Attentional and sensory contributions to postural sway in children with autism spectrum disorder
Stins, J.F.; Emck, C.; de Vries, E.M.; Doop, S.; Beek, P.J.

published in
Gait and Posture
2015

DOI (link to publisher)
10.1016/j.gaitpost.2015.05.010

document version
Early version, also known as pre-print

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 12. Jun. 2022
Attentional and sensory contributions to postural sway in children with autism spectrum disorder

John F. Stins *, Claudia Emck, Else M. de Vries, Siebe Doop, Peter J. Beek

MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands

1. Introduction

Autism spectrum disorders (ASDs) are characterized by persistent deficits in social communication and social interaction, constrained, repetitive patterns of behavior, and restricted interests or activities [1,2]. These deficits manifest themselves in early childhood and impair every day functioning. With the introduction of the DSM-5 [2] motor abnormalities seem to figure more prominently in the diagnostic criteria of autism than in its predecessor (DSM-IV) [11]. Motor problems have been frequently observed in ASD [3–5], and may involve motor planning deficits, motor coordination abnormalities, fine and gross motor skill deficits, clumsiness and postural instability [6–8]. A meta-analysis [6] showed large effects for substantial motor coordination deficits in all subtypes of ASD, associated with dysfunctions in cortical and subcortical areas including the motor cortex, supplementary motor area, basal ganglia, and cerebellum. In a similar vein, it has been argued [9] that motor abnormalities represent early and persistent clinical signs, which could serve as endophenotypes for ASD. Another review [10], however, designated it premature to relate movement disturbance as a core symptom of ASD, because empirical data were deemed not robust enough.

Yet, numerous studies have found balance problems and postural abnormalities in ASD. Balance problems in children with ASD have been found using standardized instruments, in particular the Movement Assessment Battery for Children (M-ABC) [11,12]. Poorly developed balance skills in children – regardless of pathology – may reduce the capability to develop more complicated movement skills, which, in turn, may hamper social development and the willingness to participate in sports [13]. Furthermore, a number of studies have analyzed postural sway, and have found postural abnormalities in ASD in various postural tasks, such as quiet standing and looking straight ahead [14–16], quiet standing and dual-tasking [17], quiet standing with the eyes closed [8], quiet standing on a sway-referenced platform [18], and quiet standing while performing visual search [19]. Also, postural instability appeared related to symptom severity regarding the occurrence of repetitive behaviors [8]. These latter authors suggested that postural instability is related to core ASD symptoms.

A possible factor mediating between postural control and ASD symptomatology is attention. However, remarkably few studies have looked at attentional contributions to the regulation of...
balance in ASD. The role of attention in motor control in adolescents with ASD was highlighted in a recent study [20], which found that motor performance in this group, as measured by a tapping task, was related to attentional (dys)function. The authors found that motor performance was correlated to one particular attentional function, namely the efficiency by which a spatial cue is used to orient attention. If motor abnormalities are – in part – related to attentional (dys)function, then an attention-demanding secondary task should lead to even greater abnormal motor patterns. We decided to test this hypothesis in a quiet-standing paradigm. It has been shown that regulation of balance is attention demanding, even in highly skilled individuals such as dancers [21]. We tested the effect of an attention demanding cognitive activity on postural fluctuations in a group of children with a mild form of ASD, using a word memorization task [21,22]. If individuals with ASD employ excessive cognitive resources to regulate their balance, then cognitive dual-tasking should have a destabilizing effect on this group but not on controls.

In addition, we tested the contribution of visual input to the regulation of balance in this group. Previous studies [8,23] have found decreased postural performance in ASD when the eyes are closed. Closing the eyes leads to a shift toward other sensory modalities to regulate balance, necessitating more attention-demanding control of balance. The second aim of this study was to assess whether dual-tasking and removal of visual input leads to additive or interactive effects on postural parameters.

So, our hypotheses were that (1) cognitive dual-tasking has a destabilizing effect in ASD, and (2) standing with eyes closed also has a destabilizing effect in this group, possibly mediated by an inward attentional focus.

2. Methods

2.1. Participants

Nine children who were diagnosed with ASD (8 males and 1 female; mean age: 10.8 ± 1.2 years; mean height: 1.50 ± 0.13 m; mean weight: 41.3 ± 3.3 kg) and nine age- and gender-matched typically developing (TD) children (mean age: 10.8 ± 1.2 years; mean height: 1.49 ± 0.09 m; mean weight: 36.7 ± 7.75 kg) were recruited from a regular primary school in Ermelo, the Netherlands. The clinical diagnosis of ASD was determined by a licensed child psychologist or psychiatrist and several combinations of research and clinical tools were used to support and confirm the clinical diagnosis according to DSM-IV criteria (Table 1). Most frequently, the Achenbach System of Empirically Based Assessment (ASEBA) School-age forms and profiles were used to assess competencies, adaptive functioning and problems – that is, the Child Behavior Checklist (CBCL), Teacher’s Report Form (TRF) and the Youth Self Report (YSR). DSM-IV GAF (Global Assessment of Functioning) scores were all between 50 and 70, implicating mild to moderate symptoms and some difficulty in social or school functioning. Exclusion criteria were (neurological) diseases, physical impairments or handicaps that precluded participation. Three children of the ASD group used methylphenidate for ADHD symptoms. The study was approved by the local ethics committee before it was conducted. Parents/caregivers of the participating children signed an informed consent.

2.2. Data collection

Prior to postural recordings we administered the balance sub-tests1 of the Movement Assessment Battery for Children (M-ABC version 2, age band 7–10 years and age band 11–16 years [24]). The M-ABC is a test for early detection of motor problems in children aged 3–16 years. The following subtests were administered: (1) static balance; depending on age, standing on one leg, or standing on two legs heel-to-toe; (2) dynamic balance_1: hopping in squares; (3) dynamic balance_2: depending on age, walking forwards or backwards along a piece of rope. Raw scores were converted to percentile scores.

Participants stood on a Nintendo® Wii Balance Board that collected postural data, which were transmitted via bluetooth to a laptop. The Wii Balance Board has excellent reliability (intra-class correlation coefficient = 0.77–0.89 [25]) and has been used in studies with other clinical populations [26]. We know of one study that used a Wii Balance Board to assess postural control in people with ASD [8].

The Balance Board (511 mm × 316 mm) was located in a clutter-free area with homogenous floor and monochromatic curtains to prevent distractions. Participants stood barefoot on the board. Center-of-Pressure (CoP) excursions were registered under four experimental conditions: (1) standing with eyes open, (2) standing with eyes closed, (3) standing while performing a cognitive dual task, eyes open, and (4) standing while performing a cognitive dual task, eyes closed. During all tasks participants were instructed to stand as quietly as possible while facing a bare wall. Each condition was repeated three times, for 30 s each. Sampling frequency was irregular and fluctuated around 18 Hz. We used linear interpolation to obtain a constant sampling interval (cf. [27]), using the function interp1 in Matlab.

During the cognitive dual task participants listened to a list of pre-recorded words that were presented at a frequency of 0.5 Hz, resulting in a total number of fifteen different words per trial. Words were nouns belonging to a certain category (animals, fruit and vegetables, tools, sports, toys and occupations). Participants were instructed to fully concentrate on the words and to memorize as many of the words as they could. After completion of the trial, participants had thirty seconds to report the words they memorized. The experimenter scored the number of correctly remembered words.

Prior to analysis we smoothed the postural data using a 5-point moving average. We calculated the following parameters related to postural (in)stability:

1) Standard deviation of sway, separate for the antero-posterior (AP) and mediolateral (ML) direction.
2) COP RANGE-ML and COP RANGE-AP, i.e., the distance between the maximal postural excursions in the mediolateral direction and the antero-posterior direction, respectively (cf. [15]).
3) Sway path length (SPL), i.e., the summed length of the postural excursions in the AP–ML plane over the measurement interval.

We also administered a subset of the M-ABC (balance subtests only), as an independent standardized test of balance movement ability, to assess whether postural parameters and balance test scores co-vary.

2.3. Statistical analysis

The three subtests of the M-ABC2 and the total score (sum total of the subtests) were entered into an unpaired t-test. All COP variables were first averaged over the three trial repetitions, and were then entered into a 2 (task: baseline vs. dual task) × 2 (vision: eyes open vs. eyes closed) × 2 (group: ASD vs. TD) mixed factors analysis of variance (ANOVA). For the analysis of memory performance we first averaged the number of correctly recalled words over trial repetitions, and we then submitted these scores to a 2 (vision) × 2 (group) mixed factors ANOVA. Alpha-level was set at 0.05. Effect sizes are reported as partial eta-squared (η²p).

1 The M-ABC consists of 3 sub-tests, involving the component motor domains Manual Dexterity, Ball Skills, and Balance. For present purposes only performance on the balance component area was measured.

2 The M-ABC2 consists of 11 sub-tests.
Table 1
Specification of diagnostic procedures and instruments, per participant with ASD.

<table>
<thead>
<tr>
<th>P</th>
<th>DSM-IV axis 1 and 5</th>
<th>CBCL</th>
<th>TRF</th>
<th>CSBQ</th>
<th>Tea-ch</th>
<th>SEV</th>
<th>HTP</th>
<th>15w</th>
<th>CFT</th>
<th>SPPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. PDD NOS (299.80) 5. CAF 60</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. PDD NOS (299.80) 5. CAF 55</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>1. PDD NOS (299.80); ADHD-C (314.01) 5. CAF 51–60</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>1. PDD NOS (299.80); ADHD-C (314.01) 5. NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. PDD NOS (299.80) 5. CAF 50–60</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. PDD-NOS (299.80); ADHD-C (314.01) 5. CAF 61–70</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. PDD-NOS (299.80) 5. CAF 55</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1. Asperger’s disorder (299.80) 5. CAF 50</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1. PDD-NOS (299.80) 5. CAF 51–55</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CBCL = Child Behavior Checklist; TRF = Teachers Report Form; CSBQ = Children’s Social Behavior Questionnaire; Tea-Ch = Test of Everyday Attention for Children; SEV = Sociaal Emotionele Vragenlijst (Social Emotional Questionnaire; Dutch only); HTP = House Tree Person test; 15w = 15 word test; CFT = Complex Figure Test; SPPC = Self-Perception Profile for Children. Yes = this test was used, No = this test was not used, NA = no information available.

3. Results

3.1. Movement ABC

None of the M-ABC subscores, nor the total score, significantly differentiated the groups. For the ASD group and the TD group, respectively, scores were as follows: static: 3.4/3.4, dynamic_1: 10.1/10.7, dynamic_2: 19.1/21.0; total: 34.8/36.8.

3.2. Memory performance

No main or interaction effects were significant. The average number of correctly recalled words was 6.5 (SD .75).

3.3. Postural performance

Means and standard deviations of all postural measures are reported in Table 2.

3.3.1. Standard deviation

There was only a main effect of vision, both for AP sway, F(1, 16) = 20.27, p < .001, \(\eta^2_g = .56 \), and ML sway, F(1, 16) = 26.15, p < .001, \(\eta^2_g = .62 \), indicating that the standard deviation of postural fluctuations was larger with eyes closed than with eyes open (AP: 5.8 vs. 4.3 mm; ML: 6.0 vs. 4.8 mm, respectively).

3.3.2. COP\textsubscript{RANGE-ML}

There was a main effect of vision, F(1, 16) = 40.42, p < .001, \(\eta^2_g = .72 \), indicating that the postural sway range was larger with eyes closed than with eyes open (3.1 vs. 2.3 cm, respectively). Also the interaction of vision and group was significant, F(1, 16) = 6.24, p < .05, \(\eta^2_g = .28 \), indicating that eyes closed eyes closed were 2.4 cm and 3.4 cm for the ASD group, and 2.3 vs. 2.7 cm for the TD group. In order to explore the interaction we calculated the difference scores (COP\textsubscript{RANGE-ML} closed minus COP\textsubscript{RANGE-ML} open) to an unpaired t-test, which yielded significance, t(16) = 2.45, p < .05. In other words, postural instability in the ML-direction due to closing the eyes was larger with the ASD group than the TD group.

3.3.3. COP\textsubscript{RANGE-AP}

There was a main effect of vision, F(1, 16) = 33.35, p < .001, \(\eta^2_g = .68 \), indicating that the postural sway range was larger with eyes closed than with eyes open (2.9 vs. 2.2 cm, respectively). Also, the three-way task \times vision \times group interaction was significant, F(1, 16) = 4.85, p < .05, \(\eta^2_g = .23 \). To further explore this interaction we performed separate ANOVAs for both groups. The ASD group showed a borderline significant effect of task, F(1, 8) = 5.35, p = .05, \(\eta^2_g = .40 \), indicating higher values during dual-tasking than at baseline (3.1 vs. 2.4 cm, respectively). There was also an effect of vision, F(1, 8) = 16.21, p < .01, \(\eta^2_g = .67 \), demonstrating again the destabilizing effects of closing the eyes, regardless of task (3.3 vs. 2.3 cm). For the TD group the main effect of vision was also significant, F(1, 8) = 30.55, p < .001, \(\eta^2_g = .79 \), but the effect was superseded by the vision \times task interaction, F(1, 8) = 6.74, p < .05, \(\eta^2_g = .46 \). Pair wise t-tests revealed that for the TD group the contrast between eyes open and eyes closed was not significant during dual-tasking, but was significant during the baseline task, t(8) = 5.47, p < .001 (1.94 vs. 2.76 cm, respectively). Means for all conditions are shown in Fig. 1.

3.3.4. Sway path length

There was a main effect of vision, F(1, 16) = 90.45, p < .001, \(\eta^2_g = .85 \), indicating that there was more sway during eyes closed than with eyes open (35.6 vs. 24.6 cm, respectively). There was also a main effect of task, F(1, 16) = 6.26, p < .05, \(\eta^2_g = .28 \), indicating that there was more sway during cognitive dual-tasking than at baseline (34.0 vs. 26.2 cm, respectively). No other effects were significant.

3.3.5. ADHD comorbidity check

In order to test whether the three children that used methylphenidate for ADHD symptoms displayed different postural performance from the other six children, we ran the same tests as above, but now only on the ASD group, with type (presence or absence of comorbid ADHD) as between subject factor. No main or interaction effects involving type were significant, so that comorbid ADHD did not differentially influence COP behavior.

Table 2

<table>
<thead>
<tr>
<th>ASD group</th>
<th>Dual task</th>
<th>TD group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Eyes)</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>Standard deviation AP (mm)</td>
<td>4.4 (1.2)</td>
<td>6.1 (2.6)</td>
</tr>
<tr>
<td>Standard deviation ML (mm)</td>
<td>4.3 (1.5)</td>
<td>5.7 (2.6)</td>
</tr>
<tr>
<td>COP range AP (cm)</td>
<td>2.04 (.58)</td>
<td>2.85 (.95)</td>
</tr>
<tr>
<td>COP range ML (cm)</td>
<td>2.02 (.71)</td>
<td>2.82 (1.17)</td>
</tr>
<tr>
<td>Sway path length (cm)</td>
<td>19.01 (5.73)</td>
<td>29.52 (10.07)</td>
</tr>
</tbody>
</table>

ASD = Autism Spectrum Disorder; TD = Typically developing; AP = antero-posterior; ML = medio-lateral.

Please cite this article in press as: Stins JF, et al. Attentional and sensory contributions to postural sway in children with autism spectrum disorder. Gait Posture (2015), http://dx.doi.org/10.1016/j.gaitpost.2015.05.010
4. Discussion

We examined the effect of a cognitive disturbance (word memorization) and a sensory disturbance (standing with eyes closed) on balance and postural control in a group of children with mild autism. We hypothesized that individuals with ASD might employ excessive cognitive resources to regulate their balance. As a result, (1) cognitive dual-tasking and (2) closing the eyes should have a destabilizing effect on individuals with ASD but to a lesser extent on controls.

First, we found no main effects of group on any of our postural parameters, indicating that – averaged over conditions – postural (in)stability was comparable in both groups. Also, both groups displayed equal recall of the verbal material, suggesting comparable levels of cognitive abilities. Second, we found the expected effects of vision: closing the eyes led to an increase in postural sway. Third, we found modest effects of cognitive task performance: dual tasking induced an increase in postural sway, suggesting that the memorization task led to a decrease in postural stability. It is unclear whether the effect is due to the attentional demands of the task, or due to unintentional motoric activities during listening, such as silent vocalizations.

Fourth, we found a number of interactions between group, task and/or vision. The groups reacted differently to the removal of vision: for the range of the COP in the ML direction, the destabilizing effect of closing the eyes was larger for the ASD group than for controls. This finding is consistent with earlier studies [8,23], and suggests that individuals with ASD have greater reliance on visual input for the regulation of balance, making it more difficult to maintain balance with the eyes closed. A recent study [28] revealed unexpected and substantial superiority in visual motion perception in children with ASD, compared to controls. Relatedly, a review [29] found that individuals with ASD consistently outperform controls on visual search tasks; possibly mediated by ‘over-focused attention’. We speculate that this superiority is reflected in a tighter coupling between visual channels that register changes in optic flow (as a result of postural sway) and the motor system responsible for maintaining balance [23]. This tighter coupling, in turn, becomes manifest as faster postural adjustments. This notion is consistent with recent suggestions [12,30] that children with ASD have deficits in anticipatory control involving tasks where perception needs to be coupled to action, which, we argue, could entail a more reactive (vision-based) postural control strategy. Standing with eyes closed might necessitate a shift from a reactive (predominantly vision based) control strategy to a feedforward strategy, based on anticipation of postural consequences of motor adjustments. If it is true that this latter type of control is poorly developed in ASD [12,30], this would explain the destabilizing effects of standing with eyes closed.

For the range of the COP in the AP direction, the groups reacted differently to the manipulations. In the ASD group the destabilizing effects of closing the eyes and of cognitive dual-tasking were additive. So, in accordance with our hypothesis we found that dual tasking negatively affected postural performance. In the control group, however, we found an interaction, in that the destabilizing effects of closing the eyes was only evident at baseline, and not during dual tasking. This could reflect some sort of trade-off between postural performance and cognitive performance, but this is very speculative.

Finally, scores obtained with the M-ABC2 revealed no significant differences between the groups. Our participants were mildly autistic, so motor problems were probably in the sub-clinical domain, making it harder to detect these with a coarse-grained measure such as the M-ABC. Interestingly, a study by [12] involved an in-depth analysis of M-ABC2 scores, and it was found that children with autism scored significantly worse than matched controls on only 2 of the 8 subtests of the M-ABC2, namely static balance, and ball catching (not tested by us). The authors suggested that movement abnormalities in ASD reside predominantly in static balance performance, as this involves rapid online adjustments to subtle changes in posture. Hence, the authors argued that analysis of COP parameters might yield more insight into the fine online regulation of balance, which indeed is what we did.

We would like to stress a major limitation of this study; not only did we have a modest sample size; our clinical sample was also heterogeneous, especially regarding comorbid symptoms of ADHD, and in addition the diagnosis was established using different procedures and instruments.

In conclusion, we found evidence of abnormal postural control in children with mild ASD. Even though there were clear main effects of cognitive dual tasking on COP parameters, the effects hardly differentiated between the groups, suggesting that the attentional regulation of balance was mildly affected in our ASD sample. We found clear effects of vision on balance, suggesting a greater reliance on vision in ASD than controls, which could be due to superiority in visual information processing and deficits in perception–action coupling [12].

Acknowledgments

We would like to thank the children and parents who participated in the study, the staff of the primary school in Ermelo and Research Institute TNO Soesterberg assistance with the Wii Balance Board®. Special thanks to Wilma de Vries, remedial teacher at the primary school, who assisted in recruiting the participants.

Conflict of interest: None of the authors have financial or other conflicts of interest in regards to this research.

References