsvirta and Anderson (1992); Teräsvirta (1994).4 The

resulting Smooth Transition Spatial Autoregressive (ST-SAR) model

with ARMAX terms takes the form5

yt = ρ(θρ; Zt)◦Wyt+c+
P∑

p=1

yt−pφp+
K∑

k=0

Xt−kβk+εt+

Q∑

q=1

εt−qµq, (4.4)

{εt}t∈Z ∼ pε(εt,Σ, λ),

where the spatial dependence ρ(θρ; Zt) is determined by

ρ(θρ; Zt) = κ+
δ

1 + exp(−γ(Zt − τ(θτ ; Zt)))
, (4.5)

and τ(θτ ; Zt) = α + Ztϕ, (4.6)

where ◦ denotes element-by-row multiplication, θρ denotes the vector of

unknown parameters θρ := (κ, δ, γ,θτ), and θτ := (α,ϕ) is a parameter

vector of possible additional parameters within the threshold function

that may include linear coefficients w.r.t. any of the ARMAX terms

4The STAR model is well known in the time-series literature for modeling nonlinear dynamics with
thresholds; see Granger and Teräsvirta (1993) for a literature review of nonlinear time-series models.
For a comprehensive review of STAR models, the reader is referred to Dijk et al. (2002).

5We discuss the nonlinear model within an ARMAX framework because, as we shall see in our
applications, all of terms can affect the data both directly and through the spatial dependence
parameters. Allowing the terms to explicitly effect yt directly and through ρ(θρ;Zt) simultaneously, is
crucial to determine effect channels.
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contained in Zt. Note that we use Zt to refer to any variable which may

be an endogenous lag, moving average or exogenous variable, and we

allow it to be specified differently in Equation (4.5) and Equation (4.6).

The quantity Zt − τ(θτ ; Zt) measures deviations of Zt from a possibly

time-varying quantity τ(θτ ; Zt). In general, we allow τ(θτ ; Zt) to be any

function of the data Zt. In this paper we consider first order polyno-

mials around three important alternatives, the cross-sectional average

τ(θτ ; Zt) = α + ϕN−1
∑N

i=1 zit, the local average τ(θτ ; Zt) = α + ϕWZt,

and local observations τ(θτ ; Zt) = α+ Ztϕ. Other options include model-

ing τ(θτ ; Zt) as a constant α only, or using wider regional averages WlZt

with Wl as a spatial weights matrix that includes up to l higher order

spatial lags.

Note that Equation (4.5)-Equation (4.6) allow the spatial dependence

to change smoothly between regimes. The ST-SAR differs considerably

from time-varying spatial parameter models such as the spatial score

model proposed in Blasques et al. (2018) which attempts to filter the

unobserved time-varying sequence of global spatial parameters {ρt}t∈Z
by means of a score filter. The ST-SAR explores the relation between

the spatial dependence parameter ρ and variables in Zt, which allow it to

produce time-varying local spatial parameters. The ST-SAR parameters,

δ, τ(θτ ; Zt) and γ produce dynamics that cannot be reproduced by the

time-varying spatial parameter model of Blasques et al. (2018).

It is also worth noting that the STAR dynamics nest not only the linear

SAR model, but also, a threshold model (like the TAR (Tong, 2015))

with instantaneous switching between regimes. The linear SAR case

is obtained when γ → 0. In contrast, a TAR model is obtained when

γ →∞. Depending on Zt, the transition mechanism may be endogenous

or exogenous in nature. In the empirical section we shall consider both

exogenous cases such as Zt = Xt−p and endogenous examples where we

allow the nonlinearities to be driven by ARMA terms. Finally, we note
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that, just as in the case of the SAR model, the ST-SAR can also be

re-written as

yt = H(θρ; Zt)
−1
(
c+

P∑

p=1

yt−pφp +
K∑

k=0

Xt−kβk + εt +

Q∑

q=1

εt−qµq
)
, (4.7)

where H(θρ; Zt) := IN −ρ(θρ; Zt) ◦W . In SAR terminology, (IN −ρW )−1

is referred to as the (global) spatial multiplier. In the ST-SAR, we

highlight that H(θρ; Zt)
−1 varies locally and over time. As we shall see,

this calls for new generalizations of stability conditions.

Identification of the model’s parameters

Just as with univariate threshold modeling, an important feature of the

model is the possible failure of parameter identification (Teräsvirta et al.,

2010). As pointed out, the SAR model is nested in the ST-SAR model,

and letting the spatial dependence parameter ρ(θ; Zt) be a constant

introduces well-known identification problems related to the fact that

nuisance parameters are present only under the alternative assumption

of nonlinearity. This is discussed for example by Davies (1977, 1987).

In the current case, if γ = 0 then the parameters inside τ(θτ ; Zt) are

not identified and k and δ are not separately identified. Furthermore, if

φ = 1 and α = 0 the spatial dependence may remain constant, unless

different variables are used inside τ(θτ ; Zt). As we can see from this,

the identification problem of distinguishing the SAR model from the

ST-SAR model is not straightforward. For example, Likelihood Ratio

testing fails because the dimensionality of the parameter space depends

on the hypothesis of nonlinearity being true or false. Wald statistics

can also not applied to the individual parameters that are essentially

meaningless and redundant when the process is linear. To tackle the issue,

the following section develops not only consistency of the MLE, but also

set-consistency which allows for the failure of parameter identification.

This in turn allows one to obtain unbiased estimates of expected likelihood
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using out-of-sample validation, or in-sample estimates of Kullback-Leibler

divergence by using information criteria. The next section details this

further and develops two tools to diagnose the presence and strength

of nonlinearity that are valid when one ore several parameters are not

identified.

4.3 Asymptotic theory for the ST-SAR model

Estimation of the ST-SAR model’s parameters is crucial to infer if nonlin-

ear dynamics are present in the data. The estimated parameters will also

inform us about the existence of threshold dynamics, the location of those

thresholds, and the smoothness and speed of transitions. In this section

we present and discuss the properties of both the log likelihood function

and the ML estimator. We provide conditions for the existence, strong

consistency and asymptotic normality of the MLE. We also highlight

model selection procedures that can be applied to decide between linear

and nonlinear descriptions of the data. Our results allow for failure of

parameter identification and potential model misspecification. Proofs can

be found in Appendix 4.7. Our asymptotic results all refer to increasing

the time dimension rather than the spatial dimension since the applica-

tions we consider are such that N cannot grow. Additional observations

are collected over time only.

For simplicity, we focus our attention on the ST-SAR model with autore-

gressive dependence of order one (p = 1) and deliver a simpler exposition

of the theory by focusing on a contemporaneous exogenous variable

(k = 0) and excluding MA terms (q = 0) from this section. In any

case, the same asymptotic results for both the correctly specified and

the misspecified case are easily generalized to further lags for the exoge-

nous variables and MA terms, at the cost of heavier notation, additional

assumptions, and longer proofs. It is well known that the stationarity re-



4.3. Asymptotic theory for the ST-SAR model 97

sults can be generalized to models with moving average components, and

can be easily extended to accommodate for (lagged) exogenous variables

as long as some data generating process is defined. The endogenous case,

on the other hand, is naturally the most interesting case for a study on

stationarity. In general, besides extending the stationarity and moments

conditions, extra parameter restrictions would need to be put in place

to ensure the invertibility of the ST-SAR model and the recovery of the

error term sequence.

4.3.1 Existence and measurability of the MLE

Let θ denote the vector of parameters of our ST-SAR model, θ := (θy,θρ),

θτ ∈ θρ, θ := (c,β, φ, κ, δ, γ, α, ϕ)′. Furthermore, let θ0 denote the

parameter of interest. Naturally, the ML estimator θ̂T is defined as

θ̂T ∈ arg max
θ∈Θ

T∑

t=1

`t(θ), (4.8)

where

`t(θ) = ln detH(θρ; Zt) + ln pε

(
H(θρ; Zt)yt − c− yt−1φ−Xtβ,Σ;λ

)
.

(4.9)

The dependence of `t(θ) on the data is omitted in the notation for con-

venience. Equation (4.9) differs from a standard cross-section likelihood

function by the log determinant ln detH(θρ; Zt), which accounts for the

nonlinear spatial feedback (Anselin, 1988). In this paper we shall fo-

cus on innovations with density pε given by the multivariate Student’s

t-distribution. The t-distribution naturally generalizes the multivariate

normal distribution to allow for fat tails, rendering the dynamics more

robust to incidental outliers. Using the standard expression for the

multivariate t-distribution with λ degrees of freedom we obtain

`t(θ) = Q(θρ; Zt) + A(θ) +−1

2
(λ+N)F (θ,yt,Xt,Zt),
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where Q(θρ; Zt) is the log determinant

Q(θρ; Zt) := ln detH(θρ; Zt),

A(θ) is a constant given by

A(θ) := ln Γ ((λ+N)/2)
[
detΣ

1
2 (λπ)

N
2 Γ (λ/2)

]−1

,

and the random element F (θ,yt,Xt,Zt) is naturally defined as

F (θ,yt,Xt,Zt) := ln
(

1 + λ−1ε′tΣ
−1εt

)
,

εt = H(θρ; Zt)yt − c− yt−1φ−Xtβ.

We first establish the existence and measurability of the MLE θ̂T . This

ensures that the arg max set in Equation (4.8) is not empty and that θ̂T

is a random variable.

ASSUMPTION. 7 (Compactness of Θ). (Θ,B(Θ)) is a measurable space
and Θ is a compact subset of Rdθ.

THEOREM. 9 (Existence and Measurability). Let ASSUMPTION. 7 hold.
Then there exists a.s. an F/B(Θ)-measurable map θ̂T : Ω→ Θ satisfying
Equation (4.4) for all T ∈ N.

4.3.2 Consistency and of the MLE

The consistency of the MLE θ̂T w.r.t. the parameter of interest θ0 ∈ Θ

can be obtained under standard regularity conditions. Assumptions 8-9

impose the SE (Stationary and Ergodic) nature of the data and a bounded

moment for Q(θρ; Zt) and F (θ,yt,Xt,Zt). ASSUMPTION. 10 ensures that

θ0 is identified.

ASSUMPTION. 8. The random sequence {yt,Xt}t∈Z is SE.

ASSUMPTION. 9. The following moment conditions are satisfied:

i E supθ∈Θ |Q(θρ; Zt)| <∞;

ii E supθ∈Θ |F (θ,yt,Xt,Zt)| <∞.
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ASSUMPTION. 10. θ0 ∈ Θ is the unique maximizer of the limit likelihood;

E`t(θ0) > E`t(θ) ∀ (θ,θ0) ∈ Θ×Θ : θ 6= θ0.

More primitive moment conditions can also be given. For example, we will

show for {yt}t∈Z that, when the model is correctly specified, Assumption 8

holds within defined parameter regions. As a counterpart to Assumption

9, E supθ∈Θ |Q(θρ; Zt)| < ∞ can be obtained by bounding ρ(θp,Zt)W

away from 1 in norm (see our Supplementary Appendix), which necessarily

holds within stable parameter regions.6 E supθ∈Θ |F (θ,yt,Xt,Zt)| <∞
is implied by logarithmic moment conditions on yt and Xt. Again,

when the model is correctly specified, then within that same stable

parameter region logarithmic moments of yt and Xt follow trivially

because H(θρ; Zt)
−1 is uniformly bounded, and hence, Theorem 6.10 in

Pötscher and Prucha (1997) applies, as the nonlinear ST-SAR model

is bounded by a linear contracting recursion. For example, given that

the innovations are Student’s -t distributed, λ > 0 is needed to ensure

the existence of logarithmic moments. Finally, Assumption 10 requires

δ > 0 and γ > 0, which holds trivially if the model is correct and

not overspecified. As we shall see, even when Assumption 10 does not

hold but Θ is still compact, set-consistency can be obtained and model

selection can be used to drop the unidentified parameters. When the

model is misspecified, moments of the data have to be assumed.

THEOREM. 10 below establishes the strong consistency of the MLE θ̂T

with respect to θ0 ∈ Θ. When the model is well specified, θ0 corresponds

naturally to the so-called true parameter that indexes the distribution of

the data. If the model is misspecified, then θ0 is often called a pseudo-

true parameter that, by construction, is the minimizer of the expected

Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between

6The moment condition E supθ∈Θ |Q(θρ;Zt)| < ∞ is implied by positive definiteness of
detH(θρ;Zt)

−1 which for the SAR with a row-normalized W follows from |ρ| < 1. We note that the
nonlinear case |ρ(θρ;Zt)| < 1 is not a necessary condition for E supθ∈Θ |Q(θρ;Zt)| <∞; see LEMMA. 5
in the Supplementary Appendix.
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the true conditional density of the data p0(yt|yt−1) and the paramet-

ric conditional density implied by the ST-SAR model p(yt|yt−1,θ); see

e.g. White (1994) for details. In this sense, under model misspecifica-

tion, the MLE converges at least to the parameter that delivers the

best approximation to the true distribution of the data. The economic

interpretation of empirical evidence is then as follows. When the model

is correctly specified, the estimated parameters can directly be used as

evidence for nonlinearity in an economic process. When the model is

misspecified, then the parameters converge to the values for which the

model best describes the data features, and as such we may conclude

that the evidence for the existence of nonlinear regime-dependence in the

observed data is stronger than the evidence for linear dependence which

instead describes the data poorly.

THEOREM. 10 (Strong consistency under possible misspecification). Let
Assumptions 7-10 hold. Furthermore, let Θ be such that Σ is positive
definite for every θ ∈ Θ. Then the MLE satisfies θ̂T

a.s.−−→ θ0 as T →∞
where

θ0 = arg min
θ∈Θ

E KL
(
p0(yt|yt−1) , p(yt|yt−1,θ)

)
.

Propositions 1 and 2 give sufficient conditions for the geometric ergodicity

of data generated by the ST-SAR. This allows us to impose conditions

on the ST-SAR data generating process that ensure Assumptions 8-9 for

the endogenous parts of the model. Propositions 1 and 2 can be easily

extended to accommodate for exogenous variables Xt as long as some

data generating process is also defined for Xt.

PROPOSITION. 1. Let {yt}t∈N be generated by the ST-SAR model in (4.4)
with β = 0, εt iid with full support, and supy∈RN ‖ρ(θρ0; y) ◦W‖ < 1.
Then {yt}t∈N is an aperiodic, ψ-irreducible, T -Chain.

PROPOSITION. 2. Let the conditions of Proposition 1 hold. Assume further
that ‖εt‖r <∞ for some r > 0, and lim‖y‖→∞H(y)−1 = H∞ ∈ Rp×p with
‖H∞‖|φ| < 1. Then {yt}t∈N is geometrically ergodic.
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supy∈RN ‖ρ(θρ0; y)◦W‖ < 1 in Proposition 1 imposes a stability condition

that ensures invertibility and a uniform bound of the spatial multiplier

process H(y)−1. In the Supplementary Appendix, we show that this

condition follows when the spectral radius of ρ(θρ0; y) ◦W stays strictly

below 1 at supy∈RN . ‖H∞‖|φ| < 1 in Proposition 2 imposes a stricter

contraction condition in the time dimension. COROLLARY. 5 makes use

of PROPOSITION. 1 and PROPOSITION. 2 to obtain the consistency of the

MLE θ̂T with respect to θ0. Note that, this time, the parameter θ0 does

indeed correspond to the true parameter that defines the true distribution

of the data.

COROLLARY. 5 (Consistency under correct specification). Let {yt}t∈Z
be generated by the ST-SAR model Equation (4.4) under some θ0 ∈
Θ. Suppose that Assumptions 7 and 10 hold, and let the conditions of
Propositions 1-2 be satisfied. Finally, let Σ be positive definite for every
θ ∈ Θ. Then the MLE satisfies θ̂T

a.s.−−→ θ0 as T →∞.

Theorem 10 and Corollary 5 rely on the uniqueness of the maximizer

θ0. This assumption may however fail to hold. For example, if the

model is misspecified, then several parameter values might provide an

equally good approximation to the unknown data generating process in

Kullback-Leibler divergence. In particular, we might have a non singleton

set

Θ∗0 = arg min
θ∈Θ

E KL
(
p0(yt|yt−1) , p(yt|yt−1,θ)

)
.

where Θ∗0 is now the argmin set composed of more than one element of

Θ. Alternatively, if the model is correctly specified, then the uniqueness

assumption may fail if the true unknown data generating process is given

exactly by a linear SAR since some parameters (e.g. γ, α and φ) are

unidentified when δ = 0. In this case, there exists a set

Θ0 =
{
θ ∈ Θ : KL

(
p0(yt|yt−1) , p(yt|yt−1,θ)

)
= 0
}

of points that deliver a correct description of the distribution of the data.7

7Examples of the failure of the uniqueness assumption in other econometric settings can be found
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4.3.3 Set-consistency of the MLE allowing for possible param-
eter identification failure

Below, we highlight that if the restrictive uniqueness condition fails, we

can still show that the MLE θ̂T converges to the set of maximizers of the

limit log likelihood function. A simple regularity condition is required

which states that the level sets of the limit log likelihood function `∞ are

regular (see Definition 4.1 Pötscher and Prucha (1997)). The following

theorem is obtained directly by application of Lemma 4.2 in Pötscher and

Prucha (1997) to a time-invariant continuous limit criterion E`t : Θ→ R
defined on a compact parameter space Θ. This theorem holds for possibly

misspecified models and ensures set consistency of the MLE θ̂T to the

set of pseudo-true parameters Θ∗0 of our ST-SAR model. Below, we let

d(·, ·) denote the usual metric distance from a point to a set, whereby

d(θ,Θ∗) = inf{‖θ − θ∗‖ , θ∗ ∈ Θ∗} for any θ ∈ Θ and Θ∗ ⊆ Θ.

THEOREM. 11. (Set consistency of MLE under possible misspecification
and parameter identification failure) Let Assumptions 7-9 hold and let Θ
be such that Σ is positive definite for every θ ∈ Θ. Then the MLE θ̂T is
set consistent as T →∞,

d(θ̂T ,Θ
∗
0)

a.s.−−→ 0 as T →∞

where Θ∗0 is the argmin set

Θ∗0 = arg min
θ∈Θ

E KL
(
p0(yt|yt−1) , p(yt|yt−1,θ)

)
.

Theorem 12 obtains the same type of set consistency of the MLE θ̂T

applied to the setting of Corollary 5, but this time, it is stated for the case

of an overspecified ST-SAR model. This is particularly relevant when

the true process in fact linear (SAR). In this case, the MLE is shown

to be consistent to the set of true parameters Θ0 ⊆ Θ that deliver an

equivalent, correct and exact description of the distributional properties

e.g. in (Freedman and Diaconis, 1982) which addresses a simple location problem with iid data and
(Kabaila, 1983) in the context of time-series models.
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of the data.

THEOREM. 12. (Set consistency of MLE under correct specification and
parameter identification failure) Let {yt}t∈Z be generated by the ST-SAR
model Equation (4.4). Suppose that Assumption 7 holds, and let the
conditions of Propositions 1-2 be satisfied. Finally, let Σ be positive
definite for every θ ∈ Θ. Then the MLE satisfies θ̂T

a.s.−−→ Θ0 as T →∞
where Θ0 is the set of points deliver an equivalent and correct distribution
of the data

Θ0 =
{
θ ∈ Θ : KL

(
p0(yt|yt−1) , p(yt|yt−1,θ)

)
= 0
}
.

4.3.4 Asymptotic normality of the MLE

THEOREM. 13 below obtains the asymptotic normality of the MLE. Once

again we allow the ST-SAR model to be well specified or misspecified.

ASSUMPTION. 11 assumes that the score is either a martingale difference

sequence (mds) or, alternatively, that it is near epoch dependent (NED) of

size −1 on an underlying α-mixing sequence of appropriate size. It is well

known that, if the model is well specified, then the score is a martingale

difference sequence (mds). As such, we obtain the desired asymptotic

normality application of Billyingsley’s central limit theorem (CLT) for

an SE martingale difference sequence (mds); see Billingsley (1961). The

mds assumption is also appropriate for mild forms of misspecification;

see White (1994). Under strong model misspecification, the asymptotic

Gaussianity of the score may still be obtained by application of a central

limit for processes that are NED on an α-mixing process; see e.g. Theorem

10.2 in Pötscher and Prucha (1997). The verification of the NED property

can be easily achieved by appealing to preservation theorems such as

Theorem 6.6 in (Pötscher and Prucha, 1997), for example in Corollary

6.8 therein it is obtained if the score is Lipschitz on some transformation

of the data which is itself NED of the desired size.

In Assumption 11 the α-mixing sequence is of size 2r/(r − 2), for some
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r > 2. As we shall see, we will also require r bounded moments from

the score to obtain a CLT. Finally, we note that the CLT could also be

obtained for a φ-mixing sequence of size r/(r − 1).

ASSUMPTION. 11. The score {∇`t(θ0)}t∈Z is either a martingale difference
sequence or it is near epoch dependent of size −1 on an underlying α-
mixing sequence of size 2r/(r − 2), for some r > 2.

ASSUMPTION. 12 imposes additional moment conditions that ensure the

application of a CLT to the score and a uniform law of large numbers

to the second derivative of the log likelihood function. Below we let

∇iQ(θρ0; Zt) and ∇iF (θ0,yt,Xt,Zt) denote the ith derivative of Q(θρ0; Zt)

and F (θ0,yt,Xt,Zt) with respect to the vector θ. The moment conditions

are imposed on each element of the resulting vectors and matrices.

ASSUMPTION. 12. The following moment conditions are satisfied:

i E|∇Q(θρ0; Zt)|r <∞;

ii E|∇F (θ0,yt,Xt,Zt)|r <∞;

iii E supθ∈Θ |∇2Q(θρ0; Zt)| <∞;

iv E supθ∈Θ |∇2F (θ0,yt,Xt,Zt)| <∞.

If the score is an mds, then conditions (i) and (ii) hold with r = 2. If the
score is NED, then r is the same as in Assumption 11.

The moment bounds stated in ASSUMPTION. 12, will be satisfied when

the data y and X have bounded moments of appropriate order. Again,

just as for the proof of consistency, when the model is correctly specified,

bounded moments for y and X can be obtained by applying the theorem

6.10 in Pötscher and Prucha (1997) to the dynamic model stated in

Equation (4.7). In particular, when the contraction condition holds

H(θρ; yt−1)
−1 is bounded see LEMMA. 3 in the Appendix, and the ST-

SAR is bounded by a linear recursion, and hence, m moments for y can

be obtained when X and innovations have m moments.
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THEOREM. 13 now delivers the asymptotic Gaussianity of the standardized

MLE by imposing the further regularity condition that θ0 lies in the

interior of the parameter space int(Θ). This theorem also assumes that

θ0 is well identified. This is reflected in the invertibility of the limit

Hessian E`′′t (θ0).

THEOREM. 13 (Asymptotic normality of the identified parameters). Let
assumptions 1-6 hold with Σ positive definite for every θ ∈ Θ and
invertible Hessian E`′′t (θ0). If θ0 ∈ int(Θ), then the MLE satisfies

√
T (θ̂ − θ0)

d−→ N
(
0, I−1(θ0)J (θ0)I−1(θ0)

)
as T →∞,

where J (θ0) := E`′t(θ0)`
′
t(θ0)

ᵀ is the expectation of the outer product of
the score, and I(θ0) := −E`′′t (θ0) denotes the Fisher information matrix.

As we shall see, the Monte Carlo simulation developed in Section 4.4

provides evidence of both the consistency and normality claims made in

THEOREM. 10 and THEOREM. 13 in the correct and misspecified case.

4.3.5 Model selection under possible parameter identification
failure

It is well known that threshold parameters are not identified under the

null (Teräsvirta et al., 2010). In univariate literature, nonlinearity tests

are often based on auxiliary regressions (Dijk et al., 1999). In the ST-

SAR, the expansion approach results in many components as nonlinear

feedback extends both in space and time. Auxiliary statistics therefore

lead to inefficient results. As an alternative, we explore model selection

based on information criteria following Granger et al. (1995); Sin and

White (1996). We highlight that information criteria consistently rank

the models asymptotically according to Kullback-Leibler divergence, even

if parameters are unidentified. To address possible other sources of

bias, we also provide a theoretical argument for model selection based

on a validation-sample estimate of Kullback-Leibler divergence which
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is again valid when one ore several parameters of the model are not

identified. Simulations show support the use of information criteria for

model selection when the true process is linear and parameters of the

model are unidentified, and when the process is nonlinear and the MLE

of identified parameters is in fact well-behaved. These results are shown

to be robust to additive outliers and fat-tailed errors.

We conclude this section with details on the model selection adopted

in the empirical section of this paper. We will consider both in-sample

and out-of-sample model selection criteria. Furthermore, we pay special

attention to selection criteria that provide an asymptotically consistent

ranking of competing models even in the presence of identification issues.

Let LT (θ) =
∑T

t=2 `t(θ) denote the sample log likelihood at θ ∈ Θ. It

is well know that model selection based on the KL divergence can be

achieved by selecting the model with highest expected log likelihood

ELT (θ∗0) evaluated at the best (pseudo-true or true) parameter θ∗0 ∈
Θ. Unfortunately, the sample log likelihood LT (θ̂T ) that is available

in practice is an asymptotically biased estimator of the expected log

likelihood ELT (θ∗0). This is easily shown by using a simple quadratic

expansion

lim
T→∞

E
(
LT (θ̂T )−ELT (θ∗0)

)
= lim

T→∞
E
√
T (θ̂T−θ∗0)′

1

T
L′′T (θ∗T )

√
T (θ̂T−θ∗0) 6= 0.

Under considerably restrictive conditions, Akaike (1973, 1974) showed

originally that for a model with k parameters,

lim
T→∞

E
√
T (θ̂T − θ∗0)′

1

T
L′′T (θ∗T )

√
T (θ̂T − θ∗0) ≈ k,

and hence, an asymptotically unbiased estimator of E`t(θ∗0) is given by
1
T

∑T
t=2 `t(θ̂T )− k,

lim
T→∞

E
( 1

T

T∑

t=2

`t(θ̂T )− k
)

= E`t(θ∗0).
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This follows easily for an asymptotically normal MLE of a correctly

specified model since then the information equality holds J (θ0) = I(θ0),

and hence

√
T (θ̂ − θ0)

d−→ N
(
0, I−1(θ0)J (θ0)I−1(θ0)

)
= N

(
0, I−1(θ0)

)
,

which implies that limT→∞ E
√
T (θ̂T − θ∗0)′ 1TL

′′
T (θ∗T )

√
T (θ̂T − θ∗0) =

tr(Ik) = k. Akaike also proposed the well known AIC information

criteria based on the unbiased estimator 1
T

∑T
t=2 `t(θ̂T ) − k given by

AIC= 2T
(
k − 1

T

∑T
t=2 `t(θ̂T )

)
. Since then, several authors have shown

that the AIC can also be used to consistently rank models according to

the KL divergence in considerably more general settings (Konishi and

Kitagawa, 2008)8. The AIC and its variations can be used for consis-

tent in-sample model selection under wider forms of misspecification, for

nested or non-nested models, and, most importantly, when test statistics

fail, for example because of parameter identification problems; see e.g.

Granger et al. (1995); Sin and White (1996); Konishi and Kitagawa

(2008).

Importantly, as k are the parameters of the model and independent from

the data generating process being linear or nonlinear, it is easy to see

that when the model includes unidentified parameters, they penalize

the likelihood and increase the AIC while their contribution to the

likelihood can be expected to remain low. The small contribution to the

likelihood of unidentified parameters is eventually implied for growing

data by the result of THEOREM. 12. The AIC therefore favors dropping

unidentified parameters in the same way that it favors, for example,

dropping autoregressive lags that do not meaningfully contribute to the

implied density of a model. Simply put, in the special case that the data

is linear, the linear SAR model and the larger nesting ST-SAR model that

includes non-meaningful parameters attain very similar log likelihoods.

8See pages 61-64 for the Takeuchi Information Criterion. The original reference of Takeuchi 1976 is
in Japanese and difficult to find.
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At this point, the linear model can be selected on the basis that relative

parsimony is favored by the AIC.

For this reason, the use of the AIC for model selection in the context of

threshold models has been suggested already by Tong (1983); Li (1988);

Tong (1990). Furthermore, Wong and Li (1998) showed that the AICc is

an asymptotically unbiased estimator of the expected Kullback–Leibler

information for SETAR models and analyzed the finite sample properties

of AIC, AICc and BIC by simulation. Theoretical and simulated results

on the consistency of information criteria in selecting the lag order of

linear autoregressive models have been extended to the case of threshold

models by Kapetanios (2001). Finally, Psaradakis et al. (2009) perform an

extensive simulation study on the usefulness of the information criteria in

selecting between alternative nonlinear time series models and concludes

that they are effective even in small samples given that nonlinearity

is substantial but that the criteria, particularly the ones with higher

penalties, often favor linear models when the data do not have prominent

nonlinear characteristics.

REMARK. 2. We focus on the AIC, the corrected AIC (AICc), and a
modified AIC (mAIC). The AICc, introduced by Hurvich and Tsai (1989),
improves on the finite sample properties; see Brockwell and Davis (1991);
McQuarrie and Tsai (1998); Burnham and Anderson (2004). The mAIC
is based on the general setting put forward by Sin and White (1996).

Unfortunately, specification issues can still influence the in-sample perfor-

mance of information criteria, for example because the nonlinear model

overfits linear data. For this reason, we also consider criteria based on

a validation sample. In particular, we obtain the sample log likelihood

L̃T̃ (θ̂T ) =
∑T̃

t=2
˜̀
t(θ̂T ) based on a validation sample of size T̃ , where θ̂T

is obtained using the estimation sample of size T . The tilde is used in L̃

to emphasize that this log likelihood is calculated using the validation

sample.

Lemma 1 states that, when using an (approximately) independent val-
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idation sample, the sample log likelihood L̃T̃ (θ̂T ) is immediately an

asymptotically unbiased estimator of EL̃T̃ (θ∗0). This can be shown using

the same quadratic expansion argument as used to derive the AIC, and

then letting both T and T̃ diverge to infinity sequentially. In practice,

for time-series data with some form of fading memory (e.g. mixing, near

epoch dependence, Lp-approximability, etc), a burn-in period of T ∗ ob-

servations between the estimation sample y1, ...,yT and the validation

sample yT+T ∗ + 1, ...,yT+T ∗+T̃ is needed to ensure the assumption of

approximate independence of the validation sample.

REMARK. 3. Unbiased estimates of the out-of-sample likelihood differential
can in principle be cross-validated rather than calculated over a single
holdout. However, while the approximate independence of the holdout
was trivially satisfied by the use of a burn-in that separates it from the
estimation sample, leave-one-out or other repeated validation strategies
require a correct-specification assumption on both competing SAR and ST-
SAR models in order to maintain the required approximate independence
of the residuals or need to implement sophisticated strategies that ensure
the independence is satisfied in other ways, see Gao et al. (2016); Bergmeir
et al. (2018).

LEMMA. 1. Let ` be twice continuously differentiable, suppose that θ̂T
as→ θ∗0

as T →∞ and assume that E supθ∈Θ |L̃′T (θ)| <∞ hold. Then L̃T̃ (θ̂T ) is
an asymptotically unbiased estimator of EL̃T̃ (θ∗0),

lim
T,T̃→∞

E
(
L̃T̃ (θ̂T )− EL̃T̃ (θ∗0)

)
= 0

Lemma 1 tells us that we can rank models consistently according to the

KL divergence without the need to impose penalties whose magnitude

rely on intricate assumptions. Lemma 2 below highlights that the ranking

is consistent regardless of potential identification issues. In particular, it

shows that the models are asymptotically well ranked according to the

KL divergence even in the case of a set consistent MLE for the parameters

of a well-specified or misspecified ST-SAR model.

LEMMA. 2. Let ` be twice continuously differentiable, suppose that
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d(θ̂T ,Θ
∗
0)

as→ 0 as T → ∞ and assume that E supθ∈Θ |L̃′T (θ)| < ∞ hold.
Then L̃T̃ (θ̂T ) is an asymptotically unbiased estimator of EL̃T̃ (θ∗0) for all
θ∗0 ∈ Θ∗0,

lim
T,T̃→∞

E
(
L̃T̃ (θ̂T )− EL̃T̃ (θ∗0)

)
= 0 ∀ θ∗0 ∈ Θ∗0.

REMARK. 4. Let the data be generated by a linear SAR model under
some θ0 ∈ Θ0c ⊆ Θ. Let ` be twice continuously differentiable, suppose
that d(θ̂T ,Θ0)

as→ 0 as T → ∞ and assume that E supθ∈Θ |L̃′T (θ)| < ∞.
Then L̃T̃ (θ̂T ) is an asymptotically unbiased estimator of the expected

log likelihood EL̃T̃ (θ0) at the true parameter, i.e. limT,T̃→∞ E
(
L̃T̃ (θ̂T )−

EL̃T̃ (θ0)
)

= 0.

In the special case that the linear SAR model is correctly specified,

Remark 4 tells us that the linear SAR model will attain the same zero

KL divergence as any larger nesting ST-SAR model. The same holds

true for any other model that nests the SAR, as the larger model is also

correctly specified. At this point, the linear model can be selected on the

basis of being the most parsimonious model that is correctly specified.

In practice, a situation of this type will lead to very similar log likelihoods

for the competing models over the validation sample. In Proposition 3

we highlight that the differences in these log likelihood values can be

tested for statistical significance using the Diebold-Mariano test statistic

(Diebold and Mariano, 1995). Specifically, we can test the rank position

of any two models by testing if the difference in log likelihoods in the

validation sample is statistically significant or not. This test is also known

as a logarithmic scoring rule, see e.g. Diks et al. (2011); Amisano and

Giacomini (2007); Bao et al. (2007). Below, we consider two competing

models, A and B, and let ˜̀A
t̃

(θ̂A
T ) and ˜̀B

t̃
(θ̂B

T ) denote their respective log

likelihood contributions at a certain time T + T ∗ + 1 < t ≤ T + T ∗ + T̃

in the validation sample. Furthermore, we let ∆̃t(θ̂
A
T , θ̂

B
T ) denote the log

likelihood differences ∆̃t(θ̂
A
T , θ̂

B
T ) := ˜̀A

T̃
(θ̂A

T ) − ˜̀B
T̃
(θ̂B

T ) evaluated at the

point estimates θ̂AT and θ̂BT ) respectively, and ∆̃t(θ
∗A
0 ,θ∗B0 ) denote the log
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likelihood differences evaluated at each model’s pseudo-true parameter.

Finally, we let σ̃T̃ (θ̂AT , θ̂
B
T ) be a consistent estimator of the standard

deviation of ∆̃t(θ̂
A
T , θ̂

B
T ).

PROPOSITION. 3. (Diebold-Mariano test statistic: logarithmic scoring
rule) Let θ̂AT

as→ θ∗A0 and θ̂BT
as→ θ∗B0 as T →∞. Suppose that the data is

strictly stationary and ergodic. Then under the null hypothesis that model
A and B fit the data equally well H0 : E∆̃t(θ

∗A
0 ,θ∗B0 ) = 0, it follows that

DMT̃ ,T := T̃
1
2

(
T̃−1

T̃∑

t=T+T ∗+1

∆̃t(θ̂
A
T , θ̂

B
T )

σ̃T̃ (θ̂AT , θ̂
B
T )

)
d→ N (0, 1) as T, T̃ →∞.

If instead we have E∆̃t(θ
∗A
0 ,θ∗B0 ) > 0 (model A is best) then DMT̃ ,T →∞

as T, T̃ → ∞. Finally, if E∆̃t(θ
∗A
0 ,θ∗B0 ) < 0 (model B is best) then

DMT̃ ,T → −∞.

REMARK. 5. In Section 4.5, a more conservative finite sample correction
of the statistic following a Student’s-t distribution is also used, see Harvey
et al. (1997).

Just as the AIC, out-of-sample model performance evaluation has been

applied in the context of threshold models in earlier literature. See for

example Clements et al. (2003) who investigates out-of-sample comparison

of the Mean Squared Error and concludes that, in line with to the

conclusions around the use of the AIC detailed by Psaradakis et al.

(2009), data need to exhibit a substantial degree of non-linearity before

the SETAR model is favored over a linear model. For these reasons, we

can expect both approaches to favor the ST-SAR only when the true

nonlinearity is strong in the data. This is a useful feature because we

would only want to accept the alternative assumption of nonlinearity over

the null assumption of linearity in an empirical application if the evidence

is substantial. Finally, it is important to stress that the DM-type test

developed here imposes assumptions directly on the forecast errors, in

particular that the likelihood differential is covariance stationary, and

can therefore work in the case of unidentified parameters or even in a
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model-free environments, see Diebold (2015) for reflections on this.

4.4 Monte Carlo study

To evaluate the empirical relevance of our estimation theory, we conduct

a Monte Carlo study. Importantly, we investigate size and power of model

selection based on standard information criteria. Foremost, we explore

how well popular information criteria are able to distinguish between

linearity and nonlinearity when the data is generated by a linear model

and the ST-SAR contains unidentified nuisance parameters. We also

explore how well the criteria recognize the nonlinear features of data

when the true process in nonlinear.

In the following numerical investigation we focus on selection frequencies

based on standard information criteria. Recall that evidence exists

that information criteria perform well in small samples in the context

of univariate threshold models when nonlinearity is strong but favor

linear models when nonlinearity is weak (Psaradakis et al., 2009). For

this reason, we simulate from a linear model to explore how well the

information criteria perform when the data is linear, and only simulate

from a relatively flat nonlinear dependence signal when we explore the

suitability of information criteria to detect nonlinearity when the data

indeed is nonlinear. The data generating process is of the general form:

yt = H(θρ; yt−1)
−1(εt), εt ∼ TID(1, IN ; 5), (4.10)

We keep the ratio of distant and close-by neighbors comparable across

experiments by allowing the network density of the weights matrix to

increase with N . In each draw we generate a random zero diagonal row-

normalized weights matrix with N/10 neighbors for each observation. The

process is initialized with H1 = IN , and the first 50 steps of the sequence

are discarded to avoid dependence on the initialization. We simulate
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1000 datasets and estimate parameters with Student’s-t likelihood.

We focus on an ST-SAR process driven by local averages as the local

average should be more sensitive to additive outliers than, say, the cross-

sectional mean. We simulate the linear datasets according to a linear

SAR process with:

ρ = 0.5

and simulate the nonlinear data sets according to the nonlinear ST-SAR

process:

δ = .4, γ = 1.05, α = −.2, ϕ = 1.4, κ = −.4,

Zt = yt−1, τ(θτ ; Zt) = α + ϕWyt−1.

We also consider the effect of additive outliers, similar to Dijk et al.

(1999), by simulating contaminated sequences (+ AO) according to the

following replacement process:

y∗t = yt + 1.[ζt > 0.5]ψεt, (4.11)

{ζt} ∼ UID(0, IN), {εt} ∼ BID(−IN , IN ; π),

with π = 0.05 and ψ set to the sample equivalents of
√
Ey2

t − (Eyt)2,

and estimating on y∗t .

In table 4.1, we pit the results of the ST-SAR with all its parameters

(ST-SAR 2) against SAR estimates and focus on selection between the

SAR and the ST-SAR when the process is linear (Size). The selection

frequencies are also provided for contaminated data generated from the

SAR (right). Both SAR and ST-SAR model are correctly specified

with regard to the non-contaminated process, but the SAR is more

parsimonious while the ST-SAR has additional parameters to over fit

the data and possibly the outliers. The results indicate information

criteria can be used to distinguish between linearity and nonlinearity

with performance improving as the dimensions of the data grow.
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Table 4.1: Size: selection frequencies for (contaminated) data generated from the SAR (right). The
results indicate information criteria can be used to distinguish between linearity and nonlinearity with
performance improving as the dimensions of the data grow. The ST-SAR is robust to over fitting
outliers.

SAR DGP
(AO right columns)

ST-SAR 2
vs. SAR

ST-SAR 2
vs. SAR

AIC AICc mAIC AIC AICc mAIC

N=30 T=10 46 44 45 44 42 44
T=25 33 32 32 30 29 30
T=50 27 27 27 26 25 26
T=100 22 22 22 23 23 23
T=250 22 22 22 20 20 20

N=40 T=10 52 51 51 54 52 53
T=25 32 31 31 33 33 33
T=50 24 24 24 25 25 25
T=100 22 22 22 23 23 23
T=250 23 23 23 18 18 18

N=50 T=10 41 39 40 43 42 42
T=25 25 25 25 27 26 26
T=50 24 24 24 23 23 23
T=100 20 19 19 19 19 19
T=250 18 18 18 18 18 18

N=60 T=10 32 31 32 33 32 32
T=25 24 23 24 27 27 27
T=50 24 23 24 26 26 26
T=100 17 17 17 16 16 16
T=250 17 17 17 17 17 17

The results of table 4.1 show that the AIC has empirically relevant size.

We have discussed that the ST-SAR converges to the set of points that de-

liver an equivalent and correct distribution of the data, see THEOREM. 12

and that the SAR should thus be selected on the basis of parsimony. The

simulation evidence is in support of this notion. For data simulated from

the linear SAR, we see that the SAR is indeed selected over the ST-SAR

2 with increasing frequency as the sample size increases. However, as

data grows, the larger ST-SAR 2 is still incorrectly selected over the

nested SAR with nonzero frequency. At T = 250, N = 60 we select the

ST-SAR 2 in 17% of the cases. This suggests that in practice, one may

want the improvement in AICc to be relatively large or prefer to keep
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Table 4.2: Power: selection frequencies for data generated from the ST-SAR. The results indicate
information criteria can be used to distinguish between linearity and nonlinearity with performance
improving as the dimensions of the data grow.

ST-SAR DGP
ST-SAR 1
vs. SAR

ST-SAR 2
vs. SAR

ST-SAR 2
vs. ST-SAR 1

AIC AICc mAIC AIC AICc mAIC AIC AICc mAIC

N=30 T=10 38 38 38 45 41 43 46 45 46
T=25 62 61 62 63 62 63 50 48 49
T=50 80 79 80 83 82 82 57 57 57
T=100 85 85 85 97 97 97 80 80 80
T=250 100 100 100 100 100 100 96 96 96

N=40 T=10 51 49 50 52 50 51 44 43 44
T=25 72 72 72 73 72 72 51 50 50
T=50 93 93 93 91 91 91 59 59 59
T=100 92 92 92 100 100 100 84 84 84
T=250 100 100 100 100 100 100 99 99 99

N=50 T=10 53 52 53 54 52 53 45 43 45
T=25 84 84 84 85 84 85 55 55 55
T=50 98 98 98 98 98 98 66 66 66
T=100 99 99 99 100 100 100 89 89 89
T=250 100 100 100 100 100 100 100 100 100

N=60 T=10 63 62 63 59 58 59 45 43 44
T=25 88 88 88 87 87 87 57 56 57
T=50 99 99 99 99 99 99 71 71 71
T=100 99 99 99 100 100 100 92 92 92
T=250 100 100 100 100 100 100 100 100 100

the SAR when the improvement is modest and the data is small. In our

empirical applications we find, however, very substantial improvements

in the AICc while working with considerable numbers of observations. In

our our first empirical application we shall focus on T close to 10 but use

a cross-section that is roughly 12 times that of the largest experiment

covered by our simulations, while in our second application, T increases

beyond what is considered here. The robustness to contamination of the

process can again be seen, this time by the fact that selection rates of

the ST-SAR do not inflate when additive outliers enter the process.

In table 4.2 we estimate two versions of the ST-SAR; a restricted model

that is underspecified – ϕ and κ are fixed at 0 – (ST-SAR 1) and the

correctly specified ST-SAR with all its parameters (ST-SAR 2). As

before, we also estimate the SAR. Again, we find evidence that selection
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frequencies, now for data generated from the ST-SAR, support the use of

information criteria to distinguish between linearity and nonlinearity. In

particular, while table 4.1 highlighted the ability of information criteria

to correctly favor the SAR when the data is linear, table 4.2 highlights

that the criteria favor the ST-SAR when the data is nonlinear. As with

size, power improves as the dimensions of the data grow.

The results of table 4.2 show that the AIC has good power if the process

is nonlinear. Both the misspecified ST-SAR 1 and correctly specified 2

are selected over the underspecified SAR with increasing frequency as

the sample size increases. Furthermore, as data grows the larger and

correct ST-SAR 2 is selected over the nested ST-SAR 1 with probability

1. We again see improvements both as T and N increase. Table 4.7 in the

Appendix provides additional power results for a contaminated process.

Overall, the presence of additive outliers has a small effect on power. For

very small samples T = 10, N ≤ 60, we observe some increase in power

indicating slightly increased over fitting. However, for T > 10, N ≤ 60,

the outliers negatively impact power. While we reach a frequency of 92%

for (N, T ) = (60, 100) without contamination, we obtain only a rate of

80% for distorted data. The reduction in power contrasts the univariate

STAR framework in which additive outliers can trick the threshold into

fitting the contamination as a nonlinear process (Dijk et al., 1999). We

find that in the cross-sectional case, the results mirrors the conclusions of

the errors in variables literature. Finally, note that, as in the distribution

case, the results are dependent on the strength of the nonlinear signal.

In our empirical application we find strong nonlinearities.

The simulations presented here confirm the appropriateness of standard

information criteria to decide between different descriptions of spatial

spillover processes. Importantly, the evidence indicates that that, not only

do information criteria distinguish well between linearity and nonlinearity,

they also distinguish between alternative nonlinearities. The AICc comes
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forward as the most conservative measure, and therefore we apply it

as our primary choice criterion in the empirical section. Additional

simulation results in the Appendix, fig. 4.7 in particular, further highlight

that the MLE of the identified parameters is well-behaved in empirically

relevant sample sizes.

4.5 The empirics of nonlinear spatial dependencies

This section presents two empirical cases. In our first study we use a

panel of short T and large N . Our second study focuses on the opposite

case of large T and small N . This allows us to explore nonlinearities

both from a cross-sectional perspective, as well as from a time-varying

perspective.

4.5.1 Application I: Dutch residential densities

The first application evaluates nonlinear spatial dynamics in the cluster-

ing of Dutch residential densities at the district level over a period of ten

years. The primary focus is on the advantages of the ST-SAR compared

to its linear counterpart. We investigate spatially varying features of the

dependence structure, particularly in relation to a number of spatially

explicit socio-economic variables. Steering urban development and pre-

serving open, green spaces is a major policy concern in the Netherlands

Koomen et al. (2008). Understanding the drivers influencing the balance

between agglomeration and dispersion is essential to help define policies.

These policies have a strong spatial dimension, which can be difficult

to disentangle. Panel and cross-sectional methods are essential analysis

tools, and we shall focus on the role of cross-sectional nonlinearities in

obtaining accurate estimates.
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Economic rationale for ST-SAR dynamics in residential densities

The dependent variable is urban density measured as addresses per

hectare. We investigate two types on nonlinearities. First, we model

nonlinear spatial autocorrelation to allow for differential strength in clus-

tering. In line with the decay in agglomeration forces along the urban

gradient (Fotheringham, 1981; Rosenthal and Strange, 2003), we expect

autoregressive spatial dependence to fluctuate along clusters of population

densities. The linearity of the SAR on the other hand assumes away any

variation in autocorrelation along the urban gradient. The second nonlin-

earity is in the relationship between local densities and the surrounding

household composition. This choice is particularly interesting because

dense urban centers accommodate different households than spacious

low density neighborhoods. Literature on sorting has made empirically

tested predictions about the equilibrium distribution of household types

across different neighborhoods (Epple and Sieg, 1999). The demand

patterns for housing rooted in preference heterogeneity produces a het-

erogeneous relationship between concentrations in density and household

composition. We focus particularly on the share of population under

14 years in surrounding areas, which proxies a mixture of social and

demographic characteristics. As households with children locate in low

density neighborhoods outside the city center, we can expect that dense

urban cores have a positive correlation with the presence of children in

surrounding areas. On the other hand, the low density areas outside main

urban cores follow the inverse. A linear spatial lag forces the two opposite

relationships to average out, which falsely leads to the conclusion that

surrounding households are not related to urban densities, contradicting

the sorting theory (Epple and Sieg, 1999). The ST-SAR specification

allows us to capture the theorized positive and negative relationships

simultaneously.
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Data for Dutch residential densities

Figure 4.1: Time average spatial distribution of (left) household density and (right) population under
14.

Table 4.3: Overview of explanatory variables and parameter symbols.
Parameter Interacting variable Units Range Mean
βcdens Log company density Continuous -3.93 to 3.42 -0.14
βwcdens Spatial log company densities Continuous -2.62 to 2.30 -0.21
β%shh Percentage of single households Continuous 5 to 75.22 32.47
βw%shh Spatial percentage single households Continuous 0 to 59.75 32.15
βw%hhkids Spatial percentage households with

children
Continuous 0 to 24.11 8.75

βw%wim Spatial percentage western immigrants Continuous 0 to 59.03 36.78
β%nwim Percentage non-western immigrants Continuous 0 to 67.92 9.90
β%>65 Percentage elderly over 65 Continuous 1 to 43.23 15.09
βw%<14 Spatial percentage children Continuous 0 to 25.38 17.81

ρ Second order queen contiguity matrix Standardized 0 to 46* 18.91**
Transition function parameters are indexed by the variables they interact with. *The range of the
spatial weights matrix is the minimum to maximum number of connections. **Average number of
connections.

The time series covers observations of 717 districts from 2005 to 2014

obtained from the Dutch Central Bureaus of Statistics.9 Figure 4.1 shows

the concentrations of urban densities and young population outside urban

areas. The other regressors, that control for a variety of local demographic

and economic characteristics, are taken from the same dataset. Local

9The data is available for download from the Dutch Central Bureau of Statistics:
https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data.
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values and spatial averages have been selected based on the AICc. The

regressors are lagged by one time period.

Results for Dutch residential densities

Table 4.4 presents the results. The static estimates provide strong

evidence for clustering in household densities indicated by the high

estimate of ρ and the high t-value. As theorized, we find weak evidence

for a relationship with the surrounding household compositions indicated

by the small estimate of βw%14 and its low t-value. Household densities

are strongly linked to company densities, other controls have dubious

signs. The negative effect of single person households is not as expected

as small households should consume little space.

The second model allows for smooth transition nonlinearities in the de-

pendence on surrounding households. The negative value of the constant

exogenous spatial lag (βw%14−t−1
) combined with the positive value of the

upper threshold parameter (δw%14−t−1
) indicates that the dependencies

run from negative to positive as densities increase, in line with the theory.

The parameters of the transition function strongly improve the AICc (by

-11939 points). The nonlinear model also improves the estimates of the

control variables, both local and surrounding single person households

now correlate positively with densities. The effect of company densities is

substantially smaller in magnitude, indicating that the impact may easily

be overestimated by the SAR. The spatial autocorrelation parameter is

significant but reduced drastically in magnitude. This suggests that the

nonlinearities in the relationship with spatial averages may also partially

capture nonlinear spatial autocorrelations.

Model (3) controls for additional nonlinear spatial autocorrelation, further

improving the AICc (-1799 points). The maps in fig. 4.2 show that spatial

autocorrelation is high in the urban clusters and decays outwards, in line

with theory.
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Table 4.4: Estimation results for Dutch residential densities from 2005-2014. Significance at 90, 95
and 99% level are, respectively, indicated as *, ** and ***. t-values in parenthesis.

(1) SAR
+ WX

(2) SAR
+ ST-WX

(3) ST-SAR
+ ST-WX

βconst
2.309***
(26.479)

0.970***
(36.626)

0.974***
(41.905)

βcdenst−1

1.043***
(201.116)

0.108***
(21.832)

0.109***
(28.378)

βwcdenst−1

-0.825***
(-58.556)

-0.101***
(-13.821)

-0.147***
(-31.429)

β%shht−1

-0.006***
(-9.319)

0.009***
(34.352)

0.009***
(38.678)

βw%shht−1

-0.025***
(-17.731)

0.013***
(23.705)

0.009***
(19.950)

βw%hhkidst−1

-0.032***
(-12.350)

0.018***
(17.606)

0.015***
(17.875)

β%nwimt−1

0.019***
(35.607)

0.003***
(12.336)

0.001***
(3.162)

βw%14−t−1

0.009*
(1.987)

-0.432***
(-27.409)

-0.385***
(29.141)

δw%14−t−1
1.008 0.540

γw%14−t−1
0.209 0.362

φw%14−t−1
1.742 0.276

δρ 0.779***(69.605) 0.048***(7.106) 0.368
γρ 1.235
φρ 1.358

λ 3.013 2.508 2.559

LL -2078.771 3893.733 4795.443
AICc 4179.58 -7759.405 -9558.810

The test proposed in Proposition 3, is valid only for large T̃ . However,

the AICc provides ample evidence supporting the nonlinearities. In

particular, the AICc improves by 13738.39 points when the nonlinearities

are allows in both the spatial lags of the exogenous and endogenous

regressors. To understand how the ST-SAR improves this much, we

re-fitted the models excluding the last year and compared te 1-step ahead

forecast errors of the SAR+WX and the ST-SAR+ST-WX. Figure 4.3

shows that the Squared Forecast Errors (SFE) from the linear model

contain a consistent mismatch in major urban areas. The SFE of the

nonlinear model, however, balance evenly. This shows that the nonlinear

model is better at fitting both rural and urban density regimes within one

framework. Apart from the clustering of prediction errors, the predictive
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power across all regions is tremendously improved by the nonlinear model

as seen by the magnitude of the SFE.

Figure 4.2: Left): time average of estimated autocorrelation parameters. Right): time average of
estimated dependence on the share on population under 14 years in surrounding neighborhoods. The
estimation results provide convincing evidence for weak/negative and strong/positive dependence
regimes with smooth transitions in between.

Figure 4.3: Left): SFE of the SAR (2014 as holdout data). Right): SFE of the ST-SAR. Legends are
based on natural breaks of the errors of the ST-SAR. The residuals provide convincing evidence for
the ability of the ST-SAR to neutralize residual clustering while the SAR does not perform well in this
regard. The reduction in SFE also suggests that the ST-SAR provides better 1-step ahead forecasts.
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4.5.2 Application II: interest rates in the Euro region

In this second empirical study we evaluate the evolution of monthly

interest rates on government bonds maturing in ten years for 15 European

sovereigns. The study tracks the European sovereigns over a period of

26 years, that spans the time before the European Union, the expansion

of the EU, the Great Recession, and the Greek sovereign debt crisis.

The primary focus is on detailing time-varying dynamics in convergence

and dispersion in rates that cannot be fitted by a linear model. this

application differs from the previous on in the sense that the temporal

dimension is much larger. Again, we find strong evidence that favors the

ST-SAR over the SAR.

Economic rationale for ST-SAR dynamics in long term interest rates

The Economic and Monetary Union (EMU) comprises a set of policies

that aims at converging the economies of the member states of the

European Union. The EMU prescribes euro convergence criteria, the

prerequisites for a nation to join the Eurozone. Co-movement in the

long term interest rates is essential to the monetary stability of the Euro

region. Before the European Union, the European Economic Community

relied heavily on the European Exchange Rate Mechanism (ERM) to

regulate variability in exchange rates of different sovereigns as a way

to achieve monetary stability. The ERM played a central role in the

preparations for the Economic and Monetary Union and the subsequent

introduction of the euro in 1999. The primary goal of the ERM has

been to prevent large fluctuations in currency values relative to those of

other European sovereigns. Empirical evidence suggests that only few,

large industrial countries have some ability to choose their interests rates

(Frankel et al., 2004). Interest rates are strongly effected by those of other

countries (Frankel et al., 2004; Caceres et al., 2016; Kharroubi et al.,

2016), but there are policy opportunities to adjust national rates. For
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example, target levels and transfers of reserves (Pina, 2017), programs

that increase foreign bond buying (Carvalho and Fidora, 2015), or lending

rate policies (von Borstel et al., 2016). Adjustments in national interest

rates have been at the center of monetary policy used as part of the

European Monetary System (EMS) to lower or increase currency value

such that the different currencies remained within a narrow range of one

another.

Replacement of the actual currencies of all participating member states

by a common currency mandates that the economies of all member states

are in par with one another. After introduction of the euro, national

interest rates thus still play an essential role in ensuring that fluctuations

in the economies of member states remain within a narrow range. A

strong adjustment in long term interest rate of a particular sovereign with

respect to the common European average, signals that the underlying

economy has difficulty in following the common trend. On the other hand,

if all interest rates closely follow a common stochastic trend, it signals

that economies are in par with on another. This can also be understood

in the conventional framework where fixed or pegged interest rates are

seen as a way to establish a credible nominal anchor for monetary policy,

while flexible exchange rates are seen as a way to allow countries to

pursue independent monetary policy (Frankel et al., 2004). Integration

of financial systems and co-movements are further discussed by Caceres

et al. (2016).

The cross-sectional dependencies in the de-trended changes signal the

strength of commonalities in the fluctuations in the economies of member

states such as in Caceres et al. (2016). Estimating spatial dependence

parameters using ST-SAR has the obvious advantage that it does non

only provide information on the average strength in co-movement, but

it allows to study also the time-varying features in strength as well as

heterogeneity across member states. The average cross-sectional averages
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of the dependence parameters signal overall strength of convergence,

while the standard deviations indicate an overall dispersion measure

that is independent of the scale of change. In stable times, the average

contraction should be high and the variance in spatial parameters should

be low. Under financial instability we may expect the opposite. The

parameters of the ST-SAR therefore not only provide means to filter

dynamic dependencies, but also provide information on the functioning

of the EMS in this specific application. Specifically, the ST-SAR provides

a way to analyze whether the economies of member states are relatively

in par with one another, as prescribed by the EMU’s common currency

mandates.

To do so, we view the interest rates as generated by the model:

vt = ct + yt,

where vt is the observed data vector, ct is the common stochastic trend,

and yt is a vector of dynamics around the common stochastic trend. We

are interested it analyzing yt, which contains the contraction and dis-

persion dynamics around the common stochastics. By de-trending using

a common stochastic trend, synchronization due to common business

cycles or seasonality is controlled for. We assume ct to follow a random

walk with ct = ct−1 + vt, and {vt}t∈Z ∼ pv(vt,Σ, λ). Therefore our best

expectation of ct is ct ∼ EN(vt|vt−1), and the dynamics of particular

interest are:

yt = vt − EN(vt|vt−1) = vt − EN(vt−1) ∼ vt −N−1
N∑

1

(vt−1),

hence we use yt = vt − N−1
∑N

1 (vt−1) as our dependent variable. We

refer to yt as the de-trended data. We are interested in a description of

the convergence and dispersion dynamics contained in yt as a nonlinear

cross-sectional dependence process, possibly driven by the past states of

yt and moving average affects.
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Data for long term interest rates across the Euro region
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Figure 4.4: Data on monthly long term interest rates for bonds of 10-year maturity. An overview of
te labeled events is contained in the Supplementary Appendix. The vertical dashed line indicates the
split between training data and validation data used for our DM tests. Colors correspond to individual
countries, see section 4.7.4.

The data was obtained from the European Central Bank for 311 months

starting October 1993 and running through August 2019.10 This period

includes the formation of the European Union, its expansion, the Great

Recession and the eventual Greek sovereign debt crisis. We model log
10http://sdw.ecb.europa.eu/browseChart.do?node=bbn4864
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de-trended rates. The de-trended data is visualized in fig. 4.4, the raw

data including a list of labeled events and color codes is provided in the

Supplementary Appendix. The time series reveal clear common patterns,

especially between 1998 and 2008. Before 1998 and after 2008 there are

commonalities but specifically the stressed Eurozone sovereigns (Greece,

Portugal, Ireland and to some extent Spain and Italy), seem to follow

a separate pattern. Our network structure is based on the correlation

matrix of the de-trended data. We assign each sovereign three neighbors

based on the strongest correlation. This number was determined by

the AICc. The approach allows for differences in the centrality of the

sovereigns within the network, and for entanglement between sovereigns

that are distant from each other in a purely geographic sense. The

resulting network is fully connected. We explore time lags up to order

4, and apply further restrictions guided by the AICc. As we shall see in

our final model, allowing 4 lags in the ST-SAR is sufficient to render the

residuals approximately free from correlations.

Results for European long term interest rates

As a first exploration we regress models of the type:11

vt −N−1
∑N

1 (vt−1) = yt = H(θρ; (yt, εt))
−1(εt).

on the entire dataset. We calculate DM and mDM , respectively one-

sided Pr(>|z|) and Pr(>|t|) against the null hypothesis that the SAR

attains higher log likelihood, based on model fits on training data log

likelihood evaluated on the validation sample depicted in fig. 4.4. We

reserved the final 36 observations for this validation purpose, of which

the first 6 observations are discarded as a burn-in.

11The exact threshold ρ(θρ;yt, εt) =
δ

1 + exp(−γ(Wyt−1 − (α+
∑P
p=1 yt−pϕφ,p +

∑Q
q=1 εt−qϕµ,q)))

+

κ.
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Table 4.5: Estimation results for the different spatial models on the full dataset. λ fixed at 2.5.

SAR
ST-SAR

(AR)
ST-SAR

(MA)
ST-SAR
(ARMA)

βconst
0.608***
(56.670)

-0.234***
(-30.703)

0.310***
(37.294)

0.273***
(34.646)

κρ
0.590***
(82.600)

0.762***
(121.424)

0.414***
(46.118)

0.366***
(36.576)

δρ 1.057 1.175 1.198
γρ -2.991 -0.240 -1.662
αρ 0.043 -1.641 -0.665

ϕφ,t−1 0.911 1.069
ϕφ,t−2 0.022
ϕφ,t−3 -0.055 0.043
ϕφ,t−4 0.108
ϕµ,t−1 14.337 0.719
ϕµ,t−2 13.776 0.496
ϕµ,t−3 9.801 0.440
ϕµ,t−4 3.756 0.213

LL 2314.54 8385.81 7823.34 9520.93
AICc -4623.08 -16755.59 -15626.64 -19013.76
DM 0.00 0.00 0.00
mDM 0.00 0.00 0.00

Table 4.5 presents the estimation results from both the static and non-

linear spatial models for different specifications of the threshold. In the

static model, we find strong evidence for spatial dependence indicated by

the high estimate for ρ together with a high t-statistic. The three nonlin-

ear specifications, respectively the ST-SAR driven by past observations,

moving averages, and both ARMA dynamics, all improve the AICc values

by several thousand points compared to the SAR. The most elaborate

ST-SAR improves the AICc by an overwhelming 14390.68 points against

the SAR. The significant evidence for nonlinearity is confirmed by the

finding that the DM-type tests overwhelmingly reject the null of linearity,

even for the most parsimonious ST-SAR. The residuals are in strong

support of the choice to allow for fat tails. As an example, the kurtosis

of residuals from the linear SAR is over 14 and a Jarque-Bera tests reject

Gaussianity in favor of fatter tails with a p-value of ∼ 0 for all four
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models. Evidence for nonlinearities in the convergence and dispersion

process persists across the different ST-SAR specifications. However, the

SAR contains no time dynamics. We therefore extend our analysis to

control for additional ARMA dynamics.

Extensions

In our extended results, we allow for additional flexibility and explore

vt −N−1
∑N

1 (vt−1) = yt = H(θρ; (yt, εt))
−1ARMA(θφ,µ; yt, εt).

Table 4.6: Estimation results for the extended spatial models on the full dataset. λ fixed at 2.5,
constant omitted from table.

SAR + ARMA ST-SAR (ARMA) + ARMA

φt−1
-0.202***
(-15.200)

0.110***
(2.904)

φt−2
0.063***
(8.050)

φt−3
0.263***
(19.080)

0.423***
(6.049)

φt−4
0.268***
(24.140)

0.258***
(5.455)

µt−1
1.610***
(73.140)

0.819***
(11.793)

µt−2
1.517***
(55.100)

0.612***
(8.873)

µt−3
0.908***
(37.270)

0.314***
(5.033)

µt−4
0.223***
(15.870)

-0.140***
(-10.410)

κρ
0.625***
(59.770) 0.404

δρ 5.405
γρ -1.524
αρ -0.602
ϕφ,t−1 0.969
ϕφ,t−3 -0.459
ϕφ,t−4 -0.260
ϕµ,t−1 -0.671
ϕµ,t−2 -0.569
ϕµ,t−3 -0.331

LL 8375.408 10146.85
AICc -16728.76 -20255.54
DM 0.002
mDM 0.004
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Table 4.6 presents the results. The ST-SAR dynamics remain significant

as judged by the various diagnostics even when additional ARMA dy-

namics are added to the conditional mean equation. Importantly, the

AICc of the ST-SAR improves over that of the SAR by a very significant

amount, a 3526.78 point improvement. The out-of-sample validation test

further confirms the evidence for nonlinearity. The estimated probability

that the linear spatial model attains lower KL is below 0.002, and 0.004

for the more conservative modified test.

We also find that the residuals of the nonlinear model, similarly to our

first application, are smaller and better centered at zero. This can be seen

in fig. 4.9. The residuals of the SAR remain respectively below and above

zero for prolonged periods and contain significant remaining correlation

patterns while the ST-SAR approximately neutralizes the dynamics as

revealed by the residual ACF in fig. 4.10. Jarque-Bera tests again reject

Gaussianity in favor of fatter tails, supporting again the choice for the

Student’s-t specification, with a p-value of ∼ 0 for both models, with the

residuals of the ST-SAR (ARMA) + ARMA reaching a kurtosis of 22.

Figure 4.5 displays the evolution of the fitted spatial dependence param-

eters. A first striking feature is the convergence of the parameters in

anticipation of the Union, continuing till around 2000. In the pre-EU

period we observe separate regimes. Ireland, Portugal, Italy and Spain

form a low-dependence group. Greece forms an exception and follows

an individual trajectory. After 2000, the parameters corresponding to

the different sovereigns linearize, indicating strong financial stability and

near perfect co-movement. The onset of the Great Recession around

2008 marks an abrupt turn after which separation in a high and low

regime recurs. Interestingly, the pattern after the recession reverts to the

pre-EU behavior, with Greece returning to an individual trajectory and

Ireland, Portugal, Italy and Spain forming a less integrated group. This

breakaway is in sharp contrast to the increasing interdependence across
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other member states. Divergence between the low and high dependence

regimes has continued after the crisis, and the sustained strong variation

in contraction parameters indicates that the Eurozone remains to struggle

in attaining EU-wide financial stability. These results suggest that the

EMS has still not fully succeeded in aligning all economies across the

Eurozone. Figure 4.6 further visualizes the time-varying nature of the

dependence regimes over cross-sections and time.
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Figure 4.5: Evolution of spatial parameters estimated with the ARMA + ST-SAR (ARMA). Colors
correspond to individual countries, see section 4.7.4. The estimation results highlight the nonlinear
nature of dependence between sovereigns during Pre-EU times that has clearly broken into a two-regime
system after the Financial Crisis.
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Figure 4.6: Evolution of spatial parameters estimated with the ST-SAR.

Several interesting aspects about the convergence and dispersion dynamics

can be learned from our final estimates. Local dependencies are partly

driven by feedback, but also impacted by moving averages that may relate

to directed financial policy or shocks. Since γ̂ = −1.524 is negative, and

δ̂ = 5.405 is positive, the spatial parameters increase with Wyt−1 − τ̂t−1,

thus the signs of the estimated ϕ parameters indicate the direction of

individual contributions.12 The complex threshold equation hints at

12The estimated threshold is τ̂t−1 = −.969yt−1 + .459yt−3 + .260yt−4 + .671εt−1 + .569εt−2 +
.331εt−3 − .602. Note that the signs in the table 4.6 are opposite as they enters as −τ̂t−1 in the
likelihood function.



4.5. The empirics of nonlinear spatial dependencies 133

several subtleties. The negative signs of the moving averages suggest

that positive shocks are followed by reduced dependence, while sustained

exogenous policies that reduce rates result in increased contraction. If all

effects are considered jointly, the following regime-dependent behavior

can be distinguished:

1. τ̂t−1 < Wyt−1 local threshold value is below average neighbor rates,

followed by intensified dependence (dispersion),

2. τ̂t−1 > Wyt−1 local threshold value is above average neighbor rates,

followed by reduced dependence (convergence).

These regimes suggest cyclic behavior. First, high rates relative to

neighboring sovereigns due to exogenous impacts (high εt − q for q =

1, ..., 4) is followed by reduced dependence to the group average, making

isolated rate increases due to shock possible. Once assimilated, high

relative rates (high yt − p for p = 1, ..., 4 relative to Wyt−1) is followed

by intensified spatial dependence. Together this implies initial systemic

vulnerability to exogenous shocks, but subsequent resistance to the spread

of assimilated shocks. That resistance breaks when a large neighborhood

is affected (Wt−1 increases), accelerating the spread through increased

feedback. Finally, the negative signs of deeper lags of yt − p indicate

that initial increases in contraction are followed by a return to reduced

dependence, slowing feedback.

The regimes also suggest asymmetries in spillovers. If at location i rates

increase, dependence to neighbor j reduces. From the perspective of

location j the opposite occurs, resulting in the opposite dynamics. This

means that while a local positive impulse lowers spatial dependence

locally, it increases the dependence parameters of neighbors, implying

that outward spillovers accelerate while inward feedback slows down. On

the other hand, lowered rates are followed by intensified inward spillovers

but slower outward spillovers.
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4.6 Conclusion

In this paper we introduced a new model for nonlinear spatial time

series in which cross-sectional dependence varies smoothly over space

by means of smooth-transitions between dependence regimes. In this

framework, nonlinearities in cross-sectional dynamics are modeled as a

function of the data. This is an advance over existing methods. Allowing

for time-variation is particularly useful when modeling spatial data for

large T , nonlinearities over the cross-section are particularly useful if N

is large.

We have shown that the parameters of the model can be consistently

estimated by maximum likelihood under appropriate regularity condi-

tions. In particular, we provide conditions that deliver existence, strong

consistency and asymptotic normality of the MLE of all static parameters

that constitute the dynamic dependence structure. The theory holds for

both correctly specified and misspecified models and allows for possible

identification issues of the threshold parameters. Our simulation evidence

suggests that the limit theory is relevant in finite samples. Furthermore,

we find that information criteria are able to distinguish between the SAR

specification and ST-SAR type nonlinearities. The simulations results

showed that model selection is robust to overfitting of additive outliers.

We have also provided a theoretical argument for model selection based

on a validation-sample estimate of the Kullback-Leibler divergence. In

our empirical application, both the validation test and the information

criteria support nonlinearities.

The model has been applied to study space-time dynamics in two cases.

We studied clustering in urban densities in a large number of districts,

and convergence and dispersion in monthly long term interest rates. We

found that the ST-SAR resulted in better filtering behavior over the cross-

section and time dimension, improved estimates for exogenous variables,
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and improved forecasts. We also found that the nonlinearities in the

spatial parameters can lead to economically relevant insights, while the

SAR is often criticized for its empirical interpretation. We conclude that

the ST-SAR is a powerful tool for both understanding and predicting

future values in cross-sectional time series.

4.7 Appendix

4.7.1 Proofs to main theorems

Proof of Theorem 9

Proof. Note first that LT (θ) := (1/T )
∑T

t=1 `t(θ) is a.s. continuous (a.s.c.)
in θ ∈ Θ through continuity (c.) of each term `t(θ) = ln detH(θρ; Zt) +

ln pε

(
H(θρ; Zt)yt−c−yt−1φ−Xtβ,Σ;λ

)
. Together with the compactness

of Θ (Assumption 1) this implies by Weierstrass’ theorem that the arg max
set is non-empty a.s. and hence that θ̂T exists a.s. ∀T ∈ N. Note by a
similar argument that LT (θ) is continuous in (yt,Xt) ∀ θ ∈ Θ and hence
measurable w.r.t. the product Borel σ-algebra B(Y)⊗B(X ) that are, in
turn, measurable maps w.r.t. F by Proposition 4.1.7 in Dudley (2002).13

Finally, the measurability of θ̂T follows from (Foland, 2009, p.24) and
(White, 1994, Theorem 2.11) or (Gallant and White, 1988, Lemma 2.1,
Theorem 2.2).14

Proof of Theorem 10

Proof. Recall that LT (θ) := (1/T )
∑T

t=1 `t(θ) and L∞(θ) = E`t(θ) with

`t(θ) = ln detH(θρ; Zt) + ln pε

(
H(θρ; Zt)yt − c− yt−1φ−Xtβ,Σ;λ

)
.

Following the usual consistency argument (found e.g. in (White, 1994,
Theorem 3.4) or Theorem 3.3 in Gallant and White (1988)) we obtain

13Dudley’s proposition states that the Borel σ-algebra B(A × B) generated by the Tychonoff’s
product topology TA×B on the space A× B includes the product σ-algebra B(A)⊗ B(B).

14The reference of Foland (2009) is used here to establish that a map into a product space is
measurable if and only if its projections are measurable.
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θ̂T
a.s.→ θ0 from the uniform convergence of the criterion function

sup
θ∈Θ
|LT (θ)− L∞(θ)| a.s.→ 0 ∀ f1 ∈ F as T →∞ (4.12)

and the identifiable uniqueness of the maximizer θ0 ∈ Θ introduced in
White (1994),

sup
θ:‖θ−θ0‖>ε

L∞(θ) < L∞(θ0) ∀ ε > 0. (4.13)

The uniform convergence is obtained by application of the ergodic theorem
for separable Banach spaces in Rao (1962), as in (Straumann and Mikosch,
2006, Theorem 2.7), to the sequence {LT (·)} with elements taking values
in C(Θ,R). This uniform law of large numbers supθ∈Θ |LT (θ)−E`t(θ)| a.s.→
0 as T →∞ follows, under a uniform moment bound E supθ∈Θ |`t(θ)| <
∞, by the SE nature of {LT}t∈Z which is implied by continuity of `
on the SE sequence {(yt,Xt)}t∈Z (Assumption 2) and Proposition 4.3
in Krengel (1985). The uniform moment bound E supθ∈Θ |`t(θ)| < ∞
follows immediately from Assumption 9 since

E sup
θ∈Θ
|`t(θ)| ≤ E sup

θ∈Θ
|Q(θρ; Zt)|+ |A(θ)|

+
1

2
(λ+N)E sup

θ∈Θ
|F (θ,yt,Xt,Zt)| <∞.

Finally, the identifiable uniqueness (see e.g. White (1994)) of θ0 ∈ Θ
in (4.13) follows from the assumed uniqueness (Assumption 10), the
compactness of Θ, and the continuity of the limit E`t(θ) in θ ∈ Θ which
is implied by the continuity of LT in θ ∈ Θ ∀ T ∈ N and the uniform
convergence in (4.12).

Proof of Theorem 11

Proof. The proof follows by the same argument as laid down in the proof
of Theorem 2. Only now the assumption, that θ0 is the unique maximizer,
is missing (Assumption 10). Without uniqueness, we obtain the desired
set consistency result by application of Lemma 4.3 in (Pötscher and
Prucha, 1997), after noting that the continuity of the limit criterion
L∞(θ) = E`t(θ) in θ ∈ Θ and the compactness of Θ ensure that the
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levels sets of L∞ are regular (see Definition 4.1 in Pötscher and Prucha
(1997)). The continuity of L∞ is obtained directly from the continuity of
`t(θ) in θ ∈ Θ for every t, and the uniform convergence of the sample
criterion 1

T

∑T
t=1 `t to the limit L∞.

Proof of Theorem 12

Proof. The desired result follows immediately by application of Theorem
11 after noting that the data generated by the ST-SAR model converges
to a unique SE solution by Propositions 1 and 2.

Proof of Theorem 13

Proof. We obtain the asymptotic Gaussianity of the MLE immediately
from (i) the strong consistency of θ̂T

a.s.→ θ0 ∈ int(Θ); (ii) the a.s. twice con-
tinuous differentiability of `T (θ) in θ ∈ Θ; (iii) the asymptotic normality
of the score
√
TL′T

(
θ0)

d→ N (0,J (θ0)
)
, J (θ0) = E

(
`′t
(
θ0)`

′
t

(
θ0)

ᵀ); (4.14)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥L′′T (θ)− L′′∞(θ)
∥∥ a.s.→ 0; (4.15)

and finally, (v) the non-singularity of the limit L′′∞(θ) = E`′′t (θ) = I(θ).
See e.g. in (White, 1994, Theorem 6.2)) for further details.

The consistency condition θ̂T
a.s.→ θ0 ∈ int(Θ) in (i) follows by Theorem 2

and the additional assumption that θ0 ∈ int(Θ).

The smoothness condition in (ii) is trivially satisfied for the student’s-t
density.

The asymptotic normality of the score in (4.16) follows by Theorem
18.10[iv] in van der Vaart (2000) by an application of the CLT for SE
martingales in Billingsley (1961) or NED processes in Pötscher and
Prucha (1997) Theorem 10.2, to obtain

√
TL′T

(
θ0)

d→ N (0,J (θ0)
)

as T →∞, (4.16)

where J (θ0) = E(`′t
(
θ0)]`

′
t

(
θ0)

ᵀ) < ∞. The SE nature of {L′T
(
θ0)}t∈Z
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follows by continuity of L′T on the SE sequence {(yt,Xt)}t∈Z; see Propo-
sition 4.3 in Krengel (1985). Assumption 5 imposes the mds or NED
nature of the score sequence {`′t

(
θ0)}t∈Z. The finite (co)variances follow

from the first two moments bounds of Assumption 6.

The uniform convergence in (iv) is obtained under the moment bound

E sup
θ∈Θ
‖`′′t (θ)‖ <∞

and by the SE nature of {`′′T}t∈Z. The moment bound is ensured by
Assumption 6. The SE nature is implied by continuity of `′′ on the SE
sequence {yt,Xt}t∈Z.

Finally, the non-singularity of the limit L′′∞(θ) = E`′′t (θ) = I(θ) in (v) is
implied by the uniqueness of θ0 as a maximum of L′′∞(θ) in Θ.

Proof of Lemma 1

Proof. Expand L̃T̃ (θ̂T ) at θ∗0 to obtain

lim
T,T̃→∞

E
(
L̃T̃ (θ̂T )− EL̃T̃ (θ∗0)

)
= lim

T,T̃→∞
EL̃′

T̃
(θ∗T )(θ̂T − θ∗0)

Next, use the uniform moment E supθ∈Θ |L̃′T (θ)| <∞ to interchange the
limit and expectation by appealing to a dominated convergence theorem,
and use Slutsky’s theorem to obtain,

lim
T,T̃→∞

EL̃′
T̃
(θ∗T )(θ̂T − θ∗0) = lim

T̃→∞
E lim
T→∞

L̃′
T̃
(θ∗T ) lim

T→∞
(θ̂T − θ∗0)

Finally, use the continuity of `, a continuous mapping theorem, and the
consistency of the MLE to obtain the desired result

lim
T,T̃→∞

E
(
L̃T̃ (θ̂T )− EL̃T̃ (θ∗0)

)
= lim

T̃→∞
EL̃′

T̃
(θ∗0)× 0 = 0 a.s.

Proof of Lemma 2

Proof. Obtained immediately by the same argument as that of Lemma
1.
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Proof of Proposition 3

Proof. Follows immediately by noting that under the null H 0 :
E∆̃t(θ

∗A
0 ,θ∗B0 ) = 0, we have

lim
T,T̃→∞

T̃
1
2

(
T̃−1

T̃∑

t

∆̃t(θ̂
A
T , θ̂

B
T )

σ̃T̃ (θ̂AT , θ̂
B
T )

)
= lim

T̃→∞
T̃

1
2

(
T̃−1

T̃∑

t

limT→∞ ∆̃t(θ̂
A
T , θ̂

B
T )

limT→∞ σ̃T̃ (θ̂AT , θ̂
B
T )

)

= lim
T̃→∞

T̃
1
2

(
T̃−1

T̃∑

t

∆̃t(θ
∗A
0 ,θ∗B0 )

σ̃T̃ (θ∗A0 ,θ∗B0 )
− ∆̃t(θ

∗A
0 ,θ∗B0 )

)
d
= N (0, 1).

The first equality is obtained by Slutsky’s Theorem. The second equality
by consistency θ̂AT

as→ θ∗A0 and θ̂BT
as→ θ∗B0 and the a.s. continuity of ∆̃t

and σ̃T̃ on Θ × Θ. The last equality, in distribution, is obtained by
application of the CLT for strictly stationary and ergodic martingale
difference sequences in Billingsley (1961).
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4.7.2 Additional results

LEMMA. 3. Let A be an arbitrary finite-dimensional matrix. For an
induced matrix norm ‖A‖ < 1 the following inequality is implied:

(1 + ‖A‖)−1 ≤ ‖(IN − A)−1‖ ≤ (1− ‖A‖)−1,

with 0 < (1 + ‖A‖)−1 and (1−‖A‖)−1 <∞. By the finite-dimensionality
we can also write

0 < c ≤ ‖(IN − A)−1‖∞ ≤ C <∞,

for some positive constants c and C.

For a matrix H defined by H = (IN − A), LEMMA. 3 provides existence,

non-negativity, and boundedness of the inverse H−1 for finite dimensional

H. This is useful since throughout our theory as we always work with a

fixed N and let only T tend to infinity.

LEMMA. 4. Let A be an arbitrary matrix with eigenvalues ω1, ..., ωn ∈ Cn×n,
real or complex, and r(A) = max{|ω1|, ..., |ωn|} be its spectral radius. If
r(A) < 1 there exists ‖A‖ < 1 for some induced matrix norm.

LEMMA. 4 allows the condition ‖A‖ < 1 in LEMMA. 3 to be replaced

by r(A) < 1 if no suitable norm can be found. In what follows we will

continue stating ‖ · ‖, but remind the reader that in practice one may

focus on sample estimates of r(·) as a rule of thumb.

LEMMA. 5. For any H−1 ∈ Rn×n defined as H−1 = (IN − A)−1 with
N <∞ and r(A) < 1, we have that the following is implied

i det(H−1) > 0,

ii log τ(H−1)N ≤ log det(H−1) ≤ log r(H−1)N <∞,

iii | log det(H−1)| <∞,

Claim iii in LEMMA. 5 is particularly useful in establishing that

ASSUMPTION. 9 holds under correct specification.
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4.7.3 Proofs for additional results

Proof of Lemma 3

Proof. The result follows by taking norms in IN = (IN − A)(IN − A)−1,
which gives15

1 ≤ ‖IN − A‖‖(IN − A)−1‖.
This can be rearranged to obtain

1 ≤ (1 + ‖A‖)‖(IN − A)−1‖.

Multiplying by ‖(IN − A)−1‖−1 gives

‖(IN − A)−1‖−1 ≤ ‖IN − A‖ ≤ (1 + ‖A‖),

thus

(‖(IN − A)−1‖)−1 ≤ (1 + ‖A‖),

(1 + ‖A‖)−1 ≤ ‖(IN − A)−1‖,

providing the first inequality.

The second inequality follows immediately by the fact that the operator
norm is sub-multiplicative. In particular, ‖I‖ = ‖B ·B−1‖ ≤ ‖B‖ ·‖B−1‖
implies that ‖B‖−1 ≤ ‖B−1‖. Hence (1 + ‖A‖)−1 < ‖(I − A)−1‖.
Finiteness of ‖(In − A)−1‖ follows trivially from

(1− ‖A‖)−1 <∞. since ‖A‖ < 1.

Non-negativity of (In − A)−1 follows by noting that all its eigenvalues
are non-zero. The minimum eigenvalue of a non-singular matrix is
equal to the inverse of the spectral radius of the inverse matrix, thus
in this case τ((In − A)−1) = r(I − A)−1. Having just established that
(1+‖A‖)−1 ≤ ‖(In−A)−1‖ ≤ (1−‖A‖)−1 it follows trivially that like-wise

(1 + ‖A‖) ≥ ‖(In − A)‖ ≥ (1− ‖A‖),
15The result is similar to Proposition 6.4.1. in Lange (1999), but reworked here because both the

proof and the final result are partial.
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which delivers the upper bounds of r(In−A) by noting that r(In−A) ≤
‖In − A‖, hence r(I − A)−1 > 0, and equally so τ((In − A)−1) > 0.

Finally, by noting that any two norms in finite dimension n < ∞ are
always within a constant factor of one another, such that we can write
for some real numbers 0 < c1 ≤ c1 ≤ c2 the inequality

c1‖(In − A)−1‖∞ ≤ ‖(In − A)−1‖ ≤ c2‖(In − A)−1‖∞,

proves the second claim by setting c = c1‖(In−A)−1‖∞ and C = c2‖(In−
A)−1‖∞.

Proof of Lemma 4

Proof. This follows from by noting that for any matrix A and any positive
number e > 0, there exists an induced matrix norm ‖A‖ such that

r(A) ≤ ‖A‖ < r(A) + e.

See Proposition 6.3.2. Lange (1999). Trivially,

r(A) < 1 =⇒ 1− r(A) > 0.

Choose e = 1− r(A), the proof is completed by noting that we can now
write

r(A) ≤ ‖A‖ < r(A) + 1− r(A),
r(A) ≤ ‖A‖ < 1.

Proof of Lemma 5

Proof. The proof of all three claims starts by noting that by definition
(slight abuse of notation: reintroducing p and k)

det(H−1) =
(
Πk
i=1ωi

) (
Πp
i=k+1ωiω̄i

)
=
(
Πk
i=1ωi

) (
Πp
i=k+1|ωi|2

)
,

with ω1, ..., ωN ∈ CN×N , real or complex, as the eigenvalues of H−1.
Hence the first claim follows by showing that

(
Πk
i=1ωi

) (
Πp
i=k+1|ωi|2

)
> 0.
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Thus we need to show that ωi > 0 ∀ i ∈ 1, ..., N , since then (|ωi|2)p−k > 0,
and ωN−pi > 0, hence the left side of the second equality is strictly positive.
Note that LEMMA. 3 and LEMMA. 4 deliver the following inequality under
assumptions of LEMMA. 5,

(1 + ‖A‖)−1 ≤ ‖(IN − A)−1‖ ≤ (1− ‖A‖)−1,

which we can also write as

(1− ‖A‖) ≤ ‖(IN − A)‖ ≤ (1 + ‖A‖).

The desirable result follows by proving that τ(H−1) > 0, where τ(H−1) =
τ((IN −A)−1) = min{|ω1|, ..., |ωN |}. Applying the useful identity τ(A) =
(r(A−1))−1, we have

τ(H−1) = (r(H))−1,

hence showing that τ(H−1) > 0 equals showing that (r(H))−1 > 0, which
follows from r(H) < ∞. Using the general inequality r(H) ≤ ‖H‖ we
can write r(H) ≤ ‖(IN − A)‖ ≤ (1 + ‖A‖) thus proving τ(H−1) > 0.

Using the definition of det(H−1), and the bounds of H−1 we obtain the
range of the determinant by allowing the finite number of N eigenvalues
to be either strictly minima or maxima

0 < (τ(H−1)N ≤ det(H−1) ≤ r(H−1)N <∞.

The second claim follows easily now by taking logs and applying Jensen’s
inequality.

Finally, the third claim follows by noting that 0 < det(H−1) implies that
the log is defined, hence its absolute value is finite.

Proof of Proposition 1

Proof. The result follows by Theorem 2.2 and Example 2.1 in Cline
and Pu (1998). In particular, we note first that LEMMA. 3 provides the
uniform bound of H(y)−1 by noting that if supy∈RN ‖ρ(θρ0; y) ◦W‖ < 1
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we have
0 < h̄ ≤ sup

y∈RN
‖H(y)−1‖ ≤ H̄ <∞

with

h̄ =

(
1 + sup

y∈RN
‖ρ(θρ0; y) ◦W‖

)−1

, H̄ =

(
1− sup

y∈RN
‖ρ(θρ0; y) ◦W‖

)−1

.

Having just established that supy∈RN ‖H(y)−1‖ is bounded away from
zero by some constant h̄ and from infinity by some constant H̄ < ∞,
and that H−1(y) is invertible, we can now verify that the assumptions in
Theorem 2.2 and Example 2.1 in Cline and Pu (1998) hold. First we note
that H(y) and H(y)−1 are both trivially locally bounded, and that εt
has full support. Finally, we note that H(y)−1yφ is also locally bounded
since

sup
‖y‖≤M

‖H(y)−1yφ‖ ≤ sup
y
‖H(y)−1‖|φ| sup

‖y‖≤M
‖y‖ ≤ BMφ <∞ ∀M > 0.

Proof of Proposition 2

Proof. We recall that supy∈RN ‖H(y)−1‖ ≤ B < ∞ under the assump-
tions of Proposition 1. Next we obtain the desired result from Theorem
3.1 of Cline and Pu (1999). First, we note that H(y)−1y is trivially
unbounded in RN . Second, we have that H(y)−1y/(1 + ‖y‖) is bounded
in RN since

‖H(y)−1yφ/(1 + ‖y‖)‖
≤ ‖H(y)−1‖‖y‖|φ|/(1 + ‖y‖) ≤ B‖y‖|φ|/(1 + ‖y‖) ≤ B|φ|.

Next, we note that

sup
‖y‖≤M

E‖H(y)−1εt‖r ≤ sup
‖y‖∈RN

‖H(y)−1‖E‖εt‖r ≤ BE‖εt‖r <∞

for every M > 0.

Additionally, it holds trivially true that

lim
‖y‖→∞

E
‖H(y)−1εt‖r
‖y‖r ≤ lim

‖y‖→∞

B‖εt‖r
‖y‖r → 0.
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Furthermore, it holds true that

lim
‖H(y)−1yφ‖→∞
‖y−y′‖/‖y‖→0

∥∥∥∥
H(y)−1yφ

1 + ‖y‖ −
H(y′)−1y′φ

1 + ‖y′‖

∥∥∥∥

= lim
‖y‖→∞, ‖y′‖→∞
‖y−y′‖/‖y‖→0

∥∥∥∥
H(y)−1yφ

1 + ‖y‖ −
H(y′)−1y′φ

1 + ‖y′‖

∥∥∥∥

since H(y)−1 is uniformly bounded in y, and hence,

‖H(y)−1yφ‖ → ∞ ⇔ ‖y‖ → ∞ ,

and
{
‖y‖ → ∞ ∧ ‖y − y′‖/‖y‖ → 0

}
⇔ ‖y′‖ → ∞.

As a result

lim
‖y‖→∞, ‖y′‖→∞
‖y−y′‖/‖y‖→0

∥∥∥∥
H(y)−1yφ

1 + ‖y‖ −
H(y′)−1y′φ

1 + ‖y′‖

∥∥∥∥ = ‖H∞φ−H∞φ‖ = 0.

Finally, we also have

lim sup
‖y‖→∞

‖H(y)−1yφ‖
‖y‖ ≤ lim sup

‖y‖→∞

‖H(y)−1‖‖y‖|φ|
‖y‖ = ‖H∞‖|φ| < 1.

4.7.4 Additional Monte Carlo results and figures

In this additional experiment, we investigate whether the MLE is well-

behaved and approximately normal for increasing sample sizes in the case

of identified parameters. This itself is not the most interesting result to

study, but it confirms that our theory is correct. The data generating

process is of the form:

yt = H(θρ; yt−1)
−1(εt), εt ∼ TID(1, IN ; 5), (4.17)

We set the parameters values to
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δ = 1.35, γ = 1.05, α = −.2, ϕ = 1.4, κ = −.4,

Zt = yt−1, τ(θτ ; Zt) = α + ϕ/N
∑N

1 (yt−1),

which satisfies the conditions for geometric ergodicity and allows for local

positive and negative clustering.

We keep the ratio of distant and close-by neighbors comparable across

experiments by allowing the network density of the weights matrix to

increase with N . In each draw we generate a random zero diagonal

row-normalized weights matrix with N/10 neighbors for each observation.

The process is initialized with H1 = IN , and the first 50 steps of the

sequence are discarded to avoid dependence on the initialization. We

simulate 1000 datasets and estimate the parameters of the ST-SAR with

Student’s-t likelihood. We consider samples of size T = 25, 100, 250 for

N = 30. Figure 4.7 presents kernel density estimates of the distribution

of the MLE for the different sample sizes.

Figure 4.7 presents the results and shows that for small sample sizes the

estimators are not perfectly normal. For larger sample sizes, we see a

fast convergence towards the limiting result. A second experiment with

N = 60 was also performed, we noticed improvements in the distributions

for small T as N grows. The results indicate that for an empirically

relevant signal and sample size the MLE is well-behaved. Note that these

results do not directly generalize to any empirical setting. Specifically,

(near)-linear signals will cause identification problems even in larger

samples that break the uniqueness assumption required for normality.

However, our main simulation results show that information criteria can

be used to assess the presence and significance of nonlinearity.
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Figure 4.7: Kernel density estimates of estimated parameters from 1000 simulation replications for
N = 30 indicating that parameters are approximately well-behaved when identified. Note that this
does not permit the use of t-statistics to test for significance, evidence for non-linearity can be obtained
from AIC and DM-type tests as in our empirical analyses.
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Table 4.7: Power: Selection frequencies for contaminated data generated from the ST-SAR.

DGP: ST-SAR + AO
ST-SAR 1
vs. SAR

ST-SAR 2
vs. SAR

ST-SAR 2
vs. ST-SAR 1

AIC AICc mAIC AIC AICc mAIC AIC AICc mAIC

N=30 T=10 47 44 45 45 41 43 42 40 41
T=25 59 58 59 61 60 60 48 48 48
T=50 84 84 84 81 81 81 52 52 52
T=100 97 97 97 96 96 96 62 61 62
T=250 100 100 100 100 100 100 95 95 95

N=40 T=10 52 51 51 55 53 54 47 45 46
T=25 73 72 72 76 76 76 54 54 54
T=50 93 93 93 91 91 91 54 53 53
T=100 93 93 93 99 99 99 71 71 71
T=250 98 98 98 100 100 100 99 99 99

N=50 T=10 57 55 56 63 62 63 54 53 54
T=25 83 83 83 80 80 80 51 51 51
T=50 97 97 97 96 96 96 61 61 61
T=100 99 99 99 100 100 100 77 77 77
T=250 100 100 100 100 100 100 99 99 99

N=60 T=10 65 64 65 63 62 63 49 48 49
T=25 89 89 89 88 88 88 49 49 49
T=50 99 99 99 98 98 98 56 56 56
T=100 99 99 99 100 100 100 80 80 80
T=250 100 100 100 100 100 100 100 100 100
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Figure 4.8: Raw data and sovereign colors used in application II.
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Figure 4.9: Residuals of the final SAR and ST-SAR showing that after filtering out linear spatial
dynamics, the residuals of Spain and Greece are not properly centered on zero.
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Figure 4.10: Residual correlations of the SAR and ST-SAR estimated on full data, highlighting the
improved filtering of the ST-SAR.
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4.7.5 Time-line of events related to European Long term In-
terest Rates

1. January 1999, start of the Euro;
2. January 2001, Greece joins the Euro;
3. January 2002, Euro coins and notes are introduced;
4. January 2007, Slovenia joins the Euro;
5. January 2008, Malta and Cyprus join the Euro;
6. November 26, 2008, 200bn European Economic Recovery Plan;
7. January 2009, Slovakia joins the Euro;
8. January 2009, Estonia, Denmark, Latvia and Lithuania join the ERM;
9. December 17, 2009, Greece hits deficit record;

10. April 19, 2010, Greece hits borrowing cost record;
11. May 2, 2010, Greece accepts 110bn bailout package;
12. November 28, 2010, Ireland accepts 85bn bailout package;
13. January 2011, Estonia joins the Euro;
14. February 14, 2011, agreement of 500bn ESM bailout fund;
15. May 3 , 2011, agreement over 78bn bailout package for Portugal;
16. July 21, 2011, agreement over additional 109bn bailout package for Greece;
17. October 6, 2011, Bank of England injects additional 75bn pounds into the economy;
18. January 2012, major downgrade wave including nine Eurozone nations by S&P;
19. June 2012, Spain and Cyprus request assistance from the ESM;
20. January 23 2013, England threats to leave the European Union;
21. May 2, 2013, ECB cuts the rate on its benchmark refinancing facility to 0.50%;
22. November 7, 2013, ECB cuts the rate on its benchmark refinancing facility to 0.25%;
23. June 2014, first negative interest rates by the ECB;
24. June 23, 2016, Brexit.
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Chapter 5

Non-parametric Cross-sectional
Nonlinearities

Chapter Summary

The UN’s Sustainable Development Goals for 2030 aim on one hand at inclusive growth

and eradicating poverty, and on the other at preserving environments. The relation

between development and the environment has been studied extensively since the 1990s,

documenting inverted U -shaped relations between per capita income and indicators

of environmental degradation. This paper revisits the issue with machine learning

techniques and novel disaggregate data to model these relationships heterogeneously

across economic indicators. Results suggest that development gradually improves the

efficiency of consuming the earth’s nonrenewable resources, but increased efficiency

alone is not sufficient to offset growth in scale. Development shifts reliance on one

nonrenewable source to another, and on average we find successive inverted U -shapes in

deforestation, air pollution and carbon intensities, followed by a J-shape in per capita

carbon output. Local economic circumstances further determine the shape, amplitude,

and location of tipping points in environmental output. The general implications of the

estimated dynamics are explored by extrapolating environmental output to 2030 under

simplistic scenario’s. The results are a reminder that immediate, and sustained global

efforts are required to preserve our environment.1

1This chapter is based on a compilation of work. It draws from “Environment and Development”
published by the World Bank, the full reference is Andree et al. (2019). An adapted version “Revisiting
the relation between economic growth and the environment; a global assessment of deforestation,
pollution and carbon emission” of the same authors together with Dr. Eric Koomen is published in
the Journal of Renewable and Sustainable Energy Reviews. The reference is Andrée et al. (2019). The
supplementary appendix is based on the technical background note associated with this publication,
available here https://doi.org/10.1016/j.rser.2019.06.028. The material is reproduced here with kind
permission from Elsevier and the World Bank.
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5.1 Introduction

Will continuation of economic development increase pressure on the

earth’s finite resources, or does the increase in income provide the basis

for environmental improvement? This question was central to several

empirical studies in the early 1990s (Grossman and Krueger, 1991; Shafik

and Bandyopadhyay, 1992; Panayotou, 1993). Their initial work sug-

gested the existence of an inverted U -shaped relation between per capita

income and environmental degradation indicators related to pollution

(e.g. SO2, NOx), deforestation, and carbon emission. Their hypothesized

environmental Kuznets curves gained massive following in research and

policy as they held the attractive promise that economic development

could actually benefit the environment. Early empirical examples of

these curves, their possible explanations and policy implications are re-

viewed by Soumyananda (2004); Bo (2011). From 2000 onwards, however,

substantial criticism was formulated in relation to the poor statistical

foundation of these curves (Stern, 2004) and the obsession with replicating

the exact inverted U -shape (Levinson, 2001). Stern (2004) points out that

increases in wealth and income occur simultaneously with a structural

transformation process in which the composition of inputs and methods

of production gradually shift in favor of less destructive production. So it

is not necessarily the increase in income that makes lower emission levels

possible, but the gradual adoption of cleaner technology that can occur

irrespective of development status (as documented by, for example, Stern

and Common (2001); Dasgupta et al. (2002)). Environmental impact is

thus determined both by efficiency of production, which may improve

nonlinearly across GDP, and by total production size, which varies across

panels of countries (Stern et al., 1996). If the scale of the economy is

large, minute changes in the efficiency of production can result in large

differences in output levels. Therefore, if a panel is constructed that

includes economies of widely different scales, the variance in environmen-
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tal output levels can be expected to vary with the GDP levels of the

countries. To cope with this, one should acknowledge in the model design

that environmental output is de facto a result of both a scale component,

and a technology component.

Many empirical approaches have tried to model degradation levels directly,

not distinguishing between the role of scale and a technology separately

within the model, and therefore assume a degree of homogeneity in the

emission-income relationship that is unrealistic for a panel of widely dif-

fering countries. A possible theoretical foundation for the environmental

Kuznets curve, found in technological progress and diminishing returns

to capital, is discussed by Brock and Taylor (2010). They highlight that

modeling a panel relationship between emission levels and per capita

income directly is not supported by their theory. Instead, they focus on

combined panel data on emission intensities and abatement costs. Others

have highlighted that, even when the regression deals with per capita

emissions instead of levels, restricting cross-sections to undergo identical

experiences over time biases results (List and Gallet, 1999). This suggests

flexible approaches that allow for heterogeneous relationships may be

more suitable as they allow for locally varying patterns to exist. Volle-

bergh et al. (2005) pay specific attention to homogeneity assumptions

in their environmental impact regressions, and conclude that correctly

modeling heterogeneity is essential to prevent spurious correlation in

reduced-form panel estimations. Other econometric issues with environ-

mental Kuznets curves relate to inappropriately dealing with the serial

dependence and omitted variables bias Stern and Common (2001); Stern

(2004). This has partly been addressed by adding control variables as in

studies reviewed by Stern (1998), or by deploying fixed-effect approaches

Stern (2004). Time series approaches that claim that the error correction

approach provides appropriate diagnostic statistics and specification tests

for the environment-economic relationship are also widespread (see, for

example, Perman and Stern (2003); Stern (2004)). However, even over
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time, linearity and constant variance assumptions break for moderate

time dimensions because nonlinearities result from the income depen-

dence of the derivatives of the function mapping changes in income to

changes in degradation. From that perspective, the non-parametric error

correction approach (Shahbaz et al., 2017) improves on previous work.

More discussion on nonlinear cointegration in the context of the envi-

ronmental Kuznets curve can be found in (Wagner, 2015). His general

conclusion is that the diagnostics available in the standard framework

are not appropriate in the nonlinear case because powers of integrated

processes are themselves not integrated. In the non-parametric context

on the other hand, causality and other correct-specification arguments

are tightly related to the penalization technique, or bandwidth setting,

that may take the limit criterion away from the true parameter.

In this paper, we revisit the empirical relation between economic growth

and the environment using a panel data set on environmental indicators

and economic development for a large set of countries applying a flexible

kernel model that allows dependencies to vary smoothly throughout the

data. We focus on a cross-comparable technology component represented

by degradation intensities of average per capita wealth production to cope

with the heteroskedasticity related to economic scales. The empirical

strategy taken, pays tribute to the earlier literature that argued in favor

of modeling outcome variables that are cross-comparable, and for using

flexible models that allow relationships to vary throughout the data.

To allow for a wide variety of potential nonlinearities with minimal

parametric assumptions, we deploy a machine learning method that

learns from similarities in the data using kernels. The method is known

as Kernel Regularized Least Squares (Hainmueller and Hazlett, 2014).

The key reason behind this choice is that apart from flexibility and taking

full advantage of the kernel learning framework, it is still straightforward

enough to back out marginal effects.
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The framework is used together with out-of-sample selection of fixed

effects to model remotely sensed and reported environmental data for

95 countries that include 85% of the world’s population, 83% of global

carbon output and 72% of all forest cover. The large sample of countries

and simultaneous assessment of three environmental pressures along

identical economic data using the same modeling strategy, differentiates

our work from recent studies that use various methods to approach the

relationship between economic development and specific environmental

pressures in individual countries (e.g. (Managi and Jena, 2008; Keene

and Deller, 2015; Apergis and Ozturk, 2015)), or the recent wave of

research on carbon emissions in more limited samples of countries (e.g.

(Apergis, 2016; Özokcu and Özdemir, 2017; Awaworyi Churchill et al.,

2018)).

The remainder of this paper is as follows. We discuss estimation methods

in Section 5.2. We provide only a non-technical discussion here, more

technical discussion is provided in the supplementary background notes

made available together with this paper. Section 5.3 details the data

used for our empirical analysis in section 5.4. Finally in section 5.4.5, we

use our empirical descriptions to explore the implications of continuation

of growth on environmental output. Section 5.5 concludes.

5.2 Methods

In most explanatory analysis, the estimated model is assumed to con-

sist of a finite set of parameters. While this makes the interpretation

straightforward, it imposes strong assumptions about the behavior of

the process being modeled. Specifically, linear models assume that the

relationship between two variables Y and X described by a parameter β

is constant across levels of Y and X. Such strong assumptions about the

data generation process (DGP) are rarely - if ever - justified by economic
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theory and can lead to seriously erroneous conclusions. The single pa-

rameter elasticities in linear models can at most approximate the average

of the nonlinear elasticities locally on a function. Puu (1991) provides

an excellent discussion on linear versus nonlinear dynamics in economics,

and the key issue that linear approximations can be reasonable within

bounds but should not be used to infer change so large that the bounds of

the approximation interval are violated. Naturally, these bounds depend

on the strength of the nonlinearity (Lorenz, 1993). Linear approaches can

thus yield useful evidence, but only within a relatively narrow range of the

overall state space, particularly if large parts of the population are likely

to pass through that state. However, in general, local approximations fall

short when building global arguments. Costanza et al. (1993) provide an

excellent discussion on the severe limits of taking simple relationships

from a local level and aggregating them up to describe the large-scale

behavior of a complex system. The other way around, inferential errors

induced by fixing the relationships in a complex system at the average,

increase with the divergence between the average observation and the

values of the observations of interest. This is undoubtedly the case in the

analysis of economic development and environmental output, in which the

structural behavior of the outliers, such as the poorest or most polluted,

are often of foremost concern to policy makers.

Finite dimensional nonlinear parametric models may address several of

these issues, but require strong predictions from underlying economic

theory on the implied form of the structural relationship for the parame-

ters to be economically meaningful. Such functions may be difficult to

parameterize. Finite series approximators may also provide flexibility,

but the resulting conclusions are often different from models in which

the order of approximation is allowed to vary along the sample size, see

Horowitz (2011) for further discussion.

Non-parametric models make fewer assumptions about the DGP, and
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can produce approximations with varying flexibility (Härdle et al., 2004).

The key question in this case is how flexible the empirical function should

be given the data that has been observed. A regularized non-parametric

model exposed to growing data is in a sense an approximator that adjusts

its belief of what an appropriate description of the DGP is according to

the number of observations that is seen. We apply a particular type of

this model in this paper that is known as the Kernel Regularized Least

Squares estimator developed by Hainmueller and Hazlett (2014). Key in

this approach is that the model adjusts its understanding of the DGP

as the data grows. A non-parametric model in which the size of the

model is appropriately regulated results in a small size when samples

are few, but may increase in dimensionality as the data grows. As a

result, the approximation error declines with growing data. Regulation

of the order of approximation in non-parametric models occurs through

tuning parameters. Correct inference is therefore strongly dependent on

values that are not estimated by the criterion, but instead set by the

researcher. While the relationship between standard loss minimization

and correct parameter inference, as in the linear Least Squares literature,

is a basic concept well-known to many researchers, inference based on

the estimators of a non-parametric model has to consider the effect of

the external parameters for which results do not follow under the same

consistency and normality theorems. For example, while Hainmueller

and Hazlett (2014) provide consistency and normality results for their

model, they state explicitly that these results are different for every

level of penalization. We refer the reader to Andree et al. (2019) and

the supplementary notes made available together with this paper for an

in-depth discussion on this topic and a technical exposition of the model.

We also provide more discussion there regarding the assumptions we

make about the type of nonlinearities in the data generating process. For
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the general reader, it suffices to say that our regression is of the form:

yt = h(Xt) + g(εt) + εt, (5.1)

where yt is a vector of environmental degradation variables at time t

which will be introduced in our next section, Xt is a matrix of economic

variables at time t that are similarly introduced in the next section, h is a

flexible function that is approximated using Gaussian kernels, εt are time

specific constants with g being some function that determines whether

those time-specific error effects should be included, and εt are vectors

of residuals at time t.2 The regression is estimated by minimizing Least

Squares using a penalty that discourages overly complex results. The

penalty is chosen using cross-validation. This also ensures that, as data

grows, the estimated marginal effects can be interpreted as usual, as is

explained further in the supplementary background notes.

5.3 Data

We combined measures of tree loss, air pollution concentrations and

carbon emissions on one side, and GDP indicators of economic structure

on the other. Our data is from a variety of sources and includes 95

countries measured over 1999− 2014 containing approximately 85% of

the world’s population, 83% of the world’s carbon output, and 72% of the

world’s forest cover. We have removed areas below 1500 square kilometers

− essentially all small island states − from the analysis. A summary of

the data as it enters our regressions is given below.

2Note that εt could be part of Xt, which is how we treat it in the appendix. We have written it
here separately as an error component, which may be more recognizable to those that are familiar
with the panel regression setting.
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5.3.1 Forest cover

We use data from Hansen et al. (2013), which contains estimates of

global tree cover extent (2000) and annual tree cover loss (2001-2014) at

a spatial resolution of 30 meters.3 They analyzed satellite images from

Landsat 5, 7, and 8 to identify tree cover extent, defined as vegetation

taller than 5 meters in height, and loss, defined as complete removal of

tree cover canopy. The authors reported the tree cover loss data to have

a false positive rate of 13%, a false negative rate of 12% and a ratio of

total forest gain to loss over 2001-2012 of 0.34. The derived data differs

from statistics reported by the UN-FAO’s Forest Resource Assessment,

but due to the consistent methodology and definition of forests across

countries, we believe this data is better suited for a global analysis. We

define forests as pixels with a minimum canopy closure density of 30%.

Finally, we convert the data to area measures and sum the data by

country to calculate tree cover loss as a percentage of tree cover extent

in 2000. Our intention is to examine “natural dense forests”, but note

that the data also captures forest plantations. Our loss measure is thus

only a proxy for deforestation, as there may be many other natural and

anthropogenic processes (storm damage, fires, mechanical harvesting)

that are reflected by the data. We refrain from including the tree cover

gain data as there are significant differences in methodology that limit

additivity or comparison with loss.

Forest cover loss included two outliers of respectively 10.8% and 5.4% loss

in Namibia (2001, and 2005). For comparison, the median observation

across time in this country was 1.7%. We have capped these numbers

at 3% which, seemed an appropriate maximum for the range of forest

loss after inspecting a kernel density. We applied a three-period simple

moving average to further smoothen outliers. Our final data set includes

3The data can be found at https://earthenginepartners.appspot.com/science-2013-global-
forest/download v1.2.html.
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the losses for countries that held 72% of forest cover in 2000. The largest

missing forest patch is that of the Russian Federation.

5.3.2 Air pollution

We use concentrations of fine particulate matter (PM2.5), coarse dust par-

ticles of 2.5 micrometers in diameter, as a proxy for broader air pollution.

The (0.01◦ × 0.01◦ resolution) data is developed by van Donkelaar et al.

(2016) and includes global annual ground-level PM2.5 (1999-2014) derived

from a combination of satellite-, simulation- and monitor-based sources.

The data set has been developed from satellite-derived Aerosol Optical

Depth reflectance values calibrated to ground-based PM2.5 observations

using a Geographically Weighted Regression.

Remote sensing methods aim to observe particulate matter but are

prone to capturing fine dust released from barren lands that have similar

reflectance properties in the high frequency spectral wavelengths. This

poses a difficulty in our analysis, as countries in desert regions have high

country wide average pollution levels, while large countries, or those

with substantial forest cover where ambient pollution is low, have lower

average concentration to what the larger population is exposed to on

a regular basis. We used gridded population data that is produced

using a combination of light at night data and census data, to identify

patches of urban areas.4 We averaged gridded pollution data that falls

within urban boundaries to the country-level, defining urban areas as

places where population density was higher than 300 people per square

kilometer. The results in fig. 5.1 show that this procedure results in

higher pollution levels in large countries with known pollution problems

in cities (notably China, Nepal, Pakistan) or those with forests (notably

Lao PDR, Indonesia, Senegal), and in lower concentrations in areas with

4The population grids are from http://sedac.ciesin.columbia.edu/data/collection/gpw-v4, we use
the 2000 grids.
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known deserts (notably Chad, Tunisia, Morocco).
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Figure 5.1: Difference between average air pollution (PM2.5) in urban areas and country-wide
average.

5.3.3 Carbon emission and economic development

For data on carbon dioxide emissions and economic variables, we rely

on the World Bank’s World Development Indicators (WDI). To ensure

cross-country comparability, we use GDP per capita in constant 2011

international dollars adjusted for purchasing power parity (PPP). The

PPP adjusted GDP accounts for highly variant costs of living between

countries. Such adjustments to GDP have been criticized by some to

possibly overstate the wealth of poor countries (Coyle, 2014), while others

highlight that the form of PPP adjustments may matter for appropriate

international comparison (Davies et al., 2011). Nevertheless, PPP ad-

justments remain the standard approach for international comparison of

GDP figures across countries adopted by international institutions (The

World Bank, 2011, 2013; Statistical Office of the European Communities

and Organisation for Economic Co-operation and Development, 2012).
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Over- or under-stating wealth does not pose a problem to the current

analysis if the bias effects countries with similar GDP in a similar way,

as we are purely interested in trends across wealth and not necessarily

performing an unbiased wealth assessment itself. In the remainder of this

paper, when we mention GDP we refer to its adjusted version and with

an international dollar we refer to a single unit of GDP.

The CO2 emissions estimates retrieved from WDI were produced by

the U.S. Department of Energy’s Carbon Dioxide Information Analysis

Center (CDIAC) and include anthropogenic emissions from fossil fuel

consumption and world cement manufacturing. The data set includes

approximately 83% of global carbon emissions and should be quite repre-

sentative of missing countries as it is close to the 85% of world population

included in our samples.

5.3.4 Treatment of missing data

Almost every ambitious analysis that aims to pull together various sources

of data to produce insights supported by a wide range of observations,

is eventually plagued by missing data of some form. The WDI data

set contains a wealth of information, but some important observations

are missing. Immediately, this poses a trade-off between using less, but

complete, data, or using more data but having to cope with missingness

by deploying an imputation strategy.

The predictive modeling community has generally found that using more

information tends to result in better predictions (Kuhn and Johnson,

2013). The view is that the usefulness of the imputation can be inferred

from looking at out-of-sample performance of the final model. Hence,

this has led to a more relaxed opinion about using sparsely observed

variables to build predictive models, and various approaches are widely

available (Kuhn, 2008; Kowarik and Templ, 2016).
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When interested in inference, however, it is important to understand

the reason behind missingness. A common presumption is that impu-

tations introduce additional uncertainty and possibly bias. However,

complete-case studies can in fact lead to much more severe problems if

the observations are missing for a reason (Westreich, 2012). A trivial

example in the current context is the following one. If countries with

extreme carbon emissions simply choose not to report them, then surely,

we would underestimate carbon output if we drop those cases. While

many remain cautious to use imputed data, complete-case analysis is in

fact only unbiased under restrictive assumptions (Rubin, 1976), and our

default view for better inference is to favor imputations.

Strategies to deal with (extreme) missingness are treated for example in

(Little and Rubin, 2012; Graham, 2012; Salgado et al., 2016). A standard

approach is the use of fully-conditional regression specifications to fill

in missing data, e.g. using regression specifications based on all other

available covariates (Audigier et al., 2018), and the most favorable method

(but often computationally challenging in the nonlinear case ) is possibly

that of using multiple impuatations and pooling regression results (Rubin,

1996). This is of interest when one is also concerned about correcting

the conditional variance function rather than only the conditional mean

function. In either case, flexible modeling strategies tend to produce

both improved prediction performance as well as better inference than

linear imputation approaches (Murray, 2018). However, tractability and

simplicity are not factored in when merely pitting different imputation

approaches against one another based on simple diagnostics. For that

reason, we adopt different approaches depending on the imputation case.

GDP has only .12% missing, manufacturing and services GDP shares

have 5.57% missing. We interpolate these values linearly over the time

dimension. The WDI does not report income shares in each country

but sometimes reports a Gini index. We used this to back out income
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shares. In particular, we make use of the fact that income shares held by

a certain share of the population can be read off the Lorenz-curve and

that the Gini coefficient is a measure of dispersion of the Lorenz-curve

calculated from the summed surface under the Lorenz-curve and the

surface under the 45◦ line. In total we are able to collect 937 observations

of both Gini coefficients and income shares held by the first two quintiles.

We estimate the nonlinear inverse map with high precision (R2 of .99)

using the penalized non-parametric estimator. We then used the Gini

observations to predict the income shares. After this first imputation

step, 61.25% of the observations remain missing, but only over the time

dimension. In the countries that have more observations in the time

dimension, we observe that the income shares are relatively stable over

time. We therefore simply interpolate the remaining missing values

linearly over time.

Poverty rates has 69.54% missing values. A large part of the missing

values are due to statistics that are not produced in high income countries.

We fill all missing poverty and undernourishment rates above 23, 000

GDP per capita with zero. The choice of this threshold is because

undernourishment rates were not reported above this income value, and

only Malaysia, with 24, 500 GDP ppp per capita, had a positive reported

poverty rate (1.3%). All other countries already attained 0% poverty

rates in the published data. After this first imputation step, 49.54% of

poverty remains missing because most countries are not complete in the

time dimension. first interpolate these variables by taking a weighted

average over time. This works well for most variables, but may yield poor

results for poverty, as we have seen a tremendous improvement in most

countries in past years. We improve the time dynamics in the interpolated

poverty data by using information about time dynamics contained in

our other variables. We vectorize the interpolated values, and fit the

kernel model using the full set of undernourishment, logarithmic GDP

per capita, the share of manufacturing, services, urban population shares,
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and bottom 40 income shares. The model reaches an R2’s of .91. We

use this model to smoothen the interpolated poverty values by taking

an average of the interpolated values and the values predicted by this

nonlinear model.

A final caveat is in order. Ultimately, the data on poverty and income

shares remains patchy at best. We are well aware that the sparsity and

the heavily imputed nature of the variable used in the analysis may

remain a controversy to some. To put the missingness of 61.25% and

49.54% of the bottom income shares and poverty rates in perspective,

the World Bank and UN-FAO methodology for the calculation of the

official undernourishment statistics is based on three-year linear moving

averages of model results produced using Household Consumption and

Expenditure Surveys that are taken every 3-5 years (Moltedo et al.,

2014). At this stage of knowledge, the objective of the research here

is to further open up the empirical debate on the poverty-environment

relationship. Recent initiatives such as the United Nation’s Poverty-

Environment Initiative highlight the importance of the relationship for

policy, and recent research highlights the importance that poverty plays

in the quality of the environment (Dogo et al., 2019). Since the hypothesis

behind the environmental Kuznets curve is that poor countries may be

more polluting, simply dropping incomplete cases would lead to a severe

bias of the result.

5.3.5 Other controls and final data

We use the NDVI from the Moderate resolution Imaging Spectroradiome-

ter (MODIS) derived from NASA’s Terra satellite imagery to control

for effects that relate to a variety of physical characteristics and natural

assets of a country that may, for example, have an impact on ambient

pollution levels or forest growth and loss dynamics.5 This data set pro-

5Available at https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.
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vides spatial and temporal comparisons of global vegetation conditions.

The original data has a monthly frequency at a resolution of 1km. We

calculated the mean NDVI value for each year in our analysis, using

2000-2015 data, and summarized the data to the country-level using the

mean, minimum, and maximum value to get a broad description of the

vegetation in a country.

Table 5.1 summarizes the data, all predictors are mapped into the [0, 1]

interval to ensure the penalization effect is not driven by differences in

variance of the different variables. We scale back the estimation results

for easier interpretation.

Table 5.1: Summary of the data used in our empirical application. Statistics are not weighted and
not necessarily representative of the world averages.

Statistic Mean St. Dev. Min Max

Annual % Tree loss 0.437 0.406 0.009 2.924
Urban PM2.5 µg/m3 18.924 12.609 0.311 63.498
CO2 kg/$ 0.239 0.199 0.014 1.990
CO2 ton p.c. 3.402 4.162 0.015 20.208
GDP ppp p.c. 2011 international $ 13,468.880 15,056.710 555.560 64,979.840
Population density, people / km2 101.592 138.270 1.524 1,148.514
Undernourishment rate 15.514 13.546 0.000 64.500
Poverty 1.90$ at 2011 international $ 21.177 22.040 0.000 84.740
Manufacturing GDP share 14.371 6.721 0.237 38.733
Services GDP share 70.065 12.734 29.279 93.881
Urban population share 53.685 22.754 12.082 97.818
Bottom 40% income share 15.970 4.130 7.510 28.024
NDVI annual mean 0.502 0.163 0.111 0.762
NDVI annual min 0.327 0.164 −0.027 0.657
NDVI annual max 0.655 0.161 0.170 0.862
Forest cover 2000 extent million ha 3.628 2.815 0.0005 9.883
Country area km2 978,152 1,999,320 15,007 9,904,700

5.3.6 Transformation to degradation intensities

To address homogeneity concerns related to the scales of economies,

we model standardized units of deforestation, pollution, and emissions,

standardized per unit of GDP per capita in 2011 international dollars.
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The choice to standardize degradation units by GDP per capita, and

not by GDP, is for cross-comparability between countries of different

economic size. In particular, using E to denote environmental pressure,

the ratio E/GDPpc is the environmental intensity of the average person’s

economic wealth, rather than the intensity of an international dollar. We

favor E/GDPpc over E/GDP because countries with larger populations

will produce more international dollars and thus have lower intensities

per dollar if everything else remains constant. The difference in efficiency

of dollar production should not be used to suggest that average wealth

production is environmentally more efficient. This is important because

the hypothesis of the environmental Kuznets curve is that environmental

pressure changes with increases of wealth, conventionally modeled as

GDP per capita.

The cross-comparability is also statistically favorable because it reduces

heteroskedasticity of the dependent variable across economic dimensions

which allows to more robustly interpret variances, without the need of

additionally modeling the conditional variance across covariates, such

as discussed in Brown and Levine (2007). The general problem is that

when the residuals vary strongly across the covariates, then apart from

approximating a conditional mean function, one would need to approxi-

mate also the conditional variance function. The stabilization allows us

to view the average standard errors as reasonable proxies, particularly

given the additional approximation errors that a new non-parametric

model of conditional variance would introduce.

Figure 5.2 at right shows that the variance in the log of the environmental

intensities of GDP per capita is stable across GDP per capita, while the

left plots with standardized intensities of international dollars contain

widely differing variance. Note that the left-side is not log-transformed.

While this would stabilize the data better, it does not change the rela-

tionship between the variance and GDP per capita.
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Figure 5.2: Observed degradation intensities and degradation levels across income.

Figure 5.2 immediately reveals a clear relationship between average in-

come and the average environmental pressure for that level of average

income. In particular, and unsurprisingly, the average log-linear trend is

downward for all environmental pressures indicating that new per capita

wealth is generated at lower environmental cost. For environmental

pressure to go down on a net basis, we need that the emission intensity

of average wealth declines faster than the increase in average wealth.

Depending on the acceleration of one versus the other, various environ-

mental output curves can result. Hence, the average trends in fig. 5.2 may
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translate into inverted U -shapes in the environmental variables. However,

since the left side is in logs, it means that minor deviations from the

average may lead to large differences in degradation output explaining

why inverted U -shapes are not directly visible in the left side.

5.4 Empirical results

Since, clearly, the environmental pressure of an average person’s wealth

decreases with GDP per capita, the empirical question is not whether the

elasticity is non-zero, which is the question most regression analyses aim

to tackle, but whether the elasticity implies that the intensity improves

sufficiently fast across increasing income. Hence the empirical analysis

of the Kuznets curve can be understood as an analysis of relative speed

of change. In the following, we present the results in line with general

models of the form

log

(
Eit

GDPpcit

)
= βitxit + αiεt + εit, (5.2)

where the βit’s are approximated by our non-parametric regularized

kernel estimator. Nevertheless, the interpretation follows as one would

usually interpret the above. In particular, table 5.1 lists the variables

that enter the regression, including the control variables, and the tables

below list how they entered the regression. For example, we use a log

transformation of GDP per capita, hence the interpretation is that of

a standard elasticity. For a 1 per cent increase in GDP per capita

evaluated at it, the quantity Eit
GDPpcit

is estimated to change by βit per

cent. This means that when βit = −1, a percentage increase in average

income is associated with an efficiency improvement of a percentage.

For marginal changes, this means that output levels stay approximately

unchanged since scale, measured in average income, also increases by a

percentage. All the other effects follow log linear interpretation, which is

straightforward since the variables already represent rates. For a 1 point
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per cent increase, a βit ∗ 100 per cent change in efficiency is expected,

hence all parameters have an interpretation as elasticity.

The results show that the environmental output intensities are well

explained by the data and that evidence for nonlinear dependencies is

pervasive throughout all three models. Tables 5.2 to 5.4 show the marginal

effects for individual models, summarized using the mean, quantiles and

medians together with t-statistics.6 For brevity, we have omitted the

control variables in the tables.7 All models have been checked for time

fixed effects, but in all three cases the out-of-sample performance was

optimal in the models without fixed components. The appendix contains

conditional expectations together with confidence bands for each of the

economic variables, holding the effects of all other variables constant at

their mean values, which provide guidance throughout our discussion of

the results. In particular, while the tables present the range of parameter

estimates, it is not immediately possible to understand how effects of

variables change along the levels of those variables. The conditional

expectation plots plot the expected values for the outcome variables

along the levels of individual covariates, and can therefore rovide a sense

of the ordering of the local elasticities. Variables for which the marginal

effects within the inner 50% of the percentiles range have an identical and

significant sign are highlighted in the tables. This reveals that many of

the variables contribute both positively as well as negatively to the output

intensities depending on the data levels at which effects are evaluated.

This shows that nonlinearities are important. We find that income has

an unambiguous effect, all three environmental intensities improve with

income but not sufficiently to offset scale growth.8 While increases in

6We obtained our results using the R implementation of KRLS. Our out-of-sample shrinkage
strategy is not implemented by default, and requires many model fits. We found that an optimized
BLAS/LAPACK implementation provided better speed than the C + + implementation of bigKRLS.

7Annual mean, minimum and maximum NDVI values, forest cover, and country size
8The log-log specification allows for a simple interpretation. To offset the scaling effects, the

marginal effect of log GDP per capita needs to be smaller than -1, which we do not observe within the
25%-75% range of effects.
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GDP provide a basis for the improvement of production efficiency, it

appears not to lower the net environmental output. However, as GDP

increases, a structural change occurs in which poverty goes down and

the share of manufacturing services, and urban population gradually

increase. We will highlight several of these structural effects that are

best visualized in fig. 5.7 and fig. 5.8. Figure 5.8 shows how poverty,

the production composition, urban population shares, and the income

distribution trend across GDP.

5.4.1 Individual model results

The results for deforestation show that early increases in population

density correlate with a decrease in deforestation intensity while high

population densities correlate with an increase. The trend across urban

populations is a weak inverted-U . The effects of manufacturing and

services are less ambiguous, the move out of an agricultural society and

specifically an increasing share in services that occurs with increasing

GDP, is a strong correlate of declining deforestation rates. There is some

evidence that economies with an unequal income distribution retain a

higher deforestation intensity of production. The effect of the poverty

variables is, however, mixed as the semi-elasticities contain both negative

and positive values. The conditional expectation plot in the appendix

also visualizes that there is a very mild U -shape along poverty rates,

with deforestation efficiency slightly going down again as countries move

below 20 per cent. Reducing the undernourishment rate, in an opposite

manner, initially seems to increase deforestation, while the transition out

of extreme poverty correlates with a decrease in deforestation intensity.

In contrast with the deforestation results, we see that an increase in

population density unambiguously drives pollution up. The pollution

intensity trend across the urbanization rate is initially flat, but after

50% of the population has urbanized, the trend becomes negative. This
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Table 5.2: Deforestation intensity results using the penalized kernel regression.

(means) (25%) (50%) (75%)

Dependent: Log deforestation intensity of 1000 GDP p.c.

Log 1000 GDP per capita∗∗ -0.453*** -0.610*** -0.476*** -0.289***
(-16.962) (-22.856) (-17.83) (-10.822)

Population density -0.001*** -0.003*** -0.002*** 0.001***
(-5.351) (-18.303) (-9.578) (8.449)

Undernourishment rate 0.001 -0.008*** 0.002 0.011***
(0.371) (-4.48) (0.919) (6.171)

Poverty 1.90$ rate -0.005*** -0.013*** -0.004*** 0.005***
(-4.118) (-10.353) (-2.878) (4.297)

Manufacturing GDP share -0.015*** -0.055*** -0.016*** 0.023***
(-5.459) (-19.402) (-5.551) (8.04)

Services GDP share∗∗ -0.032*** -0.051*** -0.036*** -0.016***
(-16.57) (-26.109) (-18.436) (-7.961)

Urban population share 0.006*** -0.008*** 0.009*** 0.019***
(5.597) (-6.929) (7.767) (17.111)

Bottom 40% income share∗ -0.027*** -0.06*** -0.033*** 0.003
(-5.416) (-12.304) (-6.671) (0.55)

N = 1520 R2= 0.922 λ=0.691. ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
Constant omitted, t-statistics in parenthesis. Optimal model contained no fixed effects.
Model controls for mean, min and max NDVI, forest cover, and country size.
∗Approximately 50% of inner marginal effects same sign, but range includes zero.
∗∗Inner 50% of marginal significantly excludes zero.

Table 5.3: Pollution intensity results using the penalized kernel regression.

(means) (25%) (50%) (75%)

Dependent: Log pollution intensity of 1000 GDP p.c.

Log 1000 GDP per capita∗∗ -0.691*** -0.842*** -0.692*** -0.567***
(-47.899) (-58.388) (-48.026) (-39.307)

Population density∗∗ 0.002*** 0.001*** 0.002*** 0.003***
(18.523) (6.658) (17.063) (30.846)

Undernourishment rate -0.002** -0.008*** -0.003*** 0.003***
(-2.172) (-8.675) (-3.256) (3.267)

Poverty 1.90$ rate∗ 0.003*** 0.000 0.003 0.008***
(4.493) (0.371) (4.842) (11.603)

Manufacturing GDP share -0.009*** -0.023*** -0.01*** 0.004***
(-6.436) (-15.78) (-6.756) (2.492)

Services GDP share∗ -0.007*** -0.012*** -0.007*** -0.001
(-7.00) (-11.68) (-6.753) (-1.286)

Urban population share -0.006*** -0.015*** -0.008*** 0.001**
(-10.746) (-24.929) (-14.101) (2.547)

Bottom 40% income share -0.019*** -0.045*** -0.015*** 0.012***
(-7.776) (-18.221) (-6.086) (4.682)

N = 1520 R2= 0.978 λ=0.691. ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
Constant omitted, t-statistics in parenthesis. Optimal model contained no fixed effects.
Model controls for mean, min and max NDVI, forest cover, and country size.
∗Inner 50% of marginal effects same sign, but range includes zero.
∗∗Inner 50% of marginal significantly excludes zero.
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Table 5.4: Carbon intensity results using the penalized kernel regression.

(means) (25%) (50%) (75%)

Dependent: Log carbon intensity of 1000 GDP p.c.

Log 1000 GDP per capita∗∗ -0.630*** -0.755*** -0.635*** -0.519***
(-42.341) (-50.71) (-42.699) (-34.903)

Population density -0.000*** -0.001*** -0.001*** 0.000***
(-4.812) (-11.919) (-5.656) (3.356)

Undernourishment rate 0.006*** -0.001 0.008*** 0.014***
(5.927) (-0.523) (8.248) (14.741)

Poverty 1.90$ rate 0.002** -0.002*** 0.001** 0.008***
(2.475) (-3.295) (2.092) (11.496)

Manufacturing GDP share∗ 0.017*** 0.001 0.019*** 0.036***
(10.815) (0.366) (12.344) (23.015)

Services GDP share 0.001 -0.007*** 0.002 0.01***
(1.198) (-6.708) (1.667) (9.01)

Urban population share 0.002*** -0.005*** 0.002*** 0.008***
(2.826) (-7.41) (2.995) (12.768)

Bottom 40% income share 0.006** -0.018*** 0.002 0.026***
(2.269) (-6.492) (0.825) (9.297)

N = 1520 R2= 0.956 λ=0.635. ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
Constant omitted, t-statistics in parenthesis. Optimal model contained no fixed effects.
Model controls for mean, min and max NDVI, forest cover, and country size.
∗Inner 50% of marginal effects same sign, but range includes zero.
∗∗Inner 50% of marginal significantly excludes zero.

indicates that early urbanization is polluting, but that after reaching a

tipping point, the city environment becomes cleaner. The trends across

manufacturing and services are also primarily downwards. Agricultural

societies have a higher pollution intensity of income, while a shift into

manufacturing and services reduces the environmental output per unit

of production. It remains difficult to say whether the effects reduce

pollution on a net basis as this structural transformation occurs jointly

with an increase in total productivity. However, for an identical amount

of total GDP produced, the data seems to suggest that an agricultural

economy produces the highest amount of air pollution. An economy with

a high manufacturing share produces less pollution, while an entirely

service orientated economy outputs the lowest amount of pollution. This

may also relate to a differential in value produced by these sectors which

may imply different quality of production processes and differential in the

total amount of economic activity for a fixed level of GDP. Across poverty
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and undernourishment, we see hyperbolic effects that suggest that the

eradication of extreme hunger occurs jointly with an increase in pollution

intensity while later poverty eradication eventually occurs jointly with a

reduction in pollution intensity. Poverty rates are unambiguously corre-

lated with higher pollution intensities. Again, similar to the deforestation

results, it seems that societies with high income inequality are also more

polluting.

Carbon intensities also trend with urbanization. We find that the car-

bon intensities initially increase together with the urbanization process,

however after the 50% urban population tipping point, the environment

becomes more efficient in carbon consumption. The shift in production

composition trends oppositely with those of deforestation and manufac-

turing. High manufacturing and high services share in the production

composition both correlate with higher carbon emission intensities. The

initial decline in undernourishment rates occur together with improve-

ments in the carbon emission intensities, poverty reduction however trends

with an increase. Finally, we see that equality − a stronger bottom 40%

- increases carbon output when everything else is held constant, which

is again an opposite trend of what we observed for deforestation and

pollution.

5.4.2 Heterogeneity in environmental output

Combined, the results show that income and poverty reduction provide a

basis for improvements in the efficiency of economies in their use of finite

resources. The economic composition is not unambiguous in its effects.

To understand how structural transformation, together with urbanization,

poverty reduction and increases in total production, interplay to produce

a commonality in environmental output trends, we track the model

predictions keeping the control variables at their means. We also keep the

income distribution fixed at a mean value as it does not trend clearly with
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GDP as seen in fig. 5.8, and keep population densities fixed at means.

Log annual tree %loss per $1000 GDP per capita
model fit with fixed control variables
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Figure 5.3: Model fits of degradation intensities of log GDP (left) and the rescaled environmental
output levels (right) across poverty and income. Population densities and income equality as well as
the control variables are held constant at the mean.
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Figure 5.3 shows the prediction surfaces using poverty and income as

Cartesian coordinates. The model predictions fit the output levels well

after scaling the log intensities, see fig. 5.9. While this shows that all

countries gradually grow out of poverty and improve their efficiencies

following a common pattern, it also reveals that there is significant

heterogeneity in the environmental output intensities that relates to

differences in poverty and hunger rates, urban population shares and

GDP composition. This highlights that the shape of the environmental

Kuznets curve strongly depends on the development path of a country

across all its dimensions. Furthermore, while the progression in output

intensities follows a similar path, slight deviations from the local average

may result in large differences in total environmental output. This reveals

that while different development paths may relate to relatively small

differences in the environmental output intensities, it may produce rather

large differences in actual forest loss, air quality and carbon emissions

depending on the scale of the economy.

An important takeaway is that heterogeneity in the actual output levels

(right), is primarily large around the income levels where output is

also highest (around $4,000 for deforestation, $6,000 for pollution, and

$8,000 for the carbon weight of a single dollar production value). This

indicates that the theorized environmental Kuznets tipping points are

also the points at which an averaged result, such as obtained from a

linear regression, provides the poorest indication of relationships at the

individual country level. While a few general rules could be extracted

from the marginal effects, such as inequality, income and population

density effects, the larger part of the environmental data seems to relate

heterogeneously to economic variables.
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5.4.3 Average curvature
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Figure 5.4: Normalized predicted environmental output levels across income. Predictors are
held at expectations conditional on GDP. The R2’s from logarithmic GDP per capita to poverty,
undernourishment, manufacturing, services and urban population shares are respectively 0.801, 0.633,
0.142, 0.573 and 0.739. The conditional expectations are plotted in fig. 5.8. Population density, income
equality, and controls are held at their means.

The heterogeneity in amplitude, and location of tipping points, conditional

on the economic variables, implies that a single Kuznets Curve, such as

it has often been treated in the literature, is a description that applies

only poorly to individual country cases. However, to do some justice to

the classical concept we can still construct an average development path

and explore how the models fit environmental outputs to that. To do so,

we derive conditional expectations for poverty, undernourishment, GDP

composition, and urban population shares, using only the logarithmic

GDP per capita as an explanatory variable. We then use these conditional
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values to build a data set that includes all variables as local averages

along with GDP itself. Again, we keep the control variables and the

income distribution as well as population densities fixed. We normalize

the results to compare the slopes and location tipping points across

income.

Figure 5.4 shows the curvatures associated with these development paths.

We have dropped the lower 2.5% of GDP observations, and the upper 20%.

We focus on this range because of its particular relevance for development

policy. We note that the maximum total output associated with the

average tipping point is an interesting statistic, but due to heterogeneity

this may be a poor approximate to predict whether a country is close to its

potential tipping point after observing only environmental output. The

deforestation rate associated with the average development path attains

a maximum of .66% annually, while that highest pollution concentration

maxes at 28.7 µg/m3 and the carbon weight of a dollar reaches 0.271 kg.

5.4.4 Heterogeneity in curvature and tipping points

The average pathways accurately describe the transition out of poverty,

but they provide less insight into the effects if the economic composition

changes. To better understand the importance of deviations in tran-

sitional variables, we plot the degradation levels associated with the

average development path with additional differences in manufacturing

shares, urban population shares and poverty rates.

Figure 5.5 shows that changing these variables, while keeping everything

else at the local averages, has important impacts on the location, shape,

and height of tipping points. For example, increasing the share of

manufacturing by 10 points, shifts the tipping point of deforestation to

the left, while economies that retain high agricultural shares reach a

tipping point at higher income. This implies that an earlier transition

out of agriculture may prevent high deforestation rates at higher income
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and lower pollution levels at its peak. This is a slightly counter intuitive

result as manufacturing has traditionally been portrayed as the main

source of pollution. However, since our data only indicates the share of

manufacturing in total GDP and not the quality or quantity of goods

produced, higher rates may also correspond to differences in the number

of manufacturing sites and the methods of production used.
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Figure 5.5: predicted environmental output levels across income. Predictors are held at expectations
conditional on GDP and one variable has been incremented +/- 10 points in each plot. The local
average trend is identical to those in fig. 5.4.

The carbon emissions associated with this structural change are higher,

suggesting a trade-off between pollution-heavy and carbon-intense pro-

duction. In a similar fashion, poor countries that have a high urbanization

rate have higher deforestation rates and reach a pollution peak faster.

Poor countries that have lower urbanization, on the other hand, even-
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tually maintain higher pollution and carbon emissions levels at higher

income. This suggests that the draw-down in pollution output is not just

a matter of income and productivity, it may relate to attaining critical

urban population mass combined with increased income. The effects of

poverty, finally, do not impact the location and shape of the environ-

mental output levels. Countries with high poverty rates unambiguously

deforest and pollute more, but emit less carbon.

5.4.5 Exploring degradation dynamics under simple 2030 sce-
nario’s

To explore whether continuation of current growth can be expected

to lower environmental outputs without intervention, we extrapolate

GDP into the future and calculate associated model responses under

three simplistic scenarios of growth. These explorations are intended

to further assess the potential impacts implied by the relationships

that are captured by the models. They are by no means an attempt

at accurate forecasts of future developments as these will be driven

by a wide range of factors and events that are not part of historical

data (e.g. unforeseen technological developments, changes in societal

preferences, policy agendas). The estimated models can still be applied,

however, to sketch how future environmental pressure may advance under

current economic and population growth trends in the absence of policy

interventions, or new technological successes, based purely on historical

relationships. This still provides relevant indications of the magnitude of

efforts required to meet environmental objectives.

In a base scenario, this analysis lets each sovereign grow at individual

median 1999-2014 compound rates, with the highest growth rate capped

at the 90% percentile (5.27% annually). In a pessimistic future, each

country continues at one asymmetric deviation unit (-3.67%) below the

base rate, and in an opportunistic growth scenario, countries continue
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one asymmetric deviation unit (+0.89%) above the base rates.9 In the

opportunistic scenario, rates are capped at the 95% percentile rate (5.87%

annually). Finally, we construct Business As Usual (BAU) as the average

of the three results to balance between possible asymmetry. Table 5.5

summarizes the growth rates assumed in these simple scenario’s.

To limit complexity, we keep population growth slightly below individual

country median compound rates, resulting in 8.5 billion people by 2030

(in line with United Nations projections).10 We use extrapolated GDP

levels to derive fits for poverty and undernourishment levels, and the

GDP composition using univariate model fits of the penalized kernel

model. We let the urban population depend additionally on log popu-

lation densities.11 At each point in extrapolated time, we compare the

conditional expectations to the predictions of our base year (2014), and

compute the percentage change that we then multiply with observed 2014

values. We keep all data points within observed intervals, including a cap

on the sum of agriculture and services shares. This means that effectively

after reaching a level of $64,980 per capita, our projection halts both the

income effect on efficiency improvements and the effect of scale increase

on the environmental output for a country (again, highlighting that this

analysis does not consider future technological successes beyond what

has been achieved by societies so far). In the pessimistic scenario, this

does not affect any individual country result, in the base scenario this

fixes Norway’s output at current levels and caps those of the U.S. and

Switzerland in respectively the last 4 and 5 years of the projection (final

9Asymmetric deviation units have been calculated as the difference between the median and
respectively the 25% and 75% quantiles of growth rates. In the calculations we have dropped the two
largest outliers (in absolute value) for each country.

10We reduced the population growth rates by 0.05 times the absolute point percentages globally
to reduce growth everywhere, then reduced population growth rates by an additional .15 times the
percentage rates in the top 40% income countries and additional .25 times in top 20% income countries.
This simple scenario is designed to represent relatively higher growth in lower income countries and a
slow down in developed countries, in line with UN projections.

11The R2’s of the models are, 0.632 for undernourishment, 0.785 for poverty, 0.142 for manufacturing,
0.573 for services, and 0.814 for urban population shares. The uncertainty of the impact of changes in
manufacturing remains high in our results.
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9 and 10 years in the high growth scenario).

Figure 5.6 presents our results at the global level made by aggregating

all country-level results and assuming that the average in-sample trend

scales appropriately with missing areas. Results are also available for

income segments in table 5.6. In the average scenario, global extreme

poverty falls below 7.4% of the global population. The poorest 20%

countries in our sample have stronger successes and go from 45% poverty

to just over 33%.
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Figure 5.6: Projection for global environmental outcomes. Table 5.6 contains aggregate statistics of
the BAU line and highlights the distributional changes across income.
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While poverty reductions and GDP increases may improve livelihoods

through economic gain, air pollution remains a serious threat to wellbeing,

as the average global citizen remains exposed to 36 µg/m3, nearly twice

the WHO prescribed guidelines. Additionally, development comes at a

cost of an annual carbon output that reaches 63GT which is nearly a

doubling from the 2014 levels, and a total loss of 242 million hectares of

forested land. About 58% of forest loss is in countries with poverty rates

above 3% or income in the bottom 60%. Many of those countries have

tropical rain forests with slow regrowth rates estimated at 27% (Hansen

et al., 2013). Using those statistics, loss in these countries totals 136

million ha between 2014 and 2030, netting over 3.4% of the global 2000

dense forest cover. Other insights include that success in eradicating

poverty likely slows as China and India near 0% poverty and populations

in poor countries grow faster than those in the developed world. Our

modeled data does not signal that development alone will result in

successful slowdown in natural capital depletion. At the global level,

results suggest ongoing increases in global deforestation rates and carbon

emissions. Global pollution exposure stabilizes regardless of the growth

scenario, the results instead suggest a distributional shift toward lower

income countries with improving and worsening conditions balancing

out at the global scale. Air pollution concentrations rise by 28% in the

bottom 20% income countries. Table 5.6 shows that the entire bottom

30% income countries of our sample in fact continues to face increasing

pollution exposure. Projections of forest cover and carbon emissions on

the other hand, are heavily dependent on the economic outlook. Growing

wealth in the developing world together with rapid population growth

may accelerate future global carbon output. A more extensive discussion

on differences in trends in relation to development, and a breakdown of

carbon output along income quintiles is provided by Andree et al. (2019).
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5.5 Discussion and conclusion

In this paper, we estimated a penalized non-parametric model of envi-

ronmental output across economic development. This type of modeling

works well for nonlinear processes that do not result in overly complex

dynamics. We deployed the framework to study environmental data

in a panel of 95 countries. We modeled satellite-derived deforestation

and air pollution levels and reported carbon emissions. To deal with

heteroskedastic variance, we transformed our data to logarithmic degra-

dation intensity of per capita GDP. We used a cross-validation approach

to decide which fixed effects should be part of the model and this did

not support the inclusion of time fixed effects.

Our results suggest that production gradually favors conserving the

earth’s finite resources as GDP increases, but that this alone is not suffi-

cient to offset the scale effect of growth. Instead, structural change in

the economy shapes environmental output curves. This process shares

similarities between sovereigns, but remains largely heterogeneous. These

results do not support a single environmental Kuznets rule. Instead,

the results emphasize the importance of local economic conditions on

environmental results. Across all data levels, some effects hold unam-

biguously. Poverty and income inequality correlate with higher pollution,

higher deforestation, and lower carbon emissions; agricultural GDP shares

correlate with deforestation; population densities correlate with pollu-

tion; and higher manufacturing shares correlate with increased carbon

emissions. We find various tipping points in other variables, notably

across urbanization rates. While local conditions may be unique, average

development is associated with an inverted U -shape in deforestation,

pollution and carbon intensities of production units. Per capita carbon

emissions, however, follow a J-curve as the increase in per person produc-

tivity is not sufficiently offset by efficiency improvements. Disregarding

the level of per capita GDP, we observe that at least one form of natural
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capital degradation is high, conflicting with the belief that countries tend

to ”clean up” as they develop. One could argue that the scope of the

impacts of externalities to production increases with development, with

the burden falling to increasingly distant households both in time and

space. Although local air pollution may be more intrusive on daily life,

the consequences of climate change will remain globally impactful for

generations to come.

We extrapolated our descriptions forward in time to highlight the daunting

implications of development under continuation of current practices

without improving policies. Our results are generally in line with emission

paths associated to the high radiative forcing scenarios considered in

IPCC’s 4.9◦C world (RCP 8.5). Our projections did not indicate successes

on the fronts of reducing deforestation. Air quality improves in some

currently severely polluted places, but worsens in poor regions.

In our results, deforestation follows an inverted U -shape across average

development in the developing countries. This confirms and extends

recent results from Crespo Cuaresma et al. (2017) that provide evidence

for a partial environmental Kuznets curve for forest cover at low income.

However, we find that economic growth alone is not sufficient to halt

forest loss, and we find evidence that within the bottom 60% income

countries, deforestation shifts to the bottom 30%, and that countries

within the top 40% income do not fully stop deforesting. Others have

similarly detailed forest loss in high-income countries, for example in the

United States (Sleeter et al., 2012). Future efforts should also aim to

understand forest regrowth dynamics across economic development, as

we have only used average forest growth rates over the entire study time

period as a control variable in our models, rather than investigating how

regrowth possibly changes conditional on economic indicators. Generally,

the temperate zones have much better regrowth rates. Taking this

and projected increases in the bottom 20% into account, the African
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forests seem to be at increased risk as economic successes in these areas

accelerate, while the Amazon faces only marginal improvements in the

immediate future in our modeled projections. Generally, deforestation is

related to the economic value of land. Urban land, for instance, can be

valued hundred times higher than forest land in the same area (Alig and

Plantinga, 2004). Agricultural land usually also yields higher returns

and policies focused on protecting forest could address this value gap

(e.g. (Hyde et al., 1996)). The payment for ecosystems services schemes

may provide an opportunity to conserve essential natural resources while

providing an income source to landowners. However, the governance and

targeting of these programs must be carefully addressed in order protect

both the resources and livelihoods of those dependent upon them (Landell-

Mills and Porras, 2002; Grieg-Gran et al., 2005). Extending agricultural

subsidies to include renewable perennial crops has the potential to make

cleaner alternatives competitive without negatively impacting farmer

income or the need to increase aggregate subsidy spending, and could

be a way to ensure that environmental damages are at least in part

reconciled by positive externalities (Andree et al., 2017b). Other policy

interventions that address forest-cover loss can focus on conservation and

land-use protection, sustainable forestry, and urban growth boundaries

(Alig et al., 2010). The efficacy of these interventions will likely rely upon

the local circumstances surrounding forests and nearby populations, yet

the potential benefits may be felt globally.

On the pollution side, our model projects rising PM2.5 levels in the

lowest 30% income countries, with a general decrease in PM2.5 in middle

income countries. PM2.5 remains far above WHO air quality guidelines in

many countries, particularly in lower and middle income groups. Given

population growth, these levels will expose more people to pollution-

related health risks. Currently, about 90% of the global population

is exposed to air quality that does not comply with the World Health

Organization’s Air Quality Guidelines (World Health Organization, 2016).
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Tallis et al. (2018) expect that by 2050, business-as-usual development

will result in over 4.8 billion people living in countries with worse air

quality than in 2010. As a comparison, in our average modeled data 52%

of people currently live in places where air quality has worsened by 2030.

This totals to approximately 4.4 billion by 2030. Exposure to unsafe levels

of particulate matter is estimated to increase the number of premature

deaths related to air pollution in coming decades, killing 4.5 million

people (or more) by 2030 (International Energy Agency, 2016; Lelieveld

et al., 2015). Currently, PM2.5 levels peak in middle income countries,

and while pollution levels can generally be expected to decline in these

countries as their income levels grow, pollution levels will still remain

dangerously high in this group. These countries include highly populated

areas such as in China, India, and Bangladesh, which have already been

identified as hotspots for adverse impacts of air pollution in the coming

decades (Organisation for Economic Cooperation and Development, 2016;

Pozzer et al., 2012). Eradicating poverty in these places may be one

contribution to lowering extreme pollution, but unfortunately there is

also evidence that points out that low-income households are also those

that are more severely affected by pollution in economic terms Andree

et al. (2019).

On the carbon end, our results suggest emission levels that could lead to

the high radiative forcing scenario in IPCC’s 4.9◦C world (RCP 8.5) are

largely in line with business-as-usual development in which developing

countries follow in the footsteps of wealthier countries. Worse scenarios

may in fact be considered as relevant possibilities. Specifically, this could

occur if developing countries do not successfully manage to adopt cleaner

technologies, or if high income countries revert (part of) their pro-climate

policies. Recent studies suggest we are not alone in such a conclusion. See

for example Peters et al. (2012) and comments, suggesting - in line with

our findings - that reported successes in carbon reduction are short-lived

and largely relate to the 2008-2009 crisis and aftermath. Emissions rapidly
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increased in many places with the recovery. Furthermore, Peters et al.

(2013) and comments thereon reveal that recent emissions continue to

track the high end of suggested emission scenarios, making it increasingly

unlikely that global warming will stay below 2◦C. This is in line with our

result that continuing current development puts the world on emissions

associated with a 4.9◦C pathway. This is further substantiated by the

conclusion that developments on the fronts of negative emissions are

required to reach a 2◦C future Gasser et al. (2015). Combined, the

evidence suggests that a worst-case scenario over 4.9◦C in 2100 is both

not unrealistic and overlooked in both the scientific community and the

political arena.

5.6 Appendix

5.6.1 Additional results and figures
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Figure 5.7: Conditional expectations of deforestation (left two columns) and pollution

(right two columns) intensity of income for each variable fixing other variables constant

at their mean.
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Figure 5.8: Conditional expectations of carbon intensity of income for each variable

keeping other variables constant at their mean (left two columns).

Table 5.5: Summary of base rates in percentages by 5-percentiles used in the projection.

GDP Population

1 1.33 2.57
2 2.78 2.54
3 2.22 2.28
4 2.93 2.10
5 3.02 1.99
6 2.49 1.98
7 3.69 1.40
8 2.55 1.58
9 2.62 1.51
10 1.67 0.96
11 3.62 0.96
12 2.31 1.31
13 2.97 0.83
14 2.82 1.04
15 2.93 1.15
16 3.85 0.85
17 1.10 0.46
18 1.47 0.30
19 1.47 0.23
20 1.24 0.49
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Figure 5.9: Accuracy of predicted degradation levels at high income.
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Table 5.6: BAU-2030 and base year data aggregated by 5% percentiles of income. GDP per capita as

population weighted averages, population in millions, number of poor people in millions, annual tree

loss in square kilometers, PM2.5 in population weighted average concentrations, carbon emissions in

million tons. World totals are scaled to world totals using multipliers (1.16 for population and carbon

based on the share of population in our data, and tree loss 1.42 based on the share of tree cover in the

data).

Income GDP p.c. GDP p.c. Pop. Pop. No. Poor No. Poor Treeloss Treeloss PM25 PM25 CO2 CO2

Group 2014 2030 2014 2030 2014 2030 2014 2030 2014 2030 2014 2030

1 1, 094 1, 548 68 101 41 55 3, 382 3, 640 15 20 10 28

2 1, 495 2, 611 171 262 74 70 3, 750 3, 977 17 21 20 109

3 1, 899 2, 388 46 67 19 24 1, 415 1, 684 23 25 22 39

4 2, 305 3, 308 96 139 36 43 1, 821 1, 931 29 31 27 71

5 2, 917 4, 720 237 305 57 45 1, 295 1, 331 47 52 96 285

6 4, 249 5, 381 265 366 43 48 5, 782 5, 713 46 48 190 282

7 5, 265 9, 887 111 133 6 2 4, 716 4, 031 23 20 170 385

8 5, 426 10, 301 1, 519 1, 936 341 288 4, 440 3, 769 54 51 2, 286 5, 634

9 6, 875 9, 344 176 231 21 22 3, 297 3, 043 12 13 212 399

10 8, 219 10, 627 15 17 1 1 4, 002 3, 395 9 9 14 22

11 10, 078 16, 232 292 352 22 11 17, 799 17, 676 15 15 540 1, 338

12 11, 993 16, 578 114 141 11 11 3, 784 4, 037 15 17 646 1, 150

13 13, 135 24, 563 1, 691 1, 825 49 5 33, 540 39, 407 44 44 11, 212 25, 839

14 16, 347 20, 955 206 244 4 3 2, 032 2, 132 22 24 1, 128 1, 864

15 18, 386 28, 014 162 193 3 2 5, 160 5, 859 17 17 750 1, 402

16 22, 607 37, 980 53 60 0 0 1, 822 2, 194 20 24 438 1, 112

17 33, 000 39, 059 204 219 0 0 6, 647 8, 832 21 22 1, 160 1, 770

18 38, 515 47, 345 244 253 0 0 26, 962 32, 972 12 13 2, 324 3, 324

19 43, 584 53, 144 128 132 0 0 4, 694 5, 794 15 16 1, 276 1, 788

20 51, 694 64, 462 354 384 0 0 17, 649 19, 466 10 11 5, 534 7, 414

world 14, 088 19, 899 7, 137 8, 537 730 630 218, 664 242, 656 36 36 32, 544 62, 934
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5.7 Supplementary note to the chapter

This supplementary note provides additional methodological discussion

around an adaption of Kernel Regularized Least Squares to the dynamic

panel context, paying specific attention to automated selection of fixed

effects. The model provides an attractive approach to both nonlinearity

and interpretability within one integrated framework. Importantly, it

allows deriving marginal coefficients at the observational level that are

similar to those of parametric models, while leveraging the flexibility

provided by the similarity learning framework. Unlike in the standard re-

gression context, the interpretation of these marginal coefficients depends

on externally set tuning parameters. The paper discusses the role of the

regularization parameter in the interpretation of these basic quantities

of interest. The discussion highlights that rigorous hyper-tuning, and

out-of-sample prediction performance of models in general, is crucial,

even when one is merely interested in inference and not in prediction.

5.7.1 Introduction

The UN’s Sustainable Development Goals for 2030 aim on one hand

at inclusive growth and eradicating poverty, and on the other at pre-

serving environments. The crucial relation between development and

the environment has been studied extensively since the 1990s, and has

been revisited recently in the main article associated with this back-

ground note. The paper applied a Kernel Regularized Least Squares

model on disaggregate data obtained from remote sensing sources to

model environmental-economic trends heterogeneously across a number

of economic indicators at country level. Results suggested that local

economic circumstances played an important role in determining the

shape, amplitude, and location of tipping points in environmental output.

This note details how the framework was adapted to the panel context,
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paying particular focus to automated selection of fixed effects. The

discussion here also goes more deeper into the types of assumptions

that are implicitly made about environmental-economic interactions by

adopting the kernel approach. The model is attractive as it provides a

straightforward approach to nonlinearity and interpretability without

having to rely on surrogate approaches, such as the Local Interpretable

Model-agnostic Explanations method that locally interrogates a model’s

output surface (Ribeiro et al., 2016). The interpretation of the marginal

coefficients is, however, highly dependent on an externally set hyper-

parameter that is not part of the estimated vector of parameters that

define the model itself. Instead, consistency results for the Regularized

Kernel model are toward a, possibly pseudo-true, parameter for which the

limit result is separately defined for each level of penalization. This paper

discusses the role of tuning the penalty, or regularization parameter, in

ensuring that the marginal coefficients, and associated standard errors,

admit to a standard interpretation. The model of interest, and limit

theory for it, is provided in Hainmueller and Hazlett (2014). For the

more general reader, most of the discussion here is posed in a general

way and stretches out to many other relevant cases.

The remainder of this writing is organized as follows. Section 5.7.2

introduces the modeling framework and details the adaption to the panel

setting. Section 5.7.3 provides further discussion around the tuning of

the penalty and its relationship to the interpretation of the estimation

result. Section 5.7.4 concludes.

5.7.2 The modeling framework

Machine learning methods are often developed with different applications

in mind than the classical regression models that have been developed pri-

marily for economic inference. Because the limit results in non-parametric

models depend on externally set tuning parameters that are not part of
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the vector of estimated parameters, it is not immediately clear whether the

estimates can be interpreted similarly as those obtained using parametric

methods.

As researchers continue to tackle high dimensional problems, such as

frequent in the environmental economics domain, we anticipate that

machine learning methods will become more popular in the context of

inference. For the sake of those less familiar with these approaches

we summarize the basic assumptions and key features of the applied

non-parametric kernel estimation below, relevant in the setting of the

companion paper. We do not introduce new theoretical results, instead

we aim to provide an overview that highlights differences with respect to

parametric estimation. Particularly, we detail the role that regularization

plays in correct inference. Readers that are familiar with penalized kernel

models may proceed directly to section 5.7.2, in which we explain how

we treat fixed effects in the estimation.

In the following, let N, Z, and R denote the sets of the natural, integer,

and real numbers. R>0 includes all positive, non-zero, reals. For a set A,

we use B(A) to denote the Borel σ-algebra over A. We use t, ..., T ∈ Z
to index time, and i, ..., N ∈ N to index cross-sections, it, ..., NT ∈ N×Z
labels all locations in space-time. We use boldfaced letters, e.g., a ∈ A
to denote vectors. Furthermore, ×t=Tt=1A = AT denotes the Cartesian

product of T copies of A, and A∞ = ×t=∞t=−∞A is the Cartesian product of

infinite copies. For two maps f and g, f ◦ g is their composition resulting

from a point-wise application, and 〈·, ·〉 denotes the inner product space.12

Finally, ‖ · ‖A denotes a norm on A.

12As a generalization of the dot product in the Euclidean space, to higher dimensional spaces
including infinite dimensional Hilbert spaces.
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Assumptions about the data generation process

Suppose, we observe an nx-variate T -period sequence xT := {x}Tt=1 that

describes the state of one economy throughout time. At each point in

time, we observe N trajectories of this nx-variate sequence, i.e., we focus

on repeated cross-sectional vectors of length N describing the evolution

of N economies. Each vector contains observations of for example income

and the composition of the economy, all indexed over a set of locations

i, ..., N . The matrix Xt consisting of nx columns describing different

variables x and N rows describing the different locations, is indexed

by time. We consider a second, repeated cross-sectional sequence y, of

degradation levels generated by:

y := {yt = h0(Xt), t ∈ Z}. (5.3)

We can observe yT , a subset of the results of this process yT := {y}Tt=1.

The function h0 : X → Y ⊆ R produces environmental output for every

coordinate Xt ∈ X .13 We assume that h0 is a unique measurable function

that for each coordinate Xt ∈ X assigns a true value yt ∈ Y for all

t ∈ Z. In a sense, by assuming this particular form, we assume that the

environment does not endogenously degrade itself, i.e. that y does not

endogenously generate itself. Instead, this assumes that the evolution of

degradation levels for each economy y is symptomatic to external, local

economic development variables X. This does not exclude the possibility

that y may in part affect elements of X, it requires however that feedback

effects are invertible, in turn implied by some form of stability, and

follow levels in X such that h0 describes the net relationship between X

and y.14 We also assume that h0 is smooth, particularly that it maps

13Particularly a B(X )/B(Y)-measurable mapping as kernels with a universal approximating property
require at least that the target function is measurable, see for example (Micchelli et al., 2006).

14If y = f0(X) + g0(y) with g0 describing simultaneous feedback and f0 describing the con-
temporaneous exogenous effects, then one can also write y = h0(X) if g0 is invertible, with
h0(X) = (I − g0)−1(f0(X)), hence h0 arises from the composite (I − g0)−1 ◦ f0 and describes the
combined effect of exogenous impulses and feedback.
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similar coordinates in X to similar values in Y. This implies that for

each state of the economy at each point in time Xt, we observe a level of

deforestation, pollution or carbon yt that is induced by the state of the

economy through the function h0, and that for small changes in the state

of an economy we expect to see small changes in environmental output.

Furthermore, it assumes that for two economies that are similar in terms

of composition and scale, we expect similar environmental output.

Panel Kernel Regularized Least Squares

In the current case, the environmental Kuznets theory suggests an in-

verted U -shape between degradation and economic development. The

relationships may of course be of a completely other form or differ across

environmental variables, while ideally we keep the analysis of both rela-

tionships within a similar regression framework. We therefore postulate

a very flexible regression of the form

ŷ := {ŷt = h(Xt;θ),θ ∈ Θ, t ∈ Z}. (5.4)

Our modeled function h is defined as a mapping h : X ×Θ→ Y , where

Θ is the parameter space. In parametric regressions, Θ is assumed to be

compact and finite dimensional. This immediately imposes structure on

h, thus translating into assumptions about h0 if we maintain a belief that

θ0 ∈ Θ. By reducing the size of Θ we simplify the possible structure of h,

i.e., chances that θ0 ∈ Θ become increasingly slim. While we minimize

assumptions about h0 by working with Θ as an infinite dimensional space,

some assumptions about h0 are unavoidable as Θ has to be parametrized

eventually. In our example, as we shall see, one still has to specify radial

basis functions.

In parametric regressions, Θ plays a key role as the Euclidean space

containing all the possible coordinates of potential parameter vectors θ.
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In the non-parametric case, there is a subtle difference. Suppose that

for every θ ∈ Θ, there is a function h(·;θ) : X → Y that is B(X )/B(Y)-

measurable. We can define HΘ(X ) as the Hilbert space containing an

infinite collection of functions {h(·;θ) : θ ∈ Θ} generated by Θ. We shall

use a simplified notation to reduce cluttering and instead write that θ

indexes the functions hθ ∈ HΘ. The common notation θ0 ∈ Θ is thus

equivalent to saying h0 ∈ HΘ, i.e., θ0 ∈ Θ : h(xt;θ0) = h0(xt) ∀ xt ∈ X .

This clarifies that, while a in a parametric regression problem where we

are fore-mostly concerned with searching a compact parameter space

Θ for the parameter vector θ → θ0, in the current framework we are

explicitly interested in searching across a space of functions produced

under some process of generating flexible functions from simple parameter

vectors given the sample space, hX , for infinite θ ∈ Θ, for the function

that best resembles the target function hθ → h0. Specifically, each θ

indexes a member in HΘ(X ) according to the map hX : Θ→ HΘ(X ) with

hX (θ) := h(·;θ) ∈ HΘ(X ) ∀ θ ∈ Θ. Hence, we can write the estimator

also as

ĥT := arg min
hθ∈HΘ

QT (yT ,XT ;hθ). (5.5)

The criterion function QT can also be written as

QT (XT , h0(XT ), h(XT ;θ)), as we started under the notion that

yT = {h0(Xt)}Tt=1 = h0(XT ) which reveals the direct connection between

the criterion function and target function h0.

There are many ways to generate HΘ. In the current framework, we

focus on using a kernel k together with a local parameter θi that weights

the surface to produce any flexible functional form.

hθ :=
N∑

i

θik(x, xi) = h(x;θ). (5.6)

The functions hθ ∈ HΘ, are allowed to follow any kernel that has the

universal approximation property, in this paper we adopt a Gaussian
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kernel k(xi,xj;nx) = exp
(
−‖xi−xj‖2

nx

)
with ‖xi−xj‖ being the Euclidean

distance, and nx being a fixed bandwidth equal to the dimension of xT .

We count the constant as being part of xT .

The kernel k can be understood as a measure of similarity, which is seen

by applying a Cauchy-Schwarz inequality

k(xi, xj)
2 ≤ k(xi, xi)k(xj, xj) ∀ (xi, xj) ∈ X ,

revealing that if xi and xj are similar, then k(xi, xj) will be close to

1, and close to 0 when xi and xj are dissimilar. For a given observed

collection (y, x ∈ x), hθ is thus a function resulting from placing kernels

over xi and scaling the similarity surface using local coefficients θi such

that the summated surface approximates the true density of the data.

This produces flexible functions that can describe local relationships

between y and an individual covariate x by assigning similar observations

a similar scaling factor that maps onto similar output.

Different parameterizations of the local coefficients θi may produce equally

well, e.g. perfect fits, such that the problem of estimating the vector

θ = (θ1, ..., θN)′ is generally ill-posed without adding further structure to

the problem. The specific estimation strategy to learn about the trends

in the data is therefore of the form

ĥT := arg min
hθ∈HΘ

QT (yT ,XT ;hθ)− π(hθ), (5.7)

where π(hθ) > 0 ∀ hθ ∈ HΘ is a strictly positive function that monotoni-

cally increases by a measure of complexity defined on hθ. The penalty

is critical to ensuring identifiability and consistency of the estimator

within simple subset spaces of HΘ. At the same time, it allows to fit

nonlinearities of varying smoothness while working with a fixed kernel

bandwidth that produces a relatively smooth similarity surface, as θi is

able to scale the nonlinearities locally albeit at a cost π(hθ). Hence, it
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favors less complex solutions to the criterion function by penalizing the

high frequency domain in HΘ. Specifically, let K be an N ×N symmet-

ric kernel matrix with entries k(xj,xi) measuring pair-wise similarities.

This yields a model that is a linear combination of basis functions, each

measuring similarity of one observation to another observation in the

data set, and mapping it to a local output.

yt = h(Xt;θt) = K(Xt)θt

=




k(x1t,x1t) k(x1t,x2t) · · · k(x1t,xNt)

k(x2t,x1t)
. . .

...

k(xNt,x1t) k(xNt,xNt)







θ1t

θ2t
...

θNt



. (5.8)

The need for a regularization technique is obvious, the parameters

(θ1t, θ2t, ..., θNt) can always rescale the similarity surface to match yt

perfectly. Instead, the penalized estimator takes into account the com-

plexity of the rescaling by introducing a factor λ‖hθ‖2
K and chooses the

best fitting function by minimizing:

arg min
hθ∈HΘ

N∑

i

T∑

t

(yit − h(xit;θ))2 + λ‖hθ‖2
K , (5.9)

in which
∑N

i

∑T
t (yit − h(xit;hθ))

2 are the standard sum of squared

residuals. λ‖hθ‖2
K = 〈hθ, hθ〉HΘ

is a penalty that increases monotonically

as a function of the complexity of h under θ. We focus on the L2 norm.

Finally, λ ∈ R>0 is te parameter that determines the strength of the

penalty. Using this kernel, we can work with an NT ×NT kernel matrix

by defining the dependent variable Y as the NT length vector resulting

from stacking the time observations, X as the NT × nx matrix resulting

from stacking the columns similarly and θ as an NT length parameter
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vector.15 Using the Gaussian kernel, eq. (5.9) becomes

ĥNT = arg min
hθ∈HΘ

(Y −K(X)θ)′(Y −K(X)θ) + λθ′K(X)θ. (5.11)

In a panel application, the functions hθ that result from weighted kernels

can produce interesting time-varying dynamics across levels of Xt. This

is for example appropriate when a time-varying stationary processes is of

interest in which the nonlinearities change throughout the data but are

not depending on time itself. Alternatively, one can work with time itself

as a covariate, in which case processes that are only locally stationary

can be modeled. Intuitively, the kernel approach then results in similar

coefficients for similar time. In the case of non-stationary data, the

kernel can approximate local conditional means in the data that may

vary throughout the sample space.

The role of the penalty

The basic idea of penalizing the criterion function has been explored

in many statistical applications, and is for example at the heart of the

widely adopted LASSO estimator (Tibshirani, 1996; Zou, 2006). The

added structure to the criterion function is a frequentist’s analogue to

the role that the prior plays within the Bayesian framework. We note

15Specifically:

Y =




y1t

y2t

...
yNt
y12

y22

...
yNT
y1T

y2T

...
yNT




, X =




x1t

x2t

...
xNt
x12

x22

...
xNT
x1T

x2T

...
xNT




,θ =




θ11

θ21

...
θN1

θ12

θ22

...
θN2

θ1T

θ2T

...
θNT




. (5.10)
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that the penalty in the current setting is not primarily a way to improve

small sample performance, but that it is in fact the central feature of the

learning model that determines what functional forms can be fitted. This

differs from kernel approaches in which the bandwidth is the key tuning

parameter. In the current approach the bandwidth is fixed to produce

smooth functions, but nonlinearities are subsequently locally adjusted

using the vector of weights θ to increase flexibility. The penalization

approach is able to shrink the hypothesis space and flexibly establish

a subspace in which consistency holds. By balancing between fit and

complexity of the locally weighted kernel, the size of the subspace can be

regulated by the penalty. In the case of penalized GLM’s considered in

Blasques and Duplinskiy (2018), nonzero penalties take one away from

θ0 in the limit if the penalty effect does not vanish asymptotically.16 In

that sense, a penalized criterion delivers a pseudo-true parameter with a

divergence from θ0 that is controlled by the penalty function. Setting an

appropriate penalty therefore determines what one can infer from θ0. In

the current context, positive penalties are a necessity to ensure uniqueness.

This might lead to the thought that penalized non-parametric estimators

that require positive penalization are biased by definition. The estimate

of the weights θ̂ obtained through eq. (5.11) is different for every value

of λ. The tuning parameter λ thus represents the researcher’s predefined

level of tolerance for accepting nonlinear functions. High values of λ force

the model to linearize it’s dependencies, whereas extreme values for λ

will set all coefficients to zero and describe the data using only an average

expectation. Hence for every penalty, we find a different functional form

ĥλ induced by the estimate θ̂λ through eq. (5.6) given a specified kernel.

Since λ itself is not an estimated parameter, it is generally difficult, if

not impossible, to tell whether eq. (5.11) yields an estimate of ĥ close

16Furthermore, θ0 in the standard context is the true parameter. In the non-parametric context,
that true parametrization arguably does not exist, however one can think of θ0 as the parametrization
that produces h0 through the kernel, or alternatively, selects h0 the true (non)linear functional form
HΘ that produces the true density of the data.
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to h0. Without knowing the magnitude of ‖ĥλ − h0‖, the method may

difficult to use for economic inference.

Schölkopf and Smola (2001), suggest to set the penalty through an out-

of-sample prediction minimization problem to remove the dependence of

the results on the external influence of the researcher that determines

the level of penalization a priori. Hainmueller and Hazlett (2014) suggest

one such strategy for Kernel Regularized Least Squares estimates by

minimizing out-of-sample prediction errors over a vector λ ∈ Λ based

on leave-one-out predictions, noting that it performs well in practice.

While practical performance and the removal of external influence on the

results provide intuition to set penalties in this way, it does not focus

on the question whether ‖ĥλ − h0‖ is in fact minimized, which is key

to ensure that the marginal coefficients converge to the correct values,

e.g. ‖ĥ′λ − h′0‖ → 0. Here we provide additional discussion on the role

of the penalty in ensuring identifiable uniqueness and establishing the

consistency and normality results. We discuss that the strategy to set

penalties by minimizing an out-of-sample criterion naturally pulls the

estimator toward the weight vector that induces the true function in the

limit, such that inference can be applied as usual. This is because for

a given penalty λ, the estimated function conditional on that penalty

ĥ|λ provides the optimal density across all functions h ∈ HΘ|λ induced

under that penalty, so choosing the estimate from a set of results found

using different penalties ĥ|λ ∈ Λ that provides the optimal out-of-sample

density, also minimizes ‖ĥλ − h0‖λ∈Λ in the limit since h0 is the function

that by definition provides the best out-of-sample density. In other words,

estimating eq. (5.11) while setting λ based on out-of-sample prediction

error minimization yields an estimated function that minimizes ‖ĥ− h0‖
in the limit across the entire family of models generated under all weight

vectors and all penalties, which is similar to the standard case in which

the criterion converges to the parameter that induces the best conditional
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density across the entire parameter space (White et al., 1980; White,

1994).

Fixed effects and out-of-sample shrinkage

Linear effects can be included by using difference estimators as detailed

in Hainmueller and Hazlett (2014). Nonlinear effects can be modeled by

supplying group-specific trend variables and group identifiers through Xt.

In this case all coefficients may depend on time, and similarly across sim-

ilar groups in the data. Nonlinear fixed effects approaches combined with

non-parametric parts around the economic variables may result in models

with an enormous size while often the amount of observations locally in

the time dimension remains relatively small in environmental economic

panels. Model size not only relates to the complexity of functions around

the economic variables, but also to the number of fixed effects in the

model. In-sample selection strategies to decide on the right number of

effects are complicated in the regularized non-parametric context. While

in standard regressions additional variables always improve fit, this is

not the case in the current context. Adding fixed effects results in differ-

ent complexity of the local weights vector. Therefore, the effect of the

complexity penalty in the criterion may increase such that the penalized

estimator adjusts the weighting vector to achieve lower complexity. While

this reduces the penalty value, it may possibly lower the in-sample R2.

Comparing models with and without fixed effects is therefore a compari-

son between functional forms with different complexity and nonlinearities.

This is a comparison of non-nested models with an unknown, possibly

real valued, difference in degrees of freedom.17

To decide on the right number of effects, we start by estimating a model

that includes all fixed effects. We then remove the least significant

17Degrees of freedom is a parametric concept whose translation to the non-parametric setting is
complex. One can approximate the degrees of freedom empirically, which may result in numbers that
are real-valued.
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dummy, and obtain new results. We repeatedly evaluate the out-of-

sample prediction performance while shrinking the effects, and select

the model with the optimal out-of-sample density across all fixed effect

models. Intuitively, this approach starts with a model similar to a

linear fixed effects model, as the penalty heavily discounts the thresholds

introduced by the effects resulting in flattened marginal effects, and

gradually allows fixed heterogeneity to be explained by nonlinearities

across covariates instead. As a result, our final estimates are guaranteed

to be preferred over the standard linear fixed effects model, as judged by

the out-of-sample criterion.

5.7.3 The role of out-of-sample performance in the interpre-

tation

Non-parametric approaches are capable of producing parametrization

mappings that approximate nonlinearities arbitrarily well, but do not

necessarily also produce uniquely identifiable solutions to the criterion

function if the hypothesis space produces universal approximations that

fit the data arbitrarily well for any sample size. Estimation is therefore

problematic without additional structure to the estimator, which in our

case comes in the form of a penalty to the criterion, but in other settings

may relate to bandwidths or other tuning parameters. It is a challenge

in its own right to understand how this complexity-penalized estimator

is positioned relative to the classical least squares approximation context

as considered by White et al. (1980).18 In the standard context, the best

approximation is produced by a unique point in the entire parameter

space, while in the penalty context a best approximation exists for every

given penalty. Hence, the divergence between the true functional form

and the pseudo-true approximation is not driven by boundaries to the

18White et al. (1980) discuss convergence toward the unique least squares approximator that may
differ from the true parameter in the presence of misspecification bias.
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parameter space as in the parametric case, but rather it is driven by the

penalty. Ultimately penalization confines the hypothesis space to simple

spaces and the use of excessive penalization must reflect a prior belief

that the true functional form would not result in a large penalty. That

prior belief carries over to the limit result if the effect of the penalty

does not vanish. This produces a bias, or may even render the result

completely arbitrary if the penalty is set without caution.

In the current setting, our penalty arises as a function of an out-of-sample

criterion. As a result, the space of functions that are viewed as acceptable

solutions to the criterion is generated by the data itself, and the penalized

non-parametric method is able to obtain approximations of increasing

complexity as the data size tends toward infinity. In the finite sample

case, this estimator is appropriate given that the relationship between

environmental degradation and indicators of economic development is

not dominated by high-frequency components that would result in strong

complexity.

Identifiability in nonlinear models

Closely related to regulating the size of non-parametric models is the

ill-posedness of unregulated non-parametric models. Before discussing the

relationship between penalization and identifiability of the criterion of non-

parametric estimators, we provide a simplified discussion on identifiable

uniqueness and its relation to inference in the context of finite dimensional

nonlinear models.19

Hypothesis testing in a framework of finite parameter nonlinear models is

often plagued by the problem that verification of the assumptions required

19Identifiable uniqueness is a difficult concept, more elaborate general discussion can be found here
(Pötscher and Prucha, 1991); formal definitions and discussion at a deeper level regarding strongly
unique best approximation in Banach spaces can be found here (Smarzewski, 1986); and discussion on
regulated M -estimation can be found here (Kent and Tyler, 2001); and an overview of concepts is
written in (Blasques, 2010).
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for identifiability, relies itself on the outcome of a hypothesis that may

be difficult to test. This is problematic as identifiable uniqueness plays a

key role in establishing consistency and normality of test statistics. This

is illustrated by a model of the form:

y = δ exp

(−(x− c)2

γ

)
+ ε, (5.12)

in which the postulated relationship between y and x is assumed to follow

a hyperbolic curve across levels of x. In this model the linearity hypothesis

H1
0 : γ = 0 relating to the non-existence of the curved functional form

depends on a second hypothesis H2
0 : δ 6= 0 being true or false. This

follows from the fact that for δ = 0, γ can take any value without changing

the predicted density implied by the model. In this case any form of

completeness required for identifiable uniqueness of the estimator, holds

at most for a subset of the parameter space in which the model would in

fact produce an inverted U -shaped form. Distributions corresponding to

different values of γ are only sufficiently distinct when δ is sufficiently

bounded away from zero. Without establishing existence and uniqueness

of a consistent estimator, it is impossible to establish normality, hence

the distribution of test statistics remains unknown.20

More intuition is found in the following two definitions adapted from

Definition 1 and Definition 2 in (Rothenberg, 1971).

DEFINITION. 1. Two points α1 ∈ A and α2 ∈ A are said to be obser-

vationally equivalent with respect to a function h evaluated over x if

h(x;α1) ≡ h(x;α2) ∀ x ∈ R.

20Auxiliary test statistics may still be derived, but it is sometimes difficult to ensure that Taylor
expansions do not capture nonlinearities of a type not predicted by the economic theory. See for
example (Dijk et al., 1999) for a discussion in the threshold framework. Researchers may also choose to
rely on information criteria to compare various descriptions of the data and decide between economic
theories (Granger et al., 1995). In the limit, Penalized Likelihood Criteria select the model that
minimizes Kull-Back Leibler divergence with probability 1 (Sin and White, 1996), but convergence
rates depend on the penalty chosen. The acceptance of an economic theory thus relies on information
outside the model. In a sense, a researcher has flexibility to corroborate specific theories by designing
the information criteria to support them.
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DEFINITION. 2. A point α1 ∈ A is said to be identifiable by a function h

evaluated over x if there is no other point α ∈ A that is observationally

equivalent.

Let θ := (δ, c, γ)′ denote a vector of parameters, with θ ∈ Θ, and

θ0 := (δ0, c0, γ0)
′ be the true vector of parameters. For consistency

toward the true parameter, one would not only require ‖θ̂ − θ0‖ → 0

to be the solution a.s. to the criterion θ̂ := arg minθ∈ΘQ(y, x;θ) as

N →∞, but it needs to be the identifiable unique solution. Following

the definitions above, then by the definition θ0 as the minimizer of

Q(y, x;θ), there needs to be assurance of some form that

arg min
θ∈Θ

Q(y, x;θ0) < arg min
θ∈Θ

Q(y, x;θ) ∀ θ ∈ Θ \ θ0, (5.13)

excluding

arg min
θ∈Θ

Q(y, x;θ0) ≤ arg min
θ∈Θ

Q(y, x;θ) ∀ θ ∈ Θ \ θ0. (5.14)

as the alternative. The standard assumption is that Θ is compact.

Together with almost sure continuity in θ ∈ Θ, Weierstrass’ theorem

implies that θ0 exists as a non-empty set a.s. Equation (5.13) can result

directly from the parametrized model ŷ = h(x) if

h(x;θ0) 6= h(x;θ) ∀ θ ∈ Θ \ θ0, (5.15)

such that there is no point in Θ other than θ0 that is observationally

equivalent to θ0. Specifically the observational equivalence definition

may fail to hold if Θ is high dimensional. If eq. (5.13) is not implied by

the nature of h, it can also be provided by additional structure to the

criterion Q(·;θ) conditional on regions in Θ, or by limiting the search

to remain within a subset θ̂ := arg minθ∈Θs⊂ΘQ(y, x;θ), where Θs is

a compact subset of the parameter space that may possibly grow in

complexity along with the sample size.
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DEFINITION. 1 and DEFINITION. 2 are intuitive, but provide no testable

condition to decide upon the identifiability of an estimator. One insightful

definition is the following adapted from (Bates and White, 1985) that

ensures that the solution to the criterion is well separated.

DEFINITION. 3. Suppose θ0 minimizes a real-valued criterion Q∞(·;θ) on

a compact metric space Θ, within a circular neighborhood ℵ0(r) ⊂ Θ with

radius r > 0 that has a compact complement ℵ0(r)
c : Θ \ ℵ0(r), then θ0

is uniquely identified on Θ if and only if for every r > 0,

inf
θ∈ℵ0(r)c

[Q∞(θ)−Q∞(θ0)] > 0.

Identifiability in non-parametric models

Non-parametric models aim to learn from the data without assuming

that h is up to finitely many parameters, and work under the axiom that

the parameter space Θ may in fact be infinitely dimensional. By allowing

for that, we minimize the risk that our parametrization assumptions

preclude θ0 ∈ Θ, solving for misspecification bias that results from

parametric assumptions. However, without imposing further structure

to the criterion it is generally not possible to establish consistency of

our estimate θ̂ → θ0 uniformly over Θ as the compactness assumption

on Θ does not hold in infinite dimensions.21 This poses a problem in

verifying DEFINITION. 3, and establishing consistency results such as those

of (Domowitz and White, 1982).

One solution is to focus the arguments on establishing a compact subset

of the parameter space such that over the complement of the compact

subset the criterion function is eventually “large”, see (Pötscher and

Prucha, 1997). This follows by first constructing a subset Θs ⊂ Θ such

that θ0 ∈ Θs, and such that all the elements outside Θs are valued

distinguishably different by the criterion than the elements within Θs,
21By definition a set A ∈ Rd is compact if and only if it is closed and bounded.
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disregard of the structure outside of Θs. The subset is then closed, as

its complement is open, and it is bounded as it is contained in a ball of

finite radius,which implies that Θs is then compact. As a consequence,

it is sufficient to show that consistency holds within Θs, since any M -

estimator must eventually fall within this compact subset. We can

summarize identifiable uniqueness of θ0 in an open space as follows.

DEFINITION. 4 (Identifiability in an open space). Suppose θ0 minimizes

a real-valued criterion Q∞(·;θ) on an open metric space Θ. Suppose

furthermore that θ0 minimizes Q∞(·;θ) within a circular neighborhood

Θs(d) ⊂ Θ that has finite positive radius d > 0 and that uniformly over Θ

there exists some positive ε for which [Q∞(θ′ ∈ Θ \Θs)−Q∞(θ ∈ Θs)] >

ε. If furthermore, there is also a circular neighborhood ℵ0(r) ⊂ Θs with

radius r < d that has a compact complement ℵ0(r)
c : Θs \ ℵ0(r), then θ0

is uniquely identified on Θ if and only if for every r, 0 < r < d,

inf
θ∈ℵ0(r)c⊂Θs(d)⊂Θ

[Q∞(θ)−Q∞(θ0)] > 0.

In a sense, we thus want to exert some control over the structure of

Q∞(·;θ) on Θ such that θ0 is uniquely identifiable by the criterion within

a neighborhood Θs that is distinctly different from elements outside of

it, disregard whether the criterion can distinguish differences between

the elements outside Θs. One such an approach can be found in the

well-known kernel estimator. The solution offered by the kernel method

depends on selecting an appropriate bandwidth that controls for the size of

local neighborhoods in the sample space throughout which nonlinearities

smoothly differ. For too small bandwidths, the kernel method creates a

subspace Θk ⊃ Θs that allows overly-flexible fits to the data. This can

create an ill-posed problem, in which multiple solutions to the criterion

within Θk may still deliver equally good fits as judged by the criterion

evaluated over Θk. It is obvious that DEFINITION. 4 is not applicable in

such a context. For too small bandwidths, the kernel method establishes
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Θk ⊂ Θs that is small, and while DEFINITION. 4 may work for Θk, we are

not sure that in fact θ0 ∈ Θk due to the parametrization assumptions

used to construct Θk. The role of the bandwidth is therefore extremely

important, identifiable uniqueness of the estimator requires the bandwidth

to be sufficiently large, while reducing miss-specification bias requires the

bandwidth to be sufficiently small. In an ideal framework, both factors

are balanced out and Θk grows as N →∞ at an appropriate rate.

The role of the penalty in the estimator

The fitted nonlinearities are allowed to be of any form, but λ > 0 implies

the penalty is never removed completely. Positive penalization is key

to ensuring that there exists a finite radius neighborhood Θs(d) ⊂ Θ

in which any M-estimator must eventually fall uniformly over Θ as

[Q∞(θ′ ∈ Θ \Θs)−Q∞(θ ∈ Θs)] > ε(θ;λ) > 0, where ε(θ;λ) > 0 is

ensured for any θ by λ > 0. Penalties that vanish completely at a

pre-specified rate are interesting when the researcher wishes to impose

penalties only when the estimator is confronted with small sample sizes.

This requires however that the criterion is uniquely identified at λ =

0 eventually. Vanishing penalties may improve inference when using

estimators that have poor small sample behavior by ensuring that the

estimator is relatively inert to weakly nonlinear signals and less likely to

overfit the data in local regions of the sample space. Penalties that take

values in R>0, can improve small sample behavior, but maintain a bias

towards linear solutions that persists in the limit.

Note that eq. (5.11) reveals that convergence of our estimator ‖ĥNT −
ĥ∞‖ → 0 to a specific target function ĥ∞ ∈ HΘ, where ĥ∞ is possibly the

true function or the best approximator as judged by the penalized limit

criterion, is the same as ‖θ̂NT − θ̂∞‖ → 0, which is the more common

notation. Hence, we shall use the latter, but really we are interested

in ensuring that ĥ∞ is a uniquely identifiable point in HΘ as close to
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h0 as possible. Consistency and normality theorems for eq. (5.9) are

provided in Hainmueller and Hazlett (2014). The results ensure a limit

convergence toward the best approximation of the conditional expectation

function given penalization, hence the limit solution is conditional on

the researcher’s choice of λ. The theory provided is therefore to be

understood in terms of θ̂NT converging to a pseudo-true parameter as

NT →∞, that by construction minimizes the penalized criterion even

if the penalty does not vanish. To understand the relationship between

the pseudo-true parameter and the true parameter conditional on the

penalty, it is helpful to consider precisely how the penalty influences the

criterion and delivers the identifiable uniqueness property.

Let θ̂π be the point θ̂π := arg minθ∈ΘQ∞(θ) + π(θ), that minimizes

the penalized criterion, and θ0 be the point θ0 := arg minθ∈ΘQ∞(θ)

that minimizes an unpenalized out-sample criterion. θπ is the best

approximator similar to the misspecification case studied in (White et al.,

1980), whereas θ0 is the true parameter, that is the weights vector that

induces h0 through the kernel, which is the true function that provides the

best out-of-sample density by its definition. The function ĥπ := h(xt; θ̂π)

is the best approximator of h0 := h(xt;θ0) as judged by the penalized

criterion Q∞(θ) + π(θ) for a given level of penalization π. The penalty

does not imply that h(xt; θ̂π) 6= h(xt;θ) ∀ θ ∈ Θ \ θ̂π and any xT ∈ X
and all NT ∈ N×Z. However, it ensures that θ̂π is identifiable unique as

the minimizer of the limit criterion even in the case of two observationally

equivalent parametrizations h(xt; θ̂π) ≡ h(xt;θ
∗) for some θ∗ ∈ Θ \ θ̂π

and any xT ∈ X and all NT ∈ N× Z.

PROPOSITION. 4 (Identifiable uniqueness). The function

ĥπ := arg min
hθ∈HΘ

Q∞(hθ) + π(hθ)

produced by hX at point θ̂π := arg minθ∈ΘQ∞(θ) + π(θ) is uniquely

identified within HΘs
a simple subset in the infinite dimensional Hilbert
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space HΘ, if π is a strictly positive penalty function continuous on Θ.

Central to the result is that π(θ̂π) < π(θ∗), providing that for two

observationally equivalent functions, the identified result is the parameter

vector that induces a less complex functional form.

So far we have treated π to be fixed at a pre-specified level. However,

for any given level of penalization, the solution to the penalized criterion

is different. We can make that more explicit by writing it as the limit

estimate conditional on a penalty value (θ̂∞|π), and analyzing the role of

π in the divergence ‖(θ̂∞|π)− θ0‖. This displays the heavy importance

on determining an appropriate penalty π as it is crucial to the outcome,

see Blasques and Duplinskiy (2018) for some thoughts on how to choose

appropriate penalty weights in a general context. Asymptotically, if the

impact of π vanishes, for example by using penalties of an o((NT )−
1
2 ),

consistency toward θ0 can still be met in the limit, again see Blasques

and Duplinskiy (2018) for detail. However, in small samples, similar

to the Bayesian case, a researcher can exert influence on the outcome

by setting the value of π. In the current framework, π > 0 prevents a

generality claim as it would follow in the parametric case, however we

can still focus the argument on finding an optimal penalty that minimizes

‖(θ̂∞|π)− θ0‖, or equivalently the function divergence ‖(ĥ∞|π)− h0‖.
PROPOSITION. 5 (Best approximation across penalties and weights). The

divergence between the best approximation as judged by the penalized limit

criterion given a level of penalization and the true function is smaller

than the divergence as evaluated at all other limit estimates resulting

under other penalty weights

‖(ĥ∞|π0)− h0‖ < ‖(ĥ∞|π)− h0‖ ∀ π ∈ Π \ π0 ⊆ R>δ,

and results under the penalty π0 that minimizes an out-of-sample criterion

π0 : arg min
π∈Π

Q∞(ĥ∞|π),Π ⊆ R>δ
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for some small positive δ. Hence, (ĥ∞|π0) is the best approximation of h0

over HΘs×Π := {HΘs
|π1 ×HΘs

|π2 × ...×HΘs
|π} ∀ π ∈ Π, that is across

all penalties and weights.

PROPOSITION. 5 implies that if the penalty is chosen by minimizing a

criterion out-of-sample, a weights vector can be estimated that produces

the function closest to the target function across all penalties and weights.

Effectively, a researcher is able to identify an approximation that is

arbitrarily close to the true curve, by solving the estimator on very large

data iteratively for a sufficiently wide range of penalties and selecting

the result that performs optimal as an out-of-sample predictor. This is

an intuitive solution as θ0 carries a natural interpretation as the optimal

out-of-sample predictor. The key result, and with that the role of the

penalty, is summarized below in fig. 5.10.

መ𝜃∞ 𝜋 → ∞ Minimizes Penalty

መ𝜃∞ 𝜋 → 0 Minimizes in-sample Loss

Minimizes Penalized Loss 

for given penalty መ𝜃∞ 𝜋

Penalty 𝜋 controls the radius of  the 

sphere of  accepted solutions that in turn 

controls the divergence || መ𝜃∞ 𝜋 − 𝜃0||.

Setting the right penalty 𝜋 → 𝜋0,
minimizes this divergence and ensures 

correct inference around መ𝜃∞ 𝜋 → 𝜃0.

𝜃0

Figure 5.10: For functions h induced under parameter vectors θ, and penalties λ controlled by

general penalty functions π, the figure displays graphically the role of the penalty function in managing

the closeness of the empirical result to the result that delivers the correct function h0 associated with

the correct marginal coefficients h′0 of interest. The gray shaded area contains the space of accepted

solutions that currently includes the result induced under an infinite penalty, but not the correct result,

nor the result that would be obtained when the model fully minimizes in-sample loss. Hence the graph

corresponds to the mis-specified case in which the data is under-fitted.
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5.7.4 Conclusion

This note detailed an adaption of the Kernel Regularized Least Squares

model to the panel context, paying particular focus to automated se-

lection of fixed effects. The model was applied in a our main paper to

study nonlinear trends between environmental indicators and economic

development. The key feature of the model that makes it attractive in

this type of applied studies is that it provides a straightforward approach

to nonlinearity and interpretability within one integrated framework. The

difficulty with the approach is that estimation relies on externally set

tuning parameters that are not part of the estimated vector of parame-

ters that define the functional relationships in the data. This makes the

interpretation of local marginal coefficients highly dependent on correctly

tuning the model. The discussion provided high level arguments for

optimizing the estimation criterion on validation samples in order to

ensure the coefficients admit to standard interpretation.

The discussion provided some examples that highlighted that penalization

in the non-parametric context differs from penalization in the GLM case,

such as in the popular LASSO. While penalized GLM’s require the penalty

to vanish asymptotically for generality claims, positive penalization in

the limit may be a necessity to ensure identifiable uniqueness for non-

parametric models. Regularization or penalization, while primarily known

for dealing with over-fitting, was in fact a way to flexibly establish simple

subspaces in which consistency theorems hold. As a result, the consistency

and normality limits are uniquely defined for every level of penalization,

which makes it less straightforward to interpret the estimator, and its

derivatives, with usual confidence. However, penalties may still be found

that yield estimates that are conform standard interpretation. Specifically,

penalties that result from minimizing an out-of-sample criterion pull the

consistency limit toward the result that induces the optimal conditional

distribution implied by the weighted kernel across all penalties and
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weights, as judged by the out-of-sample criterion. That result is similar

to the standard convergence toward the parameter that delivers the best

modeled density in terms of divergence with respect to the true density of

the data Kullback and Leibler (1951); White (1994). Under that result,

the estimator converges to the result that delivers the best approximation

to the true distribution of the data.

It is important to stress that the argument is based on out-of-sample op-

timization of the same criterion function that was used to fit the model in

the estimation sample. Particularly in the case of classification problems

this may deviate from common practices. For example, classification

problems are often tuned by maximizing accuracy measures that involve

fractions of correctly predicted or mis-predicted classes. These widely

used metrics do not satisfy the smoothness properties imposed on the

in-sample criterion function to obtain consistency to a limit result at a

given value of the penalty parameter. A straightforward example of one

such violated assumption is the assumed continuity of the estimation

criterion in all it’s arguments, which is needed as part of a standard

Consistency proof to ensure limit preserving properties. This continu-

ity breaks because for any level of accuracy (simply the percentage of

correctly classified observations), there can exist an infinite number of

parameterizations that are judged to be exactly identical by the accu-

racy criterion. Two simple examples are one model that is correct by

predicting .49 and .51 probabilities versus one that predicts 0 versus 1.

Moreover, a minute change in a parameter value may change the model’s

accuracy from 100% to 0%, for example by swapping the margins around

probabilities close to .5., so model’s with near identical parameters can

also be judged as wildly different by an accuracy-based criterion.
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Proofs

Proof to PROPOSITION. 4

Proof. θ̂π := arg minθ∈ΘQ∞(θ) + π(θ), is by definition the minimizer of

Q∞(·;θ) + π(θ) that is by construction of the least squares function and

the penalty function π : Θ → R>0 a real-valued criterion on an open

metric space Θ. Furthermore there exists some positive constant ε for

which

[Q∞(θ′ ∈ Θ \Θs) + π(θ′ ∈ Θ \Θs)−Q∞(θ ∈ Θs) + π(θ ∈ Θs)] > ε,

because for Q∞(θ ∈ Θ \Θs) ≡ Q∞(θ ∈ Θs),

[π(θ′ ∈ Θ \Θs)− π(θ ∈ Θs)] > ε,

by the monotonicity of π on Θ. This implies that θ̂π minimizes Q∞(·;θ)+

π(θ) within a neighborhood Θs ⊂ Θ. Furthermore Θs(d) has finite radius

d <∞ because

[π(θ ∈ Θs(d))− π(θ ∈ Θ \Θs(d))] ≤ ε

implies d < ∞, by finiteness of ε in turn implied by continuity of the

penalty. Finally, Θs(d) ⊂ Θ is compact as it closed because its radius is

finite, and its complement Θ \Θs is open.

We have now established that uniformly over Θ, the estimator must fall

eventually inside Θs. The rest of the argument follows from standard

identifiability arguments in compact parameter spaces as in (Bates and

White, 1985; Domowitz and White, 1982) focused on Θs. That is, define

a circular neighborhood ℵk(r) ⊂ Θs with nonnegative radius r < d that

has a compact complement ℵk(r)c : Θs \ ℵk(r). θk is uniquely identified
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on Θ as by 0 < r < d <∞, for every (r, d),

inf
θ∈ℵk(r)c⊂Θs(d)⊂Θ

[
Q∞(θ) + π(θ)−Q∞(θ̂π) + π(θ̂π)

]
> 0.

In our case, this is implied by continuity of the criterion and additionally

by the fact that for any observationally equivalent point π(θ∗) such that

Q∞(θ∗) ≡ Q∞(θ̂π), by definition of θ̂π as the minimizer of minθ∈ΘQ∞(θ)+

π(θ) the continuity of π implies

π(θ̂π) < π(θ∗).

Proof to PROPOSITION. 5

Proof. Let θ̂π = θ̂∞|π := arg minθ∈ΘQ∞(θ) + π(θ) be the mini-

mizer of the penalized criterion for a certain level of penalization

and θ0 := arg minθ∈ΘQ∞(θ) the minimizer of an unpenalized out-

of-sample criterion. When plugging the true parameter in the pe-

nalized criterion, then taking ‖θ̂π − θ0‖ → 0 implies that similarly

|
[
Q∞(θ̂π) + π(θ̂π)

]
− [Q∞(θ0) + π(θ0)] | → 0. This minimization is

solved if the in-sample criterion evaluates |Q∞(θ̂π) − Q∞(θ0)| → 0

equivalently, as then immediately also |π(θ̂π) − π(θ0)| → 0. Hence,

either |π(θ̂π) − π(θ0)| → 0 or |Q∞(θ̂π) − Q∞(θ0)| → 0, is sufficient for

‖θ̂π − θ0‖ → 0.

Any such result following from taking both penalties π(θ̂π) and π(θ0)

to zero simultaneously as N → ∞ is prohibited by the fact that π :

Θ → R>0. However |Q∞(θ̂π) + π(θ̂π)| − |Q∞(θ0) + π(θ0)| attains a

minimum when setting the penalty to minimize the criterion defined

on out-of-sample errors. Specifically since θ0 is by construction the

minimum of the out-of-sample criterion in the limit, setting π0 to minimize
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arg minπ∈Π ∀ ⊆R≥0
Q∞(θ̂π) gives

π0 : arg min
π∈Π
|Q∞(θ̂π)−Q∞(θ0)|.

and if |Q∞(θ̂π)−Q∞(θ0)| → 0, it must follow that

|Q∞(θ̂π)−Q∞(θ0)| → 0,

and,

|π(θ̂π)− π(θ0)| → 0.

If Π ⊆ R≥0 is constructed such that π0 ∈ Π for which the arg min’s above

reach 0, then ‖(ĥ∞|π0) − h0‖ = 0 would follow and we reach the true

target function. Now Π ⊆ R≥0 can contain penalties infinitely close to 0,

in practice one must work with finite sets for a grid search across Π and

construct instead a set Π ⊆ R≥δ being the set of all possible parameters

bounded away from zero by some arbitrarily small positive constant δ. If

π0 /∈ Π for which ‖(ĥ∞|π0)− h0‖ = 0, then still

|Q∞(θ̂π0
)−Q∞(θ0)| < |Q∞(θ̂π)−Q∞(θ0)| ∀ π ∈ Π \ π0 ⊆ R>δ,

thus also

|Q∞(θ̂π0
)−Q∞(θ0)| < |Q∞(θ̂π)−Q∞(θ0)| ∀ π ∈ Π \ π0 ⊆ R>δ

and therefore

‖(θ̂∞|π0)− θ0‖ < ‖(θ̂∞|π)− θ0‖ ∀ π ∈ Π \ π0 ⊆ R>δ,

which induces through the definition of h as the weighted kernel also

‖(ĥ∞|π0)− h0‖ < ‖(ĥ∞|π)− h0‖ ∀ π ∈ Π \ π0 ⊆ R>δ,

implying that (ĥ∞|π0) turns out to be the best approximation of h0 for

all penalties in Π that each result itself as a best approximator within
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the subset HΘs
|π within the penalized criterion necessarily falls given the

level of penalization. In this case π0 simply plays the role of a pseudo-true

penalty that delivers a pseudo-true results, which can be detected when

the penalty is at the boundary of the grid Π or is expected when the

resolution of the grid is such that Π is not approximately continuous.
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Chapter 6

Vector Spatial Time Series

Chapter Summary

This paper introduces a Spatial Vector Autoregressive Moving Average (SVARMA)

model in which multiple cross-sectional time series are modeled as multivariate, possibly

fat-tailed, spatial autoregressive ARMA processes. The estimation requires specifying

the cross-sectional spillover channels through spatial weights matrices. The paper

explores a kernel method to estimate the network topology based on similarities in

the data. This method is able to capture interesting network structures that transmit

effects based on geographic proximity, but also over far distances based on economic

similarity. The paper discusses the model’s properties and its estimation using a

penalized Maximum Likelihood criterion. The empirical performance of the estimator

is explored in a simulation study. The model is used to study a spatial time series

of pollution and household expenditure data in Indonesia. The analysis finds that

the new model improves in terms of implied density, and better neutralizes residual

correlations than the VARMA, using fewer parameters. The results suggest that

growth in household expenditures precedes pollution reduction, particularly after the

expenditures of poorer households increase; that increasing pollution is followed by

reduced growth in expenditures, particularly reducing the growth of poorer households;

and that there are significant spillovers from bottom-up growth in expenditures. The

paper does not find evidence for top-down growth spillovers. Feedback between the

identified mechanisms may contribute to pollution-poverty traps and the results imply

that pollution damages are economically significant.1

1This chapter is based on “Pollution and Expenditures in a Penalized Vector Spatial Autoregressive
Time Series Model with Data-Driven Networks” published by the World Bank, the full reference is
Andree et al. (2019).
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6.1 Introduction

Environmental and economic systems are deeply tied with one another,

but consensus on the causal pathways is even in the most isolated set-

tings seldom achieved. For instance: Does economic growth lead to

environmental degradation or improvement? At the same time, to what

extent does pollution take its toll on growth? The answers to both

questions – and their interrelation – might tell us how places end up in

pollution-poverty traps, or succeed in cleaning up the environment. The

scope of these questions clearly calls for a holistic framework around the

environmental-economic domain with both space and time dimensions.

In this paper we introduce a framework that allows the researcher to

model multiple interacting spatial time series.

Time series offers invaluable insights to trace the arrow of causality. Uni-

variate autoregressive moving average (ARMA) models are among the

most fundamental statistical models to explore dynamics in observations

that are collected sequentially over time. As we are interested in inter-

actions between variables, we focus on their multivariate counterparts,

known as vector autoregressive moving averages (VARMA). Moving aver-

ages are characterized by a cutoff in the auto-covariance functions. This

implies that the effects represent parts in a model with short memory,

while autoregressive parts represent long-memory effects. Short memory

effects may relate to unobservable factors that slowly assimilate into the

model, e.g. effects for which it takes time to be completely absorbed

by a system. This is realistic for policy interventions in the context of

economic systems, but it may also be realistic for natural phenomena.

The ability to model effects that decay or remain free from feedback

provides a framework to differentiate between long and short run causality

as in Dufour and Renault (1998); Dufour et al. (2006) and Dufour and

Taamouti (2010). This has added value when one is specifically interested

in testing economic theories about the timing and duration of responses.
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The VARMA constitutes the backbone of many studies on causality due

to the strong relationship between invertibility and Granger-causality, and

the ability to test for the direction of effects (Sims, 1972). Estimation of

VARMA models is discussed for example by Roy et al. (2014), but also in

textbooks by Brockwell and Davis (2002), Reinsel (2003), and Lütkepohl

(2005). In this paper we work around the concept of Granger-causality

(Granger, 1969, 1980; Covey and Bessler, 1992).2 This concept involves

eliminating the history of variables from the joint distribution of all vari-

ables. There is no Granger-causality from the eliminated variables if the

conditional density of the model did not improve significantly. To avoid

problems related to repeated testing, discussed for example by Hendry

(2017), we follow Granger et al. (1995) in using Information Criteria (IC)

to decide between economic theories. Minimization of IC, guarantees the

selection of the model that attains the lower average Kullback-Leibler

bound in the limit, see Sin and White (1996) for detail. IC methods favor

parsimony, hence also work when some parameters may be unidentified

under the null. They offer a general solution when models are strictly

nested, overlapping or non-nested, linear or nonlinear, and well-specified

or miss-specified. In the miss-specified case, minimizing IC results in a

pseudo-true model that still delivers the best possible hypothesis about

Granger-causality as judged by the criterion function across all possible

hypotheses generated under the model and the parameter space.

Consistent estimation of VARMA models is closely related to the ability

to identify it uniquely. In particular, stationary and invertible VARMA

models have both VAR and VMA representations. Standard approaches

in the VARMA literature that deal with non-uniqueness focus on final

equations or echelon forms (see Lütkepohl (2005)). We follow a penal-

ization approach to ensure a unique VARMA solution to the estimation

criterion. This approach can be seen as a Ridge or Lasso regression for

2We say that one variable does not cause the other, if adding past observations of the former to the
information set with which we predict future observations of the latter does not improve the conditional
density.
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VARMA models. By penalizing either the VAR or VMA coefficients in

the criterion function, we rule out the multiplicity of solutions where

both components essentially cancel each other out.

While the VARMA treatment takes care of the feedback over time, it

does not incorporate the possibility of contemporaneous feedback. To

illustrate the latter, a shock can affect an area both directly as well as

indirectly through its neighbors. The spatial structure therefore acts

as a multiplier of the initial shock. If we neglect this multiplier, the

VARMA will likely overestimate the direct effects of interest. Hence,

it is crucial to filter out the spatial dependence at each point in time.

Extending the VARMA framework with spatial effects yields the spatial

vector autoregressive moving average (SVARMA) model. The SVARMA

can be thought of as the MA extension to the spatial-VAR discussed in

(Beenstock and Felsenstein, 2007). To model spatial dependence, we need

to specify the underlying spatial structure. Spatial weights are designed

around a concept of distance, which may not necessarily be geographic.

In this paper we build networks based on economic similarity rather

than geographic proximity. Under this notion, areas are more likely to

share dynamics when they have similar economic fundamentals. At the

same time, they are not likely to share spillovers, if they are dissimilar.

We propose a flexible method that allows to integrate estimation of the

spatial structure using kernels. In this context, the kernel bandwidth

controls the neighborhood size that in turn determines similarity. Large

bandwidths lead to many far and weak connections and small bandwidths

yield strong local clusters.

We use the penalized SVARMA framework with integrated estimation of

networks to study interactions between pollution and household expendi-

tures in Indonesia between 1999-2014. We focus particularly on the effect

of economic growth on pollution levels, the effect that pollution in turn

has on economic growth, and the dynamic feedback that arises as both
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channels spill over into each other. Additionally, we seek to disentangle

how the different households are affected by − and affect − pollution

change. In turn, this strongly depends on the presence of bottom-up and

top-down growth spillovers. Finally, we explore the differential in these

relationships between average urban areas and highly polluted areas. We

use the estimated parameters in an Impulse Response framework. Our

methods and data suggest several interesting feedback mechanisms.

The remaining part of this paper is as follows. Section 6.2 introduces

the model. Specifically, we detail the process equations, and our ap-

proach to build connectivity up from the data using kernels. Section 6.3

discusses the properties of the model, specifically stability, invertibility,

non-uniqueness, and the IRF. Section 6.4 provides the tools needed for

estimation. Our appendix provides simulation results on the empirical

distributions of all the parameters in sample sizes relevant to our em-

pirical application. The framework is applied in section 6.5 to study

dynamics in a multivariate cross-sectional time-series of pollution and

household expenditures. We study the IRF and discus policy implications

of the results. Section 6.6 concludes.

6.2 Spatial Vector Autoregressive Moving Average

model

This section details VARMA approaches for multiple panels that ex-

hibit spatial feedback. Figure 6.1 summarizes the components of the

SVARMA and its relation to other widely used models. SVARMA allows

instantaneous effects between observations within cross-sections, and

long and short run effects in the time-dimension between and within

panels. This provides a dynamic framework to study causation and

feedback between spatially autocorrelated time-series. Our use of the

spatial framework is intended to filter out dependencies and improve
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estimation of the underlying cross-sectional ARMA structures. This

is important because contemporaneous, cross-sectional feedback works

as a multiplier. Without distinguishing this feedback from the impulse

mechanisms, the direct impacts may be severely overestimated. This is

similar to the contemporaneous case in which instruments are used to

isolate effect from feedback.

Spatial 
autoregression 

(SAR)

Spatial vector 
autoregression
(Spatial VAR)

Vector auto-
regression 

(VAR)

Vector moving 
average
(VMA)

Vector autoregression moving average 
(VARMA)

Spatial vector autoregression moving average
(SVARMA)

Autoregression 
(AR)

Moving average 
(MA)

Spatial dependence

Spatial dependence

Vectorization Vectorization

Figure 6.1: This chart presents an overview of the constituents of the Spatial vector au-
toregressive moving average (SVARMA) model described in this section. Note that AR and
MA processes may also be defined on single cross-sections resulting in spatial-time series, or
cross-sectional ARMA models – not depicted in this diagram.

The SVARMA model can improve inference compared to VAR or spatial

VARs. The distinction between autoregressive and residual properties is

useful for forecasting and for distinguishing between short and long effects,

but moreover it plays a role in deriving consistent model statistics.3 If

the autoregressive parameter is correct in the sense that the response

at the true parameter confirms to the mean of the endogenous variable

conditional on partial information, then the score vector is generally not

a martingale difference sequence as the disturbance vector in the true

model is still autocorrelated. While the AR structure of the model is

3Neutralizing serial dependence is required to satisfy the martingale property of the score needed
to apply a standard CLT.
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correct, the objective function does not correspond to the true objective

function. The random variables that compose the score are therefore

not guaranteed to be martingale difference sequences. While the AR

structure produces correct responses, it will generally not be possible to

assign correct probability to the possibility that those responses are in

fact zero.4 As an effect, the statistical framework used to asses validity

of the causal claims is invalidated.

We use the following notation, a is a scalar, a is a vector, A is a matrix, and

A is a matrix that arises from stacking multiple blocks of A together. A
is the collection of matrices {A0, A1, ..., Ap}, A collects {A0,A1, ...,Ap}.
Finally, Ai:j and Ai:j respectively select elements i to j from those sets.

We reserve w := (x,y) for the joint sequence of two vector processes x

and y. While we admit that in the case of two univariate sequences, the

joint sequence is a vector, we use w := (x, y) for the joint process in this

isolated case. To avoid confusion between w ∈ W, we divert from most

spatial literature by using C as a connectivity matrix.

6.2.1 Vector Autoregressive Moving Average model

In the multiple univariate sequence case, w := (x, y), ε := (εx, εy), a

VARMA is a process

A0wt+A1wt−1+...+Apwt−p = M0εt+M1εt−1+...+Mqεt−q ∀ t ∈ Z, (6.1)

with parameter matrices structured as

A :=

[
axx axy

ayx ayy

]
,M :=

[
mxx mxy

myx myy

]
. (6.2)

4Corrections to the CLT are available if the score vector exhibits a suitable form of weak dependence,
see for example Pötscher and Prucha (1997). In practice it is not straightforward to judge whether the
score adheres a suitable form of weak dependence. This suggests that a researcher is always better
neutralizing the residuals when possible.
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In the multiple cross-section case w := (x,y), ε := (εx, εy) stacked

nx and ny vectors for every t, we can work by defining the parameter

matrices as Aij := aijIni and M ij := mijIni, structured as

A0:p :=

[
Axx

0:p A
xy
0:p

Ayx
0:p A

yy
0:p

]
,M0:p :=

[
Mxx

0:p M
xy
0:p

M yx
0:p M

yy
0:p

]
, I :=

[
Inx Onx

Ony Iny

]
, (6.3)

in which O is a matrix of zeros, to write the cross-sectional VARMA as

A0wt + A1wt−1 + ...+ Apwt−p = M0εt + M1εt−1 + ...+ Mqεt−q ∀ t ∈ Z,
(6.4)

in which {A0,A1, ...,Ap} ∈ A and {M0,M1, ...,Mp} ∈M are thus nw×
nw parameter matrices induced by scalar coefficients, and εt ∼ pε(εt,Σ;ν)

is a disturbance vector that has nx elements drawn from a distribution

with an unknown scale matrix Σx and possibly other parameters contained

in νx and the next ny elements drawn from a distribution with an unknown

scale matrix Σy and possibly other parameters contained in νy. This

allows Σx 6= Σy and νx 6= νy, but also Σx = Σy and νx = νy, or any

combination thereof. The parametric distributions however are of the

same family, and controlled by a same function pε.

It is standard that eq. (6.4) is linear in all its components, and does not

allow for any simultaneous feedback. Following standard normalization

rules, A0 and M0 have unit diagonals, i.e. A0 = M0 = I, but this is

not necessarily the case. In the multiple cross-section case eq. (6.4) no

longer involves multiple one-dimensional sequences, and A0 = M0 = I

is severely restrictive, especially as n grows. If observations within the

cross-section influence each other over time with an interval τ , while

cross-sections are observed at an interval t that is a multiple of τ , then

the interactions between cross-sectional observations seem instantaneous

from the observer’s perspective, see also the examples in Granger (1980).

The SVARMA is intended to explain part of the values of elements in
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w in terms of the remaining contemporaneous elements of wt. We work

with A0 as a matrix that allows for instantaneous spillovers. We focus

on the specific case in which elements in ny and elements in nx are

cross-sectionally dependent.

6.2.2 Spatial Vector Autoregressive Moving Average model

We can write SVARMA using M = I by defining A0 in eq. (6.4) as a

matrix consisting of a unit diagonal and a non-unit-diagonal component

C that structures the contemporaneous feedback across the elements of

nw, A0 = I + AC, with AC = −ρ ◦C in which ρ is a vector with the first

nx elements consisting out of ρx and the subsequent ny elements equal

to ρy. ρ multiplies element-wise, or “weighs” the connectivity matrix C

that has diagonal blocks Cnx, Cny and zeros on the off diagonal blocks,

(I+AC)wt+A1wt−1 + ...+Apwt−p = εt+M1εt−1 + ...+Mqεt−q ∀ t ∈ Z.
(6.5)

Alternatively, we can work with A0 = I, after multiplying all the au-

toregressive filters and moving average parameters with the appropriate

spatial multipliers:

wt+SA1wt−1 + ...+SApwt−p = Sεt+SM1εt−1 + ...+SMqεt−q ∀ t ∈ Z,
(6.6)

with S = (I+AC)−1. We refer to eq. (6.6) as the structural representation

of the SVARMA. Finally, we can also work with spatial errors, and

spatially multiplied autoregressive coefficients by introducing εt = Sεt

and H = SA, such that for A0 = I + AC = S−1, H0 = SS−1 = I we have

wt + H1wt−1 + ...+ Hpwt−p = εt + M1εt−1 + ...+ Mqεt−q ∀ t ∈ Z. (6.7)

This is the normalized VARMA representation of the SVARMA, and

differs from the non-spatial model by the fact that while we parame-

terize the time dynamics at the cross-sectional level, a heterogeneous
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dependence structure at the observational level arises through the spatial

network matrices. This is a powerful way of modeling high-dimensional

dependencies at the observational level as it allows for a large number of

correlation channels using relatively few parameters. We will keep the

model in this form unless stated otherwise.

6.3 Model properties

We can define two operators that respectively filter the (spatial) autore-

gressive effects and produce the moving averages, and summarize the

SVARMA as

H(L)wt = M(L)εt ∀ t ∈ Z, (6.8)

by defining L as a lag operator that has the effect that Lwt = wt−1, and

where H(L) = H0+H1L+...+HpL
p and M(L) = M0+M1L+...+MqL

q

are full rank matrix-valued polynomials.

Equation (6.8) is convenient notation for the SVARMA because it allows

us to condition theory directly on components similar to the standard case

of eq. (6.4), and understand standard results for invertibility, stability,

and Granger-causality simply as high-level conditions on the spatially

multiplied autoregressive and moving average components. In the general

case of misspecification, model invertibility and process invertibility are

not the same.5 Though non-stationary processes may be invertible, they

are generally not causal in the control theoretical sense (Boudjellaba et al.,

1992). Analysis should therefore focus on invertible stationary processes

under an axiom of correct specification. This complicates matters with

respect to the more commonly excepted axiom of misspecification that

provides descriptions in terms of pseudo-true correlations in the data.

When the model is correct, fading memory properties and process invert-

ibility cannot simply be assumed to be properties of the data. Instead,

5See for example Blasques et al. (2018) for results on the relation between filters and DGPs.
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these properties are directly related to the properties of the model itself

and the range of parameter values considered.6 Below, we will highlight

relevant parameter regions and discuss invertibility, and stability results

for SVARMA models following theory for standard VARMA models

found in Lütkepohl (2005) or Brockwell and Davis (2002). The results

will also show how multiple representations may equally well describe

the data, which is why we shall discuss a penalized estimation criterion.

6.3.1 Causal SVAR and it’s SMA representation

An important aspect of stationary SVARMA models is that under regu-

larity conditions the SVAR(1) part is causal (in the control theoretical

sense that it is a nonanticipative system) and has an infinite-order SMA

representation. Say an SVAR(1) is written as

wt = Φwt−1 + εt ∀ t ∈ Z, (6.9)

with Φz = −H1Lz− ...−HpL
pz. Assuming some form of fading memory,

eq. (6.9) may be expanded by a process of infinite back-substitution,

giving rise to an infinite-order multivariate spatial autoregressive moving

average:

wt = {εt + Φεt−1 + Φ2εt−2 + ...+ Φ∞εt−∞} ∀ t ∈ Z. (6.10)

For the sequence {Φ,Φ1,Φ2, ...,Φ∞} to converge, it is necessary and

sufficient that all the moduli of the eigenvalues of Φ remain within the

unit circle, see section 6.3.3. Stationarity and invertibility conditions that

apply to eq. (6.8) are naturally an extension of this first order autore-

gressive case, which is itself a generalization of the scalar ARMA case.

6Proofs for Stationarity and Ergodicity of data generated by VARMA models are widespread and
can be found for example in (Nsiri and Roy, 1993). Stelzer (2008) treat multivariate Generalized
ARMA models including non-identity links, (Zheng et al., 2015) treat nonlinear theory for Multivariate
Markov-switching ARMA processes, finally Andree et al. (2017a) show that multivariate ARMA
structures can generate geometrically Ergodic data even when a nonlinear observation-driven spatial
dependence process is considered.
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This high-level condition is the same as the one for VARMA models, the

difference is that in the case of the SVARMA, the autoregressive prop-

erties are partly determined also by the spatial multiplier. Specifically,

if det(H(z)) 6= 0 ∀ z ∈ C, |z| < 1, then there exists an infinite order

representation

wt = Ψ(L)εt = {Ψ0εt+Ψ1εt−1+Ψ2εt−2+...+Ψ∞εt−∞} ∀ t ∈ Z. (6.11)

with the matrices Ψk generated by

H(z)Ψ(z) = M(z). (6.12)

The conditions

H0 :=

[
Inx Onx

Ony Iny

]
, M0 :=

[
Inx Onx

Ony Iny

]
, imply that Ψ0 :=

[
Inx Onx

Ony Iny

]
.

(6.13)

6.3.2 Invertible SMA as a SVAR

If and only if det(M)(z) 6= 0 for all z such that |z| < 1, the process is

invertible and the spatial disturbance vector can also be written as

εt = Π(L)wt = {Π0wt−1 + Π1wt−1 + Π2wt−2 + ...+ Π∞wt−∞} ∀ t ∈ Z.
(6.14)

The matrices Πk are generated by

M(z)Π(z) = H(z). (6.15)

The conditions eq. (6.13) imply that

Π0 :=

[
Inx Onx

Ony Iny

]
. (6.16)
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6.3.3 Stability in canonical state space

The stability and invertibility conditions may alternatively be understood

in a state-space context. Consider a controllable canonical state-space

representation:

wt = H−1(L){M(L)εt} = M(L)Ξt ∀ t ∈ Z, (6.17)

where Ξt = H−1(L)εt.

Equation (6.17) is defined through a transition equation that corresponds

to a first-order Markov process. It is commonly known that multivariate

linear stationary processes that have coefficients that are absolutely

summable are invertible if and only if its spectral density is regular

everywhere. One can work with eq. (6.17) to derive the companion

matrix, and see that stability follows if the eigenvalues of Φ lie inside the

unit circle. Additional details are provided in section 6.7.2.

6.3.4 Uniqueness

Since an invertible SVARMA process has both SVAR and SMA repre-

sentations by rewriting either part, uniqueness is not ensured. In order

to ensure uniqueness of the SVARMA, restrictions on the AR and MA

operators are required to ensure that there is only a single pair of H(L)

and M(L) that satisfy eq. (6.8). The first source of non-uniqueness

relates to the fact that multiple combinations for H(L) and M(L) can

be found for different values of the operators at t = 0. This is ruled

out by a suitable form of normalization. It is usually ruled out that

the operators cancel each other out by the assumption that the AR and

MA operators have no common factors. However, even if restrictions

are in place that ensure this in an estimation algorithm, it does not

rule out that SVAR and SMA representations of the SVARMA can be

found that fit the data equally well. Lütkepohl (2005) discusses the
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so-called final equations and echelon forms that are unique. Additional

restrictions on the structure of both H and M can be found, but we

propose to penalize the MA parts in the criterion. The penalty ensures

that the criterion always prefers setting both AR and MA parts to zero

rather than having them cancel each other out at any arbitrary value.

Furthermore, if both an SVAR representation can be found and an SMA

representation, the SVAR representation will be favored over the SMA

in order to minimize the penalty. In principle, the penalization approach

works if either the AR or the MA parts are penalized. Penalizing the AR

part involves a prior belief that the sequences do not feedback, and that

the impulse responses are of a short-memory type. Penalizing the MA

parts can intuitively be understood as prioring on the belief that the true

process exhibits endogenous feedback, which reconciles better with the

endogeneity concerns that lead many micro-economists to promote the

use of IV approaches in contemporaneous regressions, and the general

goal of having a parsimonious description of the data to reduce regression

uncertainty.

6.3.5 Impulse Response Functions

Given an SVARMA system, it may be insightful to know precisely how

idiosyncratic impulses on the input side affect the output variables. By

considering an isolated impulse in ε, for example a positive shock in

εx while holding all other disturbances at zero for all times, one can

isolate the effect of an exogenous change in xt as it moves through the

entire SVARMA system. Specifically, consider a mechanism activated at

a certain t that produces a pulse sequence

p(t) =

{
ζ, t = 0,

0, t 6= 0.
∀ t ∈ Z.



6.4. Estimation 237

ζ is the magnitude of the value of the considered impact. If e is the

vector with a unit in the positions where a shock occurs, the response by

the system is represented by

wt = Ψ(L){p(t)e} ∀ t ∈ Z. (6.18)

This system is inactive until t = 0, after which it generates the sequence

{Ψ0e,Ψ1e, ...,Ψ∞e, }. The impulse travels through the entire SVARMA

structure with speed depending on the spatial autoregressive and time

autoregressive parameters. It is possible to trace all the routes by taking

into account how the spatial autoregressive polynomial H(z) is struc-

tured. Finally, confidence bands around the response can be obtained

by repeating an experiment of identical impact, and drawing different

parameters for the SVARMA structure randomly from their confidence

bands. Trivially, the sequence eq. (6.18) converges to zero exponentially

fast a.s., for a stationary and ergodic model. Hence, even when the

aggregate behavior of all parameters is not directly of interest, the IRF

provides a useful tool to explore stability of the estimated model, which is

important also for Granger-causal inference on the individual parameters.

6.4 Estimation

6.4.1 Parameterizing spatial weight matrices using Gaussian
kernels

Key to the estimation of contemporaneous spatial effects is specifying

a network structure that defines the spill-over channels between cross-

sectional observations. In spatial literature, the weights matrix is based

on geographical distances (Anselin, 1988), but it is equally possible

to define networks based on economic distances (see for example the

application of Blasques et al. (2016)). Furthermore, spatial relationships

in the environmental domain may occur both over short and far distances
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(Hewitt et al., 2018). In our case, physical transmission of pollution

through the air can be expected to lead to spillovers that are transmitted

over short geographical distances. However, it may also be the case that

pollution in the sort run is driven by economic activities that spill over

across a cluster of urban environments that are close in an economic

sense, implying that linkages across further geographical distances may

be equally relevant to describe the process.

To allow for network structures that can transmit effects at short geo-

graphical distances, as well as over economic distances, we propose a

flexible approach based on Gaussian kernels that can produce weights

matrices based on distances within any specified set of exogenous vari-

ables v. Specifically, spatial weights, or more generally, the connectivity

matrices C can be constructed by first computing a Gaussian kernel

G = k(vi,vj; b) = exp

(−‖vi − vj‖2

b

)
, (6.19)

with ‖vi − vj‖ being the Euclidean distance, and b being a bandwidth

parameter that determines the network smoothness. After the kernel is

computed, one can design a matrix D:

D = G− I = k(vi,vj; b) = exp

(−‖vi − vj‖2

b

)
− I, (6.20)

that sets the diagonal to zero. Note that the diagonal of the Gaussian

kernel is 1, so one can simply subtract the identity matrix. The spatial

weight matrix C can subsequently be constructed by row-normalizing D.

To better understand the role between distances in the exogenous variables

v, and the type of network structures that this procedure produces, a

closer look at the properties of the Gaussian kernel is helpful. For b > 0,

the kernel k can be understood as a measure of similarity, which is seen

by applying a Cauchy-Schwarz inequality

k(vi,vj; b)
2 ≤ k(vi,vi; b)k(vj,vj; b) ∀ (vi,vj; b > 0) ∈ X × X × B.
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This reveals that when two points vi and vj are similar, then the kernel

k(vi,vj; b)b>0 will return a value close to 1. On the other hand, when vi

and vj are dissimilar, it will reach a value close to 0. This immediately

suggests that geographic weights matrices can be constructed using this

approach if v describes the physical locations of observations, for example

by using coordinates.

While v plays the crucial role of describing the possible similarities

between locations, b controls the type of network connections that result

based on these similarities. For a positive but small b, few but strong

network links arise. For larger values of b, a large number of positive, but

weaker, connections result. The bandwidth can in principle also become

negative. In this case the relationship between closeness in between two

data points and the strength of their connection inverts. In particular,

negative bandwidths produce positive network connectivities based on

dissimilarities in v. This is seen by the following. When b is negative

and vi and vj are similar, then k(vi,vj; b)b<0 will be close to 1, but the

kernel will attain values larger than 1 when vi and vj are dissimilar

k(vi,vj; b)
2 ≥ k(vi,vi; b)k(vj,vj; b) ∀ (vi,vj; b < 0) ∈ X × X × B.

This type of clustering based on dissimilarities may not make sense when

considering clustering in a geographical context, but in some equilibrating

processes, intensification of contraction can in fact be the result of

divergences. Both have empirical relevance. For example, when the

kernel is drawn around the level series of a cross-sectional time-series,

the resulting contraction between dissimilar observations is similar to

the error-correction effect that is commonly modeled using Vector Error

Correction Models. For positive bandwidths, on the other hand, the

similarity view of the kernel approach caries a similar interpretation as

that of Tobler’s law, that underlies the intuition of the SAR.
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Figure 6.2, summarizes the various possibilities visually. In particular, it

plots the connectivity matrix for different bandwidth values using a single

vector of values v = N/25, N ∈ {1, 2, ..., 25}. One can see that disregard

of the sign of b the surfaces are smooth when the bandwidth is large in

magnitude. We also see that the connection between the values v1 and

v25 is closer to zero when b is positive, but closer to 1 when b is negative.

Section 6.4 discusses how to find an appropriate value empirically.

6.4.2 Penalized Maximum Likelihood Estimator

To relax the Gaussian assumption that may not hold for data that

exhibits extreme tail movement with high probability, often the case in

the environmental-economic data, we discuss estimation in the context

of the Students’ t-estimation. In line with our discussion on uniqueness,

we apply L2 (Euclidean distance) penalties set on the moving average

components that vanish with a weight of 1/
√
NT . Penalizing the L1

norm (absolute sum), as in popularized Ridge estimations, encourages

parameter vectors with many elements set to zero, which results in an

unidentified problem for b. L2 penalization, like in the LASSO framework,

encourages solutions where parameters are small, and in fact the penalty

effect reduces in strength as parameters become close to zero. To reduce

dimensionality, we suggest to evaluate the AICc around the PMLE, and

apply zero restrictions following minimization of information loss. L2

penalization of b increases exponentially in strength for ‖b‖ > 1 while

weakening in strength as ‖b‖ → 0, and favors networks with fewer, but

stronger links. This prior is justified by the improved small sample

behavior of the MLE of spatial auto-regressions with higher degree of

sparseness of the weights matrix (Bao and Ullah, 2007). Our penalized

Students’ t-criterion with vanishing penalties maintains generality in

the limit and naturally generalizes the standard Gaussian case, while

imposing less strict assumptions regarding thin-tailedness of the moving
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Figure 6.2: Surfaces of spatial weights produced using the kernel approach for different
bandwidth values, on identical data produced with N/25, N ∈ {1, 2, ..., 25}.
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averages thereby allowing for large exogenous impacts to occur with high

probability.

Let θ denote the collection of parameters of the SVARMA model, θ :=

(H,M), of which θS := (ρ,b) is a subset of spatial parameters. We

define the PMLE as:

θ̂T := arg min
θ∈Θ

QT (v,wT ;θ) + λγ(θ), (6.21)

with the ML criterion defined as

QT := `T (v,wT ;θ) =
T∑

t

`t(v,wT ;θ),

`t(v,wT ;θ) = ln pε(wt − f(v,wt;θ),Σ;ν),

(6.22)

with f(v,wt;θ) shorthand for the data modeled by the SVARMA with

spatial matrices conditional on a vector of data v, and the penalty defined

as

λγ(θ) = 1/
√
NT

∑
|M|2. (6.23)

Using the standard expression for the multivariate t-distribution with

ν = νw = (νx, νy) degrees of freedom for each channel, and variance

Σ = Σw = (Σx,Σy) for each channel, we obtain

`t(v,wT ;θ) = D(θS,v) +K(θ) + E(θ,v,wt), (6.24)

where D(θS,v) is the log determinant of

D(θS,v) := ln det S
(
θρ,C(v; b)

)
, (6.25)

with S
(
θρ,C(v; b)

)
as the spatial multiplier matrix conditional on data

v and bandwidth parameters b that we defined as

S(θρ,C(v; b)) =
(
I− ρ ◦C(v; b)

)−1

, (6.26)

with C(v; b) constructed as detailed in section 6.4.1. Importantly, the
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log determinant equals the sum of the log determinants of its diagonal

blocks, as the off-diagonal blocks are zero

D(θS,v) = ln det S
(
θρ,C(v; b)

)
= ln detSx

(
ρx, Cnx(v; bx)

)

+ ln detSy
(
ρy, Cny(v; by)

)
(6.27)

and each determinant is evaluated over S
(
ρ, C(v; b)

)
=
(
I−ρC(v; b)

)−1

with ρC(v; b) as the diagonal blocks of

ρ ◦C(v; b) =

[
ρxCnx(v; bx) Onx

Ony ρyCny(v; by)

]
. (6.28)

K(θ) is a constant, that can be similarly expressed as a sum

K(θ) := ln Γ
(

(ν +N)/2
)[

detΣ
1
2 (νπ)

N
2 Γ (ν/2)

]−1

, (6.29)

for each (ν,Σ) ∈ ((νx,Σx), (νy,Σy)). Finally, the random element

E(θ,v,wt) can naturally be defined as the sum

E(θ,v,wt) :=

−1

2
(νx +N) ln

(
1 + νx−1(xt − fx(v,wt;θ

x))′Σx−1 (xt − fx(v,wt;θ
x))
)

−1

2
(νy +N) ln

(
1 + νy−1(yt− fy(v,wt;θ

y))′Σy−1 (yt − fy(v,wt;θ
y))
)
.

(6.30)

The channel-wise summing of the likelihood is possible as long as feed-

back stays within each cross-section, and contemporaneous spillovers

between x and x are not modeled. This channel-wise computation allows

parallelization for each `t(v,wT ;θ), which reduces computation time of

each evaluation of `t(v,wT ;θ) tremendously. Since f(v,wT ;θ) depends

on the moving averages that in turn result as difference combinations

of wt − f(v,wT ;θ), the components of eq. (6.30) can only be computed

simultaneously for identical t. In the Appendix we discuss restrictions

that are advantageous in terms of reducing the computational cost, and



244 Chapter 6. Vector Spatial Time Series

detail how this trades with flexibility of the implied density.

Limit properties of b are not developed in the literature to our knowledge,

but we do not regard it as an interesting parameter for inference. For

Granger-causal inference we are interested in θ̂T \ bT , and b has the sole

purpose of improving θ̂T \bT by reducing misspecification bias of C(v; b)

that may result in bias in θρ. This can be diagnosed by comparing

against non-spatial VARMA using standard diagnostics. To explore the

small sample behavior, we perform a simulation study. It turns out that

the small sample distribution of the penalized bandwidth is reasonable,

while the distribution of the unpenalized bandwidth is heavily distorted

in our small T study. In both cased however, we see that θ̂T \bT behaves

well. We also provide results that highlight the significant bias in the

ARMA parts when no spatial dynamics are modeled.

Finally, due to the dependence on moving averages that are not available

as difference combinations for the first q periods are unavailable, the

estimation algorithm requires an initialization of ε̂t for t ≤ q. As T →∞,

the impact of the initialization on the filter fades exponentially fast

almost surely for a stationary process, see for example ?Straumann and

Mikosch (2006). For small T however, the impact remains. We focus our

simulations on the small T case to investigate this.

6.4.3 Small sample distribution of the (P)MLE

To explore the adequacy of the S(V)ARMA in filtering out space-time-

dynamics, we conduct a simulation study. We investigate both the MLE

that arises by setting λ = 0 and the PMLE with λ = 1/
√
NT . Remember

that this penalty vanishes as the data grows, ensuring consistency in

the limit while penalizing only in small sample regions. For this reason

we explore simulations across growing data dimensions. In particular,

because our application covers two sets of estimation results that are

identical in time dimension but different in the cross-sectional dimension
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(T − p = 12, N = 60 and N = 113), we explore the (P)MLE across

growing N = (10, 25, 75, 125) while keeping T fixed to the dimension

of the application. We set the parameters to realistic values given the

empirical application.

Apart from the behavior of the ARMA components we are interested in

the adequacy of the (P)MLE in dynamically estimating appropriate values

of the bandwidth parameter that produces alternative spatial structures.

We also explore explicitly whether the spatial structure improves the

ARMA estimates, and explore robustness to over-fitting under the null

of a non-spatial ARMA process. The DGP is

yt = 0.6C(x; b)yt − 0.35yt−1 + εt + 0.25εt−1, (6.31)

where x is drawn uniquely in every experiment from a Student’s-t dis-

tribution with ν = 120, εt is drawn from a Student’s-t distribution with

ν = 5. We explore both a spatial structure with few but strong links

with b = .15 and a smoother network with b = 2. The decision to focus

on the heavy tail case is guided by our empirical results.

As we can see in fig. 6.3 the PMLE performs reasonably well already in

small samples, but even in the largest samples we do not obtain the limit

result for the individual parameters. This is not surprising given the

small T . The initialization of the moving averages at zero cannot fade,

leading to a downward bias of MA parameters and an upward bias of

AR parameters. In fact, by increasing N and fixing T , the bias increases

further as the ratio of distorted information due to zero-initialization

of innovations grows along with the ratio of N/T . Nonetheless, the

ARMA parameters are jointly well behaved, even when both N and T are

small. We conclude that inference on the joint parameters (such as when

simulating the IRF using all the model’s parameters) is therefore valid

in our application, while statements that involve differentiation between

short- and long-term effects should be made with caution.
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Figure 6.3: Penalized small sample distributions of the correctly specified SARMA, bandwidth of
the spatial kernel matrix in the DGP set to .15

Figure 6.5 in the appendix shows the results for the MLE. It is clear that

the penalization improves the empirical distribution of the bandwidth

parameter substantially. Note that the MLE is not identified because

both AR and MA distributions could potentially fit the data equally well.

The PMLE was designed to ensure identification, and the simulations

confirm that the distribution of individual AR and MA parameters of the

PMLE are slightly better. Figure 6.6 and fig. 6.7, also in the appendix,

document results for b = 2. This experiment shows that our conclusions

are insensitive to the value of b.
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Figure 6.8 in the appendix shows results for misspecified non-spatial

ARMA estimation. This reveals that when the cross-sectional process

exhibits spatial effects, and these spatial effects are not modeled, then

the ARMA parameters become severely biased. This highlights that esti-

mating a conventional non-spatial VARMA when the cross-sectional time

series processes are in fact spatial, leads to bad inference as the temporal

parameters capture a share of the unmodeled spatial correlations.

Finally, to investigate the behavior of the SVARMA with the Gaussian

kernel structure as spatial weights matrix when the data is in fact non-

spatial, we present results in Figure 6.9 (appendix). The bandwidth

density of the (P)MLE is centered around 0, with the PMLE having a

notably nicer distribution. Note that the kernel structure is not identified

when the bandwidth is zero, and it could take on any value potentially

allowing the structure to find some (dis)similarities that over-fit the data.

The results show that the penalization technique is useful, and the non-

penalized MLE has a long tail of incorrect high bandwidth values. The

spatial dependence parameter remains, however, well-behaved in both

cases. This suggests that the researcher can decide between SVARMA

and VARMA mechanics by focusing on Wald-type test around the spatial

dependence parameter.

Combined, all the simulation results not only confirm that the SVARMA

model performs well in empirically relevant situations, but also that not

specifying the spatial effects results in biased results. The SVARMA

remains a robust analysis tool also when the data is non-spatial.

6.5 Application to subnational pollution and house-

hold expenditure data in Indonesia

In this application we study interactions between household level ex-

penditures and pollution. It has long been theorized that as economies
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develop, pollution initially increases at an exponential rate. However

at some point on the development path, parts in the economy start to

adopt cleaner technologies and acceleration in pollution slows down till

pollution levels reach a maximum after which the entire economy enters

into a state characterized by a decline in pollution. We do not aim to

provide a large survey of the literature, for a progression of the debate,

see (World Bank, 1992; Grossman and Krueger, 1995; Stern et al., 1996;

Stern, 1998, 2004; Andree et al., 2019). For many, the central question is

whether increases in wealth and income result in increasing pressure on

the environment, or whether economic development provides the basis

for environmental improvement. In turn, environmental degradation may

negatively interact with growth and contribute to the creation of urban

pollution traps. In this application we revisit the empirical issue and

focus on the question whether pollution increases or decreases after in-

come. Furthermore, we are interested in the order of effects, the presence

of feedback, and distributional impacts of effects. We therefore focus

our study on air pollution, average per capita household expenditures,

and bottom quintile per capita household expenditures and explore the

interactions in the context of multiple spatial time series in Indonesia

over the period 1999-2014. We seek to distinguish between the effects

of average household growth and bottom household growth on pollution

and see if there is differential in potential impacts of pollution on the

two different income groups.

6.5.1 Data

Our analysis relies on two longitudinal data sets. First, as a proxy

for air pollution, we use the global estimates of fine particulate matter

developed by van Donkelaar et al. (2016). Second, we are interested in

distinguishing between the economic development of average households

and poor households. As a proxy, we use annual averages of monthly



6.5. Application to subnational pollution and household expenditure data in Indonesia249

household expenditures for the average households and for the bottom

quintile households as defined in the Indonesia Database for Policy

and Economic Research (INDO-DAPOER, World Bank Group).7 The

expenditure data are available from 1999 to 2014. The data set also

contains several other economic, social and demographic indicators at the

district-level, primarily sourced from various surveys and the Indonesia

Central Bureau of Statistics (BPS), but the coverage of other potential

proxies for local poverty and average economic growth is sparse.

The air pollution data set contains estimates on mean annual (1999

to 2015) concentrations of fine particulate matter (PM2.5), coarse dust

particles of 2.5 micrometers in diameter, that proxy a wider range of

air pollutants. The data points are available at a 0.01-degree resolution

and have been derived from a combination of satellite-, simulation- and

monitor-based sources. The authors address several inconsistencies in

satellite-derived PM2.5 data by calibrating their estimates with ground-

based observations and reducing the noise of seasonal anomalies.

We are primarily interested in the environmental-economic interactions

in urban environments. To narrow the focus, we used a gridded popu-

lation data set (Gridded Population of the World, v4 at 30 arc-seconds

resolution) to distinguish urban from rural districts. We defined urban

areas as a contiguous patch of pixels with population density higher than

300 per square kilometer and a population count higher than 5,000. This

is similar to the approach followed by OECD and EC-DG Regio to define

global Functional Urban Areas, scaling down the population counts to

be relevant in a subnational context. Our approach identifies 219 areas

with urban clusters. To establish a link between urban air pollution

and the INDO-DAPOER database, we summarized the PM2.5 annual

7https://data.worldbank.org/data-catalog/indonesia-database-for-policy-and-economic-research.
Some district names and boarders have changed over time. To construct the time series, we used
the database’s “District Proliferation Crosswalk” file to match observations in the data to the
district definition provided by the Global Administrative Areas repository (GADM) available at
http://www.gadm.org/. Indonesia’s latest district configuration covers 497 districts of which 427 were
successfully matched.
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grids to the district-level using the mean value for pollution grids sensed

over urban patches in each district. This captures output directly from

urban activity, and reduces the outside influence of fires and agricultural

activity. Figure 6.10 contains kernel densities of the pollution levels, and

changes, in each year for all the 219 urban clusters.

Since we are particularly interested in the effects of considerable pollution,

we drop any areas that at one or more points in time have a concentration

below 6 mcg/m3. To ensure that the sample is relatively homogeneous

and not too impacted by outliers, we also removed several regions in

which pollution briefly spiked to values over 40 mcg/m3 in 2006, during

which a particularly strong fire season occurred. After removing the

relatively unpolluted areas and these extreme pollution outliers, we are

left with a final number of 113 areas that meet our criteria of being

a polluted urban cluster. Apart from the 113 areas that we defined

as polluted urban areas, we perform an additional estimation focusing

specifically on 60 heavily polluted areas that exceed the WHO air quality

guidelines in all years.

6.5.2 Estimation approach

We use percentage changes, and work with demeaned series that are

cleared from both the time-invariant and cross-sectionally invariant im-

pacts similarly to a Fixed Effects approach, to remove any trending

behavior or strongly dependent co-movements, and control for hetero-

geneity. We find nonzero medians after removing all average effects,

indicative of heavy tail action. This strengthens justification for our

t-approach against the Gaussian alternative. Plotted distributions of

levels and returns are included in the Appendix, section 6.7.4.

We base our spatial weights matrix on Gaussian kernels around features

computed from the local distributions in returns (prior to demeaning).

Specifically, we use the first, second and fourth moments (excess), together
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with 25 and 75 quantiles of the local returns to describe the sample

distributions, and cumulative returns to describe the total effect of moving

through that distribution. The similarity approach around these local

statistics informs the model on similarities in the behavior and direction

of the local time-series. The cross-sectional spillover channels thus arise

as functions of similarities in the local temporal patterns, which suggest

that those regions share commonalities such as co-integrating forces or

common latent factors. We estimate VARMA and SVARMA models with

both p, q equal to three, such that if Granger-causal effects follow after

one lag, variables can potentially influence each other indirectly through

another channel while direct effects may in fact be zero. We minimize

the AICc evaluated at the PMLE, to minimize divergence w.r.t. the

true probability measure.

6.5.3 Results

Table 6.1 presents the estimation results for the SVARMA(AICc) for all

observations, table 6.5 in the appendix contains the additional estimation

results for the more polluted (PM2.5 > 10) samples. For comparison,

VARMA(AICc) results are contained in tables 6.3 and 6.4 in the appendix.

The parameter results suggest that the processes are fat-tailed, Gaussian

estimation would be overwhelmingly rejected both in the VARMA and

SVARMA frameworks. Second, the AICc drops with 494.341 points

at PM2.5 > 6 and by 277.103 points at PM2.5 > 10, indicating that

the SVARMA improves the conditional density implied by the model

significantly over the VARMA. Our R̂2 estimates8 suggest that we explain

8We use a pseudo-R2 using the SSR of residuals evaluated at the PMLE versus the residuals
evaluated at all parameters equal to 0 (and bandwidths at any value),

R̂2 = 1−
∑T

1 |wT − f(wT ; θ̂)|2
∑T

1 |wT − f(wT ;θθ=0)|2
, (6.32)

in which θθ=0 implies that all the structural parameters are set to zero − not to be confused with θ0

as the true values.
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roughly more than 70% of the variance in the data, confirming slightly

higher explanatory power using the SVARMA specifications (0.737 versus

0.705 at PM2.5 > 6, 0.732 versus 0.722 at PM2.5 > 10). In both cases

the SVARMA, however, uses less ARMA parameters (29 versus 34 at

PM2.5 > 6, 27 versus 31 at PM2.5 > 10.) implying that the improvements

from spatial filtering are significant.

We can see that the bandwidths that control the network smoothness

are different in each channel of the model. Figure 6.11 in the appendix

plots the network surfaces, we have ordered the link weights from high

to low. This reveals that the bandwidths at PM2.5 > 6 produce smooth

network structures in both expenditures equations with many weak links,

which implies that economic spillovers are weakly shared across many

observations with many indirect spillovers. Observations in the pollution

cross-section are more often linked to only a few other observations, but

share strong direct spillovers. As there are many near-zero links, this

implies that feedback effects in the pollution equation remain relatively

centered in local pollution clusters. Average expenditures have a higher

bandwidth value than bottom expenditures, hence the results indicate

that bottom expenditures spill over in smaller but stronger clusters than

average expenditures.

To assess how well the estimated structure fits the data, we also estimate

a cross-sectional AR model on the residuals on an equation-by-equation

basis. Under the null, the models are estimated on random data and we

should expect 1 out of 10 lags to be significant at .10 purely out of chance.

We compute 1, ..., r individual LR ratios for AR models with up to r lags

against a zero lag model, and correcting the p-values using a Bonferroni-

correction. The smallest p-value out of r Bonferroni-corrected p-values

is reported. These residual correlation tests also favor the SVARMA

representation (the VARMA at PM2.5 > 6 retains significant residual

correlations). The rejections of residual correlations, and reasonable R̂2,
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Table 6.1: SVARMA(AICc) results at PM2.5 > 6, R̂2 = 0.737, 41 estimated parameters on
(N −max(p, q)×T )× 3 = 4068 data points with 372 fixed demeaning components. AICc = −7390.091.

Pollution Bottom Expenditures Expenditures

φ polt−1 -0.068** -0.092*** -0.047***
(-2.57) (-2.866) (-2.391)

φ polt−2 -0.070*** -0.063***
(-4.381) (-2.969)

φ polt−3 0.026* 0.054**
(1.652) (2.507)

φ bott−1 -0.108* 0.089***
(-1.94) (2.577)

φ bott−2 -0.139*** -0.129***
(-4.736) (-2.791)

φ bott−3 -0.039** -0.099*** -0.141***
(-2.119) (-3.544) (-3.534)

φ expt−1 0.071*** -0.374***
(2.964) (-12.805)

φ expt−2 0.158***
(4.453)

φ expt−3 0.074***
(3.14)

M polt−1 -0.515*** 0.126***
(-15.292) (3.233)

M polt−2

M polt−3 -0.052* -0.082**
(-1.814) (-2.131)

M bott−1 -0.038* -0.253***
(-1.94) (-4.296)

M bott−2 0.252***
(4.313)

M bott−3 0.128**
(2.203)

M expt−1

M expt−2 -0.134*** -0.387***
(-3.621) (-10.705)

M expt−3 -0.147***
(-4.273)

ρ 0.812*** 0.305*** 0.327***
(27.765) (3.177) (2.976)

b 0.088 0.18 0.229

σ 0.119 0.129 0.176
ν 2.004 7.313 4.703
4-lag white-noise p 1.000 0.129 0.176

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the SARMA components.
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Table 6.2: Cumulative effects after 15 years following an initial 10% increase in the impulse variable.
Based on 10.000 simulations from the model, drawing parameters randomly from the estimated
parameter distributions and discarding 50 initialization steps before applying the impulse.

PM2.5 > 6 PM2.5 > 10
Percentiles: 25% 50% 75% 25% 50% 75%

Impulse: Pollution
Pollution −28.203% −14.470% −6.403% −50.507% −17.071% 0.334%
Bottom expenditures −3.066% −2.227% −1.534% −8.312% −5.742% −3.876%
Average expenditures −1.399% −0.854% −0.409% −4.162% −2.645% −1.520%

Impulse: Bottom expenditures
Pollution −3.143% −2.416% −1.794% −5.966% −4.171% −2.761%
Bottom expenditures 6.504% 7.192% 7.940% 4.389% 5.132% 5.928%
Average expenditures 1.435% 2.089% 2.773% 0.668% 1.221% 1.747%

Impulse: Average expenditures
Pollution −0.043% −0.003% 0.031% −0.407% −0.235% −0.106%
Bottom expenditures −0.329% −0.027% 0.268% −0.919% −0.634% −0.363%
Average expenditures 2.522% 2.954% 3.330% 1.525% 2.146% 2.772%

lead us to conclude that no major components are missing in either of the

SVARMA specifications, hence we interpret the parameters and standard

errors in their usual context.

Impulse Response analysis

To explore the dynamics implied by the estimated results, we use the pa-

rameters to simulate IRF’s. We perform 3 experiments. First we trace the

effect after an isolated impact of 10% increase in pollution across all areas,

we consider a similar impact to the bottom expenditures, and finally we

repeat the experiment for average expenditures. The impact vectors are

not designed to mimic a plausible event, our foremost goal is to track the

direct and indirect Granger-causality channels implied by the estimated

model. However, 10% is roughly in line with one standard deviation of

the residuals for each variable. Confidence bandwidths are constructed

by simulating from the models, randomly drawing parameters from their

empirical distributions. The first 50 time steps are discarded before the

impact vector is activated to prevent dependence of the dynamics on the

initialization. Table 6.2 summarizes the results.
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Figure 6.4: IRF plots for exogenous shocks in pollution, bottom household expenditures and average
household expenditures PM2.5 >6. Effects that exclude zero in the final year, are marked by ∗.

Figure 6.4 shows the results for the model estimated at PM2.5 > 6, and

fig. 6.12 in the appendix shows the results from the model estimated

at PM2.5 > 10. The figures are produced by 10, 000 random draws and

show the cumulative effects resulting from compounding the percentage

changes including spatial feedback effects. Table

We find that across all districts with PM2.5 > 6, average expenditure

growth has no long-term effect on pollution. Growth in the bottom

expenditures, however, reduces pollution by -2.416%. At higher pollution

concentrations we find that the effect of bottom expenditure growth on
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pollution is even stronger (-4.171%). Growth in average expenditures in

these highly polluted areas is also found to reduce pollution, albeit with

smaller impact (-.235%). Exogenous pollution effects in both models have

a short-term multiplier effect due to feedback, with the effect peaking

briefly over 50%. The long-term impacts, however, produce a wide

range of outcomes that are mostly negative or include zero. Therefore,

our results suggest that ongoing effects of exogenous pollution, such as

increasing populations and changes in urban structure, contribute to

pollution build up by constantly keeping the short-run effects positive.

This suggests that a region remains polluted as long as exogenous effects

continue to enter the system, while the highest pollution levels will

eventually dissipate as these structural contributions stabilize, and further

decline as continued income growth takes over as a predominant driver

of pollution decline.

Another result is that at both PM2.5 > 6 and PM2.5 > 10, average

growth is non-inclusive. At PM2.5 > 6, an increase in average household

expenditures does not significantly spill over to bottom households in the

long-run, and at PM2.5 > 10 the long-run impact is −0.634%. Growth in

bottom expenditures, on the other hand, boosts the average (7.192% at

PM2.5 > 6 and 5.132% at PM2.5 > 10). Pollution is additionally identified

as a negative effect on bottom growth, -2.227% at PM2.5 > 6. The effect

intensifies at higher pollution concentrations, -5.742% on average across

all districts with PM2.5 > 10. Average household expenditures are

relatively more resilient, but are also negatively impacted by pollution

(-0.854% at PM2.5 > 6), especially at higher pollution levels (-2.645% at

PM2.5 > 10).

The results suggest several feedback mechanisms. First, average growth

is non-inclusive. Second, pollution lowers primarily after bottom expendi-

tures increase, while average growth is less effective in reducing pollution.

Third, average household expenditures are more resilient to pollution
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effects. Taken together, these three effects compound in downwards

pressure on bottom growth, subsequently also slowing pollution clean-up,

and creating an environment in which heavily polluted urban poverty

traps may potentially arise if pollution and poverty are not addressed.

Pollution impacts also block part of the potential multiplier effect that

bottom-up growth would produce. Growth spillovers from the bottom to

the average are strong however, suggesting that pollution-poverty envi-

ronments may have strong negative impacts on the wider urban economy.

Jointly, these inferred mechanisms suggest that a bottom-up approach to

growth can help reduce the likelihood of pollution-poverty trap scenarios

and even later on remains a no-regret strategy for growth as it induces

positive spillovers.

Economic significance

The results from the impulse response analysis indicates that pollution

damages account for significant economic losses. Using the converged

IRF impacts, and using a 2017 dollar conversion rate, we can draft the

following crude economic costs associated with the analyzed 10% coun-

try wide pollution increases by using the average expenditure levels of

the distinguished household groups. We use the income 2014 values,

and extrapolate to 2017 to match our conversion rate, by compound-

ing the average growth rate observed per household group. Table 6.6

in the appendix summarizes the per capita expenditures used for our

calculations.

Using 2014 population estimates from INDO-DAPOER, together with

the average local population growth rates, we would see approximately

83,104,069 people living in heavily polluted areas in 2017. Another

47,463,131 people live in the 6 tp 10 PM2.5 range.9 By population weight-

ing the effect of the analyzed increase in pollution levels, an estimated

9As a reference, the United Nations put the total Indonesian population at 261,115,456 in 2016.
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total economic loss to household expenditures reaches over 3 billion dol-

lars. Poor households account for approximately half a billion dollars of

those losses. Various factors can further add to this number in the future,

including migration toward areas with higher pollution concentration

and overall continued growth in urban populations, growth in income

and increasing pollution levels in areas that are now still relatively clean.

The average pollution level in 2014 in heavily polluted areas was 21.75

according to our aggregated sensor estimates, and the .95 percentile is at

26.98, showing that a 25% increase in the average urban area can still

occur. In addition, we look at household expenditures that constitute

only part of GDP, and thus capture only part of the potential economic

damages. We do not model the potential direct and indirect impacts

on other components of GDP. Opportunity costs related to diverting

government expenditures to health-related issues while social returns to

investment might be higher elsewhere in an unpolluted economy may be

another hidden cost. Without intervention the damages would run into

the multi-billions over the course of only a few years.

6.6 Conclusion

This paper discussed and estimated a fat-tailed Spatial Vector Autore-

gressive Moving Average (SVARMA) model in which multiple spatial

autoregressive time series are modeled together. The model was used to

study Granger-causal interactions between spatial autoregressive time

series of subnational pollution and household expenditure data. The

application used data that was not spatially contiguous in all cases and

explored the use of a Gaussian kernel to estimate the spatial weights

based on similarities in covariates. The analysis found that the model im-

proved over the non-spatial VARMA and highlighted interesting dynamics

between poverty and pollution.
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Our economic findings are summarized in three main points: first, expen-

diture growth reduces pollution, particularly growth of poor households;

second, pollution reduces growth in expenditures, particularly of poor

households; third, growth is non-exclusive, there are significant spillovers

from bottom-up growth but not from top-down growth. This imbalance

in growth spillovers aligns with a body of literature debunking so-called

“trickle-down” economics (see, for example, Quiggin (2009); Ranieri and

Almeida Ramos (2013)), and suggests instead that investment in the poor

is more effective than raising average incomes. Non-inclusive growth,

lower resilience of the poor to pollution damages, and the importance of

growth in bottom households to reduce pollution, together lay the basis

for polluted poverty traps.

We find that damages from pollution in Indonesia are considerable, over

3 billion annually for a 10% increase in particulate matter concentrations.

This is in line with earlier research that has indicated that considerable

economic impacts of air pollution stem from health effects that decrease

length and quality of life, increases in health expenditures, and reductions

in labor supply and productivity Preker et al. (2016); Levinson (2012);

Hanna and Oliva (2015); Zivin and Neidell (2012). In 2013, one-tenth of

deaths worldwide were attributable to air pollution, resulting in about

$225 billion annually in lost labor income (World Bank and Institute for

Health Metrics and Evaluation, 2016).

While these results point toward an economic failure, our analysis also

suggests potentials for enhanced growth. Policy targeted at exogenous

pollution can have positive growth effects by reducing the harmful effects

of pollution. Positive economic effects, specifically on the poor, in turn

help combat air pollution. Bottom-up growth spills over positively to

average growth while reducing pollution, and can therefore be seen both

as an effective component in pollution reduction strategies as well as in

general economic growth programs. Health policies for the poor that
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reduce the economic impact on these households, may similarly have

economic benefits for the broader economy by leveraging growth spillovers

and pollution reduction effects. Optimal pollution policies have both a

positive effect on expenditures, specifically for the poor, while reducing

exogenous pollution. Simple examples may include distributing cleaner

gas stoves such as under the Clean Stove Initiative of the World Bank.

This type of initiative reduces particulate matter emissions by reducing

the amount of wood, agricultural residues, dung, and coal burned, while

having a positive effect directly on bottom household wealth. Wealth

increase in the bottom, then has the potential to spill over through the

entire economy. In a different fashion, a pollution tax such as under

Chile’s Green Tax Strategy, may in fact well be a less optimal way of

pollution control, specifically if it is not sufficiently progressive.10 In

these cases, impacting household income and expenditures interferes with

the overall effectiveness. Tax-based policies may possibly be made more

effective if the tax revenues are in turn invested in the poor.

The analysis also found that the economic impacts of pollution are higher

in more severely polluted areas. Combined, the evidence points toward a

pro-active stance towards both poverty reduction and pollution abatement

as early in the development process as possible. A “grow first, solve

later” attitude in either case leads to the lesser effective growth strategy.

Letting pollution increase, results in increasingly higher damages. Both

in a cumulative, but also in a marginal sense. Slowed growth of the poor

prolongs poverty, which in turn slows down a potential pollution decline.

The narrative of pollution naturally reducing as development occurs is

a decades-old concept, and has been surrounded by controversy and

debate related to its implications for development (see Stagl (1999) and

Soumyananda (2004) for examples). The so-called “clean-up phase” that

historically accompanied middle- and late-stage income growth has long

10This does not imply that pollution taxes are not effective. In fact, multiple studies have shown the
effectiveness of tax-based approaches in curbing pollution (Deschenes et al., 2012; Shapiro and Walker,
2016).
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been misinterpreted as a justification for knowingly developing through

“dirty” means and neglecting to establish policy interventions that would

curb early-stage pollution. We hope our evidence contributes to an ending

of this unjustified and harmful interpretation that can only lead to bad

economic outcomes. This conclusion has been put forward also by others,

already in earlier literature (Panayatou, 1997; Lee, 2012).

6.7 Appendix

6.7.1 Restrictions

Restricted SVARMA 1

A model in which the joint process has autoregressive forces that feedback

in the time-dimension between the sequences, while variables feedback

simultaneously within the cross-sections, could be written as

[
xt +Hxx

1 xt−1 +Hxy
1 yt−1 + ...+Hxx

p xt−p +Hxy
p yt−p

yt +Hyx
1 yt−1 +Hyy

1 xt−1 + ...+Hyx
p yt−p +Hyy

p xt−p

]
=

[
εxt +Mxx

1 ε
x
t−1 + ...+Mxx

q ε
x
t−q

εyt +M yy
1 ε

y
t−1 + ...+M yy

q ε
y
t−1

]
∀ t ∈ Z.

(6.33)

This model constrains Mxy
0:p and M yx

0:p to zero, implying that residuals and

lagged residuals enter only in one cross-section, while the observations

may still depend on the observations in both cross-sections. We can write

this efficiently by working with parameter matrices

H0 :=

[
Inx Onx

Ony Iny

]
, H1:p :=

[
Hxx

1:p H
xy
1:p

Hyx
1:p H

yy
1:p

]
, (6.34)

M0 :=

[
Inx Onx

Ony Iny

]
, M1:p :=

[
Mxx

1:p Onx

Ony M
yy
1:p

]
.
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Restricted SVARMA 2

Alternatively, we can work with moving averages that enter both equations

directly, e.g., the second part of the equality in eq. (6.33) is of the form:

[
εxt +Mxx

1 ε
x
t−1 +Mxy

1 ε
x
t−1 + ...+Mxx

q ε
x
t−q +Mxy

q ε
x
t−q

εyt +M yx
1 ε

y
t−1 +M yy

1 ε
y
t−1 + ...+M yx

q ε
y
t−q +M yy

q ε
y
t−q

]
. (6.35)

The matrix representation results from

H0 :=

[
Inx Onx

Ony Iny

]
, H1:p :=

[
Hxx

1:p H
xy
1:p

Hyx
1:p H

yy
1:p

]
, (6.36)

M0 :=

[
Inx Onx

Ony Iny

]
, M1:p :=

[
Mxx

1:p M
xy
1:p

M yx
1:p M

yy
1:p

]
.

This model allows that each effect goes through a spatial multiplier that

may differ in structure and strength for each panel variable.

We make a clear distinction between the two cases because the equations

in the first model can be computed without the moving averages of other

variables being available. Therefore, the criterion functions can be evalu-

ated on an equation-by-equation basis which allows better parallelization

of tasks. In the second model, the impulse generating mechanisms may

cross-interact, and all equations have to be evaluated simultaneously or

in matrix form. This becomes computationally demanding even for a

small number of variables and moderate nw and T . It is still possible to

invert the contemporaneous spillovers on an equation by equation basis,

which means that parts of the computation can still be parallelized. The

second model is a restricted version of the case in which both observations

and residuals have contemporaneous effects between variables.11 From a

11The unrestricted model with contemporaneous effects between variables results from

H0:p :=

[
Hxx

0:p H
xy
0:p

Hyx
0:p H

yy
0:p

]
, M0:p :=

[
Mxx

0:p M
xy
0:p

Myx
0:p M

yy
0:p

]
,
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practical aspect it is useful to first consider models of the type eq. (6.34)

first, and use the results to feed numerical algorithms to estimate models

of the eq. (6.36) type.

6.7.2 Stability in terms of the companion matrix

Consider the Markov Chain,

wt = M(L){H−1(L)εt} = M(L)Ξt ∀ t ∈ Z,

with identity normalization of the spatially multiplied autoregressive

matrix at t = 0, and p = q for simplicity. After generating the spatially

correlated residuals εt from εt, the values of wt can be generated in two

stages. First,

Ξt = εt − {H1Ξt−1 + ...+ HpΞt−p},

then,

wt = M0Ξt + M1Ξ1t−1 + ...+ Mp−1Ξt−p+1.

By defining the set of p state variables:

Ξ1t = Ξt,

Ξ2t = Ξt−1,
...

Ξpt = Ξt−p+1.

and rewriting the Markov Chain in terms of the left hand side variables:

w1t = εt − {H1Ξ1t−1 + ...+ HpΞpt−1}.

we can use the state vector Ξt =
[
Ξ1t,Ξ2t, ...,Ξpt

]′
to write the system

in which the connectivity matrices that generate the off-diagonal blocks Hxy
0:p and Hyx

0:p may be designed
to have non-zero diagonals. While interesting from a theoretical perspective, we were not able to
design algorithms for estimation that carried value in a practical context.
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after defining O = 0 ◦ I:




Ξ1t

Ξ2t
...

Ξpt




=




−H1 . . . −Hp−1 −Hp

I . . . −O O
... . . . ...

...

O . . . I O







Ξ1t−1

Ξ2t−1
...

Ξpt−1




+




I

O
...

O



ε(t),

with the sparse matrix on the right side of the equality being the compan-

ion matrix that has the following accompanying measurement equation

wt = M0Ξ1t + ...+ Mp−1Ξpt ∀ t ∈ Z.

Stability then be expressed in terms of the companion matrix Φ. Re-

member that its elements correspond to the inverted autoregressive

components H, hence it is straightforward that this yields the conditions

that the eigenvalues of Φ must lie within the unit circle:

det(I−Φ(z)) = det(H(z)) = det(H0 +H1 + ...+I+Hpz
p) 6= 0 ∀ |z| ≤ 1.

Note that if ρ = 0, S = (I + O)−1 = I, as an effect H = A, which gives

det(I−Φ(z)) = det(A(z)) = det(A0 +A1 + ...+ I+Apz
p) 6= 0 ∀ |z| ≤ 1.

Finally, this only differs from the standard condition cited in VARMA

literature that

det(I −Φ(z)) = det(A(z)) = det(A0 +A1 + ...+ I +Apz
p) 6= 0 ∀ |z| ≤ 1,

by construction of our parameter matrices that link the scalar coefficients

to the cross-sectional observations. However, since there is no parameter

heterogeneity left, the two conditions are identical. Finally, to better

understand the relationship between the spatial multiplier for nonzero ρ

and the autoregressive parameter in determining stability, the additional

results in (Andree et al., 2017a) are of help. While the stability conditions
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of SVARMA or straightforward in terms of high-level conditions, they

involve many parameters and in practice it may be less straightforward

to calculate them for testing purposes. We suggest that for practical

purposes, it may be less cumbersome to simulate from the model under

impulses, and see if the responses converge as the researcher should be

interested in this either way.

6.7.3 Small sample distribution of the (P)MLE
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Figure 6.5: Unpenalized small sample distributions of the correctly specified SARMA, bandwidth of

the spatial kernel matrix in the DGP set to .15.
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Figure 6.6: Penalized small sample distributions of the correctly specified SARMA, bandwidth of

the spatial kernel matrix in the DGP set to 2.
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Figure 6.7: Unpenalized small sample distributions of the correctly specified SARMA, bandwidth of

the spatial kernel matrix in the DGP set to 2.
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Figure 6.8: Unpenalized small sample distributions of the miss-specified ARMA, when the true

process is an SARMA with bandwidth of the spatial kernel matrix set to .15 (left) and 2 (right).



6.7. Appendix 269

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

standardized density of Rho estimates

D = 1000, bw = Normal Reference Distribution
t−score

y

Normal
N=10
N=25
N=75
N=125

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

standardized density of BW estimates

D = 1000, bw = Normal Reference Distribution
t−score

y

Normal
N=10
N=25
N=75
N=125

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

standardized density of Rho estimates

D = 1000, bw = Normal Reference Distribution
t−score

y

Normal
N=10
N=25
N=75
N=125

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

standardized density of BW estimates

D = 1000, bw = Normal Reference Distribution
t−score

y

Normal
N=10
N=25
N=75
N=125

Figure 6.9: Penalized (upper) small sample distributions of bandwidth and spatial parameter in the

SARMA, when the true process is a cross-sectional ARMA with zero spatial effects. The bandwidth

density is centered around 0, note that the kernel structure is not identified at this value.
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6.7.4 Pollution data
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Figure 6.10: Densities of pollution levels (left) and changes in pollution (right) for 219 areas with an

urban patch of over 5,000 people and densities of 300 per square kilometer or higher.
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6.7.5 Additional regression results
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Figure 6.11: Surfaces of estimated spatial weights, ordered by link strengths (observations in no
particular order), revealing the different links and links strengths across the different channels of the
SVARMA structure.
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Table 6.3: VARMA(AICc) results at PM2.5 > 6, R̂2 = 0.705, 42 estimated parameters on (N −
max(p, q)× T )× 3 = 4068 data points with 372 fixed demeaning components. AICc = −6895.750.

Pollution Bottom Expenditures Expenditures

φ polt−1 -0.456*** -0.155*** 0.124*
(-6.407) (-2.745) (1.862)

φ polt−2 -0.201*** -0.101***
(-6.171) (-3.215)

φ polt−3 0.078***
(3.081)

φ bott−1 0.101** -0.119**
(2.019) (-2.02)

φ bott−2 -0.138*** -0.123***
(-4.645) (-2.655)

φ bott−3 -0.056** -0.094*** -0.156***
(-2.362) (-3.333) (-3.825)

φ expt−1 0.069*** -0.277***
(2.884) (-4.884)

φ expt−2 0.159***
(4.557)

φ expt−3 0.072***
(3.099)

M polt−1 -0.142* 0.145** -0.196***
(-1.853) (2.444) (-2.7)

M polt−2 -0.100** 0.129***
(-2.236) (2.788)

M polt−3 0.068* -0.085*** -0.088**
(1.806) (-2.877) (-2.225)

M bott−1 -0.148*** -0.235*** 0.095**
(-2.585) (-3.855) (2.538)

M bott−2 0.221***
(3.692)

M bott−3 0.141**
(2.354)

M expt−1 -0.119*
(-1.827)

M expt−2 -0.135*** -0.356***
(-3.658) (-8.198)

M expt−3 -0.137***
(-3.75)

σ 0.109 0.087 0.100
ν 3.797 5.031 5.721
4-lag white-noise p 1.000 0.085* 0.025**

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the ARMA components.
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Table 6.4: VARMA(AICc) results at PM2.5 > 10, R̂2 = 0.722, 37 estimated parameters on (N −
max(p, q)× T )× 3 = 2160 data points with 213 fixed demeaning components. AICc = −3876.735.

Pollution Bottom Expenditures Expenditures

φ polt−1 -0.578*** -0.542*** -0.413***
(-17.043) (-4.875) (-2.811)

φ polt−2 -0.234*** -0.320*** -0.204**
(-4.764) (-4.866) (-2.459)

φ polt−3 0.064*
(1.883)

φ bott−1 0.138* -0.440*** -0.248**
(2.327) (-11.281) (-2.558)

φ bott−2 0.083**
(2.374)

φ bott−3 -0.061*
(-1.85)

φ expt−1 0.151*** -0.172**
(3.049) (-2.654)

φ expt−2 0.056* -0.219***
(1.837) (-5.579)

φ expt−3

Mpolt−1 0.569*** 0.342**
(4.903) (2.244)

Mpolt−2 -0.184***
(-3.11)

Mpolt−3 -0.134*** -0.294*** -0.208***
(-2.594) (-4.529) (-2.751)

Mbott−1 -0.188*** 0.348***
(-2.644) (3.247)

Mbott−2 -0.344*** -0.154**
(-6.453) (-2.138)

Mbott−3

Mexpt−1 -0.106** -0.303***
(-2.021) (-4.569)

Mexpt−2 -0.079***
(-2.579)

Mexpt−3 0.054* -0.286***
(1.789) (-6.83)

ρ
b

σ 0.094 0.079 0.101
ν 4.107 9.474 4.573
p white-noise 1.000 0.311 0.498

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the ARMA components.
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Table 6.5: SVARMA(AICc) results at PM2.5 > 10, R̂2 = 0.732, 39 estimated parameters on
(N −max(p, q)×T )× 3 = 2160 data points with 213 fixed demeaning components. AICc = −4153.838.

Pollution Bottom Expenditures Expenditures

φ polt−1 -0.097** -0.150*** -0.085**
(-2.503) (-2.803) (-2.367)

φ polt−2 -0.073** -0.049
(-2.048) (-1.482)

φ polt−3 0.041* -0.045
(1.773) (-1.446)

φ bott−1 0.092**
(2.446)

φ bott−2 -0.271*** -0.200***
(-4.573) (-3.518)

φ bott−3 -0.093**
(-2.326)

φ expt−1 -0.324***
(-5.421)

φ expt−2 0.133***
(2.995)

φ expt−3 0.052*
(1.964)

M polt−1 -0.362*** 0.198***
(-6.212) (3.19)

M polt−2 -0.105**
(-2.33)

M polt−3 0.120***
(2.96)

M bott−1 -0.146*** -0.447***
(-3.43) (-12.057)

M bott−2 0.194*** 0.260***
(2.864) (3.825)

M bott−3 -0.216***
(-4.225)

M expt−1 -0.106
(-1.496)

M expt−2 -0.139*** -0.400***
(-2.911) (-8.092)

M expt−3 -0.159***
(-3.934)

ρ 0.833*** 0.123 0.162
(24.272) (1.374) (1.46)

b 0.118 0.151 0.208

σ 0.906 0.080 0.101
ν 2.004 7.313 4.703
p white-noise 1.000 0.187 0.864

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the SARMA components.
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6.7.6 Additional Impulse Response analysis results
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Figure 6.12: IRF plots for exogenous shocks in pollution, bottom household expenditures and average
household expenditures PM2.5 >10. Effects that exclude zero in the final year, are marked by ∗.

Table 6.6: Economic pollution costs based on a conversion rate from IDR to dollars of 100,000 IDR
to 7.410 USD – Pulled from Google Finance on 15 October, 2017.

Annual expenditures in Average annual loss in USD

USD per capita for 10% PM2.5 increase

Bottom household PM2.5
6+ 397.132 8.844

Average household PM2.5
6+ 1074.54 9.177

Bottom household PM2.5
10+ 420.50 24.145

Average household PM2.5
10+ 1183.96 31.316
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Chapter 7

Probability and Causality in Spatial
Time Series

Chapter Summary

The current paper discusses approximating a correct theory of cause and effect by

minimizing distance to its associated probability measure in a space of measures in

which each element is associated with a stochastic representation of a candidate theory.

The discussion encourages researchers to use flexible dynamical models to model and

discover the true quantitative relationships that may be hidden in interrelated stochastic

data. The argument is based on the use of a decision criterion that scales to a metric

that measures distance between any given measure. When this is the case, a metric

space can be considered in which equivalences can be established by partitioning into

classes of zero-distance points. Equivalence to the true measure, that is associated

with the true frequencies in Markov chains of iterated causes and effects, is established

by reaching zero distance in that space. When the hypothesis space is incorrectly

constructed, equivalence is established with respect to a pseudo-true measure that

by definition is closest to the correct hypothesis across all considered hypotheses.

The specific case of Maximum Likelihood is further discussed. In particular, squared

Hellinger distance marks a lower bound of Kullback-Leibler divergence. This implies

that maximizing complexity penalized likelihood minimizes distance toward the true

probability measure. As such, it is an objective that approximates the correct causal

structure from interrelated stochastic data that are observed and modeled sequentially

over time.1

1This chapter is based on “Probability, Causality and Stochastic Formulations of Economic Theory”,
available on the Social Science Research Network. The reference is (Andree, 2019).
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7.1 Introduction

The 20th century has seen much work done on establishing the statistical

properties of estimators widely used in econometrics. Notably, Kol-

mogorov (1933) laid out the axiomatic foundations of modern probability

theory and, one year later, Doob (1934) proved the law of large numbers

using a probabilistic interpretation of Birkhoff’s ergodic theorem. Doob

then used this to prove theorems of Fisher (1922, 1925) and Hotelling

(1930) on estimating a parameter of a distribution by method of Maxi-

mum Likelihood, establishing both the Consistency and Normality of the

MLE. Wald (1949) provided a proof for the multi-parameter case with

greater generality. Earlier assertions on the efficiency of the MLE by

Fischer, and importantly Cramer (1946), were eventually substantiated

by rigorous proof by Rao (1962) resulting in what is now known as the

Cramer-Rao bound. Generalizations that cover the nonlinear case were

developed, initially with difficult to verify conditions (Le Cam, 1953) and

(Kraft, 1955), but later for the general case of stationary Markov processes

(Roussas, 1965) which in fact was a result that extended the theory by

Wald (1949). It took several decades, but eventually the nonlinear Least

Squares case was tackled (Jennrich, 1969; Malinvaud, 1970) which set

the basis to a general asymptotic theory of extremum estimators. In

the decades that followed, asymptotic properties of extremum estima-

tors have covered multivariate dynamic settings, miss-specified models,

heterogeneity, and dependence of the data. A good modern review is

Pötscher and Prucha (1997).

While the important early statisticians Pearson and Fischer were pri-

marily biometricians, their statistical methods for data analysis were

eagerly integrated into economics. Wald, who played a crucial role in

developing the Consistency and Normality results, spent much of his

time with econometricians and he produced economic theories of his

own. Arguably, the most notable contribution in integrating probabil-
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ity into econometrics is, however, by Haavelmo (1944) “The Probability

Approach in Econometrics”. In a less well-known paper that was pub-

lished one year before, Haavelmo (1943) already provided the basis for

stochastic formulation of economic theories and the integration of error

terms into regressions. Good historical accounts on how Haavelmo’s

work shaped modern econometrics are by Spanos (1989) and Bjerkholt

(2007), and a more general reconstruction of the interaction between early

econometricians and statisticians is provided by Aldrich (2010).

Though the probabilistic view laid out by Haavelmo to model economic

theories has largely been embraced by many applied economists, it seems

that more mechanic definitions of causality are largely preferred over

probabilistic ones. Particularly Rubins’ viewpoint (Rubin, 1974), which

originated from studies on human psychology, has been widely embraced

as a model for causality. The core idea behind the Rubins’ approach

to identification is that treatment groups of populations with otherwise

equal properties can be used to isolate a treatment effect, as no other

factor can otherwise be attributed to account for the differential in an

observed outcome. This view on causality implies that treatments must,

in a deterministic manner, cause outcomes to occur. In fact, Pearl (2000)

states that cause and effect relations are fundamentally deterministic,

explicitly excluding quantum mechanical phenomena from his concept of

cause and effect but mentioning that causal analysis involves probability

language (see also the review by Neuberg et al. (2003)). The probabilistic

approaches to causality, such as laid out by Granger (1969, 1980); Covey

and Bessler (1992) that involve contrasting the probabilistic forecasting

performance of a univariate and bivariate specification, are done away

by Pearl (2000). In particular, Pearl (2000) makes explicit mention that

this is not causality, and that the concepts of “strong exogeneity” (Engle

et al., 1983) and Granger-causality are only statistical concepts. His view

on causality is purely mechanical. At the same time, there are many

examples in physics, the study that was born out of classical mechanics,
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that approach causality from the probabilistic angle. On one hand this

may relate to the fact that branches in both physics and economics

evolve around models of dynamical systems in which the control-theoretic

concept of a non-anticipative system is the basis for causal relationships,

see for example Liang (2016); Harnack et al. (2017); Krakovska et al.

(2018) for examples of recent causal studies in physics that work around

estimating the time dependencies in dynamical systems. On the other

hand, it may be related to developments in quantum mechanics that

suggest that reality itself is probabilistic in nature, a profound notion

that arguably still has not been fully clarified since the Bohr-Einstein

debates. This would, at some level of abstraction, turn the universe

non-causal under Pearl’s view, which may be a philosophically difficult

proposition. For example, in “Causality and Chance in Modern Physics”,

Bohm (1999), one year before Pearl, argues that any theory about reality

that embraces either one of causality and chance, to the exclusion of the

other, is inherently incomplete.

The conflicting views might seem an inconsistency, and the mechanical

approach to causality that is widely used in economics seems in stark

contrast to the viewpoint presented in Haavelmo (1943) that turned

econometrics into a probabilistic study. Particularly, Haavelmo’s core

argument was that it is the very nature of economic behavior itself,

that implies the necessity of stochastic formulations of economic theory

and the inclusion of error terms in otherwise exact relationships to make

simplifications of reality elastic enough for application. Moreover, Kalman

(1983) definitively argues that the classical model of reality developed in

mechanical physics is simply inapplicable to the problems of economics.

It is certainly interesting that, after a century of probability work by

statisticians and econometricians that led statistics to be accepted as the

leading model for inference, the working definition of causality used by

many economists is deterministic in nature, while physicists are open to

work with Granger’s definition.
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Efforts to reunite the conflicting views have recently begun to produce

interesting results. New developments began by noting that questions

about important concepts in economics, such as choice and uncertainty,

can even in very simplistic settings not be answered within Pearl’s frame-

work. White and Chalak (2009); White et al. (2014) extend Pearl’s causal

model to include optimization, equilibrium, learning concepts, and choice

that are integral parts of economics and game theory, or social systems

in which agents act and react under uncertainty. Under the extended

causal framework, White and Lu (2010) forge the previously missing

link between Granger causality and structural causality by showing that,

given a corresponding conditional form of exogeneity, Granger causality

holds if and only if a corresponding form of structural causality holds,

and Eichler and Didelez (2010) provide conditions under which Granger

non-causality implies that an intervention has had no effect. White et al.

(2011) show that tests for Granger causality can be used to test for direct

causality in sequential systems, and Lu et al. (2017) produce tests for

cross-section and panel data valid in a general case that does not assume

linearity, monotonicity in observables or unobservables, or separability

between observed and unobserved variables in the structural relations.

White and Pettenuzzo (2014) show that instead of relying on exogeneity

(weak, strong, or super) conditional on the model or Data Generating

Process (DGP), causal effects can also be consistently estimated by re-

lying on correct specification of the conditional mean sequence. This

highlights the importance of knowledge regarding the important features

of the DGP. Specifically, economic theory may suggest which variables

are meaningful, while the functional form (numbers of lags, cointegration,

or structural shifts), may be resolved directly from the data.

In this paper, we continue the debate focusing on the application strategy

to estimate causal relationships, taking a general, data-driven, stand.

Specifically, we assume that a theorized causal relationship between two

economic variables in the possible presence of unobserved factors leads to
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a probability law that regulates the transitions from one phase to another

in Markov chains of iterated processes of causes and effects. This is

particularly relevant given the arguments of Haavelmo (1943) and others

discussed, that are in favor of formulating economic theories stochastically.

In this probabilistic setting, the properties of the extremum estimators

introduced earlier provide a natural interpretation of an estimated result

regardless of whether correct specification is assumed. Specifically, under

simple conditions that are often guaranteed by the design of standard

estimation problems, the limit result is the closest to the correct hy-

pothesis about causality out of all considered hypotheses. Assuming

correct specification, ensures naturally that minimal distance is zero,

which corresponds to the setting of White and Pettenuzzo (2014). When

the hypothesis space is incorrectly constructed, equivalence is established

with respect to the pseudo-true measure that by definition, again, is

closest to the correct hypothesis out of all considered hypotheses. If the

hypothesis space is sufficiently large to ensure a small divergence between

the true causal probability law and the closest possible modeled measure,

then the limit result should naturally capture important aspects of the

true causal probability law even under miss-specification. This suggests

that in the absence of clear economic theories to guide model specification,

a researcher can still focus on ensuring that the parameter space is able

to produce as much hypotheses about causality as possible and proceed

with a general estimation method that penalizes model complexity.

The core of the argument is based on the use of a decision criterion

that scales to a metric measuring distance between any two probability

measures. When this is the case, a metric space can be considered in

which equivalences can be established by partitioning into classes of zero-

distance points. Equivalence to the true measure, that correctly describes

the true frequencies in Markov chains of iterated processes of causes and

effects, is established by reaching zero distance in that metric space. These

type of decision criteria are common in econometrics and an example is
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provided in the context of Maximum Likelihood. We show that squared

Hellinger distance marks the lower bound of Kullback-Leibler divergence,

implying that minimizing information loss using the AIC, or another

suitable penalized Likelihood variation that ranks hypotheses according

to their Kullback-Leibler divergence, minimizes a distance metric toward

the true probability measure. As such, minimizing AIC is a theoretically

sound objective to uncover the correct causal structure from interrelated

stochastic data that are observed and modeled sequentially over time.

The remainder of this paper is structured as follows. Section 7.2 intro-

duces definitions of causality in terms of probability measures, section 7.3

discusses the divergence between modeled measures and the causal mea-

sure, section 7.4 discusses the particular case of the Maximum Likelihood

estimator and squared Hellinger distance. Section 7.5 ends with conclud-

ing remarks.

7.2 Causality and probability

Cause and effect in deterministic settings involve propositions along the

lines of “if X occurs then Y must occur”. That deterministic definition

of causality is difficult to reconcile with probability. Causality statements

in a statistical context often spur a great deal of discussion among

researchers. In fact, while many researchers meet the concept of causality

early in their career, few eventually agree on what it truly means and

how it should be approached in an empirical context. To introduce a

concept of causality appropriate in a probabilistic setting, let us consider

a simple game of chance; a dice. Throwing a dice does not cause a certain

outcome. In that sense, one cannot say that “if X occurs then Y must

occur” with X being a throw, and Y being the outcome of a throw. In

fact, the outcome is one of seven, six being one to six eyes, and seven

being no outcome at all. Each outcome occurs with a certain probability,
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the latter being zero. The measure that assigns probability to each of

the outcomes describes the true probabilistic property of the dice. In

that sense, a faulty dice may cause a certain outcome to occur with

higher probability truly. One can say that a faulty dice is characterized

by a probability measure that leads to outcomes with a certain outcome

having a higher probability assigned to it, such that the expected value

of a throw minus the expected value of a throw of a non-faulty dice is

nonzero. In this sense, one can describe the causal effect of being faulty,

in terms of probability. Specifically, “ ∇Y must occur with probability

P ≥ 0 if X has occurred” with ∇Y being a non-zero difference value

between throws of the faulty dice and a correct dice.

In this probabilistic view, a theory about causality is a statement about

the properties of the true measure that describes a process stochastically.

Specifically, a causal relationship can be described in terms of whether

the true probability measure produces a non-empty stochastic sequence

describing the directly caused effects from one variable to the other. Or,

equivalently, whether the true probability measure is associated with a

non-empty stochastic sequence of differences between the process that is

driven by causes that produce real-valued effects from one variable to the

other and the process that does not react to the causes. This is somewhat

different than attributing the presence of causal relationships directly to

the values of the parameters in a mathematical model of reality, though,

as shall be discussed, the definition based on the probability measure

equivalently produces statements about parameters or functions. Drawing

on Approximation Theory, one can transfer the measure theoretical

definitions of true causality, to a modeled probability measure in the

limit based on an equivalence argument. The modeled measure, in turn,

is naturally associated with parameters that determine the functional

behavior. Due to well-known results on consistency for approximate

extremum estimates, the approximation of the true measure eventually

thus provides valid descriptions of causality based on empirically modeled
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data when a sufficient amount of observations has been collected.

In an empirical sense, stating that a dice is faulty, or equivalently saying

that a certain outcome occurs with higher probability, is a statement

about the true probabilistic property of that dice and such conclusions

may result from a modeled probability measure that best confirms to

many observed outcomes. Similarly, saying that a modeled dice is faulty,

or equivalently saying that a modeled outcome has higher probability

than assigned by the true probability measure, is a statement about the

probabilistic properties of the modeled dice. Such conclusions may result

from observing many modeled dices, and many outcomes, and comparing

observed outcomes to modeled outcomes repeatedly and selecting the

model that best resembles reality. Most estimators by design select from

a set of hypothetical realities by some process of divergence minimization

w.r.t. the true measure. If that decision process is exhaustive across

all divergences between possible measures and the true measure, then

the closest possible measure will be chosen. If the true measure is

included in all considered measures, then the decision process will end

by selecting that measure. When the axiom of correct specification is

abandoned, and the correct probability measure is not included in the

set of modeled measures, the true measure is replaced by a pseudo-true

measure. This measure by definition still minimizes divergence w.r.t.

the true measure. The interpretation that a pseudo-true measure caries

is that, after observing the data and considering all the measures that

are induced under all the possible parameter vectors, the pseudo-measure

probability measure bests confirms to the true probability measure.

In this case, the decision process thus ends with accepting the best

approximation of the correct hypothesis as the one from which to derive

causal claims, as no better hypothesis about reality can be constructed

until a larger set of hypotheses formally comes under review. This is a

stronger result than the common statement that X only helps predicting

Y with the arrow of time as the indicator of the direction of effects.
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Improved predictability can be a local result within the space of potential

hypotheses. This reveals the intrinsic relationship between the size of

the parameter space that is set when the regression is specified, and the

empirical claim that results from estimating that regression, suggesting

that the quality of causal inference depends on the flexibility of the model

to produce a wide variety of potentially (in)correct structures.

Let us now more formally express these thoughts. Notation is as follows,

N, Z and R, respectively denote the sets of natural, integer, and real

numbers. If A is a set, B(A) denotes the Borel-σ algebra over A, and

×t=Tt=1A, alternatively denoted as AT , is the Cartesian product of T copies

of A. Definitional equivalence is denoted :=, which is to be distinguished

from ≡ denoting equivalence, for example in the functional sense. For two

maps f and g, their composition arises from their point-wise application

and is denoted f ◦ g := f(g). The tensor product is denoted ⊗. Finally,

the empty set ∅ is also used in the context of an empty sequence, that

sometimes would be notated as () in literature.

Directional causality is interesting when at least two sequences are consid-

ered. Specifically, when the focus is on a T -period sequence {xt(ω)}Tt=1,

that is a subset of the realized path of the nx-variate stochastic se-

quence x(ω) := {xt(ω)}t∈Z for events in the event space ω ∈ Ω. That

is, xt(ω) ∈ X ⊆ Rnx ∀ (ω, t) ∈ Ω × Z. The random sequence x(ω)

is a Borel-σ F/B(X∞)-measurable map x : Ω → X∞ ⊆ Rnx∞ . In this,

Rnx∞ := ×t=∞t=−∞Rnx denotes the Cartesian product of infinite copies of Rnx

and X∞ = ×t=∞t=−∞X with B(X∞) := B(Rnx∞ ) ∩ X∞, and B(Rnx∞ ) denotes

the Borel sigma algebra on the finite dimensional cylinder set of Rnx∞ , see

Billingsley (1995), p.159. As always, the complete probability space of

interest is described by a triplet (Ω,F ,P), with F as the σ-field defined

on the event space. P is used here as a placeholder as we shall introduce

probability measures of interest shortly.

If x was considered as a univariate sequence free from exogenous drivers,
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then for every event ω ∈ Ω, the stochastic sequence xt(ω) would live on the

probability space (X∞,B(X∞), P x) where P x is defined over elements of

B(X∞). In a similar fashion, one can consider {yt(ω)}Tt=1 as the subset of

the realized path of the ny-variate stochastic sequence y(ω) := {yt(ω)}t∈Z
indexed by identical t for events ω ∈ Ω. If y would live similarly isolated

from outside influence, then for every ω ∈ Ω, the stochastic sequence yt(ω)

would operate on a space (Y∞,B(Y∞), P y) where P y assigns probability

to all the elements of B(Y∞). We have a system of two unrelated

sequences,2

x := {xt = fxx(xt−1), t ∈ Z}
y := {yt = fyy(yt−1), t ∈ Z}

. (7.1)

The structure reveals that P x is simply induced by the function fxx on

B(X ) according to P x(Bx) = P x ◦ (fxx)−1(Bx) ∀ Bx ∈ B(X∞) and P y

is induced by the function fyy on B(Y) in a similar way, see Dudley

(2002) p.118 and Davidson (1994) p.115. The notion is important to the

extent that it has been argued (see Hendry (2017) for discussion) that

probabilistic definitions of causality are not strictly causal in the sense

that they do not provide insight in the origin of the probability law that

regulates the process of interest, and that a (correct) time-series model

only describes correctly the probabilistic behavior as the outcome of that

unknown causal origin. The notation here shows, however, explicitly the

relation between the functional behavior of a system and it’s induced

probability measure that assigns probability to all possible outcomes.

This suggests that such critiquing views rather relate to disagreements

around the level of detail in the structure of a model that in turn would

be guided by the research question of interest and the availability of data.

Particularly, dynamical systems in economics are often modeled using

aggregate macro-economic data that does not have the same granularity

as micro-economic data that contains information about behavior of

2This naturally covers to most common auto-regression case (only stated for yt here ) yt =
fyy(yt−1) + εt, where εt is unobserved. The linear auto-regression case is obtained when fyy is a
scaled identify function.
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individual economic agents.

If interrelated stochastic sequences are at the center of inference, the

building blocks required for describing the processes are more complicated.

This increases the potential complexity of P x and P y tremendously, but

it also allows to conclude decisively between causality, non-causality and

feedback. Consider a simple stochastic system:

x := {xt = fxx(xt−1) + fxy(yt−1), t ∈ Z}
y := {yt = fyx(xt−1) + fyy(yt−1), t ∈ Z}

. (7.2)

In this multivariate context, fxy and fyx will be referred to as the direct

causal maps, while fxx and fyy control the memory properties within

each channel. When x and y are analyzed individually, the properties

of fxx and fyy are of key interest, they carry information on the future

positions of xt+1 and yt+1, and provide predictability without considering

outside influence directly. However, correct causal inference around

the interdependencies of x and y may be preferred over developing

predictive capabilities that can result from many configurations within

the parameter space that are associated with untrue probability measures.

The properties of fxy and fyx determine the direction in which effects

move, and verifying their properties is central to causality studies, while

fxx and fyy, on the other hand, play a central role in the system’s

responses to external impulses by shaping memory of the causal initial

impact of a sequence of interventions, even if that sequence turns inactive

immediately after impact. The functions that control memory properties

within channels in some sense determine the reflex of the future onto the

past, and specifying correct empirical equivalents to fxx and fyy is just as

crucial to the inference about the causal interdependencies as specifying

mechanisms for the action of interest is. To understand directional cause,
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and the role that fxx and fyy play, it is useful to consider the following:

x0 := {x0
t = fxy(yt−1), t ∈ Z}

y0 := {y0
t = fyx(xt−1), t ∈ Z}

, (7.3)

with x0 and y0 defined as x0
t = xt − fxx(xt−1) and y0

t = yt − fyy(yt−1).

Given the realized sequences y(ω) and x(ω) generated by eq. (7.2), the

sequential system eq. (7.3) moves forward in time as the one-step ahead

directly caused parts of y and x that are filtered from the reverberating

effects of fxx and fyy. More specifically, while y partially consists out

of memory, there is a part y0 that at any point is directly mapped from

the previous state of x, while at the same time x consists partially out

of memory and a part x0 directly generated from the last position of

y. In this view, directional causality can be stated in terms of whether

eq. (7.3) produces any values.

Importantly, the system also reveals that by the definitions of x0
t and

y0
t , obtaining appropriate estimates for fxy and fyx involves fxx and fyy

being modeled correctly as x0
t and y0

t are not observed and only result as

functions from the observable processes y and x. Moreover, if y(ω) and

x(ω) are triggered by an event, then it is possible by process of infinite

backward substitution to write eq. (7.3) as an infinite chain initialized

in the infinite past. Plugging in the equalities xt = x0
t + fxx(xt−1) and

yt = y0
t + fyy(yt−1) and defining the random functions f 0

y(y0
t ,yt−1) =

fxy(y0
t +fyy(yt−1)) and f 0

x(x0
t ,xt−1) = fyx(x0

t +fxx(xt−1)), one can write

x0 := {x0
t = f 0

y(y0
t−1,yt−2), t ∈ Z}

y0 := {y0
t = f 0

x(x0
t−1,xt−2), t ∈ Z}

. (7.4)

Repeating infinitely, and extending infinitely in the direction T →∞,

x0 := {x0
∞ = (f 0

y)∞(y0
1,y1), t ∈ Z}

y0 := {y0
∞ = (f 0

x)∞(x0
1,x1), t ∈ Z}

. (7.5)

(f 0
y)∞ and (f 0

x)∞ are the maps that generate y0 and x0 infinitely after y
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and x have been generated into infinity. Subscript 1 has been used here

to mark the initialization points. This shows that x0 can be written as a

sequence of iterating random functions that are all defined on y, and y0

defined on x in a similar way.3 For ease of notation, let us write

x0 := {x0
t = f0

y(y−∞:t), t ∈ Z}
y0 := {y0

t = f0
x(x−∞:t), t ∈ Z}

. (7.6)

where bold-faced f0 is used to refer to the entire sequence of functions f 0

up to t, starting in the infinite past t = −∞. This highlights that gener-

ating the unobserved quantities, x0 and y0 from the observed quantities x

and y by back substitution, eventually involves the unobserved quantities

x1 and y1. This means that some feasible form of approximation is

needed.

Note first that f0
y : Y → X ⊆ R is a B(Y)/B(X )-measurable map-

ping, and f0
x : X → Y ⊆ R is a B(X )/B(Y)-measurable map-

ping. The sequence x0 thus lives on (X∞,B(X∞), P x
0 ), where P x

0

is induced according to P x
0 (Bx) = P y

0
◦ (f0

y)−1(Bx) ∀ Bx ∈ B(X∞),

and y0 lives on (Y∞,B(Y∞), P y
0 ), where P y

0 is induced according to

P y
0 (By) = P x

0 ◦ (f0
x)−1(By) ∀ By ∈ B(Y∞). The notation shows that

the probability measures underlying the stochastic causal sequences re-

sult from the functional behavior of the entire system. In particular,

the causal sequences can be written as recursive direct effects, and the

probability measures underlying the causal sequences are induced by the

functional relationships that describe these dynamical dependencies.

In many cases, a researcher is not able to observe all the relevant variables.

When a third, possibly unobserved external variable z with effect f z(z),

3Equation (7.5) reveals an important implication for causality studies. The sequences that constitute
the directly caused parts of x and y are ultimately dependent on the values at which the observable
process has been initialized. That is, the entire causal pathway depends on the initial impact. In
practice one cannot observe all impacts including those that occurred in the infinite past, and assurances
is required that the initialization effect on the causal pathway must eventually not matter given sufficient
observations. This is central to contraction studies.
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is considered, the researcher is confronted with the situation that

x := {xt = fxx(xt−1) + fxy(yt−1) + fxz(zt−1), t ∈ Z}
y := {yt = fyx(xt−1) + fyy(yt−1) + fyz(zt−1), t ∈ Z}

. (7.7)

If z is unobserved, it can still be approximated as a difference combination

of x and y. To obtain an approximated sequence of the true z sequence

to condition empirical counterparts for fxz and fyz on, one can work

with:

z := {zt = (fxz)−1(xt+1 − (fxx(xt) + fxy(yt))), t ∈ Z}
z := {zt = (fyz)−1(yt+1 − (fyx(xt) + fyy(yt))), t ∈ Z}

. (7.8)

Equation (7.8) suggests to write eq. (7.7) in terms of y and x only by

defining z as a difference combination of x and y.4 This allows us to

define the spaces and measures on which the multivariate process operates

in terms of x and y only even in the presence of z. If the process is

invertible, one can simply write:5

x := {xt = fx(xt−1,yt−1), t ∈ Z}
y := {yt = fy(xt−1,yt−1), t ∈ Z}

. (7.9)

For every t ∈ Z, the map fx ◦ (yt−1,xt−1) : Ω → Y is F/B(Y × X )-

measurable and y(ω) lives on the space (Y∞,B(Y∞×X∞), P y) where the

probability measure P y is induced by fx on B(Y∞×X∞) according to the

point-wise application of P x and the inverse of fx.6 Similar arguments

follow for fy. This tells us that in the multivariate case with possibly

unobserved variables, the probability measures underlying the individual

4Apart from stability conditions on the endogenous process, one requires also that the exogenous
impacts enter the system in some suitable manner such that (fyz)−1 and (fxz)−1 are absolute summable.
Following the same arguments that resulted in eq. (7.5), the initialization of the exogenous impacts z1

should similarly not carry information influential in the empirical estimates of fxy and fyx conditional
on partial information.

5By aggregating the functions

x := {xt = fxx(xt−1) + fxy(yt−1) + fxz(xt−1,yt−1), t ∈ Z}
y := {yt = fyx(xt−1) + fyy(yt−1) + fyz(xt−1,yt−1), t ∈ Z} .

6Py(By ×Bx) = Px ◦ (fx)−1(By ×Bx) ∀ (By ×Bx) ∈ B(Y∞ ×X∞).
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sequences are possibly intertwined with those of the other sequences. This

strongly complicates candidates and studies for the probability measure

Pw that underlies the joint process w := {wt = (yt,xt), t ∈ Z} operating

on (W∞,B(W∞), Pw).7

Nevertheless, when the correct invertible filters for all the time dynamics

of the observed part of the system are specified, one can still rewrite

general systems of the form eq. (7.7) into a representation that follows

eq. (7.6). One can thus always state causality conditions relevant for

correct inference, based on the subsystems that produce the directly

caused effects eq. (7.6). In particular, one can keep the focus on P x
0 and

P y
0 , bearing in mind that they are lower-level components of Pw that

defines the complete estimation objective.

DEFINITION. 5 (Non-causality). The stochastic sequences x(ω) and y(ω)
are not causality related if P x

0 and P y
0 are null measures, such that

x0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω× Z and y0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω× Z.

DEFINITION. 6 (Uni-directional Causality). Causality runs uni-
directionally from the stochastic sequence x(ω) to another stochastic
sequence y(ω) (visa versa), if P x

0 is a null measure, and P y
0 is a non-null

measure, such that x0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω× Z and y0(ω) ∈ Y ∀ (ω, t) ∈
Ω× Z (visa versa).

DEFINITION. 7 (Bi-directional Causality). The stochastic sequence x(ω) is
causal with respect to y(ω) and y(ω) is causal with respect to x(ω), if P x

0

and P y
0 are both non-null measures, such that x0(ω) ∈ X ∀ (ω, t) ∈ Ω×Z

and y0(ω) ∈ Y ∀ (ω, t) ∈ Ω× Z.

With null-measures, it is meant that the stochastic sequence describing

the directly caused effects from one variable to the other takes values in

the emptyset with probability 1. This is because the functions that induce

the probability measure cancel out, hence they can be removed from the

7The sequence is more complicated, and realizes under the events ω ∈ Ω, wt(ω) ∈ W, where

W := Y × X and w(ω) ∈ W∞, with W∞ := Y∞ × X∞ ⊆ Rnx+ny
∞ := ×t=∞t=−∞Rnx+ny , and the

probability measure of the joint process Pw is thus defined on the product σ-algebra B(W∞) =

B(X∞ × Y∞) = B(X∞)⊗ B(Y∞) :=W∞ ∩ B(Rnx+ny
∞ ) (see, Dudley (2002) p119.).
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equations resulting in a probability measure that is not induced by any

remaining rule or relationship. Respectively, conditioning on impacts in

x, these probabilistic causality definitions can thus be understood as:

1. Whenever an intervention in x occurs, there is no chance that y

reacts as a result of that.

2. Whenever an intervention in x occurs, there is positive chance that

y reacts as a result of that.

3. Whenever an intervention in x occurs, there is positive chance that

y reacts as a result of that. Subsequently there is positive chance

that x reacts to this initial reaction, a probabilistic process that

repeats recursively.

7.3 Limit divergence on the space of modeled prob-

ability measures

The definitions of causality in terms of the lower-level components of

Pw, suggest that correct causal statements can be obtained empirically

by extracting relevant counterparts to P x
0 and P y

0 from a relevant coun-

terpart to Pw, and investigating the stochastic sequences produced by

these modeled measures. For such an approach to be of relevance in

an empirical context, one must ensure that the concepts introduced,

adequately transfer over from the true measure Pw to a modeled measure

P ŵ. The focus is therefore shifted towards detailing how P ŵ can be

approximated as a minimally divergent measure relative to Pw, and

draw on Approximation Theory to construct equivalence around the true

measure under an axiom of correct specification.

For some event ω ∈ Ω, a realized T -period sequence wT (ω) :=

(yT (ω),xT (ω)) consisting of sequences {yt(ω)}t=Tt=1 and {xt(ω)}t=Tt=1 can

be observed. The true function fw, consists of our main functions of
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interest fx and fy that in turn are composed of fxy and fyx that are of

particular interest to the researcher focused on causality, but possibly

also nonzero functions fxx and fyy that shape the responses of an initial

causal effect. The exact properties are generally unknown to the observer,

but one can design a parametrization mapping that learns the behavior

of fx and fy when exposed to sufficient data. To learn from the data an

approximation of fx and fy, one can postulate a model

ŵ := {ŵt = f(wt−1;θ),θ ∈ Θ, t ∈ Z}, (7.10)

with f : W × Θ → W as our postulated model function and ŵ as the

modeled data. In the context of parametric inference, the parameter space

Θ is trivially of finite dimensionality, but also in the nonparametric case,

the vector θ ∈ Θ indexes parametric models nested by the nonparametric

model, each inducing its own probability measure, and Θ indexes families

of parametric models each inducing a space of parametric functions

generated under Θ. In this discussion the focus remains limited to

parametric inference, hence a compact set of potential hypotheses is

considered. The arguments are trivially extended to the nonparametric

case, by focusing on a compact subset Θs ⊂ Θ of solutions.8 For example,

by using priors or penalties that discard Θ \Θs such that any solution

of the criterion necessarily falls within a compact subset space. Let f

be B(W)-measurable ∀ θ ∈ Θ so that f(wt;θ) : Ω → W is F/B(W)-

measurable ∀ θ ∈ Θ and t ∈ Z. FΘ := {f(·;θ),θ ∈ Θ} is our space of

parametric functions defined onW generated under Θ under the injective

fW : Θ→ FΘ(W) where fW(θ) := f(·;θ) ∈ FΘ(W) ∀ θ ∈ Θ. Under any

true probability measure Pw, every potential parameter vector included

in the parameter space θ ∈ Θ induces a probability measure P ŵ
θ indexed

by θ on B(W∞), according to P ŵ
θ (Bw) = Pw ◦ f−1(Bw,θ) ∀ (Bw,θ) ∈

B(W∞ × Θ). Thus, for every potential parameter vector included in

8For example, by letting Θs grow as T →∞, hence focusing on the case Θs1 ⊂ Θs2... ⊂ Θs∞ ⊆ Θ,
see for example Geman, Stuart; Hwang (1982).
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the parameter space θ ∈ Θ, there is a triplet (W∞,B(W∞), P ŵ
θ ) that

describes the probability space of modeled data under θ. The triplet

(W∞,B(W∞), P ŵ
θ ) is thus itself an element of the measure spaces indexed

by θ across all Θ. Given the true probability measure Pw on B(W),

this process is summarized by a functional P : FΘ(W)→ Pŵ
Θ , that maps

elements from the space of parametric functions generated by the entire

parameter space FΘ(W), onto the space Pŵ
Θ of probability measures

defined on the sets of B(W∞) generated by Θ through f(·;θ).

Now, fw is generally not only unknown, but for a finite Θ there is

no guarantee that ∃θ0 ∈ Θ : P ◦ fW(θ0) = Pw, implying that in many

empirical applications one is concerned with the situation where Pw /∈ Pŵ
Θ .

However, if ∃Pw ∈ Pŵ
Θ , one can learn all about Pw, by uncovering the

properties of f , given a sufficient amount of observations is available.9

Let

θ̂T := arg min
θ∈Θ

QT (wT ;θ), (7.11)

θ̂T : Ω→ Θ, be the extremum estimate for θ0 as judged by the criterion

QT : WT × Θ → R. Trivially, WT := YT × XT and wT (ω) ∈ WT .

To see that under correct specification it is possible to approximate

the true function fw in terms of equivalence (in the sense of function

equivalence Kolmogorov and Fomin (1975) p.288), one can write the

criterion function also as a function of the true function and the postulated

model QT (fw(wT ), f(wT ;θ)) in which it is made use of the fact that

fw(wT ) := {fw(wt)}Tt=1 := wT and f(wT ;θ) := {f(wt;θ)}Tt=1 := ŵT .

The discussion further evolves toward showing that the element in Pŵ
Θ

that is closest to Pw, minimizes a divergence metric that results from a

transformation of the limit criterion that measures the divergence between

the true density and the density implied by the model. It is important

to again note that Pŵ
Θ is induced by the proposed candidates for Pw.

9As discussed in literature on miss-specification, even when the axiom of correct specification is
abandoned, f may converge to a function that produces the optimal conditional a density which may
reveal important properties of fw.
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Studies on causality thus rely on flexible model design as the researcher

determines which hypotheses are considered in a study by exerting control

over Θ. Naturally if Θ1 ⊂ Θ2, then Θ2 produces a larger Pŵ
Θ2
⊃ Pŵ

Θ1
. This

suggests that minimizing this divergence metric over a large as possible

Pŵ
Θ results in selecting P ŵ at a point in Pŵ

Θ that attains equivalence

to Pw only when Θ is large enough to produce a correctly specified

hypothesis set. Note that the definition of FΘ := {f(·;θ),θ ∈ Θ} as our

space of parametric functions generated under Θ, under the injective

fW : Θ → FΘ(W) and the functional P : FΘ(W) → Pŵ
Θ that induces

the space of probability measures, is defined on the sample space W.

This highlights that the correct specification argument Pw ∈ Pŵ
Θ , not

only stresses flexible parametrization in the sense that parameterized

dependencies can take on many values, but also in the sense of using

correct data.10 When little is known about f , one is thus not only

concerned with flexibility in terms of the type of parametric functions

generated under Θ, but also the variables on which the modeled measures

are defined. When these concerns are appropriately addressed, testing

for causality is deciding based on the approximation P ŵ whether the

best approximation of the true model suggests 1) that x and y live in

isolation, 2) unidirectional causality, or 3) that Pw produces feedback.

To turn this problem into a selection problem that can be solved by

divergence minimization w.r.t. the true measure, first introduce the

limit criterion by taking T → ∞ and working with the modeled data

as the minimizer of the criterion. Specifically, let the limit criterion

be Q∞(θ) := QT (fw(wT ), f(wT ; arg minθ∈ΘQT (wT ;θ))) evaluated at

T → ∞ with Q∞ : Θ → R and Q∞(θ) = QP∞(Pw;P ŵ
θ ) ∀ θ ∈ Θ

with the criterion Q∞(θ) = QP∞ as a measure of divergence dP on the

10Indeed, the potential parameters that would interact with data that is not used, are essentially
treated as zero, so the focus on using correct data is implicitly already contained in the standard
statements of correct specification that focus directly on the dimensions of Θ. The distinction is
nevertheless useful because nonparametric models are often popularized as methods to reduce miss-
specification bias as Θ becomes infinite dimensional, but this does not imply that Pw ∈ Pŵ

Θ if important
data is missing.
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true probability measure and the modeled measure. More specifically,

dP ≡ QP∞ : Pŵ
Θ × Pŵ

Θ → R≥0. By definition of QP∞ as a divergence on

the space that contains Pw and P ŵ
θ ∀ θ ∈ Θ, the element θ0 is thus the

minimizer of that divergence.

Moreover, arg min in the parameter sense, arg min in the function sense

in terms of a divergence metric on the true function, and arg min in the

measure sense in terms of a divergence metric on the true probability

measure, are equivalent limits under the same consistency result. To

see this, it is convenient to focus once more on the target and write

θ0 = arg minθ∈ΘQ
P
∞ ≡ arg minθ∈ΘQ

F
∞(fw, fW(θ)), with QF

∞ : F (W) ×
F (W)→ R≥0, to make clear that the criterion establishes a divergence dF

on F (W)×F (W), which is in turn induced by dP through P according to

dF (f 1, f 2) = dP(P (f 1), P (f 2)) ∀ (f 1, f 2) ∈ F (W)× F (W). This ensures

that our statement on the probability measure is relevant under standard

consistency results that are focused on the convergence of an estimated

parameter vector toward θ0, while equivalently the Impulse Response

Functions converge to the true IRF at θ0. This implies that deciding

between DEFINITION. 5-DEFINITION. 7 can be read from the responses

produced by the IRF that minimizes divergence w.r.t. the true IRF

Not necessarily, but convenient for a proof that holds easily in practical

situations, is to assume existence of a strictly increasing function r : R→
R≥0 that ensures existence of a transformation of the limit criterion into a

metric, d∗P ≡ r◦dP , with r being a continuously strictly increasing function.

Under these assumptions a simple result follows. For convenience all

assumptions are summarized in ASSUMPTION. 13.

ASSUMPTION. 13. For a limit criterion Q∞ : Θ→ R of the form Q∞(θ) ≡
QP∞(Pw, P ŵ

θ ) ∀ θ ∈ Θ, dP ≡ QP∞ : Pw × Pw → R≥0 is a divergence.
Assume there exists a continuous strictly increasing function r : R→ R≥0

such that d∗P ≡ r ◦ dP is a metric. The functional fW : Θ → FΘ(W) is
injective and θ0 ∈ Θ.

PROPOSITION. 6. Assume ASSUMPTION. 13, then the following are equiv-
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alent limits:

1. θ0,

2. arg minθ∈ΘQ∞(θ),

3. arg minθ∈Θ d
∗
F (fw, f ŵ(·,θ)),

4. arg minθ∈ΘQ
P
∞(Pw, P ŵ

θ ),

5. arg minθ∈Θ d
∗
P(Pw, P ŵ

θ ).

REMARK. 6. Dropping the axiom of correct specification implies θ̂∞ 6= θ0,
hence the equivalences of 3-5 are now w.r.t. item 2.

The equivalences in PROPOSITION. 6 not only ensure that for a correctly

specified model ∃θ0 ∈ Θ, the element θ0 results in functional equivalence

between the model and the true model (item 3), but also in zero divergence

between the probability measures Pw and P ŵ
θ (item 4). Moreover, it

follows that at θ0, the empirically estimated probability measure P ŵ is

equivalent to Pw in the sense that there is zero distance between the two

(item 5).

REMARK. 7. PROPOSITION. 6 is applicable to a large class of extremum
estimators, even those not initially conceived as minimizers of distance. In
particular it is often possible to find a divergence on the space of probability
measures. For example, Method of Moments estimators are naturally
defined in terms of features of the underlying probability measures. In
section 7.4 we also shall give an example using Kullback-Leibler divergence
for which penalized Likelihood is an estimator. In this case squared
Hellinger distance can be shown to be a lower bound.

COROLLARY. 6 now delivers that our definitions set on the true measures,

transfer to modeled probability measures in the limit for correctly specified

cases. It is well-known that standard consistency proofs apply also to

approximate extremum estimators, therefore assuming additionally that

supθ∈Θ |QT (wT ;θ)−Q∞(θ)| → 0 a.s., is sufficient for a consistency result

together with uniqueness of θ0 within the compact hypothesis space Θ.



7.3. Limit divergence on the space of modeled probability measures 299

This implies that our causality conditions on the true measures do not

only transfer to the approximate in the limit, but also for large T under

standard regularity conditions. Essentially this is the setting considered

by White and Pettenuzzo (2014). Summarized:

COROLLARY. 6. Given a true probability measure Pw, and an equivalent
modeled probability measure P ŵ in the sense that d∗P ŵ = r ◦dP(Pw, P ŵ

θ ) ∼
0, there are four possibilities for causality:

1. There is no causation if P x̂
0 and P ŷ

0 adhere to DEFINITION. 5.

2. x causes y if the probability measure P ŷ
0 adheres to DEFINITION. 6.

3. y causes x if the probability measure P x̂
0 adheres to DEFINITION. 6.

4. There is bi-directional causality if P x̂
0 and P ŷ

0 adhere to
DEFINITION. 7.

Finally, in the case of a miss-specified model, REMARK. 6 implies that

the divergence between the optimal probability measure as judged by

the criterion and the true probability measure attains a minimum at a

strictly positive value d∗Pw = r ◦ dP(Pw, arg minθ∈ΘQ
P
∞(Pw, P ŵ

θ )) > 0. In

this case, the quantity d∗P ŵ determines how “close” the empirical claim is

to the true hypothesis about causality. While it is difficult to make strong

claims about this quantity, it is evident that minimizing d∗P ŵ may involve

widening Pŵ
Θ in the direction of Pw by increasing the dimensionality of Θ

by allowing flexibility and investigating a wide range of data. Disregard

the value of d∗P ŵ, the following holds.

PROPOSITION. 7. If θ0 /∈ Θ, then Pw /∈ Pŵ
Θ . However, θ̂∞ is still the

pseudo-true parameter that minimizes r ◦ dP(Pw, P ŵ
θ ) over Θ. Therefore

P ŵ is the probability measure minimally divergent from Pw within Pŵ
Θ . As

such it follows that from all the potential probability measures in Pŵ
Θ , the

measure closest to Pw is supportive of one out of 1− 4 in COROLLARY. 6
based on the properties of P x̂

0 and P ŷ
0 as the best approximations. P ŵ

provides the best approximation of the true causal measure across all the
hypotheses considered.

This leads to the following collection of results.
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COROLLARY. 7. Given a true probability measure Pw, and a non-
equivalent, but pseudo-true modeled probability measure, P ŵ, in the sense
that d∗Pw = r ◦ dP(Pw, P ŵ

θ ) has attained a non-zero minimum, there are
four possible optimal hypotheses about causality as judged by the criterion:

1. There is no causation if P x̂
0 and P ŷ

0 adhere to DEFINITION. 5.

2. x causes y if the probability measure P ŷ
0 adheres to DEFINITION. 6.

3. y causes x if the probability measure P x̂
0 adheres to DEFINITION. 6.

4. There is bi-directional causality if P x̂
0 and P ŷ

0 adhere to
DEFINITION. 7.

Respectively, conditioning on interventions in x, the results can be

understood as:

1. Whenever an intervention in x occurs, our best hypothesis is that

there is no chance that y reacts as a result of that.

2. Whenever an intervention in x occurs, our best hypothesis is that

there is positive chance that y reacts as a result of that.

3. Whenever an intervention in x occurs, our best hypothesis is that

there is positive chance that y reacts as a result of that, and these

interactions continue to repeat with positive probability.

7.4 Limit Squared Hellinger distance

Both COROLLARY. 6 and COROLLARY. 7 assume that an appropriate

transformation of the limit criterion exists that provides us with a metric

or norm. This assumption allows us to make use of the classical theorems

on existence and uniqueness of best approximations that have been

naturally obtained for metric, normed and inner product spaces (Cheney

and Respess, 1982). While this retains simplicity of the argument, it also

shows that a direct interpretation of COROLLARY. 6 and COROLLARY. 7
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can be obtained within the framework if Maximum Likelihood. Let us

first define the our criterion as the Maximum Likelihood Estimator:

arg min
θ∈Θ

QT (wT ;θ) := arg max
θ∈Θ

T∑

t=1

ln pt(wt|θ). (7.12)

Note that this is conform the form

Q∞(θ) := QT (fw(wT ), f (wT ; arg minθ∈ΘQT (wT ;θ)))

with T →∞ and Q∞ : Θ→ R. It can be shown that under this definition

with Q∞(θ) = QP∞(Pw;P ŵ
θ ) ∀ θ ∈ Θ that the criterion Q∞(θ) = QP∞

is a measure of divergence dP on the true probability measure and the

modeled measure. Specifically, we can introduce a divergence dP ≡
QP∞ : Pw × Pw → R≥0 as follows. Let pw(wt|θw) and pŵ(wt|θŵ) be

respectively the true density evaluated under the true parameter and

a modeled density at θ̂ evaluated under the estimated parameter, both

at time t, with respect to the Lebesgue measure (such that they are

simply probability density functions), then the following is a divergence

from the true probability measure to the modeled probability measure

(Kullback-Leibler divergence, see Kullback and Leibler (1951)):

KL
(
Pw(w|θw)||P ŵ(w|θŵ)

)

=





∫∞
−∞ p

w(w|θw) ln
pw(w|θw)

pŵ(w|θŵ)
dw ∀ pw(w|θw) << pŵ(w|θŵ)

∞ ∀ pŵ(w|θŵ) >> pw(w|θw)

.

(7.13)

Naturally, KL
(
Pw(w|θw)||P ŵ(w|θŵ)

)
≥ 0 with equality if and only if

pw(w|θw) = pŵ(w|θŵ) almost everywhere, i.e. when the probability

measures are the same (this is known as Gibb’s inequality and can be

verified by applying Jensen’s Inequality).

Kullback-Leibler divergence is not a distance metric as was used in

COROLLARY. 6 and COROLLARY. 7 to establish equivalences by partition-
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ing into classes of zero-distance points. In particular, it is asymmetric

KL
(
Pw(w|θw)||P ŵ(w|θŵ)

)
6= KL

(
P ŵ(w|θŵ)||Pw(w|θw)

)
, (7.14)

and the triangle inequality is also not satisfied. However, it has the

product-density property

KL(Pw(w|θw)||P ŵ(w|θŵ)) =
T∑

t

lnKL(pwt (wt|θw)||pŵt (wt|θŵ)),

(7.15)

for pw(w|θw) = pw1 (w1|θw) · pw2 (w2|θw) . . . pwT (wT |θw), and pŵ(w|θŵ)

defined similarly. Hence the MLE is an unbiased estimator of minimized

Kullback-Leibler divergence:

arg min
θ∈Θ

QT (wT ;θ) := arg max
θ∈Θ

T∑

t=1

ln
pw(wt|θw)

pŵ(wt|θŵ)

= arg min
θ∈Θ

KL
(
Pw(w|θw)||P ŵ(w|θŵ)

)
. (7.16)

Note that under standard assumptions, a Law of Large Numbers can

be applied to obtain the convergence, hence by maximizing likelihood,

we minimize Kullback-Leibler divergence. Now, we need to either find a

continuously scaling function r to ensure that it also minimizes distance

between the true measure and the modeled measure so that we may reach

zero at d∗P ŵ = r ◦ dP(Pw, P ŵ
θ ) ∼ 0. Alternatively, we find the distance

metric directly. We argued above that Kullback-Leibler divergence is

not a proper distance (in particular it is not symmetric and does not

satisfy the triangle inequality). However, notably useful is specifying d∗P ŵ

directly as the Hellinger distance between a modeled probability measure

and the true probability measure (Hellinger, 1909):

H
(
Pw(w|θw), P ŵ(w|θŵ)

)
=

√
1

2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2

dw.

(7.17)

Specifically, the squared Hellinger distance provides a lower bound for
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the Kullback-Leibler divergence. Therefore, maximizing likelihood im-

plies minimizing Kullback-Leibler divergence which implies minimizing

Hellinger distance. This is easily seen by the following:

PROPOSITION. 8. Squared Hellinger distance provides a lower bound to
Kullback-Leibler divergence:

(
H
(
Pw(w|θw)||P ŵ(w|θŵ)

))2

≤ KL
(
Pw(w|θw)||P ŵ(w|θŵ)

)
.

We end this sections with some notes on practical considerations. Let

LT (θ) denote the sample Log likelihood at θ ∈ Θ. Naturally, if Θs ⊂ Θ,

it follows that Pŵ
Θ ⊃ Pŵ

Θs
. In the limit, this means that maximizing

Likelihood, minimizes Hellinger distance over both Pŵ
Θ and Pŵ

Θs
. Following

COROLLARY. 6, if θ ∈ Θs, this results in selecting P ŵ at a point in Pŵ
Θs

that attains equivalence to Pw. In practice, when finite data is used,

two different points, one in Pŵ
Θ \ Pŵ

Θs
and one in Pŵ

Θs
, may be obtained

because the finite sample Log Likelihoods LT (θ̂sT ) and LT (θ̂T ) that are

available are both asymptotically biased estimators of the expected Log

Likelihood ELT (θ0). This is easily shown by using a simple quadratic

expansion

lim
T→∞

E
(
LT (θ̂T )− ELT (θ0)

)

= lim
T→∞

E
√
T (θ̂T − θ0)

′ 1

T
L′′T (θT )

√
T (θ̂T − θ0) 6= 0. (7.18)

Under considerably restrictive conditions original work by Akaike (1973,

1974) showed that the right hand-side approaches the dimension of θ̂T

and hence, an asymptotically unbiased estimator of E`t(θ0) is given

by 1
T

∑T
t=2 `t(θ̂T )− k. Akaike also proposed the well known AIC given

by AIC= 2T
(
k − 1

T

∑T
t=2 `t(θ̂T )

)
. Several authors have shown that the

AIC can be used to consistently rank models according to Kullback-

Leibler divergence in considerably more general settings including the

mis-specified case and have suggested further finite sample improvements

Hurvich and Tsai (1989, 1991); Sin and White (1996). The AIC is also

valid to decide between economic theories for which no test statistics can
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be found Granger et al. (1995).

This means that while maximizing Log Likelihood over Θ is not the same

objective as minimizing Kullback-Leibler divergence in finite samples,

working with a complexity penalized Log Likelihood, i.e. minimizing

the AIC, does select the model that attains the lowest KL bound of all

considered models generated under Θ. Hence, in practice, a researcher can

minimize the AIC as the practical objective to minimize Hellinger distance,

and use correct specification tests to decide whether COROLLARY. 6 or

COROLLARY. 7 is relevant.

7.5 Concluding remarks

During the 20th century, probability theory and economic theory have

been closely developed together. While empirical studies in economics rely

heavily on probabilistic concepts for inference, definitions for causality

are often viewed through a deterministic lens. This paper discussed a

probabilistic view on causality. In this view, a theory about causality

is seen as a statement about the properties of the true measure that

describes an observed process stochastically. The correct economic theory

thus concerns the true frequencies in Markov chains of iterated processes

of causes and effects, in which the transitions from one phase to another

are regulated by the true probability law. This true probability law has

been used to define causality in terms of stochastic sequences of caused

effects.

Some argue that similar system theoretic definitions of causality, most

notably the one from Granger, are not causal in the sense that they do

not provide economic insight in the origin of the true probability law, but

rather describe (correctly) the probabilistic behavior of the outcome of a

causal origin. Clearly, these definitional discussions lie outside the scope

of the statistical framework used in an empirical setting and relate to the
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structure of the research question itself. In fact, we have seen that the

relation between the functional behavior of a system and the probability

measure that regulates its transitions from one phase to another, can

be made explicit such that the direct relationship between theorized

functional behavior and the stochastic properties of data produced under

that functional behavior, is easily established. This thus suggests that

the critiquing views rather relate to disagreements around whether the

functional behavior that is looked at in an application, is critically of

interest to policy.

Apart from definitional issues, the distinction between “good” predictors

and causal effects is another central part of discussion. In many cases,

researchers do not accept an empirical result to be causal, but settle by

agreeing that the relationship that is found constitutes a good predictor.

From the point of view currently presented, it is not acceptable that a

suboptimal predictor could in fact be a better candidate for the causal

description of the mechanisms that produced the data. An empirical

model of reality found by a distance-minimization process, attains the

status of the one closest to the true model. Proofs that sample averages

approach their infinite counterparts, are among the most fundamental

results in probability theory. In practice there may be various violations

to the required regularity conditions for the convergence of a criterion

function, and attention must be paid to ensure that empirical models are

constructed in an appropriate manner. The true probability measure,

however, is by definition the optimal description of observed data se-

quences when tested infinitely many times against other ones, and doing

away the result that is closest to this description as merely predictive,

and not as one that is close to the causal origin of the observed data,

seems therefore a flawed attack.

Still, economics has been criticized to not deliver on a number of important

prediction problems, even though economists, disregard their differences
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in views on causality, have paid important attention to uncover causal

relationships in their analyses of economic systems. Some examples

include not being able to accurately predict a downturn in markets or

find a definitive answer to the relationship between employment and

government expenditures. The argument that not observing an outcome

that was predicted by a supposedly causal model, invalidates the causal

claim, is naturally flawed as well. A prediction made with the correct

probability measure of a dice is only correct in the frequency domain – e.g.,

one out of six for an ordinary dice. In a similar manner, we would say that

stress and bad lifestyle habits cause increased risk of a heart attack, which

is similarly a probabilistic statement that provides accurate predictions

only in the frequency domain. The optimal, causal, predictor must hence

always be understood as the predictor that minimizes distance between

predicted probability of occurrence and the true future probabilistic

occurrence, and those laws will only ever be correct within the frequency

domain.

Proofs

Proof for Proposition 1.

Proof. By construction of the criterion as stated in ASSUMPTION. 13,
arg minθ∈Θ Q∞(θ) is its minimizer, and by assuming θ0 ∈ Θ, it is also
equal to θ0. Hence, item 2 is equivalent to item 1 by definition under
correct specification.

The equivalence of the deterministic limit criterion (item 2) as a function
describing the divergence of the underlying probability measures of w and
ŵ (item 4) is assumed, however, given a limit criterion function Q∞ : Θ→
R and a flexible definition of divergence (e.g. a pre-metric such as the KL-
divergence), it is often possible to find a divergence dP : PΘ×PΘ → R≥0

on the space of probability measures satisfying arg minθ∈Θ dP(Pw,Pŵ
θ ) =

arg minθ∈ΘQ∞(θ). The KL-divergence example is provided in this paper
in the context of the Maximum Likelihood criterion.
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By the assumption that r exists, the deterministic limit criterion that min-
imizes divergence, is also the minimizer of a distance metric d∗P(Pw, P ŵ

θ ),
hence item 4 is also equivalent to item 2.

Finally, since fW : Θ → FΘ(W) is injective, (Pw, P ŵ
θ ) ≡

d∗F (fw, f(·,θ)) ∀ θ ∈ Θ and d∗F is a metric on FΘ(W), θ0 is also the
minimizer of d∗F (fw, f(·,θ)) ∀ θ ∈ Θ providing that item 3 is equivalent
to item 2.

Proof for Proposition 2.

Proof. The result follows immediately by the arguments used in
PROPOSITION. 6 dropping only the first equivalence.

Proof for proposition 3.

Proof. First, Hellinger distance is

H
(
Pw(w|θw), P ŵ(w|θŵ)

)
=

√
1

2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2

dw,

hence,

(
H(Pw(w|θw), P ŵ(w|θŵ))

)2
=

1

2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2

dw.

Now, the R.H.S. can be written as

1

2

∫
pw(w|θw)dw +

1

2

∫
pŵ(w|θŵ)dw −

∫ √
pw(w|θw)pŵ(w|θŵ)dw.

The integral of a probability density over its domain equals 1, hence the
sum of the first two terms is 1, hence this can be rewritten as

1−
∫ √

pw(w|θw)pŵ(w|θŵ)dw.

This has an upper bound, provided by the inequality

1−
∫ √

pw(w|θw)pŵ(w|θŵ)dw ≤ − ln
∫ √

pw(w|θw)pŵ(w|θŵ)dw.
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Write R.H.S. as − ln
∫
[√

pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

]
and take expectations

to get

E− ln
∫
[√

pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

]
= − lnE

[√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

]
.

Note that

− lnE

[√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

]
< −E

[
ln

√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

]
,

by Jensen’s inequality.

Finally, E

[
ln

√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

]
can be written as

E

[
ln
pw(w|θw)

pŵ(w|θŵ)
pw(w|θw)

]
,

where the last expression is equivalent to Kullback-Leibler divergence by
an elementary row operation

E

[
ln
pw(w|θw)

pŵ(w|θŵ)
pw(w|θw)

]
≡ KL

(
Pw(w|θw)||P ŵ(w|θŵ)

)
.
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Conclusion

The models that researchers estimate are necessarily an idealization of a

complex reality. Advances in our capacity to compute, along with contin-

ued increases in the dimensions of datasets, have enormously increased

both the complexity of what we attempt to achieve in analysis and the

models that we use to pursue those goals. The aim of the basic theory

with which we opened the introduction of this thesis was to provide clearly

formulated and generalizable interpretation to standard empirical results.

Given the advances in data and complexity, it is clear that analysis must

acknowledge that the models ideally estimated aim at achieving a greater

degree of idealization than was held possible when the theory of linear

estimation of a parameter from a modest numbers of observations was

first developed. With the general Consistency and Normality results for

M -estimators that were introduced, there was much more freedom to

think about more complex models that might provide a better description

of reality. This thesis was devoted to exploring dynamic spatial time

series models that can provide a better fit to the data using minimal

complexity.

Chapter 3 first characterized spatial heterogeneity. This was done from

the perspective of the data generating process itself. Specifically, we

used a spatial model based on an economic rationale and parametrized

it based on estimates from the literature. This was used to simulate

309
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likely economic outcomes at a grid-cell level. While inherently not a

problem related to statistical inference in the way it was discussed in the

introduction of this thesis, the analysis produced several useful insights.

Specifically, we saw that by imposing simple linear relationships at a

high resolution, aggregate system behavior tended to follow nonlinear

patterns. This is important as, in reality, we tend to observe economic

outcomes at a coarse scale while processes are arguably driven by the

total sum of interactions between a large number of individual economic

actors. Furthermore, we saw that the geophysical nature of our landscape

plays an important role in economic processes. In particular, the natural

organization in geological factors tends to contribute to spatial clustering,

even when spatial interdependencies across various distances are not

explicitly parameterized in the data generating process. This is also

important, as it is easy to miss out on one or several unobserved common

factors, that may follow this type of spatial organization, in empirical

applications. This immediately implies that the residuals in simple cross-

sectional regressions are likely to be spatially correlated and may follow

structural patterns that vary by types of regimes. In the introduction of

this thesis we had already emphasized the crucial role that neutralizing

residuals plays in rendering the parameter distributions approximately

normal.

In Chapter 4, we tackled the problem of spatial dependence in time

series. Specifically, we specified the spatial autoregressive time series

model discussed in the introduction of the thesis and studied it in more

detail. Building on our notion that the linearity assumption may be

too restrictive, especially as the spatial dimensions grow, we extended

the model to allow the parameter that determines dependence between

neighbors to vary across time and space in an idiosyncratic manner. This

allows dependence to vary over different regimes that may be covered by

the cross-sectional data. The model allowed each observation in the cross-

section to have a different history of attraction to its neighbors and the
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magnitude of the induced feedback effects to vary continuously over time.

This type of dynamic behavior could not be understood under standard

dynamic time series theory provided in the introduction. We therefore

extended the theory to allow for dynamic multivariate time series and

provided a general theory that allowed the nonlinear dynamics to become

spatial. We applied the model to a short spatial time series of urban

densities and saw that the linear spatial model was not able to handle

both the urban and rural dynamics in a single framework, causing the

model to severely underestimate urban densities and overestimate rural

densities. These regime-specific dependencies could, however, correctly

be captured by the nonlinear model, allowing to analyze transitory effects

across both the urban, rural, and urban gradients in one single framework.

We also applied the nonlinear model to a long financial time series, and

saw that it was able to fit both periods of financial stability during which

spatial dependence was flat and periods of financial unrest in which there

was substantially stronger idiosyncratic behavior.

In Chapter 5 we dropped the parametric assumption, and worked in a

non-parametric framework in which the exact form of the nonlinearities

did not have to be assumed. Instead of modeling the dependence between

spatial observations to describe clustering in the data endogenously, we

allowed for the flexibility to let dependence on exogenous variables vary

nonlinearly across levels in the data. This resulted in rich dependence

structures in which individual observations are part of different spatial

and temporal regimes, each having possibly unique relationships with

the outcome variable. We learned that there are methods that can ap-

proximate any type of nonlinearities arbitrarily well, while the estimation

problem could still be solved linearly. In particular, the Kernel model

mapped the input to a higher dimensional feature space, from where

linear relationships could be established with the outcome variable. The

growing number of local parameters used in those type of approximation

strategies, however, violate the standard compactness assumption intro-
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duced in the introduction of the thesis that was used to obtain existence

and measurability of the estimator. Hence, the uniform convergence that

was obtained from point-wise convergence and stochastic equicontinuity

on a compact parameter space was also lost. We saw that to estimate

these models, it was necessary to regulate the size of the parameter space

appropriately which ensured that there was sufficient data to support

the degrees of freedom. The regularization method effectively ensured

that the parameter space grew at an appropriate rate as the data grew.

This delivered a type of consistency that had a different interpretation

than what was discussed in the introduction of the thesis. In particular,

the limit result depended on the user-defined tolerance for complexity,

which was determined by a hyper-parameter that was not estimated by

the criterion function itself. The appendix of this chapter discussed the

implication of this external influence on the interpretation of the result

and concluded that standard interpretation to the results is supported

as long as the hyper-parameter was tuned by optimizing the criterion

out-of-sample.

Chapter 6 moved away from the nonlinear world, and moved back into the

linear one. In this chapter we focused on multivariate interactions between

multiple spatial time-series. Naturally, once the asymptotic results for

multivariate nonlinear time series models put forward in Chapter 3 and the

penalization from Chapter 4 are understood, it is straightforward to apply

these ideas together to the setting of multiple nonlinear spatial time-series.

From a practical standpoint we, unfortunately, are still quite constrained

by modern computing capacity to work with such complex descriptions

of reality. Interesting linear dynamics between multiple spatial time

series could still be modeled though, which admittedly already results in

detailed dynamics at the observational level. In particular, the spatial

spillover effects implied heterogeneous relationships at the local level, and

the multiple variable setting thus allowed us to explore cause and effect

between interrelated cross-sectional time series while taking into account
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that different cross-sectional variables themselves exhibit spatial feedback

between observations that result in heterogeneous local impacts after

shocks occur. We saw that models that do not factor in the cross-sectional

dependences were likely to over-estimate the temporal effects and provided

a generally poorer fit to the data that violated the martingale difference

sequence assumption imposed on the score. Finally, the chapter explored

the kernel trick from Chapter 4 as a mechanism to generate data-driven

spatial weight matrices. The analysis showed that appropriate network

structures could be estimated using Maximum Likelihood. This allowed

generalizing the spatial dependencies discussed in this thesis and apply

them to settings in which cross-sectional dependencies arise because of

economic similarities or through other non-geographic channels.

Finally, in Chapter 7 we moved back to our starting discussion around

estimators, and to the notion of correct specification specifically. Only

this time, we approached the topic from a more general angle. We

reconsidered the basic idea of inference and considered why flexible

models, such as the ones introduced in this thesis, are desirable tools for

inference in the first place. While the assumption of correct specification

surfaced many times in parts of this thesis, it is easy to admit that this

is possibly the most difficult assumption of all. In Chapter 4 and 6 we

made use of different strategies to verify whether our estimated models

provide an appropriate fit to the data. Nevertheless, when formulating

empirical models we naturally abstract from reality and work with a

description that is only an approximation to a complex reality. While

mis-specification is often accepted in practice, it should not be a reason

to opt for simple approximations merely because it is difficult to describe

reality in fullness and easy to acknowledge that a simple model does

not appropriately reflect that fullness. Particularly, when a result is

taken as causal and representative of the real world, then that statement

must reflect a belief that reality could be produced by a model that

is reasonably similar to the estimated one. This means that if one is
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interested in making causal statements, then the estimated model used to

build the arguments should at least be able to produce dynamics that we

believe are relevant in the real world. In particular, the Stationarity and

Ergodicity of the data introduced as an assumption in the introduction if

this thesis must come from the model itself. If one is willing to verify all

the stability conditions of the possibly complex analyzed dynamics, as

we did in Chapter 3, then one must also be ensured that the empirical

strategy that is followed inherently ensures that the estimator finds the

correct causal structure. Critical here is that increasing model complexity

leads to a higher number of parameters, hence an increased overall model

uncertainty. We discussed approximation of causal structures in more

detail and provided an argument that minimizing complexity penalized

criteria such as the AIC, as we did in Chapters 4 and 6, is the right

objective in empirical settings.

8.1 Final remarks

With the theory and methods introduced in this thesis, researchers can

now estimate a wide range of flexible models that take into account

possible heterogeneity in dependencies across time and space. While

there are many thoroughly developed options for analysis of spatial time

series data, there are still many possible other research methodologies

left to cover. A few directions for future research are the following.

First, the applications in thesis focused primarily on modeling conditional

mean sequences, possibly with observation-driven nonlinear dynamics.

The notions put forward in this work can easily be extended to higher

moments. For example, the nonlinear dynamics explored in the context

of the smooth transition spatial autoregressive model could be extended

to allow for nonlinear cross-sectional dependence in multivariate GARCH

models to allow instantaneous transmission of volatility spillovers in an
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asymmetric way. This is particularly relevant when one is interested

in understanding risk by means of numerically calculating Value-at-

Risk or Expected Shortfall for a collection of interrelated investments

using stochastic simulations. Basic univariate threshold GARCH models

have already been developed to incorporate simple regime switching

behavior into volatility regressions, but the standard application is one

of instantaneous switching between linear autoregressive regimes. Spatial

GARCH models have also been developed to allow for linear instantaneous

dependence in processes that share AR and GARCH parameters. The

obvious drawback is that, while financial assets may exhibit feedback,

particularly when markets crash or surge, they may be assumed to

follow individual temporal dynamics. From that perspective, Generalzied

Orthogonal GARCH is a useful model as it allows one to parameterize

interactions in the conditional mean sequence using a VAR structure,

while also allowing for volatility spillovers in a multivariate GARCH

equation. The GO-GARCH spillovers are, however, not instantaneous.

Instead, they lag over time. Given that these various models are already

available, a generalization of multivariate GARCH, spatial GARCH

and the threshold dynamics, seems within reach of the practitioner.

The resulting nonlinear spatial dependence in conditional mean and

conditional variance, together with VAR parameters, would provide a

framework in which one can analyze shocks that travel through a system,

both in regimes that are dominated by commonalities or idiosyncrasies.

Second, not all the world’s phenomena can be described with continuous

data. Future research may focus on extensions relevant to model categor-

ical, ordinal and count data that are collected sequentially over time at

possibly dependent locations. This may require assuming distributions

of a different type than those assumed in the theory developed here. For

example the Poisson distribution would be the starting point for basic

count series, and a Poisson mixture like the negative binomial distribution

could be the starting point to tackle zero-inflation. Mixture models that
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involve multiple distributions can also be used to combine both the char-

acteristics of continuous process and those of count process jointly in a

time series. For example, the jump-diffusion model combines continuous

Brownian motion paths from Gaussian log returns with discontinuities, or

jumps, that are drawn from a compound Poisson process. Generalization

of jump-diffusion to the spatial time series setting may be interesting,

but possibly they will have to wait until spatial multivariate volatility

models are better understood. The development could be particularly

challenging because jumps may occur simultaneously in a spatial time

series, but the magnitude of jumps may differ over the cross-section while

the assimilation of these jumps into the series may also happen partly in

an idiosyncratic manner.

Third, the state-space framework, in particular the Kalman filter, has been

extremely important in time series analysis and much work can be done to

integrate the idea of cross-sectional nonlinearity and spatial dependence

into this framework. This may be a particularly interesting direction for

further advancement when one deals with processes that are only partially

observed or measured with possible error. The smoothing framework

could be particularly helpful to develop nonlinear interpolations for spatial

time series that are intermittently observed. Ultimately, this seems to

be an unavoidable problem for which tools will be needed. If we assume

that local data gathering processes operate and report back information

independently from one another, then logically it becomes likely that

there will be local series in close proximity of one another that overlap

mildly at best when one starts to track more regions in an economic

system. A basic example would be a survey program in which households

in different areas report back on local market prices whenever they buy

goods. The challenge of constructing a continuous spatial time series will

then have to deal with missing observations in space and time. While this

seems an advanced application, the problems are relevant to key policy

indicators that have been gathered for a long time already. Currently,
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typical large survey programs such as those carried out by institutions

like the World Bank, carry on for weeks or possibly months. During

that time, seasons and economic circumstances may change. While the

surveys thus actually represent a partially complete spatial time series,

key statistics are often derived from them in the form of a single complete

cross-section of data. The standard approach that many follow is to

simply ignore away temporal changes assuming that they are randomly

distributed over the survey program, and use the surveys to construct a

single figure relevant for, say, the year. Often, one can find footnotes in

reports and papers acknowledging that the underlying micro-data may

have been gathered at different times. Performing a proper spatial time

series interpolation before collapsing the data to a certain point in time

would likely result in much more accurate estimates.

As we continue to develop theory for those complex settings, our datasets

continue to grow increasingly rich, and the advances in our capacity to

compute continue to accelerate, we may be able to model real-world

processes in an increasingly accurate manner. The models we may use

to approximate complex realities then become increasingly complex as

well. We must therefore never forget the foundation on which we built.

While we may achieve a greater degree of idealization than was ever

held possible, the elegance of simple models was that they dealt with a

modest numbers of parameters to summarize a complex world in a clearly

formulated, tractable, an generalized fashion. Sometimes this is enough.
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long run causality in time series: inference. Journal of Econometrics,

132(2):337–362.

Dufour, J.-M. and Renault, E. (1998). Short Run and Long Run Causality

in Time Series: Theory. Econometrica, 66(5):1099.



BIBLIOGRAPHY 329

Dufour, J.-M. and Taamouti, A. (2010). Short and long run causality

measures: Theory and inference. Journal of Econometrics, 154(1):42–

58.

Dutch Emission Authority (2013). Naleving jaarverplichting 2012

hernieuwbare energie vervoer en verplichting brandstoffen luchtveron-

treiniging. Technical report.

Eichler, M. and Didelez, V. (2010). On Granger causality and the effect

of interventions in time series. Lifetime Data Analysis, 16(1):3–32.

Elbersen, H. W., Bakker, R. R., and Elbersen, B. S. (2005). A simple

method to estimate practical field yields of biomass grasses in Europe.

In 14th European Biomass Conference, 17–21 October 2005, Paris.

Wageningen Universiy.

Elhorst, J. P. (2010a). Applied Spatial Econometrics: Raising the Bar.

Spatial Economic Analysis.

Elhorst, J. P. (2010b). Spatial Econometrics: From Cross Sectional Data

to Spatial Panels. Springer.

Engle, R. F., Hendry, D. F., and Richard, J.-F. (1983). Exogeneity.

Econometrica, 51(2):277.

Epple, D. and Sieg, H. (1999). Estimating Equilibrium Models of Local

Jurisdictions. The Journal of Political Economy, 10(2):130–153.

European Commission (2007). Biofuels: aid per hectare of energy crops

reduced as the area exceeds 2 million hectares.

European Commission (2013). Political agreement on new direction for

common agricultural policy.

Eurostat - Statistical Office of the European Communities (2009).

Panorama of energy: Energy statistics to support EU policies and

solutions. Technical report, Luxembourg.



330 BIBLIOGRAPHY

Evers, A., de Haan, M., Blanken, K., Hemmer, J., Hollander, C., Holshof,

G., and Ouweltjes, W. (2007). Results low-cost farm 2006. Technical

report, Animal Sciences Group, Department of Livestock Research,

Lelystad.
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Özokcu, S. and Özdemir, Ö. (2017). Economic growth, energy, and envi-

ronmental Kuznets curve. Renewable and Sustainable Energy Reviews,

72:639–647.

Paelinck, J. H. and Klaasen, L. H. (1979). Spatial econometrics. Spatial

econometrics.

Paez, A., Uchida, T., and Miyamoto, K. (2002). A general framework

for estimation and inference of geographically weighted regression mod-

els: 1. Location-specific kernel bandwidths and a test for locational

heterogeneity. Environment and Planning A, 34(4):733–754.

Panayatou, T. (1997). Demystifying the environmental Kuznets curve:

turning a black box into a policy tool. Environment and Development

Economics, 2(4):S1355770X97000259.

Panayotou, T. (1993). Empirical tests and policy analysis of environ-

mental degradation at different stages of economic development. ILO

Working Papers.

Parks, P. J. and Hardie, I. W. (1995). Least-Cost Forest Carbon Reserves

- Cost-Effective Subsidies to Convert Marginal Agricultural Land to

Forests. Land Economics, 71(1):122–136.

Pautsch, G. R., Kurkalova, L. a., Babcock, B. a., and Kling, C. L.

(2001). the Efficiency of Sequestering Carbon in Agricultural Soils.

Contemporary Economic Policy, 19(2):123–134.

Pearl, J. (2000). Causality : models, reasoning, and inference. Cambridge

University Press.

Perman, R. and Stern, D. I. (2003). Evidence from panel unit root

and cointegration tests that the Environmental Kuznets Curve does

not exist. Australian Journal of Agricultural and Resource Economics,

47(3):325–347.



342 BIBLIOGRAPHY

Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P.,
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