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Abstract
This thesis advances the use of geospatial data fusion as a means to bridge the gap 
between the conventional, yet limited, data sources and the geospatial data from 
emerging, unconventional, yet disparate, sources and formats. The project show-
cases different applications of this concept relevant to the assessment of human 
activity at European scale.
Underpinning each application in the thesis is the research question: How can ge-
ospatial data from diverse sources and with different properties be combined to 
enhance the spatial representation of human activity? The thesis focuses on deve-
loping an ensemble of data fusion protocols to integrate geospatial data from both 
conventional and unconventional data sources with very different characteristics 
into consistent data frameworks to fill specific data, information and knowledge 
gaps. Within the geospatial sciences, data fusion has been used mainly in the re-
mote sensing domain. This project tries to unlock the potential of data fusion for a 
broader set of geographical information science applications, with focus areas on 
land use (Chapters 2, 3, 4), sector-specific activities (Chapters 5, 6) and population 
distribution (Chapters 7, 8).
The outcomes stretch beyond the production of fancier digital maps. The thesis 
synthesizes new information from structured data fusion approaches, where the 
results are more than the sum of the parts, allowing new insight about the spatial di-
mension of socio-economic phenomena, to ultimately feed decision-support tools.

doi:10.6084/m9.figshare.19507777
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Cover illustration: Representation of estimated population in daytime and night-time in Paris, 
France, 2011. Each bar represents a regular grid cell of 1 km × 1 km and it is coloured in red if 
there is more people in daytime than in night-time, and blue otherwise. The height of the bar 
is proportional to the estimated size of the population in daytime or night-time, respectively. 
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Introduction

1. BACKGROUND AND MOTIVATION

1.1 Mapping human activity for geospatial analysis and planning
Human activity has fundamentally changed the appearance of the Earth. For some 
scholars, this marks a new geological era: the Anthropocene (Waters et al., 2016). The 
impact of human activity is especially apparent in the way land use and land cover 
have changed after millennia of hunting, agriculture, living, working, travelling and 
recreation (Ellis et al., 2013), and recognized as an issue with global environmental 
consequences (Foley et al., 2005). Future urban land expansion is expected to continue 
producing environmental impacts at global scale (Fragkias et al., 2013; Seto et al., 2012). 
Evidently, land use/land cover is not the sole manifestation of human activity on the 
planet. But it is a key factor for the assessment of ecosystems, biodiversity, landscape, 
natural resources and natural hazards, and a pivotal element in the interaction between 
the human and the physical environments (Turner et al., 2007).

Land change science has emerged as an interdisciplinary field of study trying to grasp 
the dynamics of land use and land cover. It tries to understand the drivers of land use 
and land cover change, assess and model its impacts to better support land management 
practices and policies (Turner et al., 2007). Land use/land cover change is the result 
of complex interactions between human (e.g., economic, cultural, institutional) and 
environmental (e.g., climatic, geologic, pedologic, topographic) factors that interplay 
at local and global scales (Lambin et al., 2001), and which ought to be adequately 
understood and modelled (Stehfest et al., 2019), especially in an age of globalization 
(Lambin & Meyfroidt, 2011), urbanization (Angel et al., 2011; OECD & European 
Commission, 2020) and continued demographic growth (European Commission, 2018).

Although the terms ‘land use’ and ‘land cover’ are at times used interchangeably 
(Lambin et al., 2001), their specific meanings have been subject of discussion and 
clarification by various authors.  Land cover is the biophysical cover of the earth’s 
surface, and is thus directly observable while land use is commonly understood 
as the socioeconomic purpose for which land is exploited (Di Gregorio & Jansen, 
2000; Fisher et al., 2005; Koomen & Stillwell, 2007; Verburg et al., 2009). 
Another distinction is that land use derives from an active and anthropocentric 
perspective, as it always assumes a direct use of land resulting from the presence 
and activity of humans, and providing an indication of environmental pressure. 
Conversely, land cover could be considered a passive and non-anthropocentric 
definition, as it simply relates to the observed biophysical cover of land, regardless 
of its connection with human activity.



15

CHAPTER 1

The relation between land use and land cover is therefore complex, partially 
overlapping, with many-to-many links (Bakker & Veldkamp, 2008; Cihlar & 
Jansen, 2001; Fisher et al., 2005). ‘Grass, for example, is a land cover type which 
can occur in any number of land uses: sports grounds, urban parks, residential 
land, pasture, etc. At the same time, very few areas of homogeneous land use 
have a single land cover; residential land, for example, may contain trees, grass, 
buildings and asphalt’ (Fisher et al., 2005). Furthermore, the same land use type 
can generate different land cover types in a given temporal span (e.g., agriculture, 
forestry)1. Hereinafter, I will keep using the term ‘land use/land cover’ to refer to 
both concepts whenever their distinction is not relevant to the points being made.

Many manifestations of human activity on the planet can be effectively 
captured, measured and characterized using geospatial data compiled from 
multiple sources and technologies. These include a wide range of sensors and 
environmental and socioeconomic surveys, from which raw data are extracted 
and then transformed into meaningful and usable, digital spatially explicit 
information with the help of geographic information science and systems 
(Longley et al., 2015).

As reviewed above, land use and land cover are some of the many 
manifestations of human activity on the Earth’s surface. Land use/land cover 
mapping was originally enabled by aerial photography in the first decades of 
the 20th century, and further prompted from the early 1970’s by civil satellite-
based remote sensing (Loveland, 2012). These maps are produced by detecting 
and classifying land use/land cover on the Earth’s surface observable from aerial 
or satellite imagery using visual interpretation and/or automatic classification 
algorithms that can be calibrated and validated with field surveys. In effect, 
many land cover types can be distinguished and mapped for large areas using 
the spectral signatures recorded in remotely sensed imagery, and encoded using 
different classification systems (LaGro, 2005).

Although land use can sometimes be inferred from land cover observations, 
it is not always directly observable. It includes aspects beyond the direct 
characterization of the biophysical cover of land. Identifying land use requires 
additional information and interpretation regarding the socioeconomic activities 
that take place on the Earth’s surface (Fisher et al., 2005). Notwithstanding, many 
land use/land cover datasets do not perfectly disentangle these two concepts. 
That is the notable case of the European CORINE Land Cover, still widely used 
nowadays for a variety of assessments (Büttner, 2014; Feranec et al., 2010, 2016).

Land use/land cover maps are produced and maintained today by regional, 
national and international organisations, both public and private, and primarily 

  A more thorough review of land use and land cover concepts and relevance can be found in Chapter 2.1
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based on remote sensing imagery.  New and better sensors and automatic 
classification methodologies are allowing improvements to the spatial and 
temporal resolution of land use/land cover datasets. Land use/land cover maps 
are usually characterized by the use of discrete and mutually exclusive land 
use/land cover classes and produced by respecting a preset of generalization 
rules defining their thematic and spatial resolutions. Generalization rules result 
in the amalgamation of patches of land use/land cover of smaller size into the 
surrounding and dominant ones, or merge more specific land use/land cover 
categories into more general ones, thus limiting the available spatial and thematic 
detail. Discrete and mutually exclusive land use/land cover categories make it 
difficult to capture overlapping phenomena or phenomena that are continuously 
distributed across the Earth’s surface. Thus, the usefulness of a specific land use/
land cover dataset – as much as of any other type of geospatial dataset – depends 
on the application, research question at hand, and the spatial scale of analysis.

Other relevant facets of human activity on the Earth’s surface cannot be 
properly captured by land use/land cover maps. As Goodchild (2007: 25) 
puts it, “many other types of geographic information are not visible from 
above, or cannot be extracted from imagery by any automated process. They 
include (…) environmental information, including measures of air quality; 
cultural information, including information on the use of land and buildings; 
and population information, including population density and socioeconomic 
measures”. To fill specific data gaps, or feed emerging government, societal or 
business needs, new datasets have mushroomed in more recent years, sometimes 
with a specific sectoral focus, such as the transport, energy or tourism to name a 
few. Such datasets hold a significant potential that can be harnessed to describe 
the human activity on the planet in a more complete and detailed manner. In 
section 1.2 of this chapter, I review in more detail the myriad of new data sources 
that are enabling the emergence of a geospatial data deluge.

Ultimately, little is more informative about the human activity on Earth 
than data on the actual spatial distribution of people. The number of people is 
perhaps the single most important socioeconomic descriptor of a place or area, 
and it is correlated with, for example, residential and agricultural land uses, 
economic activity and environmental pressure (Willemen et al., 2019). States 
tried to enumerate their populations since at least the ancient Egyptian and 
Greek civilizations. Knowledge of the size of population was essential for many 
aspects of the organisation and planning of state affairs even then (Encyclopaedia 
Britannica, 2018). Modern population censuses and thematic cartography started 
to develop significantly from the 19th century, allowing the study, visualization 
and mapping of population statistics (Friendly, 2009).

The emergence of digital cartography (Tobler, 1959) and Geographical 
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Information Systems (GIS), along with increasing computational power, 
permitted more detailed depictions of population distribution, often by small-
area units (e.g., census tracts/zones). In the late 1990’s and early 2000’s, the 
dasymetric method2 found a resurgence (Petrov, 2012), supported by those 
very technological and data developments, and allowing more detailed and 
precise spatial representations of population distribution. Despite these major 
developments, the temporal dimension of population distribution, determined by 
human mobility – and key for the study of cities, disaster risk management or 
planning of infrastructure – remains largely unaddressed in current population 
datasets3.

Measuring and mapping human activity is essential to understand its 
interactions with the physical environment, describe the relevant processes 
and assess their mutual impacts. With this insight, we can deploy different land 
management policies and practices to tame our footprint on the environment 
while trying to improve our overall socioeconomic condition (Foley et al., 2005). 
Spatial planning is a tool or set of practices used to steer spatial developments 
(i.e., ultimately, the distribution of people and their activities) taking into account 
social, economic and environmental considerations (Assche et al., 2013). Koomen 
(2008) demonstrates the contribution of spatial analysis to spatial planning, 
informed by clear and, ideally, undisputed information on existing developments.

Supported by the development of geospatial datasets and advanced quantitative 
methods, land use change models have emerged and developed in the past 
decades as virtual labs to ‘test the sensitivity of land use patterns to changes in 
selected variables’ (Veldkamp & Lambin, 2001), and as complementary tools to 
support spatial planning at different scales (Koomen et al., 2008; Lavalle et al., 
2011; Verburg & Overmars, 2009). Typically, these models simulate scenarios 
of land use changes based on empirical and/or theoretical relationships between 
human development and the physical environment and under a range of possible 
policy conditions. Such scenario evaluation can then be considered in policy 
design (Koomen et al., 2011).

In recent years, the field of land use modelling has been picking up on the 
increasingly available gridded population datasets at high spatial resolution. 
Such datasets are being integrated in land use models to simulate population 
changes at local level in tandem with land use dynamics (Jacobs-Crisioni et al., 
2016; Jones & O’Neill, 2016; van Vliet et al., 2012; White et al., 2012). This 

  The dasymetric method can be defined as a cartographic technique whereby ancillary thematic data are used 
to refine the geographical representation of a quantitative variable reported at coarse spatial aggregations. It is 
often used for the generation of detailed population maps (Zandbergen & Ignizio, 2010). See Chapter 7.

A more thorough review of population mapping traditions and dasymetric mapping can be found in 
Chapters 7 and 8.

2

3
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represents a major shift: from dealing with mutually exclusive land use categories 
to levels of human activity, and is expected to help answer questions related a span 
of topics such as energy use, emissions, territorial cohesion (Jacobs-Crisioni et al., 
2016), climate change and extreme events (Forzieri et al., 2017).

1.2 The geospatial data deluge4 
Statistical and geographical data from official bodies were, for many decades, 
the prime inputs used in spatial analyses. Although such conventional data 
sources and associated data collection methods remain doubtlessly relevant, a 
new paradigm is emerging, as many information and communication technology 
(ICT-)based services start generating massive amounts of data as either final 
(intended) or by-products (coincidental). Such data are often referred to as ‘big 
data’ because of their volume, velocity and variety (Gandomi & Haider, 2015). 
Scientists and engineers from a wide range of fields, as well as marketeers 
and other professionals soon started finding ways of obtaining data from these 
emerging sources and creating new and diverse use cases (Rodríguez-Mazahua 
et al., 2016).

The new data-driven knowledge generation paradigm, including the use of 
vast amounts of data coupled with new technology and methods (e.g., cloud 
computing, artificial intelligence) – or ‘data-intensive science’ as Bell and 
colleagues (2009) call it – is both a consequence of and a necessity to deal the 
sheer amounts of data becoming available for research in many fields. This 
so-called data deluge is prominent in the spatial sciences too, where the terms 
‘geospatial big data’ or ‘big geodata’ are sometimes used to refer to big data 
that are geotagged and/or georeferenced (Goodchild, 2013). However, the use 
of big data does not come without challenges and compromises related to data 
access, storage and processing, quality and sustainability (Goodchild, 2013; 
Lansley et al., 2018; Liu et al., 2016), and broader societal issues too (Boyd & 
Crawford, 2012; Goodchild, 2013).

Despite several attempts to define ‘big data’ (Andrea et al., 2016; Gandomi 
& Haider, 2015), the term is complex and multidimensional, making it difficult 
to unequivocally determine whether certain data sources or datasets are, in fact, 
big data. For example, by some standards, satellite imagery could be considered 
big data, even though its existence precedes the appearance of the concept in 

  Parts of this section are based on Batista e Silva, F., Barranco R., Rosina, K., & Lavalle, C. (2019) New 
territorial analyses enabled by emerging sources of geospatial data – use cases and challenges. In Building the 
next generation of research on territorial development – Papers submitted at the ESPON Scientific Conference 
on 14 November 2018, London, UK. Luxembourg: ESPON.

4
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the mid-1990’s by decades. To illustrate the diversity of today’s geospatial data 
sources, it is perhaps more helpful to focus on some of their characteristics or 
properties than on applying labels without a clear meaning.

In an attempt to structure the wealth and diversity of geospatial data sources 
that have become available to study land use and human activity, I relate them to 
four groups of properties: (a) data ownership, (b) data access, (c) data generation 
processes, and (d) data formats. These relations are depicted in Table 1 for the 
selected datasets, ranging from old and conventional to new and emerging. The 
list of datasets is not necessarily exhaustive, and the classification is based on 
my own interpretation and experience5.

Concerning (a) ownership and (b) access, data can be owned (and produced) 
by either ‘public’ or ‘private’ organisations and, regardless of the product 
owner, can have ‘restricted’ or ‘open access’. Official statistics, for example, 
are generally public and open access. On the opposite side, some specialized/
sectoral databases are privately owned and produced, and access is restricted. 
That is the case, for example, of company or energy-related databases, such as 
Orbis6 and PLATTS7, respectively. The European Pollutant Release and Transfer 
Register (E-PRTR)8, or the European Tertiary Education Register (ETER)9 are 
examples of public and open specialized spatially explicit databases.

With regard to (c) generation process, data can be generated ‘intentionally’ 
or ‘unintentionally’ (by-products), produced by ‘institutions’ or by ‘users/
costumers’ (i.e., crowd-sourced) and have ‘scheduled’ or ‘continuous updates’. 
Examples of unintended by-products of ICT-based services are data generated 
by the operation of mobile phone networks and applications (‘apps’), social 
media, web activity (e.g., content, traffic, searches), or through business 
operations such as transactions. Other types geospatial of data are intentionally 
generated as core components of a service. For example, national mapping 
agencies focus on the production of topographic and other basic geographical 
information, and companies like TomTom focus on producing reliable and very 
detailed road network databases for navigation purposes.

  The proposed classification is not strict, but just a possible way to reflect upon and structure the data 
deluge. Engin et al., (2020) have made a classification and review of new data sources from the lens of urban 
management practice, considering the following categories: personal data, proprietary data, governmental data, 
open and public data, organic and crowdsourced data.

https://orbis.bvdinfo.com/

https://www.spglobal.com/platts/en

https://prtr.eea.europa.eu/

https://www.eter-project.com

5

6
7

8

9
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An interesting case is the OpenStreetMap (OSM)10, a worldwide collaborative 
effort to map the world in detail. OSM data are produced intentionally as core 
product by individual contributors who volunteer for this massive global mapping 
effort of road networks and other physical structures on the Earth’s surface such 
as buildings, cultural and landscape features, and land use (Arsanjani et al., 
2015). Due to its impact and relevance, OpenStreetMap helped consolidate the 
concept of Volunteered Geographical Information (VGI) coined by Goodchild 
(2007), as an element of the broader ‘citizen science’ trend (Bonney et al., 2014). 
Many user-generated datasets share the property of being continuously updated. 
That is notably the case of OSM, with contributors from all around the world 
submitting updates continuously, but also of sensor data (e.g., meteorological 
stations, satellite sensors, traffic sensors) and internet activity (e.g., web, social 
media). Conversely, most data produced by institutions tend to be characterized 
by scheduled updates. For example, TomTom Multinet updates are released 
yearly, and the CORINE Land Cover is produced every six years.

As for (d) data formats, we can distinguish between ‘raw’ and ‘interpreted/
derived data’, ‘continuous’ and ‘discrete data’, ‘structured’ and ‘unstructured 
data’. Raw data are usually available as they are originally generated at the source, 
while derived data involves a degree of interpretation of the original source data 
or a combination of several datasets. Continuous data refer to numerical or scalar 
variables, while discrete data refer to objects with well-defined boundaries. In the 
case of spatially explicit data, such objects could relate to actual physical objects 
like buildings or roads, whereas in the case of internet content, objects may be 
pieces of text, images or videos. Finally, unstructured data refers to data that are 
not stored and/or organised in a pre-defined data model (as in a database or GIS), 
and often containing multiple types of data (e.g., a text may contain information 
about location, time, measurements, subjective opinions, etc.). Regional statistics 
are an example of interpreted data, while sensor data are raw, but both are usually 
continuous and structured data types.

Data from the web are usually discrete, raw and unstructured. Significant 
effort is required to extract information from the original sources, make sense 
and use such data. Web data mining consists of extracting useful information 
from websites. For example, the European Media Monitor11 of the European 
Commission continuously monitors thousands of news sources in over 70 
languages, providing information on what is being reported in the world at every 
moment. Statistical offices also use web data mining to obtain price information 
and to calculate inflation rates based on the price variations of different baskets of 

  https://www.openstreetmap.org

  https://emm.newsbrief.eu/

10

11
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products (Polidoro et al., 2015). Other examples include the study of innovation 
(Gök et al., 2015) and the study of citizen and costumer sentiments (Liu, 2012). 
However, websites can also be sources of georeferenced data if the extracted 
information can be linked to a geographical location through geospatial coordinates 
or a toponym. For example, online booking platforms (e.g., Booking.com and 
TripAdvisor) include interactive maps with the location and characteristics of 
tourist accommodation establishments that can be inspected, fetched and brought 
into a GIS for subsequent spatial analysis of tourism.

Social networks data can be described as unintentional crowd-sourced data 
(Crooks et al., 2015) and have become a widely investigated source of geographical 
data too. User submissions, such as status updates, posts, check-ins, photos, or 
videos, are time-stamped and can be treated as spatial data as they often carry a 
geotag (i.e., a spatial reference) with the high positional accuracy of GPS sensors 
commonly present in mobile devices. The methods for deriving information from 
social media, where individuals serve as sensors, are also referred to as social 
sensing (Liu et al., 2015). In a study by Salas-Olmedo et al. (2018), the location 
of user posts from various social networks were used to assess tourism geography 
within the city of Madrid. A recent study found that socio-economic indicators 
such as personal income and electric power consumption are better proxied at 
fine spatial resolution by the sum of geotagged tweets than by night-time lights 
derived from satellite imagery (Zhao et al., 2018). The thematic content of the 
data is more difficult to establish, though. Since they were not intended to be bulk 
processed as a dataset, extracting useful information from the raw data (such as 
unstructured text and untagged photographs) is often challenging and relies on 
artificial intelligence approaches such as machine learning.

While the previous examples are strongly linked to the internet as a source 
of data, data from mobile network operators (MNO) are generated almost 
continuously by the interaction between mobile phone terminals and the mobile 
network towers. MNO-generated data are another emerging data type that can be 
used to map and analyse the mobility patterns of mobile phone users (González 
et al., 2008). Other studies have shown the potential of MNO data to map multi-
temporal population density (Deville et al., 2014), describe land use according 
to temporal profiles of locations (e.g., predominantly working, residential or 
commuting areas, see: Ríos & Muñoz, 2017), assess the spatio-temporal visitation 
patterns of tourists (Raun et al., 2016) and, more recently, measure the impact of 
the Covid-19 pandemic on human mobility (Santamaria et al., 2020).

Statistical bodies are conducting pilot studies to test the use of MNO data in the 
production of tourism statistics (Dattilo & Sabato, 2017; Demunter & Seynaeve, 
2017). However, the use of this data source in a systematic fashion is still hurdled 
by data access constraints, as profit-driven MNOs are still reluctant to release 
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their data, as proper business models are not yet well established (Debusschere 
et al., 2017). In addition, there are several methodological challenges associated 
with the use of MNO data. These include incomplete penetration rates and lack of 
data for “roaming” users (Dattilo & Sabato, 2017), heterogeneous market shares 
of MNOs across regions and socio-economic groups, and issues with mobile 
phone usage patterns by different users, all leading to selection biases (Demunter 
& Seynaeve, 2017). Technical proposals are being put forward to streamline 
access to MNO data in a harmonised manner across different operators (Ricciato 
et al., 2017).

It is worthwhile closing this section with a reference to a relatively novel 
and particularly useful type of data for mapping human activities: Points of 
Interest (POIs). POIs refer to physical structures on the Earth’s surface that 
have a functionality relevant to human or societal activities and which can be 
indicated as precise points on a map. In a Geographical Information System, 
a POI is an entity that includes a pair of latitude/longitude coordinates and 
one or more attributes, usually describing the type of physical structure and/
or its functionality. A POI can refer to the location of a museum, hospital, shop, 
ATM, bus stop, gas station and many other activities. Large repositories of POIs 
are produced by private companies such as TomTom and Google, but also by 
volunteered efforts in the case of OSM. POIs can also be generated and extracted 
from the web and social media (Rae et al., 2012). POIs have become essential in 
navigation systems, internet map services (such as the notorious Google Maps) 
and other location-based applications, as well as useful for urban and regional 
studies (Gao et al., 2017; Kompil et al., 2019).
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Table 1. Examples of conventional and emerging geospatial data sources and their properties.

Property groups

Data access

Data generation 
processes

Data formats

Off., VGI, Web

Nav., Off., Sens., 
Spec. Topo, VGI

Web MNO, Soc., 
 Trans.

Nav., Off., Sens.
Spec., Topo

Nav., Off., Topo

MNO, Sens., Soc.
Trans., Web

MNO, Off., Sens.
Trans.

Spec., VGI, Web Nav., Soc., Topo

MNO, Nav., Off.
Sens., Spec., Topo

Trans., VGI

Soc., Web

Nav., Off., Spec.
Topo, VGI

Spec. MNO, Sens., Soc.
Trans., VGI, Web

MNO, Soc., Trans.
VGI, Web

Sens., Soc., Spec,
Topo, Trans.

MNO, Nav. restricted 
access

unintentional

user-generated/
crow-sourced

continuous 
updates

interpreted/
derived

discrete

unstructured 
data

Data ownership Off. Sens., Spec., Topo
Trans., VGI, Web

MNO, Nav., 
Soc.

private/
commercial

public

intentional

institution- 
produced

scheduled  
updates

raw

continuous

structured 
data 

open access

1 2 3

Legend:
1 – left side of axis; 2 – both sides of axis / cannot say; 3 – right side of axis.

Abbreviation Data sources types Examples of data (non-exhaustive)

MNO
Nav.
Off.

Sens.

Soc.
Spec.
Topo
Trans.
VGI

Web

Mobile Network Operator
Navigation
Official regional statistics

Sensor data

Social media
Specialized databases
Topographic maps
Transactions
Voluntary Geographical Information

Web content

Users per cell tower
Transportation networks, Points of Interest
Population, Gross Domestic Product, employment, 
trade, industry
Meteorological stations, satellite or airborne 
imagery
Text, photo or video posts
Sectorial databases (companies, energy, FDI)
Toponyms, contour lines, building footprints
Real estate transactions, purchases
Transportation networks, Points of Interest, 
Toponyms
Real estate ads, hotel listings, news pieces, 
customer reviews
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1.3 Motivation
In this thesis I identify two seemingly contradicting challenges concerning 
geospatial data for spatial analysis at a continental scale: a) missing data, and b) 
data deluge.

With regard to the first challenge, geospatial data of great thematic and spatial 
detail do exist in increasing quantities, but are often produced by national or 
sub-national mapping agencies. However, as soon as national or even regional 
borders are crossed, frequently the data are either missing or incompatible due 
to different specifications and methodologies. Conversely, existing geospatial 
datasets at continental level are, in theory, consistent, but lack spatial and/or 
thematic detail, limiting the analytical scope. In other words, geospatial data 
production appears to be governed by a trade-off between spatial extent and 
spatial/thematic resolution. This results from the high effort (i.e., labour, capital, 
temporal, technical) required to produce geospatial data at high spatial and/or 
thematic resolution for large geographical areas.

In particular, the missing data challenge is apparent in Europe that is the case 
study region of this thesis. Despite the European Union’s Inspire Directive12 that 
came into force in 2007 to establish spatial data harmonisation and to facilitate 
cross-border data integration, the incompatibility of data sources from national 
institutions is still an issue.

Using land use/land cover as an illustration, the Spanish SIOSE13 is perhaps 
one of the most ambitious mapping projects and products worldwide in terms of 
the attained spatial and thematic detail. Countries like Portugal and France also 
have their own land use/land cover products, but differ in their specifications 
of scale, temporal coverage and nomenclature. This prevents straightforward 
cross-border analysis of land use/land and requires compromises when using 
these datasets for integrated studies. Alternatively, the pan-European CORINE 
Land Cover (Büttner, 2014) could be used, as it offers a seamless and fairly 
consistent land use/land cover characterization across countries. However, the 
spatial and thematic detail of CORINE is significantly more limited than the 
national products. Since a few years, initiatives like the European Copernicus 
Land Monitoring Service14 are gradually bridging this gap by launching a series 
of new, Earth Observation-based, pan-European products focused on mapping 
specific land cover types at very high spatial resolution.

See: https://inspire.ec.europa.eu.

Sistema de Informacíon de Ocupación del Suolo de España.

See: https://land.copernicus.eu/

12

13
14
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The spatial data deluge was reviewed in section 1.2 and more eloquently by 
Lansley et al. (2018).  Grasping the characteristics and spatial ontologies used in 
the increasing amount and diversity of geospatial datasets from emerging sources 
is a challenge on its own. A spatial ontology is the classification and conceptual 
framework used to develop datasets describing spatial entities and is therefore 
instrumental for the encoding of information in Geographical Information 
Systems and cartography. Moreover, “different points of view result in different 
spatial ontologies”, and have an important role in shaping and interpreting the 
data (Schuurman, 2009: 377). With the increasing initiatives to map the world 
from a spectrum of entities, from government, to civil society and business, the 
number and diversity of spatial ontologies increases too, making it challenging to 
have semantic interoperability and to integrate existing datasets.

In 1994, Estes and Mooneyhan (cited by Goodchild, 2007), talked of a 
‘mapping myth’, or the mistaken belief that the world was well mapped. Despite 
all the technological progress and the data deluge, I believe that idea that the 
world is well mapped remains largely a myth still today. My motivation, and the 
objective I commit to in this dissertation is to help break the trade-off between 
spatial extent and spatial or thematic resolutions. I propose to do so by finding 
already available thematic datasets, from traditional and emerging sources, and 
integrate them into consistent data frameworks to fill specific data, information 
and knowledge gaps related to the geographical distribution of land use, activities 
and population. I believe the approach I defend here – hence, my thesis – will 
remain relevant at least until technology can fully break this compromise through 
more detailed continental assessments in a more cost-efficient manner.

2. SCOPE, RESEARCH QUESTIONS AND STRUCTURE OF THE 
DISSERTATION
My main research interest and objective throughout this dissertation is the 
combination of data from multiple geospatial sources to produce more detailed 
and consistent assessments of human activity, to improve the territorial knowledge 
base and, ultimately, support decision-making. This can be translated into one, 
main research question:

How can geospatial information from diverse sources and with different 
properties be integrated to enhance the spatial representation of human activities?

In this dissertation I apply a range of geospatial data analysis methods and 
techniques to combine multiple datasets into geospatial information with added 
value for the understanding and planning of human activities. So, ‘(geo)spatial 
data fusion’ (Wald, 1999) is a common denominator for the methods across all 
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included studies. Another key defining aspect of this dissertation is the continental 
scope: all studies develop approaches that are applied to data covering Europe. 
The studies, each corresponding to a chapter, are grouped into three main areas of 
application: land use, activities, and population. This division is used to structure 
the dissertation into three main parts:

1. Combining disparate geospatial datasets to improve land use assessments;
2. Using emerging sources of geospatial data to assess sector-specific activity 

         patterns;
3. Mapping and analysing spatio-temporal population distribution.

These three subsequent parts apply increasingly complex geospatial data fusion 
methods relying on emerging data sources. The part on land use is embedded in 
the more conventional land use/land cover data mapping and whose concepts are 
more widely established in the geographical, planning and economic sciences. 
The part on activities refers to studies on mapping the location and characteristics 
of built structures where specific human activities take place. This part has a 
wider scope than land use per se and also relies on a larger variety of potential 
data sources and data structures to represent them. The final part deals with high 
resolution mapping of population distribution and requires an even wider variety 
of detailed quality data on both land use and activities.

The main research question formulated above can be broken down in three 
sub-questions, each addressed in one of the parts of the dissertation:

Q1. Is it possible to integrate land use-related data from different sources 
and epochs, with different properties regarding data ownership, generation 
processes and formats to improve the mapping and analysis of land use? 
What are the main trade-offs?
Q2. Which existing data sources, public or private, institution produced or 
user-generated, can be harnessed and how to combine them to map and 
measure human activity linked to specific socioeconomic infrastructure or 
economic sectors?
Q3. Can disparate sources and types of geospatial data (e.g., institution-
produced or user-generated, and emerging types of data such as new Earth 
Observation layers and POIs) be integrated to better assess the spatiotemporal 
distribution of population?
The presented research has a cartographic nature, since most of the chapter 

outcomes relate to the production of enhanced spatial representations of human 
activity. Yet, their objectives stretch beyond the production of fancier digital 
maps. Rather, I aim to synthesize new information from structured data fusion 
approaches, where the result is more than the sum of the parts, allowing the 
extraction of new knowledge and the development of new applications.
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In some chapters I demonstrate the usefulness of the resulting information, 
such as for projecting future land use demand (Chapter 4), or uncovering new 
and more detailed insights regarding the spatiotemporal distribution of human 
activities (Chapters 6 and 8). The outcomes of this dissertation are used as input 
to explanatory analyses and simulation in environmental and socioeconomic 
domains (see Chapter 9). However, extensive explanation of the revealed patterns 
(e.g., through inferential statistics) is beyond its scope.

The research in this thesis is structured along two main dimensions: a 
thematic dimension linking to the major topics that are analysed and a temporal 
dimension that relates to the way changes over time are included in the analysis 
(Table 2). The temporal dimension has different characteristics across the various 
studies. Some studies assess a particular issue for a single, static time frame 
(e.g., one reference year), while other studies look at cyclical temporal variations 
(dynamic) or address a time-series of geospatial information. Finally, one study 
is forwarding-looking as it models future land use expectations.

Figure 1 highlights the structure of this dissertation and the subsequent 
paragraphs briefly summarize the main topic and contribution of each chapter.

Table 2. Thematic and temporal dimensions of the chapters in this dissertation.

Thematic dimension

Land use

Static

Time-series

Dynamic

Forward-looking

Chapter 2

Chapter 3Temporal 
dimension

Chapter 6

Chapter 4

Chapter 8

Chapter 5 Chapter 7

Activities Population

In Chapter 2 I propose an approach to integrate land use related information 
from disparate geospatial data sources to produce a novel land use/land cover 
map at an unprecedented spatial resolution for Europe15. It accomplishes a 
minimum mapping unit of 1 hectare for artificial surfaces and 5 hectares for 
non-artificial surfaces, in contrast with the 25 hectares from the well-known 
and widely used CORINE Land Cover (CLC) map products (Büttner, 2014). 
A key outcome is the improved detection of built-up areas, enabling better 
landscape analyses and land use modelling.

The spatial resolution was unprecedented when this chapter was published in 2013.15
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While the main challenge in Chapter 2 is to improve the spatial resolution 
of existing land use/land cover information at continental scale, the challenge 
taken up in Chapter 3 relates to the reconstruction of a comparable time-series 
of land use data for circa 30 medium-sized European cities. This is done by 
harmonizing land use/land cover data from 2 different data sources which 
differed in terms of the used nomenclature and spatial resolution. The data 
sources concerned are the Moland geo-database covering a time swath from 
the 1950’s to the 1990’s in four time steps and the Copernicus’ Urban Atlas 
which is used to extend the time series to 2006. The harmonization of these 
two data sources implies the loss of the rich thematic detail present in the 
Moland geo-database and the rich spatial detail of the Urban Atlas, but 
allows the construction and analysis of an exceptionally long time series of 
land use evolution for many cities across Europe.

Chapter 4 pays attention to an area which is often overlooked within the 
field of land use modelling. It develops, tests and discusses an approach 
to project demand for industrial and commercial land that is sensitive to 
economic projections per sector of activity and to regional and sector-
specific land use characteristics. A key challenge is the lack of continent-
wide land use accounting that is broken down by relevant economic sectors. 
The chapter devises a strategy to obtain key ratios between land use 
parameters from countries where sufficiently detailed land use information 
are available (i.e., The Netherlands and Spain) and which are then applied 

Figure 1. Structure of the dissertation.
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elsewhere. In essence, the chapter integrates land use and economic data 
in a data-poor context to improve the estimation of future expectations of 
industrial and commercial land use, with relevance for continental-wide 
land use modelling.

The objective of Chapter 5 is to produce a set of seamless and consistent 
layers that are representative of the location and economic value of different 
types of infrastructures relevant for distinct socioeconomic activities, and 
which can be used, for example, as exposure information for risk assessments 
in Europe. The assessment includes 22 infrastructure types essential for 
the functioning of society and representative of the transport, energy, 
industry and social sectors. The key challenge is to harmonize geospatial 
data obtained from different sources, including public and proprietary 
repositories, and which are available in different data formats, representing 
infrastructures of very different physical and operational natures. The 
devised strategy consists of representing all infrastructure types as grid 
cells of equal spatial resolution and quantifying their value using economic 
units relevant to each sector. For example, all energy infrastructure types 
are valued in oil-equivalent terms, or all industry infrastructure types are 
expressed in annual turnover. This evaluation is performed by disaggregating 
official sector statistics to grid-cell level using information on the location 
and characteristics of the underlying infrastructures. A key advantage 
of the proposed harmonization approach is that it converts the original 
categorical information in comparable economic terms and allowing a more 
straightforward application in risk evaluation frameworks (Forzieri et al., 
2018).

In Chapter 6, a spatiotemporal characterization of tourism in Europe with 
unprecedented detail is performed. This is achieved by a smart combination 
of two main sources of data. On one hand, a novel dataset on location and 
capacity of individual tourism accommodation establishments from two 
widely known online booking platforms. On the other hand, nights-spent 
by tourists at regional level and monthly intervals obtained from national 
statistical institutes. A key issue when using data from online booking 
platforms is the presence of duplicate information (i.e., hotels being 
reported twice), requiring a dedicated algorithm to merge the data into one 
single room density grid at 100 m2. The combination between the regional 
and monthly nights-spent and the room density grid allows the generation 
of monthly tourist density grids. Using the rich information produced, the 
chapter then uncovers properties relevant for tourism management such as 
tourism density, seasonality and intensity.

Finally, Chapters 7 and 8 deal with the distribution of population at high 
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spatial resolution. Chapter 7 tests the use of different dasymetric mapping 
variants and the employment of ancillary data of different characteristics as 
covariates of population distribution to produce a high-fidelity residential 
population grid map for Europe. While population grids already existed for 
Europe and other regions prior to this study, its main contribution is to ascertain 
the effect of using newly available ancillary datasets16, in particular the refined 
land use map (produced in Chapter 2) and a layer measuring the degree of soil 
imperviousness at high resolution.

In turn, in Chapter 8 I take a major leap forward in the representation of 
population distribution by incorporating a temporal dimension covering both 
intra-day and monthly population variations resulting from human mobility. 
To this aim, I propose and implement a novel multi-layered dasymetric 
approach that models the spatial distribution of different population groups 
separately and according to a selection of covariates obtained from emerging 
sources of geospatial data. The results allow an unprecedented and systematic 
quantification of the spatio-temporal structure of large European cities.

All research papers have been published in peer-reviewed scientific journals 
between 2013 and 2020 as is indicated in Table 3.

Again, this refers to data that were newly available at the time of writing of the chapters.16

Table 3. Publication details of the chapters in this dissertation.

Sections 1.1, 1.3, 2, 3: Unpublished.
Section 1.2: adapted from Batista e Silva, F., Barranco, 
R., Rosina, K., & Lavalle, C. (2019). New territorial 
analyses enabled by emerging sources of geospatial 
data – use cases and challenges. In Building the next 
generation of research on territorial development – 
Papers submitted at the ESPON Scientific Conference 
on 14 November 2018, London, UK. Luxembourg: 
ESPON.

Chapter 1Part I – Introduction
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Batista e Silva, F., Lavalle, C., & Koomen, E. (2013). A 
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3. OVERVIEW OF METHODS EMPLOYED
Throughout this thesis I have employed an array of methods and techniques 
of Geographic Information Systems and Science (Goodchild, 2009) to store, 
manipulate and analyze geographical information. Specific geospatial data 
functions used include geometric overlays, proximity analysis, spatial joins, 
spatial extraction or filtering in the case of vector data, and a plethora of local, 
focal and zonal functions in the case of raster data. The fundamentals and 
workings of geographic information, Geographic Information Systems and 
Science and spatial analysis are covered in numerous textbooks, with two good 
examples being the ones from de Smith et al. (2007) and Longley et al. (2015).

Such methods were instrumental for the purpose of the geospatial data fusion 
applications dealt in this dissertation. The definition of data fusion proposed by 
Mangolini (1994) – as cited in Savopol & Armenakis (2002) and Wald (1999) 
– is one which reflects well the spirit in which the term is employed in this 
dissertation. It describes data fusion as “the set of methods, tools, and means 
using data coming from various sources of different nature, in order to increase 
the quality of the requested information”. Within the geospatial sciences, data 
fusion has been particularly explicit in the remote sensing domain (Schmitt & 
Zhu, 2016). Here, I try to harness the potential of data fusion for a broader set of 
geographical information science applications.

Below I bring attention to some of the most relevant techniques and methods 
employed and in which chapters they were most crucial. At the end of this section, 
Table 4 summarises this information.

Data acquisition is not listed explicitly in Table 4 because it is common across 
all chapters. Data acquisition is a fundamental step in any spatial or statistical 
analysis problem alike, and the third main step in the statistical method as 
described by Mackey and Oldford (2000), after the problem definition and 
planning17. Data acquisition is critical because it provides the very ‘ingredients’ 
for subsequent analysis. When selecting input data, attention must be given 
to the characteristics and quality of the data, such as source, thematic scope, 
spatial and temporal coverage and resolution, map projection, completeness, 
units of measurement, precision and accuracy. Upon data acquisition, thorough 
inspection of the data is advised to check or confirm the required properties. 
Often, pre-processing is also performed to filter out unnecessary data, and/or to 
transform the data in the most useful way for the subsequent analysis. Among 

The statistical method proposed by Mackey and Oldford (2000) consists of five iterative steps: Problem, 
Plan, Data, Analysis, Conclusion (PPDAC). This model was adopted by de Smith et al. (2007) for the spatial 
analysis field.

17
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the various ways to acquire data, in Chapter 6 I employed web scrapping to 
construct an unprecedented dataset of hotel location and capacity for Europe.

Spatial overlay is a relatively broad class of spatial data combination 
functions. It allows the generation of new data from the combination of two of 
more layers, and can be performed on either vector or raster data. Typically, 
the generation of data in spatial overlays involves conditions concerning local 
values across the overlaid layers. Spatial overlays are at the very foundation of 
GIS and are thus commonly available in GIS software (de Smith et al., 2007). 
Spatial overlays were used throughout the dissertation, but were particularly 
key in Chapters 2, 3 and 8. For example, in Chapter 2 I created a refined 
land use/land cover map by applying a series of conditional spatial overlays 
between existing land use/land cover map and other available thematic layers 
in a logical sequence.

Here I refer to aggregation as any spatial function used to generalize 
information from finer detail to a coarser one. Such operations have multiple 
purposes. Often, they are used to obtain summary statistics of a variable 
distributed in space for a given set of coarser spatial units of any desired 
nature. For example, to answer the question ‘What is the average temperature 
per municipality?’ one would need to aggregate and calculate the average 
of all temperature measurements per municipality. Such calculations are 
normally performed using a ‘zonal statistics’ function in GIS software, which 
aggregates individually represented data points to a given set of larger spatial 
units. Resampling of grids from a fine resolution to a coarser one could also 
be considered aggregation and may be used to reduce the size of the data for 
processing or visualization purposes. Summarizing data records per class of 
attributes is an aspatial data aggregation, but also useful for data analysis in 
general. In this thesis, spatial aggregation was particularly instrumental for 
Chapters 4, 6 and 8. For example, in Chapter 4, to construct a tabular dataset 
with the industrial and commercial land use acreage per region for later 
analysis, I aggregated gridded land use data to regional level. In Chapter 8, I 
aggregated day- and night-time population per grid cells to a series of equally 
spaced concentric rings built around city centres. This enabled the plotting and 
analysis of population density profiles for major EU cities.

Spatial disaggregation, or downscaling is a special case of areal interpolation 
methods (Wu et al., 2005) whereby data reported at a given set of spatial units 
(source geometry) are disaggregated to a set of smaller spatial units (target 
geometry). Spatial disaggregation can be used for a variety of reasons, but it is 
generally applied when the original data are required at a higher spatial scale/
finer grain. For example, to transform the original spatial support in one that is 
consistent with other data provided at higher spatial resolution, and/or to allow 
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enhanced spatial analysis. The downscaling is governed by calculation rules 
which embody assumptions regarding the spatial distribution of the variable 
of interest at the finer scale. Such assumptions can be derived theoretically or 
empirically, and may rely on the use of ancillary data. In this thesis I resort in 
particular to the well-established dasymetric method, which is intrinsically a 
disaggregation and data fusion method. The dasymetric method can be defined 
as a cartographic technique whereby ancillary thematic data are used to refine 
the geographical representation of a quantitative variable originally reported 
at coarse spatial aggregations (Eicher & Brewer, 2001; Langford, 2013; 
Mennis, 2003; Zandbergen & Ignizio, 2010). I have investigated, applied and 
expanded the dasymetric method to gain spatial detail in assessments of critical 
infrastructures (Chapter 5), tourism (Chapter 6) and population distribution 
(Chapters 7 and 8).

Data generated using aggregation and disaggregation must be consistent 
with the original data. There is no uncertainty in the aggregation methods, 
but its use comes with “the hazard that the choice of areal units biases the 
statistical findings” (Jacobs-Crisioni, 2016: 16), a problem which has been 
coined the Modifiable Areal Unit Problem (Openshaw, 1984). Conversely, 
the disaggregation tends to lessen the Modifiable Areal Unit Problem, but 
uncertainty in the resulting distribution at the finer grain is inherent. This is 
due to the propagation of errors in input data and uncertainties associated with 
the relationship between the downscaled variable and the covariate(s) used to 
guide the disaggregation (Nagle et al., 2014; Sabesan et al., 2007). The use of 
spatial overlays, aggregation, and disaggregation for the integration of diverse 
geospatial data (including statistical and land use/land cover data) has long 
been acknowledged as a means to improve human-environment assessments at 
continental scale (European Environment Agency, 2001).

Semantic alignment is used to determine correspondences between labels 
from different nomenclatures with the same or similar intended meaning. 
Semantic or ontology alignment has been used in computer science, data 
science, cognitive science and linguistics (Euzenat & Shvaiko, 2013). In 
this thesis, the use of semantic alignment arose from the need to integrate 
heterogeneous datasets, usually developed independently and thus each 
having their own ontology and vocabulary. Schuurman (2009) explained of 
how different ontologies of land use impact data production, interpretation and 
comparability. Jansen (2006) used semantic alignment to propose a reference, 
harmonized classification of land use classes to facilitate compatibility and 
comparability of data across space and time. Consequently, semantic alignment 
was needed in this dissertation to enable the combination of data from land use/
land cover datasets produced using different classification systems (Chapters 



35

CHAPTER 1

2 and 3). To map and evaluate critical infrastructures in Europe (Chapter 5), 
data from disparate sources was aligned to a new, designated classification. 
In Chapters 4 and 8, regional socioeconomic statistics available per type of 
activity using a nomenclature of economic activities 18  were linked to land use 
categories.

More than an autonomous method, the term spatial harmonization is used 
here to refer to the set of procedures to align spatial data from different sources 
and characteristics into a common spatial and ontological framework. This may 
involve spatial aggregation, spatial disaggregation and semantic alignment of 
datasets. Often data are originally provided in different data models but also in 
different spatial resolutions or zoning systems. When vector and gridded data 
need to be overlaid, rasterization of the vector data, or vectorization of the 
gridded data is necessary. Besides, certain real objects are usually represented 
as points, while others may be portrayed as lines or polygons. This depends 
on the physical nature of the objects but also on the spatial scale at which the 
objects were mapped. For example, transport networks are represented as linear 
features, while airports can be represented as either points or polygons. Spatial 
harmonization is therefore required for integrated assessments that comprehend 
not only data in different formats but also representing different types of objects. 
In Chapters 2, 3 and 5 I design dedicated data harmonization protocols to convert 
existing disparate data into consistent spatial and thematic frameworks.

In most chapters I use statistical methods to inspect and summarize input data as 
well as to analyse resulting data by means of descriptive statistics (e.g., measures 
of central tendency and dispersion, correlation, graphical representations). 
In Chapter 4, I perform an extensive uncertainty analysis of a model built to 
estimate future industrial and commercial land demand. Inferential statistics (i.e., 
regression analysis) is used in Chapters 6 and 7 in combination with disaggregation 
methods to find relationships between ancillary data (i.e., explanatory variables) 
and the data to be spatially disaggregated (i.e., dependent variables). In Chapter 8 I 
use regression analysis to gain insights in the relationship between distance to city 
centres and population density at both day- and night-time, and cluster analysis to 
group cities with similar spatiotemporal population structure.

Since most chapters deal with the generation of new and more detailed data 
from the combination of existing datasets, validation is a fundamental element 
in most chapters. The long and intricate workflow to combine such a variety of 
data inputs, each with its own inaccuracies, leads inevitably to a propagation and 
accumulation of errors in the final products too (Heuvelink, 1998). Knowing 
the accuracy of the produced datasets is necessary to inform the users about 

NACE rev.2.18
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the strengths as well as the limitations of the results. Therefore, designing 
robust quality assessment strategies is no less important and challenging as the 
modelling per se. Validation strategies vary from chapter to chapter. Generally, 
they involve the comparison of the produced results against comparable reference 
data (the assumed ‘ground truth’) by calculating and quantifying the degree to 
which the newly produced data adheres to the reference data. To give a glimpse, 
in Chapter 4, I use different models to reproduce an observed time frame. In 
Chapter 5, lacking more adequate reference data, I resort to various region and 
sector-specific economic statistics as proxies for the mapped distribution and 
economic intensity of different types of critical infrastructures. In Chapter 8, I 
compare the produced day- and night-time population grids to census data and 
mobile phone records used as reference data.

Table 4. List of geospatial analysis methods employed in this dissertation.

Chapter Combination
Spatial  
overlay

Aggregation Disaggregation Semantic 
alignment

Spatial data 
harmonization

Statistical 
analysis

Validation

2

3

4

5

6

7

8

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
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A procedure to obtain a refined  
European land use/cover map1

ABSTRACT
Available land use/cover maps differ in their spatial extent and in their thematic, 
spatial and temporal resolutions. Due to the costs of producing such maps, there 
is usually a trade-off between spatial extent and resolution. The only European-
wide, consistent and multi-temporal land use/cover dataset available is the 
CORINE Land Cover (CLC) map. Despite the value and usefulness of CLC, 
its minimum mapping unit of 25 hectares considerably limits its applications at 
large scales of analysis. Our objective was to improve the spatial detail of CLC 
2006 by incorporating land use/cover information present in finer thematic 
maps available for Europe such as the CLC change map, Soil Sealing Layer, 
Tele Atlas® Spatial Database, Urban Atlas, and Water Bodies Data from the 
Shuttle Radar Topography Mission (SRTM). Relevant data from these datasets 
were extracted and prepared to be combined with CLC in a stepwise approach. 
Each step increased the level of modifications to the original CLC. This process 
generated a newly refined version of the CLC 2006 map with an improved 
minimum mapping unit of 1 hectare for all types of artificial surfaces and inland 
waters, while keeping constant the original 100 metre cell size. A validation 
of the new map was carried out using Land Use/Cover Area frame Statistical 
survey (LUCAS) 2006 sample points. The observed increase in spatial detail 
was done, however, at the cost of cartographic consistency.

 This chapter was first published as Batista e Silva, F., Lavalle, C., & Koomen, E. (2013). A procedure to obtain 
a refined European land use/cover map. Journal of Land Use Science, 8(3), 255–283. https://doi.org/10.1080/17
47423X.2012.667450

1
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1. INTRODUCTION
According to Di Gregorio & Jansen (2000), “land cover is the observed 
biophysical cover on the earth’s surface”. It includes all types of vegetation and 
human structures that cover the land surface. If the concept is strictly considered, 
“areas where the surface consists of bare rock or bare soil are describing land 
itself rather than land cover. Also, it is disputable whether water surfaces are 
real land cover. However, in practice, the scientific community usually describes 
those aspects under the term land cover” (Di Gregorio & Jansen, 2000). Land 
cover is thus directly observable “from various sources of observation at different 
distances between the source and the earth’s surface”: the human eye in the field 
and remote sensing (Duhamel, 1998).

As for land use, Jansen (2006: 129) states that “the term has different 
meanings across disciplines” and that those different perspectives may all be 
valid. According to Duhamel (1998), different definitions derive from two 
possible approaches: the functional and the sequential. The latter was adopted by 
the Food and Agriculture Organization (FAO) of the United Nations and defines 
land use as “the arrangements, activities and inputs people undertake in a certain 
land cover type to produce, change or maintain it” (Di Gregorio & Jansen, 2000). 
However, many authors also adopt the functional approach, according to which 
land use is the socioeconomic purpose for which land is exploited (Duhamel, 
1998; Fisher et al., 2005; Fresco, 1994; McConnell, 2002; Verburg et al., 2009).

In any case, land use is not always directly observable. It includes aspects 
beyond the direct characterization of the biophysical cover of land. Identifying 
land use “requires socio-economic interpretations of the activities that take 
place” on the Earth’s surface (Fisher et al., 2005). Land use can often be inferred 
from simple observation of land cover but to identify some land use types, 
additional information regarding the human activities on land or the presence of 
specific elements in the landscape has to be taken into account. Obtaining such 
information may be costly and challenging, often requiring field visits and/or 
interviews.

The relationship between land cover and land use is complex and usually 
many-to-many (Bakker & Veldkamp, 2008; Cihlar & Jansen, 2001; Fisher et 
al., 2005). “Grass, for example, is a land cover type which can occur in any 
number of land uses: sports grounds, urban parks, residential land, pasture, etc. 
At the same time, very few areas of homogenous land use have a single land 
cover; residential land, for example, may contain trees, grass, buildings and asphalt” 
(Fisher et al., 2005: 89). Moreover, the same land use type can generate different 
land covers in a given spatio-temporal scope (e.g., agriculture, forestry).

Knowledge about the past and current spatial arrangement of the land use and 
land cover (LULC) types is a key requisite for the study of aspects so diverse 
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such as the biophysical conditions, landscape, and human interaction with the 
environment (Jansen, 2006) and it is, as well, an essential element for spatial 
planning activities. Moreover, land use/cover change has emerged as a topic of 
increasing attention during the last decade due to its importance in the functioning 
of the Earth System (Lambin et al., 2001).

Many datasets were and are currently being produced to describe land use 
and land cover at different resolutions and for different spatial scopes – regions, 
countries, continents or even worldwide (George & Nachtergaele, 2002; Herold 
et al., 2008). Some of these are produced in the context of very specific purposes 
and studies and some are produced for multidisciplinary use. There are datasets 
which report information on only one dimension of land characterization (land 
use or land cover) and those which report information on both dimensions 
separately (land use and land cover). Finally, there are also many datasets which 
report information on a combination of both concepts without a clear separation 
line between them. This is a well-known problem, recurrently discussed in the 
literature (Bakker & Veldkamp, 2008; Briassoulis, 2000; Duhamel, 1998; Fisher 
et al., 2005).

Remote sensing, which includes both satellite and aerial imagery, is the most 
typical source of land cover information. Images are classified according to a 
specific legend/nomenclature. The classification always requires some sort of 
image interpretation which can be carried out from an entirely automated to a 
purely manual way. Different advantages and disadvantages are associated with 
each method. Automated classifications have the advantage of fast processing 
and mapping and therefore allow high temporal resolution. However, some 
characteristics of objects at the earth’s surface are more easily recognizable 
by the human eye (patterns, textures), even though this leads to higher degrees 
of subjectivity. Other data can also be used as sources of LULC data, namely 
censuses, field surveys, participatory maps, cadastral maps, and topographic 
maps. A review of the properties of the main LULC data sources was done by 
(Verburg et al., 2011: 975-976), and a more general discussion of key issues 
regarding data availability was done by Winter (2009). Although vector or raster 
maps are probably nowadays some of the most common spatial supports for 
LULC data, other supports are possible, such as sample points (LULC recorded 
for single latitude and longitude coordinates) and tables with aggregated LULC 
surface areas per spatial unit (e.g., regions, municipalities).

Different typologies of resolution are usually attributed to LULC maps, 
namely temporal resolution, spatial resolution and thematic resolution. Temporal 
resolution is related to the frequency of the updates of a specific dataset. Spatial 
resolution is determined by the reference cartographic scale as well as by the 
minimum mapping unit (MMU). The MMU determines the minimum size of 
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a land use/cover patch to be mapped, thus defining the level of cartographic 
generalization. The MMU has important implications, like the overestimation of 
LULC classes that usually occurs in larger patches, while underestimating more 
fragmented categories. Finally, the detail of the legend (i.e., number of land use/
cover classes) defines the thematic detail. To be fully consistent, the different 
resolution parameters must be kept constant in time and space2.

CORINE Land Cover (CLC) is a well-known and widely used land use/cover 
dataset. The CLC project was an initiative of the European Commission in the 
late 1980’s. Under the coordination and supervision of the European Environment 
Agency (EEA), its actual production phase takes place at country level (Nunes de 
Lima, 2005), using a common nomenclature and standard methodology guidelines 
(Büttner et al., 2006; European Environment Agency, 2007). The national land 
cover maps are then assembled into a seamless European map, resulting in a 
complete and consistent dataset across Europe (European Environment Agency, 
2006). It is originally produced and publicly distributed in vector format, although 
the EEA also makes it available in raster format too, with a pixel sixe of 100 x 
100 metres. The CLC is produced at the reference scale of 1:100,000 with a 
MMU of 25 ha, thus corresponding to the actual spatial resolution of the map. It 
describes LULC with a 44 class legend, organized into three hierarchical levels 
(Appendix 1). Although land cover and land use are fundamentally distinct, CLC 
nomenclature is in fact a combination of both concepts (Fisher et al., 2005). 
While some classes are purely cover-based, other classes, mainly in the urban 
context, are more use based.

CLC has been mapped through the interpretation of satellite imagery plus a 
number of different ancillary datasets (geographical and statistical), depending 
on the availability at country level. The very first version of CLC reported on the 
situation of Europe’s LULC around the year 1990 and subsequent updates were 
produced for the years 2000 and 2006. The CLC updates for the years 2000 and 
2006 also included a LULC ‘change map’ for the periods 1990-2000 and 2000-
2006, respectively. Each ‘change map’ has a MMU of 5 hectares, thus providing 
extra spatial detail on land use/cover change that occurred during each time lapse. 
European wide accuracy assessment carried out for the CLC 2000 map shows that 
the geometric accuracy is higher than 100 metres and that the thematic accuracy is 
within the 85% threshold (European Environment Agency, 2006). In summary, 
CLC remains today the only European-wide LULC dataset, comparable through 
time and space and thus widely used for different purposes by either public or 
private institutions.

 For a review on temporal, spatial and thematic consistency issues of land use/cover data, consult Verburg et 
al. 2011.
2
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Nevertheless, CLC has its limitations. First, one of the main concerns is 
related to the subjective nature of interpretation and classification. Despite the 
existence of standard interpretation rules, interpretation coherence cannot be 
fully guaranteed across countries and even among the different image interpreters 
within a country. The issue of misinterpretation was mentioned in a dedicated EEA’s 
report on the assessment of CLC’s thematic accuracy (European Environment 
Agency, 2006). Second, one of the most important limitations of CLC is related to 
its MMU. The MMU is a cartographic parameter that leads to a certain degree of 
spatial generalization. It is important to assure that a map complies with a specific 
spatial scale and is comparable across regions, time periods and different LULC 
classes. In CLC, the MMU was set at 25 ha, which means that only those landscape 
units with a size equal or larger than 25 ha are captured. Smaller units are labelled as 
belonging to the most similar dominant types, according to a predefined priority table 
(European Environment Agency, 2007). In addition, objects are only considered if 
they have a minimum width of 100 metres, which has important implications for 
linear features, like roads or rivers. In cases where the dominant type is difficult to 
determine, polygons can be labelled as heterogeneous. The large size of the MMU 
limits the scope of application of the CLC whenever higher spatial detail is required. 
The CLC should be used with caution in the context of urban studies, for example, 
and may not be used at every scale because the CLC’s level of generalization might 
create misleading estimates of the urban areas and perimeters.

While the need for a more detailed LULC map seems self-evident, the idea to 
actually develop a procedure to refine the original CLC was initially triggered by two 
specific activities carried out within the Joint Research Centre (JRC) of the European 
Commission: land use/cover modelling (Lavalle et al., 2011) and population mapping 
(Gallego et al., 2011; Gallego, 2010), both at European level.

First, for the land use/cover modelling, it was realized that the first contributor to 
error propagation is the dissimilarity between the ground truth and the input LULC 
map (initial modelling state). Therefore, improving the LULC input map would, in 
theory, contribute to better simulations.

Second, it was also realized that CLC alone does not provide optimal information 
for the purpose of downscaling population statistics – usually available at commune 
level – into finer raster maps. Given the cartographic generalization rules of the 
CLC, many small urban settlements are not captured, but mapped as the surrounding 
dominant LULC patches3. This means that the main proxy for population distribution 
is insufficiently covered, and thus, other CLC classes – such as all artificial surfaces, 
agricultural areas, forest and scrub/herbaceous vegetation areas – must be used in 
the disaggregation process as a way to tackle the lack of detailed depictions of urban 

 Gallego et al. (2011) report that for 29% of the communes (16.6% of the total area and 2.9% of the 
population) the CLC 2000 “does not report any urban area because they do not contain any urban patches 
larger than 25 ha”.

3
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fabric. For this reason, (Gallego et al., 2011) developed methods in which population 
density coefficients for non-urban CLC classes were derived using information on 
residential use from Land Use/Cover Area frame Statistical survey (LUCAS) points. 
In the context of areal interpolation and population downscaling, Martin et al. (2000) 
had already recognized that the quality of the ancillary data influences the final result 
more than the disaggregation algorithm.

It hence became clear that the CLC was not sufficient and that extra data were 
needed to overcome its limitations. Other sources of geographic information were 
sought and examined. Coming across a number of different geographic datasets 
that were thematically, temporally and spatially compatible with CLC 2006 made 
it clear that CLC itself could be modified through the incorporation of more 
detailed thematic data, in order to obtain an improved version. The production 
and availability of a refined version of CLC would potentially broaden its range of 
applications by allowing more detailed and accurate studies in different fields for 
most of Europe’s extent.

The use of thematic maps to refine an original LULC map is not a process that 
is commonly described in the literature. The work of Stewart (1998) is one of the 
few completely devoted to a similar task. In this work, an initial land cover map 
of the Fox/Wolf River basin in Wisconsin, USA, was produced using Landsat TM 
imagery and subsequently refined using independent thematic maps. It was then 
acknowledged that

(…) although the satellite data are an excellent resource, they too have limitations. 
But by combining the raw satellite image with other detailed ancillary data, such as 
crop reports, census data, wetland inventories, hydrography and road networks, we 
can create a composite data source whose information far exceeds that provided by 
satellite alone (Stewart 1997, p. 4).

In Stewart’s work, the following digital thematic layers were combined with the 
initial land cover map by means of decision rules within a GIS environment: urban 
boundaries from the US Bureau of Census; a river dataset from the US Environmental 
Protection Agency; highways from the US Geological Survey (USGS); and yet 
another LULC map from the USGS. The differences between the original and the 
refined versions of the LULC map demonstrated the importance of using ancillary 
thematic layers to refine the satellite-derived land cover data.

2. METHODOLOGY AND IMPLEMENTATION
The objective of this work is to refine the entire CORINE Land Cover 2006, 
version 13, as published in February 2010 in the EEA website in raster format, 
at 100 x 100 metre cell size (CLC_i). This version covers the whole of Europe 
with the exception of Greece, Switzerland, and the United Kingdom (UK), for 
which development was still ongoing. The objective was accomplished through 
a decrease of the MMU from 25 ha to 1 ha in certain LULC classes, but leaving 
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the nomenclature stable, that is, adding no additional thematic detail. The only 
exception was the increase of thematic detail in the urban fabric classes (CLC11X), 
which will be explained later on. Such refinement modified the original CLC 2006 
dataset, making it no longer comparable with CLC for 2000 or 1990.

In a first phase of the work, several datasets were analysed in the light of their 
compatibility with the objective. The selection of suitable datasets was governed 
by four basic criteria: (1) datasets having direct or relevant information on at least 
one land use/cover class; (2) datasets having higher spatial resolution than CLC; 
(3) datasets having European coverage; and (4) datasets referring to 2006 ± 2 years. 
Table 1 summarizes the main characteristics of the datasets available at the JRC. In 
the end, all the listed datasets were used.

 
Table 1. Datasets at disposal and their main characteristics.

Dataset 
name

Publisher Data 
structure

Horizontal Resolution Spatial Coverage Reference 
Year

CLC related 
classes

All CLC classes

11X Urban fabric

121 

122 

123 

124 

142 

511 

512 

1XX

2006

2006

2008

2005-2007

2000

Europe

Europe

World

213 European 
Urban Areas

World (from  
56° S to 60° N)

MMU of 5 ha

Originally produced 
at 20 metres. Publicly 

available at 100 metres.

Not specified

MMU of 0.25 ha

Based on SRTM’s 3 
arcsec (aproxx. 90 

metres)

Vector

Raster

Vector

Vector

Vector

European 
Environment 

Agency

European 
Environment 

Agency

Tele Atlas®

European 
Environment 

Agency

National 
Geospatial-
Intelligence 

Agency; 
National 

Aeronautics 
and Space 

Administration

CLC  
change  

map

Soil 
sealing 
Layer

Tele 
Atlas® 
Spatial 

Database

Urban 
Atlas

SRTM 
Water 
Body 
Data

Industrial  
or commercial 
units

Road and rail 
networks and 
associated 
land

Port areas

Airports

Sport and 
leisure 
facilities

Water courses

Water bodies

Artificial 
Surfaces
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The refinement process is stepwise. Each ancillary dataset is prepared separately 
and then used to modify the CLC systematically, following a determinate order. 
Each step of the refinement increases the level of modifications until the final 
refined version is produced. Figure 1 illustrates this process, showing that several 
intermediate versions of the CLC were created prior to the final refined version 
(CLC_r).

Let us say that the CLC was first modified by dataset A, generating an intermediate 
product designated as CLC_r1. Then follows the modification of CLC with dataset 
B. In this second step, dataset B will introduce changes not to the original CLC_i, but 
to CLC_r1, generating a second intermediate product (CLC_r2). Therefore, changes 
introduced by dataset B have priority over those introduced by dataset A whenever 
overlapping (between A and B) occurs. Changes introduced later in the process shall 
have priority over the changes introduced earlier, which means that the order by 
which the datasets are used is important. The level of reliability and the spatial detail 
of the datasets determined the order. Figure 1 shows the order used in the refinement.

2.1 CLC change map
The CLC change map is an important side product made publicly available along 
with the 2000 and 2006 updates of CLC. The first version records changes from 1990 
to 2000, and the second version records changes from 2000 to 2006. It is originally 
produced in vector format and it only depicts areas (polygons) that experienced 
land use/cover change between the respective pair of years. Thus, in the 2000-2006 
change map, each polygon contains the information about its land use/cover state 
in 2000 and in 2006, allowing detailed analysis of land use/cover conversions. The 
main advantage of this dataset is its MMU of 5 hectares, allowing any land use/cover 
change equal or above that threshold to be tracked and making it a valuable data 
source to refine the CLC.

For each polygon of the CLC change map, the LULC class recorded for the year 
2006 was used to create a raster map which was then used to replace the overlapping 
pixels of the CLC_i. This constituted the very first step of the refinement process, 
creating CLC_r1.

2.2 Soil sealing layer (SSL)
“Soil sealing refers to changing the nature of the soil such that it behaves as an 
impermeable medium (for example, compaction by agricultural machinery). 
Soil sealing is also used to describe the covering or sealing of the soil surface by 
impervious materials by, for example, concrete, metal, glass, tarmac and plastic” 
(EEA multilingual environmental glossary4).

 https://www.eea.europa.eu/help/glossary4
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Figure 1. The CLC refinement workflow, illustrated for Badajoz, Spain. The green boxes 
correspond to input datasets, and the blue boxes to intermediate and final versions of CLC 
refined, with incremental levels of modifications.
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The EEA recently made available a dataset containing the identification of 
impervious surfaces with their degree of soil sealing, given as a continuous variable 
ranging from 0% to 100%. This product is the result of the analysis of the high 
resolution imagery from the IMAGE2006 repository of SPOT 4/5 and IRS-LISS 
sensors (Sanchez & Kahabka, 2008 in Caetano et al., 2008). Among other datasets 
produced within the Global Monitoring for Environment and Security (GMES) 
programme5, the soil sealing layer (SSL) was introduced with the “objective of 
solving the shortcomings of a standard CLC update, which is not sufficient to meet 
the wide range of user needs” (Maucha & Büttner, 2008 in Caetano et al., 2008, 
p. 6). The production of the original dataset was carried out by different consortia 
at the spatial resolution of 20 metres. All deliveries were then mosaicked and 
resampled to 100 metre resolution raster images. Because of its spatial resolution, 
reference year and spatial coverage, all compatible with CLC, the soil sealing 
dataset was considered adequate to refine the CLC. From the SSL, we expected 
to introduce more spatial information regarding the location of urban fabric areas 
not yet captured in CLC_r1. Because the minimum mapping unit of the SSL 
corresponds to its pixel size (100 metre), its use is expected to reduce the CLC’s 
MMU to 1 ha for urban fabric classes.

The SSL was extensively used to refine the CLC in three ways:
   • Step 1: Identification and mapping of urban fabric areas too small to be 
         captured by CLC (smaller than 25 ha) (CLC_r2aa);
     •  Step 2: Identification of vacant land (non-built-up) within urban fabric classes 
         represented in CLC classes 111 and 112 (CLC_r2ab);
   • Step 3: Run of a completely new classification of the urban fabric areas 
         according to the underlying SSL values, originating three density classes (111, 
         112 and 113) (CLC_r2b).

These three steps of refinement are explained in detail in the following paragraphs.

2.2.1 Step 1
As a consequence of its definition, the SSL does not depict urbanized areas alone. 
It is meant to capture artificial features that are often impervious, which surely 
include residential areas (houses and other residential buildings), but also buildings 
of different natures (industrial and commercial), transport infrastructures (e.g., roads 
and rails), mines and quarries, and any facility “deliberately installed for the pursuit 
of human activities” (e.g., facilities for agricultural use such as greenhouses). It 
should not include “any fully vegetated pixels, even if they are closely related to 

 GMES was a joint European earth monitoring programme participated by the European Environment 
Agency, the European Space Agency and the European Commission. GMES was re-branded into Copernicus 
programme in 2014.

5
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these activities (such as city parks and gardens), or any other un-vegetated non-built-
up open spaces covered with bare soil, sand, glacier, bare rocks or water” (Sanchez 
& Kahabka 2008, in Caetano et al. 2008). The SSL, however, does not contain any 
categorical variable that would allow the distinction of these categories. Therefore, 
it is unwise to merge the SSL data with CLC in a simple and straightforward way.

The use of the SSL to improve CLC targeted only the urban fabric classes (11X) 
which are typically occupied by dwellings and buildings used by public or private 
services, including their connected areas (associated lands, road network, parking 
lots) (Büttner et al., 2006).

The first problem derives from the different definitions underlying the SSL and 
the CLC class 11X. Once the SSL includes all kinds of artificial surfaces, an initial 
preparatory step was necessary. In this step, SSL artificial pixels not corresponding to 
the definition of CLC class 11X had to be masked out using ancillary data. Therefore, 
the following modifications to SSL were applied:

•   Removal of pixels with a soil sealing degree below 30%6

   • Removal of SSL pixels overlapping CLC_r1 classes 12X, 13X and 14X 
         (consult Appendix 1 A for class labels);
   • Removal of SSL pixels overlapping major roads and rails from the Tele 
     Atlas® Spatial Database; remaining road and rail elements were further removed 
       by the identification of linear patterns (features with 100 metre width and more 
             than 1000 metre length);
     •  Removal of SSL pixels overlapping industrial and commercial areas from the 
         Tele Atlas® Spatial Database (land use subset);
     •  Removal of SSL pixels in selected CLC agricultural polygons known for their 
         high concentration of agricultural greenhouses7.

After these modifications, the SSL was made compatible with the urban fabric 
definition of CLC. Thus, all remaining pixels in SSL replaced the coinciding pixels in 
CLC_r1, assuming the class label 112 (discontinuous urban fabric). This procedure 
originated a new modified version of CLC (CLC_r2aa) containing an improved 
depiction of urban fabric areas.

2.2.2 Step 2
Due to the generalization rules of CLC (Büttner et al., 2006; European 
Environment Agency, 2007), urban fabric classes (11X) contain areas that are 

 According to Büttner et al. (2006, p. 7), the urban fabric polygons in CLC should have a minimum of 30% 
impermeable surface within the 25 ha patches.

 The selection of these polygons was carried out by an analysis using Google Earth® imagery that helped 
identify ‘hot spots’ of greenhouses. These were identified in the following regions: Algarve (Portugal), Canarias 
(Spain), Lazio and Campania coast (Italy), Liguria coast (Italy), Netherlands, South and Southeast of mainland 
Spain, Southeast coast of Sicily (Italy).

6

7
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actually not built-up. Hence, a final geometric refinement of the urban fabric 
was carried out in order to identify non built-up areas within CLC_r2aa. For this 
purpose, all SSL pixels with 0% sealed surface overlapping edges of urban fabric 
patches were attributed the closest non-artificial class depicted in CLC_r2aa, 
originating the CLC_r2ab.

2.2.3 Step 3
Finally, the SSL was again used for a classification refinement of the urban fabric 
classes. In CLC, the class 11X contains two subclasses: 111 and 112 corresponding 
to continuous urban fabric and discontinuous urban fabric, respectively. The 
classification of these classes relies on the criteria defined in Büttner et al. 
(2006). However, a closer inspection of the CLC releases demonstrates that, 
in practice, the same criteria can be interpreted differently amongst the image 
interpreters or the countries of analysis or between different CLC updates. Given 
that the soil sealing layer contains the degree of sealing expressed in percentage, 
this information could be used to completely reclassify the urban fabric classes, 
and thus make them more consistent across countries. The first step consisted in 
averaging the sealing values within a 3 x 3 pixel moving window and subsequently 
by applying a majority filter8. The resulting map was finally used to break down the 
CLC class 11X into three new classes according to the following criteria:

     • SSL ≥ 80% AND MMU of 10 hectares = 111 (high-density urban fabric)9;
    • 30% ≤ SSL < 80% AND MMU of 10 hectares = 112 (medium-density urban 
        fabric)10;
     • SSL < 30% = 113 (low-density urban fabric)11.

This approach allowed a systematic, quantitative and objective reclassification of 
the urban fabric and created an additional level of thematic detail by introducing the 
low density urban fabric class (CLC_r2b).

2.3 Urban Atlas (UA)
The Urban Atlas is a set of high resolution digital land use/cover maps for 
European urban regions. It contains land use/cover information derived 

 This procedure was applied in order to smooth the noisy texture of the spatial variable.

According to Büttner et al. (2006, p. 6), in CLC111, 80 % of the total surface should be impermeable. The 
MMU of 10 hectares was applied here as a heuristic criterion, taking into account that just a few highly sealed 
pixels alone do not constitute a continuous urban patch.

  According to Büttner et al. (2006, p. 7), the CLC class 112 should have a total impermeable surface between 
30 and 80%. The MMU of 10 hectares was applied following the reasoning of the previous criterion.

  This criterion corresponds to the areas left by the two criteria above, thus comprehending: 1) areas of low 
sealing degree (<30%) and 2) areas with medium to high sealing degree (>30%) but too small to be considered 
continuous.

8
9

10 

11 
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mainly from Earth observations with support of other reference data such as 
topographic maps.

By the end of 2010, maps for 226 urban areas had been published and made 
available for free download in the data repository of the EEA website12. Maps for 
all ‘larger urban zones’, as defined by Urban Audit13, are expected to be available 
with time. These urban areas are distributed amongst all the EU-27 countries 
plus Norway and Turkey (Figure 2). The temporal coverage of the maps ranges 
between 2005 and 2007. The reference scale of UA is 1:10,000, and the MMU 
is 0.25 ha for artificial surfaces and 1 ha for all other classes. The positional 
accuracy was set to ± 5 metres and the minimum thematic accuracy should be 
85% (GMES/DG REGIO, 2011).

  Urban Atlas, https://land.copernicus.eu/local/urban-atlas

  Urban Audit, http://www.urbanaudit.org

12 
13 

Figure 2. Geographical coverage of the Urban Atlas (as used in the refinement procedure).
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The nomenclature of UA is based on the one of CLC, but with some differences. 
UA’s legend is much more detailed for artificial classes than for non-artificial 
ones. Whereas the artificial class group is disaggregated in 17 classes (11 classes 
in CLC), the non-artificial class groups are described only by the following three 
classes, without any further disaggregation: agricultural areas, semi-natural areas 
and wetlands; forests; and water. Table 2 shows the nomenclature used in UA and its 
correspondence with the nomenclature of CLC.

The refinement of CLC with UA datasets was done through the use of conversion 
rules defined in a decision matrix. Table 3 depicts this decision matrix where the rows 
represent the CLC map and the columns represent the UA map with their respective 
original nomenclature. When the overlapping of the two maps was applied, the 
resulting map was created following the conversion rules established in the matrix. 
Some typical examples of conversions are explained as follows (see Table 2 for code 
labels):

• Whenever there is a UA pixel of class 1124 overlapping a pixel of any given 
       class in CLC_r2b, the corresponding pixel in the new map (CLC_r3) is assigned 
        to class 113;

• Whenever there is a UA pixel of class 2000 overlapping a pixel of class 121 
        in CLC_r2b, the corresponding pixel in the new map (CLC_r3) corresponds to 
        the closest 2XX class in the CLC_r2b map;

• Whenever there is a UA pixel of class 2000 overlapping a pixel of class 331 in 
        CLC_r2b, the corresponding pixel in the new map (CLC_r3) is assigned to the 
        class 331;

• Whenever there is a UA pixel of class 1340, the corresponding pixel in the new 
        map (CLC_r3) is assigned the value present in the CLC_r2b map.

Combining the two maps created another step in the refinement process (CLC_
r3). The particularity of CLC_r3 is that it is a refinement of CLC_r2b only in those 
areas for which UA was available. Therefore, all areas without a UA map maintained 
the LULC defined in CLC_r2b. This means that from this step onward, the CLC 
refined map has lost its full spatial consistency as the areas improved by the UA 
datasets are more detailed than those without. This loss of consistency is a necessary 
trade-off when spatial detail is the preferred requisite.
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Table 2. Nomenclatures of Urban Atlas and CORINE Land Cover (refined version) and 
their correspondence.

Urban Atlas CORINE Land Cover (refined version)

Continuous urban fabric
Discontinuous dense urban fabric
Discontinuous medium density urban fabric
Discontinuous low density urban fabric
Discontinuous very low density urban fabric
Isolated structures
Industrial, commercial, public, military 
and private units

Fast transit roads and associated land
Other roads and associated land
Railways and associated land
Port areas
Airports
Mineral extraction and dump sites
Construction sites
Land without current use
Green urban areas
Sport and leisure facilities

Agricultural areas, semi-natural areas 
and wetlands

Forests
Water

High density urban fabric
Medium density urban fabric
Medium density urban fabric
Low density urban fabric
Low density urban fabric

Low density urban fabric
Industrial or commercial units
Road and rail networks and associated land
Road and rail networks and associated land
Road and rail networks and associated land
Port areas
Airports
Mineral extraction sites / Dump sites

Construction sites
-
Green urban areas
Sport and leisure facilities

Agricultural areas / Scrub or herbaceous 
vegetation associations / Open spaces with 
little or no vegetation / Wetlands

Forests 
Water bodies

Description Description
1110
1121
1122
1123
1124
1130
1210

1221
1222
1223
1230
1240
1310
1330
1340
1410
1420

2000

3000
5000

111
112
112
113
113
113
121
122
122
122
123
124
131/
132
133

-
1.4.1
142

2XX/
32X/
33X/
4XX
31X
5XX

Code Code
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Table 3. Matrix of decision rules for conversion of UA pixels into CLC equivalent pixels.

111
112
121
122
123
124
131
132
133
141
142
211
212
213
221
222
223
231
241
242
243
244
311
312
313
321
322
323
324
331
332
333
334
335
411
412
421
422
423
511
512
521
522
523

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124
124

111
112
121
122
123
124
131
132
133
141
142
211
212
213
221
222
223
231
241
242
243
244
311
312
313
321
322
323
324
331
332
333
334
335
411
412
421
422
423
511
512
521
522
523

133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133
133

111
112
121
122
123
124
131
132
133
141
142
211
212
213
221
222
223
231
241
242
243
244
311
312
313
321
322
323
324
331
332
333
334
335
411
412
421
422
423
511
512
521
522
523

141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141
141

142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142
142

122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122

112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112

113
113 
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113 
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
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2.4 Tele Atlas® (TA) Spatial Database 2008
The Tele Atlas®14 Spatial Database available at the JRC consists of a series 
of digital maps mainly focused on transportation networks for navigation 
purposes. It is composed of several sub-datasets, including road networks, rail 
networks, points of interest, administrative boundaries, land use and built-up 
areas. Although not officially assessed, the positional accuracy required for 
the TA maps is assumed very high due to its application in navigation systems.

The data completeness of TA is not guaranteed, especially in what concerns 
sub-datasets not directly related to the transport networks. The level of 
completeness could not be systematically quantified in the scope of this work, 
and no references to this issue were found in official documents (Tele Atlas, 
2008). The level of completeness of the database depends on the country and 
on the product release. In practical terms, this means that any refinement of 
CLC with Tele Atlas® data will not produce the same level of refinement for 
every region, country, or city/town.

In this refinement process, the TA road and rail networks were first used as 
ancillary data to prepare the SSL by masking out sealed pixels corresponding 
to transport networks, as already explained in Section 2.2. The main use of TA 
was, however, in the creation of the CLC_r4a and CLC_r4b, whereby additional 
artificial surfaces were added.

The TA’s land use sub-dataset has a polygonal data structure and is of 
particular interest for refining CLC. Within this layer, 42 different feature 
types are identified. A number of features types were found relevant to improve 
the spatial detail of CLC. Table 4 lists the feature types used from TA and 
establishes their one-to-one correspondence with the CLC nomenclature. The 
features were selected and reclassified accordingly, and converted to a raster 
map which was finally overlaid on CLC_r3, generating the CLC_r4a. Figure 
3 shows the geographical distribution of the features used in this refinement 
step. It can be observed that the amount of information is not equally 
distributed across regions. This is related to two major reasons: (1) the amount 
of information present in TA land use dataset reflects unequal distribution of 
human activity across regions and (2) missing data in the TA land use dataset. 
In fact, there are countries for which data are simply not available (e.g., the 
Balkan countries, Iceland) and others for which vast areas seem to be poorly 
covered (e.g., Baltic countries, Ireland, south of Italy, Turkey).

  Tele Atlas® is today (2021) TomTom®, https://www.tomtom.com14 
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Table 4. Correspondence between the SWBD’s classification and the CLC’s nomenclature.

SWBD CORINE Land Cover

Description DescriptionCode Code
9353
9715
9790
9762
9720
9732
9776
9733
9744
9763
9767
9768
9775

121
121
121
122
123
124
124
142
142
142
142
142
142

Company ground
Industrial area
Shopping Center ground
Railway Station ground
Industrial Harbor area
Airport ground
Runway
Amusement Park ground
Golf Course ground
Recreational Area ground
Sports Hall ground
Stadium ground
Zoo ground

Industrial or commercial units
Industrial or commercial units
Industrial or commercial units
Road and rail networks and associated land
Port areas
Airports
Airports
Sport and leisure facilities
Sport and leisure facilities
Sport and leisure facilities
Sport and leisure facilities
Sport and leisure facilities
Sport and leisure facilities

Figure 3. Number of Tele Atlas® features (as used in the refinement procedure) by 10 km cells.
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A final refinement was done using TA data, more specifically the built-up areas 
sub-dataset, also in polygonal format. According to TA documentation, this sub-
dataset corresponds to residential areas, thus matching the definition of CLC urban 
fabric classes. This refinement was only introduced in regions of the CLC_r4a where 
residential areas were still thought to be underrepresented. To find these areas, a 
Europe-wide layer of commune boundaries and their respective population for the 
year 2006 was used. TA built-up polygons within populated communes without any 
urban fabric pixels were selected, converted to a raster map and finally overlaid onto 
CLC_r4a, generating the CLC_r4b. Due to the low number of people living in these 
communes, small size, and remote location of the selected polygons, the new built-
up pixels in CLC_r4b were classified as low-density urban fabric (113).

2.5 SRTM Water Bodies Data (SWBD)
The SRTM Water Bodies Data (SWBD) is a side product of the Shuttle Radar 
Topography Mission15 whose main objective was to obtain a high-resolution digital 
topographic database of the Earth. The initiative was spearheaded by the National 
Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space 
Administration (NASA). The SWBD is provided in vector format, and it refers to 
2000, the year when the radar device captured data from orbit. Although recognizing 
that the 6-year gap may introduce some errors and may only refine the CLC 2006 in 
an incomplete way, these problems were not considered critical16.The features in the 
SWDB are classified according to Table 5. Only the inland water features were used 
to refine the spatial detail of CLC (river/stream and lake/pond). Similar to previous 
steps, the features were converted to a raster map which was then overlaid onto the 
preceding map, thus creating the final version of the refinement, CLC_r.

   Shuttle Radar Topography Mission, http://www2.jpl.nasa.gov/srtm/

  There are two possible implications for the temporal gap of six years between the SWBD and CLC: (1) Small 
water bodies (< 25 ha) appearing between 2000 and 2006 are not captured neither by CLC2006 nor by SWBD. 
This means that the refinement may be incomplete in what respects to water bodies in those conditions; (2) 
Water bodies that existed in 2000 (and thus captured in SWBD) but that disappeared between 2000 and 2006 
are wrongly introduced in the refined version of CLC. To check whether this could be or not a neglectable 
problem, we analysed the CLC change map for 2000-2006 and found out that only 0.2% of the total water 
courses and water bodies mapped in CLC 2000 were recorded as another non-wet LULC class in CLC 2006.

15

16

Table 5. Correspondence between the SWBD’s classification and the CLC’s nomenclature.

SWBD CORINE Land Cover

Description DescriptionCode Code
BH140
BH080
BA040

511
512
52X

River or Stream
Lake or Pond
Water (except inland)

Water courses
Water bodies
Marine Water
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3. RESULTS AND VALIDATION

3.1 Results
The final result of the refinement process is a new CLC map modified by the 
consecutive and incremental refinements depicted in Figure 1 and explained in the 
previous section. This map, hereafter referred to as CLC_r, maps LULC classes 
for the total extent of CLC with a minimum mapping unit of 1 ha for artificial 
classes and water bodies. Forest and agricultural classes were only improved as 
a consequence of the refinement of other classes: as artificial areas were being 
added to CLC, the layout of the underlying non-artificial classes was adjusted. In 
addition, the areas with availability of Urban Atlas observed an increase in spatial 
detail for forest and agricultural classes.

From a total number of 544 million terrestrial cells, nearly 17 million cells have 
gone through some kind of classification change, corresponding to 3.12% of the 
total spatial extent of the CLC 2006. Appendix 2 summarizes the main net changes 
per LULC type between CLC_i and CLC_r, revealing that the artificial classes 
(1XX) show much higher relative changes than the rest. Net increases in area were 
observed for most of the artificial LULC types (urban fabric areas, commercial 
areas, road and rail networks and associated land, port areas, construction sites, 
green urban areas, sport and leisure facilities). Homogeneous agricultural areas 
showed slight reductions of area in relative terms, but the agricultural heterogeneous 
classes showed more significant reductions with major reclassification occurring 
to urban fabric and forest areas. It is finally worthwhile underlining the increases 
of area observed for inland waters. Figure 4 depicts the percentage of changed 
area within 10 km cells, showing a relatively homogenous distribution of changes 
across Europe, with a higher percentage change in urbanized regions, in particular 
those for which Urban Atlas was available.

A large number of communes have no urban fabric reported in CLC even 
though census statistics report people living in them. To measure to which 
degree the newly refined map of CLC improved this situation, CLC 2006 and 
its newly refined version were overlaid onto a dataset of commune boundaries 
with population figures for 2006. If CLC 2006 is considered, 27,753 populated 
communes contain neither continuous nor discontinuous urban fabric, summing a 
total of 9.3 million unrepresented inhabitants. On the other hand, in CLC_r, only 
1,771 populated communes are left without any urban fabric classes, representing 
0.25 million people. CLC_r thus allows a more complete representation of human 
settlements, increasing from 97.81% to 99.94% the population living in communes 
with urban fabric pixels17.

  These figures were calculated based on the following countries/groups of countries: EU-27 (except UK and 
Greece), plus Iceland and Norway, with a total population of 425 million.
17 
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Figure 4. Percentage area undergone classification change due to the refinement procedure 
within 10 km cells.
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As already presented, urban fabric was one of the classes more heavily targeted by 
modifications. Moreover, due to its thematic importance, some additional attention 
must be paid to the results obtained in the refinement of this class. Figure 5 depicts 
the changes in the amount of urban fabric (from CLC_i to CLC_r) with figures 
aggregated by 10 km x 10 km cells. It is clear that some regions have ‘gained’ urban 
fabric areas whereas others show a ‘loss’ of urban fabric. In some cases, changes 
appear to be substantial. It is thus important to systematize and interpret the results 
depicted in Figure 5:

    • A degree of autocorrelation is easily detected in the map, with losses and  
    gains of urban fabric reasonably concentrated in space. Albania, Austria,  
         Belgium, Bulgaria, Romania and Slovakia show a tendency to overestimate 
        built-up areas, while the remaining countries show the opposite tendency. 
        Bosnia, Croatia, Ireland, Monte Negro, Portugal and Spain are the countries 
            with higher propensity to underestimation in CLC. This can be explained 
         by a systematic interpretation bias during the development of CLC by 
        the national contractors, leading to either systematic underrepresentation 
            or overrepresentation of urban fabric18;
   • Most of the regions for which UA was available show a net loss of the 
       reported urban areas. This is mostly explained by the fact that considerable 
        amounts of area classified as ‘urban fabric’ in CLC are classified as ‘industrial 
         or commercial units’ in UA, especially in areas where commerce and/or 
              services predominate over the residential function;
   • It was detected that in some eastern countries, such as Romania, many 
       settlements along valleys are composed of informal constructions, often with  
      non-paved accesses, and closely surrounded by agricultural fields. Under 
         these conditions, the SSL cannot fully detect sealed surfaces. Therefore, the 
        procedure described in Section 2.2.2 has led to some wrong removal of urban 
        fabric reported in CLC;
     • In scarcely populated areas (more frequent in peripheral regions of Europe, 
         like Iberian and Scandinavian Peninsulas, Ireland, Turkey, and the Balkans), 
          urban fabric is not reported for vast areas of the territory in CLC due to 
         the small urban patches of these regions. With the refinement procedure, this 
       cartographic anomaly was widely corrected.

     Figure 6 illustrates the case of a small town where expansion, suppression and
reclassification of the original CLC built-up cells took place.

  Although national and regional thematic inconsistencies are widely known (interpretation rules are not 
always followed consistently across countries and regions), this particular issue of CLC has not yet been 
thoroughly assessed in the literature.

18 
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Figure 5. Percentage change in the amount of urban fabric due to the refinement procedure 
within 10 km cells.
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Figure 6. Example of expansion, suppression and reclassification of built-up areas due to 
the refinement procedure. Tudela de Duero, Spain. Source of aerial image: Bing®.

3.2 Validation
In a report issued by the EEA in 2006, the methodology and results of a validation 
exercise for the CLC 2000 were released (European Environment Agency, 2006). 
This validation was performed by comparing European LUCAS points for the year 
2000 with CLC 2000 map. For the current validation exercise, we chose to follow 
EEA’s validation guidelines closely. By doing so, we used an independent and 
transparent method, that is, at the same time, easily automated and replicable.

LUCAS is a European land survey managed by Eurostat that records both land 
cover and land use for a set of sample points distributed throughout the territory. 
LUCAS Land Use (LLU) is described by a total number of 34 categories and 
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LUCAS Land Cover (LLC) is described by 58 categories. LUCAS is not the 
reality itself, but given that the classification of each point is done by actual field 
observations, it should reasonably reflect the ground truth. For the LUCAS 2006 
survey, the density of the spatial sampling varies according to different strata (e.g., 
agricultural land has a higher sampling density than semi-natural or urban areas). 
The LUCAS 2006 campaign covered only the following countries: Belgium, the 
Czech Republic, France, Germany, Hungary, Italy, Luxembourg, the Netherlands, 
Poland, Slovakia, and Spain, with more than 168,000 points available. Validation 
could only be performed for these countries.

Gallego (2002) addressed the problem of validating CLC maps with LUCAS 
datasets. He states that it is not possible to assess the actual accuracy of CLC with 
LUCAS because they contain several sources of disagreement, namely:

Co-location inaccuracy, that can be accumulated in the different steps of CLC 
processing (photo-interpretation, digitalization, merging tiles, projection, etc); 
Rasterisation (conversion from polygon format to raster format): If the polygon 
borders are irregular, conversion to raster format with 1 ha pixels modifies the class 
borders; Scale effect: CLC is a coarse dataset whereas LUCAS is a very fine one; 
Different concepts in nomenclature; Photo-interpretation or observation errors 
(CLC probably contains more errors than LUCAS, but some observation mistakes 
can also appear in LUCAS) (Gallego 2003: 122).

In European Environment Agency (2006), where LUCAS 2000 points were 
compared in a straightforward way to CLC, some of those problems were also 
recognized: “inherent differences [exist] between CLC and LUCAS (observation 
unit, difference of scale, point versus area sampling)” (European Environment 
Agency 2006: 19). Nevertheless, the LUCAS dataset, as is, is still the best existing 
reference data to compare CLC with. Possible alternatives would be the creation 
of a new validation dataset or a reinterpretation of LUCAS photos to match CLC 
nomenclature (as implemented, for instance, in European Environment Agency 
(2006) or in Caetano et al. (2009)). However, such alternatives were out of the scope 
of this work due to the substantial resources required for their implementation.

To avoid most of the co-location problems between LUCAS and CLC, the ‘pure 
pixel approach’ suggested by Gallego (2003: 125) was followed. It consists of 
eliminating LUCAS points “that are close to the borders between CLC classes”. In 
practice, LUCAS points overlapping pixels that are bordering one or more different 
CLC classes were not used in the validation. To define CLC bordering areas, only the 
five classes of level 1 of the CLC nomenclature were considered: artificial surfaces, 
agricultural areas, forest and semi-natural areas, wetlands and water bodies. If classes 
up to levels 2 or 3 of the CLC nomenclature were to be considered, hardly few points 
would remain for the validation, especially in urban areas, where LULC patches are 
smaller in size and, consequently, bordering areas are numerous.

To assess how much the CLC_r improved compared with the original CLC_i, 
the validation was performed for both CLC datasets. The final objective was to 
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determine the degree of agreement between CLC_i/CLC_r and the reference dataset 
(LUCAS). The procedure consists of the following steps, as defined in European 
Environment Agency (2006: 18-19):

(1) Creation of a correspondence table between the CLC and the LUCAS LLC/ 
           LLU nomenclatures19;

(2) Selection of valid LUCAS points:
      a. Points with valid classification for both LLC and LLU;
     b. ‘Pure’ LUCAS points (i.e., points not located in CLC_i/CLC_r bordering 

               areas);
(3) GIS overlay of all valid LUCAS points over CLC_i and CLC_r. Through this 

           overlay, each LUCAS point gets the information about the classification 
          present in CLC_i and CLC_r;

(4) Comparison of the CLC codes and the LLC codes. Whenever a point has 
         corresponding CLC and LLC codes, it gets the value ‘1’ (‘LLC_ok’). 
          Otherwise, it remains with the value ‘0’;

(5) Comparison of the CLC codes and the LLU codes. Whenever a point has 
          corresponding CLC and LLU codes, it gets the value ‘1’ (‘LLU_ok’). 
          Otherwise, it remains with the value ‘0’;

(6) Points that show agreement between CLC codes and both LLC and LLU 
        codes are flagged as ‘LULC_ok’. For each CLC class, the total number of 
         ‘LULC_ok’ points is compared with the total number of available validation  
           points, thus deriving a percentage of agreement (PA).

The results of the validation (Table 6) show an overall improvement of the 
CLC_r compared with CLC’s original version (PA is usually higher for CLC_r). 
However, as expected, some classes show greater improvements than others. 
The artificial classes show improvements ranging from 0.5% to 6.1% with 
some exceptions (classes 121, 122, and 141 perform better in CLC_i). The vast 
majority of agricultural, forest, semi-natural, and wetland classes show modest 
but consistent improvements in the refined version of CLC. Finally, inland 
waters (classes 511 and 512) have improved considerably. Yet, these results 
cannot be fully interpreted without looking at their statistical significance.

Table 6 shows that some classes were validated with very few LUCAS points. 
“The small number of LUCAS samples [for some of the CLC classes] might 
provide misleading results because the error (standard deviation) of the estimation 
is high” (European Environment Agency 2006: 15). Assuming that the LUCAS 
sample for 2006 approximates a binomial distribution, the probability of success 
(P), the expected number of validating points (M), the standard deviation (D) and 
the relative error (RE) can be derived as follows (Eq. 1–4):

  The correspondence table was adopted from European Environment Agency (2006: 39).19 

Eq. 1
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where is the percentage area of a given CLC class, is the percentage of 
agreement and N is the total number of valid LUCAS points.

In summary, the higher the relative error (RE) of one given class, the weaker the 
validation estimations. Table 6 provides both the results of the validation and the 
value of the RE presented as percentage. Some of the classes have a very low number 
of validation points and thus a high relative error. In some cases, the RE is greater 
than the improvement value, which means that, statistically, the LUCAS dataset 
is not representative enough to capture and significantly assess the cartographic 
improvement of CLC. For instance, due to the high RE values for classes 122 and 
141, the interpretation that CLC_r represents a loss of accuracy with respect to 
CLC_i is uncertain. Likewise, it is statistically uncertain to interpret that classes 
123, 131, 132, and 133 are more accurate in CLC_r. 

4. DISCUSSION AND CONCLUSIONS
The CORINE Land Cover is an important land use/cover map covering the whole 
of Europe that describes land in 44 categories with a minimum mapping unit of 25 
hectares. Although the value and usefulness of CLC is not in question, its coarse 
spatial resolution limits its use at large scales of analysis.

Our objective was to increase the spatial detail of the CLC map for 2006. 
This study shows how the original CLC map was modified by a semi-automated 
procedure that combined finer thematic data. The increase in the spatial resolution 
was achieved by reducing the MMU from 25 to 1 ha, mainly within the artificial and 
water LULC categories, while keeping the original cell size of 100 metres. Such 
improvement of the MMU allowed a more precise estimation of the geometrical 
shape and size of the refined LULC patches. A thematic refinement was also 
carried out, by which CLC class 11X (urban fabric) was completely reconfigured 
according to average soil sealing values. Instead of the original two urban fabric 
classes (continuous and discontinuous urban fabric), CLC_r depicts three classes 
derived from the refinement process: high density urban fabric (111), medium 
density urban fabric (112) and low density urban fabric (113). The breakdown of 
the urban fabric into three density levels is seen as a qualitative refinement that 
could increase the usefulness of the dataset.

Eq. 2

Eq. 3

Eq. 4

PCLC

PPA

PCLC

PPA
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Table 6. Summary of the results of the validation. 

CLC 2006 CLC refined 2006 Improvement
Total 
points

Total 
points

LULC_ok
no. PA %

LULC_ok
no. PA %

CLC RE RE

111
112
121
122
123
124
131
132
133
141
142
211
212
213
221
222
223
231
241
242
243
244
311
312
313
321
322
323
324
331
332
333
334
411
412
421
422
423
511
512
521
522

Total

190
1898
376
37
22

105
200
37
68
78

164
71507
2253
528

2724
1647
3101

15028
366

13429
5886
1526
5136
4443
2175
2776
446

2041
2213

22
25

370
17

289
63
61
16
4

40
231
30
13

141581

250
1603
507
34
26
95

180
32
92
97

178
69519
2199
520

2642
1590
3036

14522
350

12138
5417
1516
5075
4407
2139
2726
434

2035
2263

20
26

366
17

283
58
63
15
6

44
235
32
12

136799

104
1441
231
17
7

50
70
4

19
33
71

48289
543
347

1941
1129
2479

11078
207

10930
5063
1286
3788
3588
1775
1880
279

1072
1195

6
6

96
10

109
5

17
1
0

24
136
15
12

99353

152
1257
286
14
9

48
65
4

28
39
78

47438
534
346

1883
1091
2451

10741
202

10001
4684
1278
3741
3563
1770
1866
278

1061
1239

7
8

95
9

107
4

19
1
0

29
141
16
11

96594

54.7
75.9
61.4
45.9
31.8
47.6
35.0
10.8
27.9
42.3
43.3
67.5
24.1
65.7
71.3
68.5
79.9
73.7
56.6
81.4
86.0
84.3
73.8
80.8
81.6
67.7
62.6
52.5
54.0
27.3
24.0
25.9
58.8
37.7
7.9

27.9
6.3
0.0

60.0
58.9
50.0
92.3
70.2

60.8
78.4
56.4
41.2
34.6
50.5
36.1
12.5
30.4
40.2
43.8
68.2
24.3
66.5
71.3
68.6
80.7
74.0
57.7
82.4
86.5
84.3
73.7
80.8
82.7
68.5
64.1
52.1
54.8
35.0
30.8
26.0
52.9
37.8
6.9

30.2
6.7
0.0

65.9
60.0
50.0
91.7
70.6

7.6
1.6
4.3

15.7
29.8
13.9
11.1
49.1
22.2
17.2
9.2
0.5
5.6
7.3
2.9
3.6
2.6
1.0
7.6
1.1
1.4
2.7
0.9
0.9
1.3
1.9
3.8
2.2
1.9

18.5
7.2
5.5

19.7
10.1
40.2
19.4
80.0

-
7.5
4.1

12.2
20.7

7.4
1.6
4.6

16.8
29.0
13.7
11.1
46.5
21.6
18.0
9.3
0.5
5.7
7.4
2.9
3.7
2.6
1.0
7.6
1.1
1.4
2.8
0.9
0.9
1.3
2.0
3.9
2.2
1.9

16.6
6.5
5.6

21.1
10.2
43.9
19.0
78.8

-
7.3
4.1

12.4
21.2

 

%

6.1
2.5

-5.0
-4.8
2.8
2.9
1.1
1.7
2.5

-2.1
0.5
0.7
0.2
0.8
0.0
0.1
0.8
0.2
1.2
1.0
0.5
0.0
0.0
0.1
1.1
0.7
1.5

-0.4
0.8
7.7
6.8
0.0

-5.9
0.1

-1.0
2.3
0.4
0.0
5.9
1.1
0.0

-0.6
0.4

Notes: Total points: points used to validate each LULC class; PA: Percentage of agreement between 
the classification present in CLC_i/CLC_r and the classification present in LUCAS. Improvement: 
difference between the PA of CLC_r and the PA of CLC_i. Negative values mean that CLC_i is more 
accurate than CLC_r and vice-versa. RE: Relative Error. The smallest the number of validating points 
the higher the RE. RE values above 'PA' means that validation is not significant.
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The main quantitative changes in the newly improved CLC map occurred in the 
artificial classes, with a net increase in the estimated area (increases ranging from 
2.81% to 53.23%, depending on the LULC class). Inland water courses/bodies also 
have an increased area in the CLC_r. Most of the agriculture, forest, and wetland 
classes, however, have either lost area or observed very modest increases. The 
number of populated communes that now have some urban fabric area reported 
within their boundaries has increased substantially, thus indicating a more complete 
representation of settlements in the CLC_r.

The CLC_r is a ready-to-use cartographic product, but it should be used with 
caution and with full awareness of its limitations. The most important limitations of 
the map are summarised as follows:

• Modifications introduced in the CLC to derive the CLC_r were not always free 
        of errors. In particular, combining CLC with the soil sealing layer was found to be 
       a complicated and time consuming task due to the different definitions involved 
        (there is no direct relationship between soil sealing and CLC classes). This

  combination has potentially introduced some misclassifications in the CLC_r 
       (e.g., road and rail features classified as urban built-up areas);

• Contrary to the original CLC, the CLC_r did not rely on any manual intervention. 
        It was derived from a semi-automated protocol and from a number of decision 
        rules (Section 2). The systematic implementation of those rules and the absence 
        of manual corrections may have left room for inaccuracies;

• An end user would normally expect a consistent level of spatial detail from a final 
          LULC map. That is not the case with CLC_r. One major weakness of the approach 
          is related to the use of certain ancillary datasets that do not cover the entire extent 
        of the study area (Urban Atlas and Tele Atlas®). The use of spatially incomplete 
        datasets implies that some geographical areas are further refined than others. On 
       top of this, the minimum mapping unit is not consistent across LULC classes.  
     The user should expect higher levels of spatial detail in artificial and water 
      classes, while in agriculture, forest and wetlands classes, the level of detail is  
          closer to the one found in the original CLC. The loss of cartographic consistency 
       was the necessary cost to obtain a product which features an overall improved 
       depiction of the artificial areas;

• Finally, comparisons between CLC_r and previous or future official releases of 
        the CLC cannot be done.

A quantitative assessment of the results was carried out in order to determine the 
degree of agreement between the ground truth represented by LUCAS and CLC_i 
and CLC_r. LUCAS sampling points for 2006, with both land cover and land use 
information, were taken as the reference data for comparison, thus representing the 
best available approximation to ground truth. When directly comparing the validation 
results for both CLC_i and CLC_r, most of the classes observe, as expected, a better 
performance in the CLC_r version. A possible explanation for the significant decrease 
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in performance in the class 121 (industrial and commercial units) is possibly linked 
to the modifications introduced by Urban Atlas. In UA, the class 1210 (industrial, 
commercial, public, military and private units) prioritizes land use over land cover 
and is more inclusive than its correspondent class in CLC, thus leading to a large 
spatial propagation of this class.

However, due to the small size of the LUCAS sample, the validation cannot 
provide conclusive results for all classes. In fact, the degree of improvement between 
CLC_i and CLC_r is statistically not significant when compared with the uncertainty 
related to the validation. As pointed out in Section 3.2, the LUCAS 2006 dataset is 
not ideal for validating CLC for a number of reasons. Namely, it only covers Europe 
partially and its sampling scheme is stratified, privileging agricultural and forest 
areas over artificial surfaces. Furthermore, errors in the classification (LUCAS is 
not the reality itself), different definitions underlying land use/cover categories and 
different scales of analysis can exacerbate differences between LUCAS and both 
CLC versions. For these reasons, and in particular for classes 122, 123, 131, 132, 
133, and 141 interpretations such as “the CLC_r performs better/worse than the 
original CLC” should not be made.

While the statistical assessment using LUCAS leaves room for uncertainties, other 
indirect ways of assessment (e.g., visual inspection; observed increase in the number 
of populated settlements) allow us to conclude that CLC_r met the expectations of 
increasing the spatial detail of CLC. Considering the results obtained and foreseen 
uses of the dataset within the JRC alone, there is a clear impression that the resources 
put into developing and implementing the refinement protocol were worthwhile.

In light of the characteristics and limitations of CLC_r, each end user should 
assess the potential merits and inconveniences of using the dataset. These are strongly 
dependent on the specificity of each application. With the release of the CLC_r, 
eventual feedback from users will hopefully allow us to understand the usefulness 
of the dataset and find ways to further improve it. Namely, other datasets could be 
sought and integrated into the refining procedure, like the Pan-European Forest Type 
Map 2006 (Kempeneers et al., 2011); the decision rules to integrate information 
from high resolution thematic layers could be further discussed and investigated.

What lessons were learnt from this project? Is refining CLC – and its coming 
updates – with finer independent datasets the way forward? Which general 
recommendations should be drawn for future mapping of Land Use and Land Cover 
in Europe? There is certainly a growing need for new and better spatial datasets in 
environmental sciences (Verburg et al., 2011). The work presented in this article 
only reflects this general trend, whereby existing datasets are no longer sufficient 
for the growing scientific demand. In one word, higher resolution is needed (spatial, 
thematic, and temporal). Regarding the specific case of LULC mapping at European 
scale, the approach followed and presented here is probably not the way forward, but 
rather redesigning and reinforcing the entire CLC project. Some major improvements 
to the project would include (1) the decrease of the MMU to at least 5 hectares; (2) 
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rearranging its nomenclature, expanding it and providing a more elegant distinction 
between LU and LC; and (3) automatizing its production and making more regular 
updates. But, in the meantime, efforts to improve the existing LULC datasets may 
still play a valid role. As Verburg et al. (2011: 985) point out, “by combining the 
strengths of different data more robust and reliable data can be constructed”.
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APPENDIX 1: NOMENCLATURE OF CORINE LAND COVER

Level 1 Level 2 Level 3
1XX Artificial surfaces 11X Urban fabric

12X Industrial, 
commercial and 
transport units

13X Mine, dump and 
construction sites

14X Artificial, non 
agricultural vegetated areas
21X Arable land

22X Permanent crops

23X Pastures
24X Heterogeneous 
agricultural areas

31X Forests

2XX Agricultural areas

3XX Forests  
and semi-natural areas

4XX Wetlands

5XX Water bodies

111 Continuous urban fabric
112 Discontinuous urban fabric
121 Industrial or commercial units
122 Road and rail networks and associated land
123 Port areas
124 Airports
131 Mineral extraction sites
132 Dump sites
133 Construction sites
141 Green urban areas
142 Sport and leisure facilities
211 Non-irrigated arable land
212 Permanently irrigated arable land
213 Rice fields
221 Vineyards
222 Fruit trees and berry plantations
223 Olive groves
231 Pastures
241 Annual crops associated with permanent crops
242 Complex cultivation patterns
243 Land principally occupied by agriculture with 
        significant areas of natural vegetation
244 Agro-forestry areas
311 Broadleaved forest
312 Coniferous forest
313 Mixed forest
321 Natural grasslands
322 Moors and heathland
323 Sclerophyllous vegetation
324Transitional woodland shrub
331 Beaches, dunes, sands
332 Bare rocks
333 Sparsely vegetated areas
334 Burnt areas
335 Glaciers and perpetual snow
411 Inland marshes
412 Peat bogs
421 Salt marshes
422 Salines
423 Intertidal flats
511 Water courses
512 Water bodies
521 Coastal lagoons
522 Estuaries
523 Sea and Ocean

32X Scrub and/or 
herbaceous vegetation 
associations

33X Open spaces with 
little or no vegetation

41X Inland wetlands

42X Maritime wetlands

51X Inland waters

52X Marine waters
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APPENDIX 2: COMPARISON OF THE NUMBER OF PIXELS 
PER LAND USE/COVER TYPE IN CLC_I AND CLC_R AND THE 
RESPECTIVE ABSOLUTE AND RELATIVE DIFFERENCES 
BETWEEN THEM

CLC_r class CLC_i CLC_r
Abs.  

Difference
%  

Difference
111+112+113

121
122
123
124
131
132
133
141
142
211
212
213
221
222
223
231
241
242
243
244
311
312
313
321
322
323
324
331
332
333
334
335
411
412
421
422
423
511
512
521
522

14,510,362
2,179,079

245,385
100,035
287,453
649,107
102,857
185,356
243,649
772,160

114,204,194
8,183,866

807,770
4,031,071
2,875,215
3,786,926

32,204,698
955,607

30,174,617
28,543,294
3,292,835

54,290,791
72,179,460
33,590,481
18,459,476
13,923,679
8,685,723

33,550,900
758,691

8,647,147
23,253,423

116,729
1,530,896
1,402,882
9,361,431

289,787
63,184

949,784
1,353,986

12,375,449
580,971
238,075

14,917,881
2,880,898

297,658
113,842
278,504
625,259
90,732

270,605
373,351
842,073

113,706,322
8,145,805

806,199
4,011,453
2,877,780
3,771,610

31,998,512
938,580

29,395,794
28,085,710
3,298,982

54,417,620
71,871,404
33,685,450
18,440,950
13,899,172
8,706,890

34,016,683
752,062

8,649,123
23,259,629

121,926
1,530,885
1,402,070
9,344,531

285,827
59,790

950,300
1,393,876

12,594,008
587,429
241,295

407,519
701,819
52,273
13,807
-8,949

-23,848
-12,125
85,249

129,702
69,913

-497,872
-38,061
-1,571

-19,618
2,565

-15,316
-206,186
-17,027

-778,823
-457,584

6,147
126,829

-308,056
94,969

-18,526
-24,507
21,167

465,783
-6,629
1,976
6,206
5,197

-11
-812

-16,900
-3,960
-3,394

516
39,890

218,559
6,458
3,220

2.81
32.21
21.30
13.80
-3.11
-3.67

-11.79
45.99
53.23
9.05

-0.44
-0.47
-0.19
-0.49
0.09

-0.40
-0.64
-1.78
-2.58
-1.60
0.19
0.23

-0.43
0.28

-0.10
-0.18
0.24
1.39

-0.87
0.02
0.03
4.45
0.00

-0.06
-0.18
-1.37
-5.37
0.05
2.95
1.77
1.11
1.35
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Integrating the MOLAND and the  
Urban Atlas geo-databases to analyse 
urban growth in European cities1

ABSTRACT
The MOLAND (MOnitoring LANd use/cover Dynamics) and the Urban Atlas 
(UA) are two well-known, detailed datasets of land use/cover information 
focused on European cities. The MOLAND dataset contains a unique time 
series of land use/cover changes for more than thirty urban areas covering a 
wide temporal window (1950 to late 1990s). The UA is a more recent project 
that mapped land use/cover for more than 300 cities for the year 2006. In this 
paper we discuss the integration of both datasets in order to produce a single 
geo-database covering an extended time series spanning from 1950 to 2006. The 
different cartographic specifications of the two input datasets, particularly in 
terms of spatial and thematic resolution, impeded a straightforward integration. 
A methodology was therefore set up to harmonize the two datasets and merge 
them into a consistent and comparable geo-database that can be easily queried 
and used for both visual and analytical purposes. The usefulness of the newly 
integrated geo-database was demonstrated by some exploratory analyses of 
the urban dynamics that occurred during the time span of the combined geo-
database. We further discuss the role of time series of land use/cover data and 
draw recommendations and directions for future work and research.

 This chapter was first published as Barranco, R., Batista e Silva, F., Marín Herrera, M. A., & Lavalle, C. (2014). 
Integrating the MOLAND and the Urban Atlas Geo-databases to Analyze Urban Growth in European Cities. 
Journal of Map & Geography Libraries, 10(3), 305–328. https://doi.org/10.1080/15420353.2014.952485

1
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1. INTRODUCTION
Because of their importance and role as a primary “human ecosystem,” cities 
have always attracted great attention from researchers from both the social and 
earth sciences. Cities have played a key role in human and social development 
throughout history and continue to do so, as they draw vast numbers of people 
into a safe, organized, and a culturally rich environment, enabling creative 
interaction, developing critical mass, and generating economies of scale (Batty, 
2013; Bettencourt, 2013; Bettencourt et al., 2007).

Although cities have been studied from almost every perspective throughout 
the centuries, the interest on their impact on the environment is more recent. 
It has been observed that urbanization processes are both a cause and a driver 
of economic growth (Bloom et al., 2008), but extreme urbanization rates can 
as well generate crowding (Bettencourt, 2013), environmental degradation, and 
other impediments to well-being and productivity (Bai et al., 2012).

European Union (EU) cities continue to hold an ever increasing share of 
EU's population and expand their physical boundaries. Recent assessments show 
that land taken for built-up areas increases more rapidly than the population in 
many European countries (OECD, 2012). Many underlying factors have been 
attributed to the different pace of growth of population and urban extent. Wide 
access to automobiles and mass transportation allows people to live away from 
where they work, which may lead to more widespread, dispersed urban areas 
(Burchell et al., 1998; Ewing, 2008) — a trend already noted by Webber (1964). 
In addition, increases in GDP per capita and the fragmentation of households 
have been leading to higher per capita demand for residential space.

Despite the important economic, social, and cultural role of cities, their ever 
increasing size has been raising concerns over environmental degradation, such 
as increased pollution, disruption of ecosystems, and elimination of soils and 
cultivable areas that otherwise could be used for purposes such as agriculture 
(Seto et al., 2002; Seto et al., 2012). The expansion of built-up areas, in effect, 
constitutes an important change in the local environmental conditions and 
landscape, and these changes are often extremely costly to reverse (Seto et al., 
2011). Moreover, recent forecasts of urban expansion reveal that globally, urban 
extent in 2030 may be as much as three times that in 2000 if current trends in 
population density continue (Seto et al., 2012).

Long aware of these issues, the European Commission has been interested in 
promoting more sustainable cities (Commission of the European Communities, 
1990). One important approach includes promoting the efficient use of land, thus 
avoiding costs related to uncontrolled sealing of soil (European Commission, 
2011) and sprawling cities. Before addressing the sustainability issues of cities, 
it is important to acquire knowledge about and understand the nature of the 
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challenge (Batista e Silva & Sa Marques, 2010). Several actions have therefore 
been promoted to assess the state of European cities. The project, Monitoring 
Urban Dynamics and the follow-up project, Monitoring Land Use/Cover 
Dynamics (MOLAND), are two well-known initiatives spearheaded by the 
European Commission since 1998. These projects, hereinafter denoted simply 
as MOLAND, are intended to monitor the development of European urban 
areas. The MOLAND approach was in fact threefold: mapping the past land use 
changes in cities, understanding the observed urban dynamics, and forecasting 
future urban land use changes (European Environment Agency, 2002; Lavalle et 
al., 2000). As a result of the first mapping stage, land use and land use changes 
were mapped for a sample of more than 30 European cities and regions covering 
the period of the 1950s to the late 1990s. This mapping effort yielded a valuable 
digital geo-database that has been used in numerous assessments (Barredo et al., 
2003; Demicheli et al., 2001; Kasanko et al., 2006; McCormick et al., 2000). 
Late in the decade 2001–2010, the European Commission, through the program, 
Global Monitoring for Environment and Security (GMES), began funding the 
Urban Atlas (UA), which consists of a series of detailed land use maps for 2006 
(± one year), covering more than 300 large urban zones across the European 
Union.

Whereas both geo-databases are compatible with the CORINE Land Cover 
nomenclature, the MOLAND and the UA geo-databases are not directly nor easily 
interchangeable because of various differences in cartographic specifications. In 
this paper, we aim to revamp the MOLAND database from the digital archives 
and integrate the newly available data from the UA, thus adding an extra time 
step to the MOLAND time series. As it has gained form, integration of the two 
geo-databases has revealed some technical challenges, but it also turned out to 
be a promising effort that would allow the reuse and expansion of a valuable 
historical time series of urban land use/cover for a representative sample of 
nearly 30 European urban areas.

The following section describes in more detail the MOLAND and Urban 
Atlas geo-databases. In the next section, we define a methodological workflow to 
combine both datasets into a single, consistent, and extended time series of urban 
land use for the set of selected cities. In the section following, some basic results 
and indicators yielded from the newly combined geo-database are presented, 
with a focus on urban growth and urban land use intensity measures and maps. 
The concluding section discusses both the potentialities and limitations of the 
integrated geo-database and points toward future work.
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2. THE MOLAND AND THE URBAN ATLAS GEO-DATABASES

2.1 Revisiting the MOLAND dataset
The MOLAND geo-database consists of a time series of land use maps, transport 
network data, and statistical data for a set of European cities and regions. In this 
paper we primarily focus on the land use data for each city or region.

MOLAND land use data was built upon coordination of information on 
the environment (CORINE) Land Cover (CLC) map specifications (European 
Environment Agency, 2002; Kasanko et al., 2006). CLC is an ongoing mapping 
project that has mapped the pan-European land use for circa 1990, 2000, and 
2006. The nominal spatial scale of CLC is 1:100,000, and it has a minimum 
mapping unit of 25 hectares and a thematic resolution of forty-four land use/
cover classes organized in a three-tier hierarchical structure. MOLAND intended 
to monitor the land use/cover classes at city level, and so it required significant 
additional detail. It was therefore designed with a nominal scale of 1:25,000, a 
minimum mapping unit of 1 hectare for artificial land covers, and 3 hectares for 
non-artificial land covers. The land use/cover nomenclature was built upon that 
of CLC. Two additional hierarchical levels were added to those of CLC, reaching 
nearly 100 land use classes, thus substantially increasing the thematic detail of 
the original CLC land use/cover nomenclature. The selection of the cities was 
determined to guarantee a satisfactory representativeness of European mid- to 
large-sized cities from all corners of Europe. In total, approximately 30 urban 
areas were mapped. In most cases, the mapped areas corresponded to individual 
cities, but some transport corridors and other more extended urban areas were 
included as well (Table 1).

To allow for comparison between cities, the mapped extent of each city was 
delineated in a similar way. Initially, the historical and morphological core of 
the city was taken from CLC 1990 and a buffer area was constructed around it. 
The buffer's width was equal to 0.25 × √A, where A denotes the area of the city's 
core. Then the actual mapped area was either adapted to existing administrative 
areas or adjusted to include relevant neighbouring towns or other relevant 
infrastructures. On the other hand, the mapped extent of the transport corridors 
and extended urban areas was delineated independently and according to each 
case's specificities.
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Table 1. Urban areas mapped by the MOLAND project.

Mapped area Country Type of area

Belgrade
Bilbao

Bratislava
Brussels

Copenhagen
Dublin
Essen

Gothenburg
Grenoble
Helsinki
Iraklion
Istanbul

Lyon
Marseille

Milan
Munich
Nicosia
Palermo

Porto
Setúbal

Sunderland
Vienna
Algarve

Friuli Venezia Giulia
Harjumaa
Leinster

Northern-Ireland
Padua-Venice

Prague-Dresden

Serbia
Spain

Slovakia
Belgium
Denmark
Ireland

Germany
Sweden
France
Finland
Greece
Turkey
France
France
Italy

Germany
Cyprus

Italy
Portugal
Portugal

United Kingdom
Austria
Portugal

Italy
Estonia
Ireland

United Kingdom
Italy

Czech Republic-Germany

City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City
City

Extended urban area
Extended urban area
Extended urban area
Extended urban area
Extended urban area
Transport corridor
Transport corridor

Because MOLAND was meant to capture city development over the second 
half of the twentieth century, it contains an unusually long time series of land use 
data, with the following time steps: early 1950s, late 1960s, mid-1980s, and late 
1990s. The mapping effort was coordinated by the Joint Research Centre and 
supported by specialized mapping organizations, usually from the same country 
of each mapped urban area to take advantage of local expertise and data. The 
first mapping stage was carried out for the late 1990s (typically 1997–1998). It 
was performed through visual interpretations of high-resolution satellite imagery 
(panchromatic images from the Indian IRS-1C satellite, with 5.8 m resolution), 
using the same land use/cover nomenclature for all cities and CLC-compliant 
interpretation rules and procedures. A wealth of ancillary data for each urban area 
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was used to distinguish specific land uses that could not be recognized from the 
satellite images alone. Local thematic and base/topographic maps were used, and 
field trips were carried out as needed. The resulting land use/cover map served as 
the basic structure for the (re)construction of the preceding time steps. Historical 
base/topographic and aerial photography underpinned this task.

All in all, MOLAND presents a series of unique features with respect to other 
land use/cover oriented databases. It includes an unusually long time series covering 
forty to fifty years of urban land use development, and it has a considerably high 
spatial and thematic resolution. On the other hand, MOLAND is available for only 
a small sample of European urban areas, and the actual mapped area for each city 
is, in most cases, constrained to the core city and a slim surrounding buffer.

2.2 Urban Atlas: A systematic way of mapping
UA is a large set of high-resolution digital land use/cover maps, covering more 
than 300 European Union Larger Urban Zones (LUZs) with more than 100,000 
inhabitants. The LUZs were defined by Eurostat in an attempt to standardize the 
definition of a city boundary. LUZs approximate the functional area of a city, 
including the main core of the city as well as the surrounding hinterland, which 
was delimited by the analysis of commuting patterns2.

The UA project was launched by the European Commission and funded by the 
GMES program. The methodology and work were coordinated by the European 
Environment Agency and the European Commission's Directorate-General for 
Regional and Urban Policy.

The UA maps contain land use/cover information derived mainly from earth 
observations with support of other ancillary data, namely, base and topographic 
maps, city maps, the soil sealing layer, and off-the-shelf transport network and 
points of interest (GMES/DG REGIO, 2011). Google Earth was used as well to 
assist interpretation. The mapping procedure was quite innovative, as it consisted 
of a semi-automated procedure with a logical sequence of decision rules to 
distinguish between different land use/covers. For example, linear transport 
features were automatically integrated into the land use maps from the off-the-shelf 
transport network to form the main spatial backbone of the database. Classification 
of the urban residential areas from high to low density was done automatically by 
overlaying the soil sealing degree, which served as a proxy for the built-up density.

The maps depict land use around 2006 (± one year). The reference scale of UA 
is 1:10,000, that of minimum mapping unit (MMU), 0.25 hectares for artificial 
surfaces, and 1 hectare for all other classes. The positional accuracy is ± 5 m and 

 For more information on the Larger Urban Zone definition, consult: https://ec.europa.eu/eurostat/web/cities/
spatial-units
2
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the minimum reported thematic accuracy is 80%. The nomenclature of the UA is 
based on the one of CLC, with some adaptations. The UA legend is more detailed 
for artificial classes than for non-artificial ones. Whereas the artificial class group 
is disaggregated in seventeen classes (eleven classes in CLC), the non-artificial 
class groups are described only as either agriculture/semi-natural/wetland areas, 
forests, or water. No further breakdown is provided for these classes.

The UA is an interesting cartographic product as it combines an effective, semi-
automated mapping methodology with high spatial resolution for a very large and 
representative set of European urban areas. Use of LUZs as the mapping extent 
provides, in most cases, an excellent geographical context encompassing the main city 
core and far beyond (sometimes whole metropolitan areas). However, and unlike the 
MOLAND project, the UA did not privilege the thematic detail, and so the land use/
cover nomenclature is unfortunately much poorer. At the time of writing, an update of 
the UA is being constructed for the reference year 2012, with similar characteristics.

2.3 Bottom-line: the compromise against the dream of the 
cartographer
Table 2 summarizes the main characteristics of the MOLAND and UA geo-
databases. Although meant for similar purposes (i.e., monitoring the development 
of European cities), both datasets present different characteristics, and therefore 
different advantages and disadvantages. When analysing the characteristics of the 
UA, it almost seems that it was unaware of its predecessor MOLAND, as it privileged 
the completeness and spatial resolution over the thematic detail. Though the dream 
of the cartographer and urban analyst would be a combination of the best of both 
worlds—spatial detail and completeness from the UA and thematic detail from the 
MOLAND—the reality imposed a tough trade-off between cost and benefit.

In the following section, a methodology is proposed to address those differences 
in merging MOLAND and Urban Atlas to achieve a single, expanded geo-database.

Table 2. Main characteristics of the MOLAND and the Urban Atlas land use/cover datasets.

MOLANDProperty Urban Atlas

Thematic resolution
Minimum mapping unit 
for artificial land use/cover 
categories
Minimum mapping unit for 
natural land use/cover categories
Temporal coverage

Spatial coverage
Unit of analysis

99 land use/cover classes
1 hectare

3 hectares

Four time steps between 
1950s and late 1990s

+ 30 European cities
Ad-hoc city delimitations

20 land use/cover classes
0.25 hectares

1 hectare

Circa 2006. New version foreseen 
for reference year 2012.

+ 300 European cities
Larger Urban Zones
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3. INTEGRATING THE MOLAND AND THE URBAN ATLAS 
GEO-DATABASES
The combination of MOLAND and UA provides a unique historical digital database 
for a set of European urban areas, covering a time span from about 1950 to 2006. 
The integration of both datasets implied addressing some inconsistencies that stem 
from their specific characteristics. The most relevant inconsistencies concerned the 
coordinate systems, the spatial extent of the mapped areas, the different minimum 
mapping units, and the land use/cover nomenclatures. The general approach to 
make both datasets comparable was to find agreements between the two datasets. 
This typically implied reducing the spatial and thematic resolution of one or both 
datasets. The scheme in Figure 1 shows the general workflow followed to merge 
the MOLAND and UA geo-databases to achieve a consistent and comparable time 
series that can be used for visualization and analytical purposes.

Figure 1. Workflow to combine MOLAND and the Urban Atlas.
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In the first place, we had to select which cities to merge. Whenever MOLAND 
and UA data were available for a city, it was possible to include them in the 
subsequent workflow. A total of twenty-nine cities from sixteen European countries 
were selected, representing a wide geographical scope (Mediterranean, western, 
east-central, and northern Europe) (see Figure 2).

The second step involved projecting all MOLAND data onto the European 
Terrestrial Reference System 1989 and Lambert Azimuthal Equal Area coordinate 
system (ETRS89-LAEA), complying with the European INSPIRE Directive 
(Hansen et al., 2008). The mapped cities in the MOLAND geo-database were 
normally found in various national coordinate systems, while the UA was already 
projected in ETRS89-LAEA.

Figure 2. Selection of cities available in both MOLAND and Urban Atlas.
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Figure 3. Vienna: Urban Atlas mapping extent (in red), MOLAND mapping extent (in 
blue), and urban cluster (black line).

Another problem was related to the different mapping extents used for the 
same city in the two datasets. This was solved by finding the intersected area 
between the two. In the vast majority of cases, the extent from UA was far greater 
than the one from MOLAND. In such cases, the intersected area corresponds 
directly to the mapped extent in MOLAND. This allowed keeping the original 
MOLAND extent in most cases. Figure 3 shows the overlap between MOLAND 
and UA for Vienna. When the urban cluster, as defined in (Dijkstra & Poelman, 
2012), fell completely inside the overlapping area, the former was used as the 
main unit of analysis for the calculations and indicators presented in the next 
section of this paper.

The thematic harmonization involved finding a common and comparable 
land use/cover nomenclature for the merged geo-database. As already seen, the 
two datasets have a different thematic detail, with much less detail in the UA. 
The approach was to find agreements, and this often involved using the first 
hierarchical levels of the respective classifications to find matches. For example, 
although the MOLAND legend has seventeen subclasses of agricultural areas, 
twenty subclasses of natural and semi-natural areas, and ten subclasses of wetland 
areas, the UA merges all these land cover types into one huge class named 
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“agricultural areas, semi-natural, and wetlands.” The forest areas classification 
in MOLAND is broken down into ten subclasses, but in the UA, “forest” has 
no further breakdowns. Similarly, bodies of water are disaggregated into seven 
subclasses in MOLAND, but into only one class in UA. This meant that the 
merged geo-database could keep the coarser detail available only in the UA. 
Regarding the artificial land covers, more matches were possible. Table 3 shows 
the final land use nomenclature used in the merged geo-database. The land use/
cover classifications in both datasets were reclassified accordingly.

Table 3. Land use classification used in the combined geo-database.

Code Description

1
2
3

121
99
431
5

Urban residential
Ports
Airports
Industrial or commercial units
Agricultural, scrubs, herbaceous, open spaces
Forests and Green Urban
Water Bodies

Despite the common interpretation guidelines between MOLAND and UA 
(both based on CLC), some classification inconsistencies were detected. A 
complete correction of such inconsistencies would require a thorough check of 
each land use polygon of each city. Because such manual checking was unfeasible 
due to time and resource constraints, a semiautomatic verification procedure was 
implemented to remove the major classification inconsistencies between the two 
input datasets.

The verification procedure included two main screenings implemented for 
each city. First, the land use shares were calculated for each time step and then 
plotted as stacked bar charts against time. This allowed for visually perceived 
trends in land use changes for each city (e.g., a steady increase of urban areas 
while decreasing agricultural areas), and detecting anomalous peaks or dips in 
land use shares over time. Second, eventual peaks or dips in land use shares 
were further inspected on the map, thus allowing one to check whether such 
anomalies were the result of actual land use changes or, on the contrary, the result 
of classification inconsistencies. Few major inconsistencies were detected, and in 
all cases they occurred in the transition between the late 1990s (MOLAND) and 
2006 (UA). Land use polygons with inconsistent classifications were checked 
against ancillary information from available Web sources (Google Maps, Open 
Street Maps) in order to determine the most plausible classification according to 
the CLC mapping guide (Büttner et al., 2006). Figure 4 depicts an example of a 
particular site in Vienna where a large infrastructure was classified as “industrial 
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or commercial unit” in the MOLAND dataset and as “port” in the UA dataset. 
A closer inspection revealed that the site was in fact used as an oil refinery 
with some docking facilities for ships. Thus, the original classification from the 
MOLAND dataset was kept.

Figure 4. Example of thematic and spatial harmonization between the MOLAND and 
Urban Atlas datasets for a specific site in Vienna, Austria.

The figure also revealed a higher degree of geometrical generalization 
of the land use polygons pertaining to the MOLAND dataset. This stems 
from the different minimum mapping units used in both datasets: As already 
mentioned, MOLAND has a minimum mapping unit of 1 hectare for artificial 
surfaces and 3 hectares for all other land use/cover types, while the UA uses 
0.25 and 1 hectare, respectively. An additional pre-processing procedure 
was therefore developed to take into account the spatial resolution in an 
automated way. The information from the UA had to be generalized to fit the 
coarser resolution of the MOLAND dataset, as the inverse is conceptually 
not possible. All maps were converted from the native vector data format to 
raster format at 100 × 100 m resolution (1 hectare). In the case of the UA, the 
artificial land cover polygons of less than 1 hectare were filtered out prior to 
“rasterization.” Then the polygons were converted to raster format ensuring 
that in each 1 hectare pixel the land use class with more than 50% of the land 
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share was recorded. In all other cases, the land use class was determined by 
the dominant surrounding land use, or majority rule (i.e., the land use class 
with highest number of surrounding pixels). This ensured a full match of 
minimum mapping units for artificial land uses between the two data sources.

Finally, the raster map for 2006 was again processed in order to remove 
non-artificial patches of less than 3 hectares (i.e., three pixels). This was 
done by applying a raster function that groups all contiguous pixels of the 
same land use class. All the groupings of one or two pixels were removed 
and replaced by the dominant surrounding land use class using, again, the 
majority rule.

This processing chain removed most of the noise and mapping artefacts that 
often result when data at different resolutions are mixed. It also guaranteed 
that the minimum mapping units of 1 and 3 hectares were respected, allowing 
a smoother and more plausible land use transition for the whole time series.

All the land use/cover data were compiled in a geo-database that was 
structured in such a way as to allow easy and quick querying by different 
users (Figure 5). The data are organized per city and per year, and they are 
available in both raster and vector versions. In the raster files, only the land 
use/cover categories as found in Table 3 are recorded. The vector files, in 
addition to the land use/cover categories, contain information on the area and 
perimeter of each polygon feature. Representative files with a colour scheme 
complement the geo-database.

The final pre-processing step consisted of adding an estimate of total 
population for each city and time step. Population was therefore estimated 
based on data of population at commune level for a long time series (1960–
2010, in ten-year intervals) that has been recently generated internally at 
the European Commission. Adequate calculations adjusted the original 
population data to the spatial and temporal mapping coverage of each 
city. For example, linear interpolation was applied to infer population for 
interdecennial time steps whenever the MOLAND and UA land use/cover 
maps did not temporally match the original population data source.

Subsequent post-processing and analytical operations, such as the 
ones presented in the section following, build upon this geo-database and 
associated population data.
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Figure 5. Structure of the final geo-database.

4. URBAN EXPANSION IN EUROPEAN CITIES: EXPLORING 
THE MOLAND-UATL TIME SERIES
The results presented in this section are shown primarily as an example of what can 
be retrieved from the new geo-database. For illustrative purposes, Figures 6 and 
7 depict the urbanization process since the mid-20th century for Vienna (Austria), 
Prague (Czech Republic), Palermo (Italy), and Helsinki (Finland). As can be 
observed, the four cities show different urban morphology and growth dynamics. 
For example, Vienna has been expanding at a steady pace, as opposed to the other 
three, which had an early fast growth period followed by a slower pace.

Table 4 shows a brief characterization of twenty-nine cities under the focus of 
this paper. It summarizes the mapping area per city, population, population density, 
and built-up area for the 1950s and 2006, and corresponding percentage change. 
Copenhagen, Dublin, Duisburg, Essen, Milan, Mulheim, Nicosia, Oberhausen, 
and Porto reveal a population decrease. Overall, population density in Europe is 
decreasing. This phenomenon had been already observed by Ingram (1998).

There are various types of density as well as many ways and scales to measure 
it (Burton, 2000; Chin, 2002; Churchman, 1999). Having the land use per year 
and the corresponding population, it was then possible to calculate the net 
population density, as suggested by (Frenkel & Ashkenazi, 2008). This means 
that only artificial areas, and in particular the ones associated with residential 
use, were used as a denominator of population density. This provides a more 
accurate and realistic figure of the actual population density because it is not 
biased by size of the study area.

As demonstrated by Kasanko et al. (2006), when plotting population and 
built-up areas in relative terms, all cities are found to be above the blue diagonal 
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line (see Figure 8). This line represents a situation of even population growth 
and built-up, that is, built-up areas growing at the same pace as population. 
Cities above that line have experienced faster growth of built-up areas with respect 
to population growth. The farther the city is located above the line, the larger the 
gap between the two growth rates. The black diagonal line indicates the ordinary 
least square between the two variables. With a Pearson's R2 of 0.43 and a p-value 
of 0.0001, there is a positive effect of population growth in the built-up area. The 
linear equation slope of 1.64 indicates that for each additional percentage point of 
population, an additional 1.64 percentage points of built-up growth can be expected. 
Even in cases in which population has decreased, built-up change is always positive. 
Haase et al. (2013) also found this growth difference across European cities.

Figure 6. Urban expansion in Vienna, Prague, Palermo and Helsinki between 1950 and 2006.
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Figure 7. Share of different land use/cover types for Vienna, Prague, Palermo and Helsinki 
between 1950 and 2006.

The dotted lines in Figure 8 reflect the median for each of the variables, 
being 15.5% for population and 102.6% for built-up. This last value is driven 
mainly by southern cities. Cities belonging to other geographical blocks show 
a much less pronounced urban expansion in the 1950s–2006 period, with the 
exceptions of Grenoble and Bratislava. The latter cities and those from the 
southern block may be experiencing a rapid built-up growth due to a lower 
than average starting point, in which case they have been catching up with the 
overall trend. Rising living standards, changes in habitation preferences (single 
houses preferred over blocks or flats), and a reduction in average household size 
(smaller families) all contribute to more space required per person. Land use 
policies (attitude toward compact vs. sprawled urbanization, etc.) are known 
to be important factors too (Kasanko et al., 2006). Higher motorization levels 
(more private motor vehicles and an extended road infrastructure) have been 
contributing directly to ease of access to and from city centres, allowing people 
to spread spatially to suburban areas (Aguayo et al., 2007; Huang et al., 2007), 
where the price of land is lower.
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Figure 8. Population and built-up growth between 1950 and 2006.

By plotting the growth of built-up areas against the decrease of population 
density, cities were classified in four main groups according to their position above 
or below the respective means (dotted lines in Figure 9). Similar techniques have 
been applied in previous attempts to measure urban sprawl using scatter plots 
(Altieri et al., 2014; Frenkel & Ashkenazi, 2008). In Figure 9, cities falling in the 
upper right quadrant are characterized by strong urban dynamics, with high built-
up growth rates but great overall decrease of population density (high change). 
Cities in the opposite quadrant show a much more stable behaviour during the 
same time span (low change). On the upper left quadrant are cities affected by 
a low degree of built-up growth and a relative decrease of population density, 
which may indicate low urbanization activity, that is, few people attracted to the 
city core (partial change). Finally, the remaining cities in the lower right quadrant 
show high built-up growth-rates and little population density decrease, which 
indicates strong urbanization dynamics and attractiveness (partial change). It is 
remarkable that the upper right corner is composed exclusively of cities located 
in the southern/Mediterranean area of Europe, while the cities from Western 
Europe show the most moderate built-up growth rates. This confirms what has 
been already mentioned: Cities in the southern area were catching up with the 
most developed ones of the west and north during the last quarter of the twentieth 
century. In the map of Figure 10, each city is colour-coded according to the 
classification derived from this analysis.
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Figure 9. Increase in built-up areas and decrease in population density between 1950 and 2006.

Figure 10. Typology of cities according to the scatter-plot classification.
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5. DISCUSSION AND CONCLUSIONS
Long-time series of land use/cover maps are rare due to a variety of reasons. Efforts 
to consistently map and track land use changes have intensified most recently by 
the end of the twentieth century, as interest in the landscape, urbanization, and the 
environment start to gain momentum and as satellite imagery and geographical 
information systems become widespread. Currently, at the European level, there 
are several initiatives to monitor land use changes, the CORINE Land Cover 
project being one of the most acknowledged. However, to study more long-term 
dynamics and learn from a more distant past, longer time series data are essential, 
yet very little data exist. Even the CLC started recording land use changes only 
from 1990 onward.

The MOLAND geo-database, as thoroughly described earlier in this paper, 
is a unique project that has allowed researchers to gather data on land use/cover 
changes for an extended period spanning from about 1950 to the late 1990s, 
for a sample of more than thirty urban areas across Europe. Unfortunately, this 
remarkable initiative was not continued (let alone expanded, as it fully deserved). 
More recently, the UA project mapped land use in 2006 for over 300 European 
cities with considerable spatial resolution, but with low thematic detail.

In this paper we identified the opportunity to merge both geo-data sets to 
create an extended urban time series covering the period 1950–2006. This effort 
revealed a number of challenges that had to be tackled and that related to spatial 
and thematic inconsistencies between the MOLAND and UA. A workflow and 
methodology were set up to harmonize both data sets and make them consistent 
and comparable. This required a number of trade-offs, resulting in a loss of some 
thematic detail from MOLAND and a decrease of spatial resolution from the UA. 
Besides this unavoidable trade-off, additional limitations of the final product are 
referred to next.

As described in the third section of this paper, a set of semiautomatic 
verifications and GIS procedures was applied to harmonize the thematic and 
spatial detail of the two data sets. A screening and correction of the major thematic 
inconsistencies (e.g., the same land feature classified differently in MOLAND 
and UA data sets) were implemented, ensuring that the recorded land use changes 
between the late 1990s and 2006 were actual land use changes and not the result 
of issues with image interpretation rules. Nonetheless, because not every polygon 
was checked, smaller inconsistencies might still have been present. In addition, 
a set of generalization rules was applied to the UA in order to adjust it to the 
coarser minimum mapping units of the MOLAND data set. Although the applied 
GIS procedures ensured a nominal compliance with the minimum mapping units, 
those rules were applied automatically, without actual checking the satellite 
imagery of 2006. In fact, whenever a land use feature from the UA was below 
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the minimum mapping unit, it was filtered out and replaced by the dominant 
surrounding land use class. This sensible rule should apply in most cases, but it 
might not fit in all situations, thus adding to overall uncertainty. For example, 
when several land use classes are in the vicinity of a removed land use feature, 
closer inspection of the neighbouring land uses and their spatial arrangements 
would guarantee an even more pondered and accurate decision regarding the 
actual dominant land use. The highly aggregated land use nomenclature we used 
(with only seven broad land use classes) reduced considerably the thematic detail 
but also limited a great deal of uncertainty; therefore, the merged time series is 
not recommended for pixel-by-pixel analysis. Changing detection, for instance, 
should be done at a larger scale.

Despite these trade-offs and limitations, this project resulted in a new, 
integrated geo-database comprising a long, historical time series of urban 
land uses for nearly 30 European cities. This data set was further enriched by 
including population data for each time step. A first, exploratory analysis of the 
results demonstrated the usefulness and relevance of this mapping product for 
urban studies. The covered cities were classified according to their long-term 
record of land use changes, allowing the identification of trends and patterns in 
urbanization.

The work presented here is part of a broader line of research. Stages following 
will include more in-depth study of past and future urbanization processes and 
dynamics, for which some concrete technical challenges lie ahead: New and 
more robust indicators for characterizing urban growth are being developed, and 
finer population maps will be produced by downscaling population counts to grid 
level. In addition, the information compiled and structured in this geo-database 
could be used to improve the calibration of land use models at the EU level 
(Lavalle et al., 2011). Finally, the forthcoming update of UA covering 2012 can 
be integrated as an additional time step in the MOLAND-UA geo-database.

This work permitted us as well to highlight the importance of the availability of 
long and consistent land-use time series data, which are still lacking worldwide, 
and it will definitely contribute to land change science (Rindfuss et al., 2004). 
The harmonization effort presented herein could be carried out only at the cost of 
detail and for a relatively small sample of cities. This should, therefore, serve as 
a reminder to what could have been done if, in the past, more had been invested 
in mapping. To avoid such oversights in the future, systematic and consistent 
tracking of land use changes should be of paramount concern to researchers, 
governments, and other relevant agencies and organizations.
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ABSTRACT
Current developments in the field of land use modelling point towards 
greater level of spatial and thematic resolution and the possibility to model 
large geographical extents. Improvements are taking place as computational 
capabilities increase and socioeconomic and environmental data are produced 
with sufficient detail. Integrated approaches to land use modelling rely 
on the development of interfaces with specialized models from fields like 
economy, hydrology, and agriculture. Impact assessment of scenarios/policies 
at various geographical scales can particularly benefit from these advances. 
A comprehensive land use modelling framework includes necessarily both 
the estimation of the quantity and the spatial allocation of land uses within a 
given timeframe. In this paper, we seek to establish straightforward methods 
to estimate demand for industrial and commercial land uses that can be used in 
the context of land use modelling, in particular for applications at continental 
scale, where the unavailability of data is often a major constraint. We propose 
a set of approaches based on ‘land use intensity’ measures indicating the 
amount of economic output per existing areal unit of land use. A base model 
was designed to estimate land demand based on regional-specific land use 
intensities; in addition, variants accounting for sectoral differences in land use 
intensity were introduced. A validation was carried out for a set of European 
countries by estimating land use for 2006 and comparing it to observations. 
The models’ results were compared with estimations generated using the ‘null 
model’ (no land use change) and simple trend extrapolations. Results indicate 
that the proposed approaches clearly outperformed the ‘null model’, but did 
not consistently outperform the linear extrapolation. An uncertainty analysis 
further revealed that the models’ performances are particularly sensitive to the 
quality of the input land use data. In addition, unknown future trends of regional 
land use intensity widen considerably the uncertainty bands of the predictions.

 This chapter was first published as Batista e Silva, F., Koomen, E., Diogo, V., & Lavalle, C. (2014). Estimating 
demand for industrial and commercial land use given economic forecasts. PLoS ONE, 9(3), e91991. https://doi.
org/10.1371/journal.pone.0091991

1
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1. INTRODUCTION
The expansion of industrial and commercial land is poorly understood. Much 
research focuses on sector-specific dynamics and aspects such as industry 
location, productivity and employment (Brülhart & Traeger, 2005; Esteban, 
2000; Ezcurra & Pascual, 2007). The relation with land use change, however, 
is hardly studied. Yet this is an important aspect of the potential impact of 
economic development on the landscape and other environmental conditions. 
The development of certain economic activities requires the conversion of land 
from natural/semi-natural to artificial covers, often irreversibly. These dynamics 
are difficult to grasp: they relate to global technological and economic processes 
(e.g., deindustrialization of developed countries, outsourcing of production to 
cheap-labour countries, increased importance of information and communication 
technologies) as well as regional and local dynamics reflected in, for example, 
regional competitiveness and specialization, agglomeration economies and the 
performance of individual firms (Brülhart, 2001; Cohen & Paul, 2005; De Vor, 
2011; Mulatu et al., 2010; Raspe & van Oort, 2011; Tregenna, 2009).

The understanding of the land dynamics related to industrial and commercial 
activities is particularly relevant for land use models that try to assess the 
potential future of the landscape. Land use modelling can be used to identify the 
drivers of land use change, and explain how these drivers and local and spatial 
factors interact to produce the observed landscapes. By understanding these 
mechanisms, past landscapes can be reconstructed given known historical records 
and future landscapes can be envisaged under different scenarios (assumptions 
on socioeconomic changes and policy alternatives). As a consequence of these 
capabilities, land use models have become an important element in integrated 
ex-ante impact assessment of policies at a wide range of spatial scales (Koomen 
et al., 2008; Verburg & Overmars, 2009). Land use models, as part of a broad 
range of land system models, have an important role in supporting future land use 
policy, and may provide input for planning processes (Koomen & Borsboom-van 
Beurden, 2011; Rounsevell et al., 2012).

In practice, land use models are used to make simulations of land use change 
in terms of quantity and/or location (Veldkamp & Lambin, 2001). Non-spatial 
land use models are specialized in estimating the amount of change per land use 
type as country or regional aggregates, while  spatially-explicit models are also 
able to reproduce where land use changes are likely to occur, and which local land 
use conversions (from one land use type to another) are expected to take place 
(Koomen & Stillwell, 2007). Typically, spatially explicit land use models involve 
the use of techniques broadly classified as cellular automata. In such models, 
space is represented by matrices of regular sized cells. Each cell may have a 
finite number of states (land uses), and these may swap over time according to a 
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predefined set of rules regarding local and neighbour characteristics (Batty et al., 
1999; Batty, 1997). On the other hand, non-spatial land use models may utilize 
a range of techniques, from econometric to system dynamic and agent-based 
approaches.

A complete land use modelling approach requires the two aspects to be 
integrated into a coherent framework: the estimation of the quantity and the 
spatial allocation of land uses for a given timeframe (Verburg et al., 2006). In 
most approaches, land use demand projections are computed externally and then 
are fed into spatial-explicit land use models for the allocation. As Verburg & 
Overmars (2009) mentioned, this ‘top-down’ approach is necessary especially 
when land demand is mainly determined by “forces that are exogenous to the 
land allocation”. The allocation of the required land is then simulated by the 
geographical model considering two main dimensions: local suitability and 
neighbourhood interactions between the different land uses (Heistermann et al., 
2006). The Land Use Modelling Platform is an example of a structured platform 
able to integrate the two essential components of land use modelling: quantity of 
change and spatial allocation (Lavalle et al., 2011). This platform was designed 
for territorial impact assessment of European policies, and can be configured 
project-wise, as the work by Mubareka et al. (2013) demonstrates.

Changes in land use quantity are often influenced by dynamics that occur 
at larger spatial and temporal frames and involving macro-economic and 
demographic changes. Therefore, the prediction of changes in land use require 
adequate economic context (Veldkamp & Lambin, 2001). Economic models 
“provide a structure to represent the competition among different sectors, 
changes in management and technology and demand shifts due to trade or policy 
interventions” and are thus an important and representative input to quantify 
some of the drivers of land use demand (Heistermann et al., 2006). As Rounsevell 
et al. (2012) have recognized,

innovative coupling of a range of models would allow for the consistent 
analysis of the land system and its interactions as a whole. The multi-model 
approach makes use of the strengths of existing, individual land system models 
and, at the same time, avoids the development of an unmanageably complex 
model with which to represent the whole system.

At the continental scale, most recent land use models are now able to 
simultaneously simulate the allocation of more than one land use type, allowing 
land use competition to be represented. This means that, besides the demand for 
each modelled land use type, specific local suitability and the spatial interactions 
between land uses must be known. In models such as the CLUE-S (Verburg et al., 
2008) and EU-CLUE-Scanner (Lavalle et al., 2011), the latter aspects are addressed 
through a combination of empirical-statistical and rule-based approaches.
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The thematic detail of models applied to small scale/large extent areas is 
usually restricted to just a few major groupings of land use types. Typically, 
artificial cover (often named ‘urban’ or ‘built-up’) is modelled as a single class, 
lumping together uses as distinct as residential, industrial, commercial, services, 
while other ‘artificial’ land uses, like transport facilities (networks, ports, airports) 
or green urban areas and sports and leisure facilities are kept static (i.e., not 
modelled) due to difficulties in mimicking the spatial dynamics underpinning 
such land uses through current pixel-based models. Also lacking are approaches 
to model industrial and commercial areas as a separate class. Having sensible 
methods to estimate land demands for these uses is probably the first condition 
to allow a split of the ‘artificial’ class into residential and industrial/commercial/
services.

This paper explores and tests methodically various alternatives of estimating 
land demand for industrial, commercial and services land uses (from here on, we 
may refer to this grouping simply as ‘industrial and commercial land use’). The 
main focus is put into developing and testing approaches that transfer economic 
projections into potential land demand for a large area comprising several 
European countries. By studying the links between economic performance and 
land use dynamics, we hope also to contribute to wider and tighter integration 
of geography-based and economic-oriented models. Quantitative and empirical 
approaches will be used to explain recent expansion of industrial and commercial 
land, thus in line with Rounsevell et al. (2012) who stated that

empirical analysis of past and present land use change has an important role 
in providing insights into the socio-economic and ecological processes that shape 
land use transitions. (…) For this, quantitative data and spatial information (…) 
are necessary to detect and assess land system change, enable up-scaling of 
results, cross-regional comparisons and longitudinal analysis.

In the following section, we review a selection of existing approaches to 
model demand for urban and/or industrial and commercial land. The subsequent 
sections postulate the methodology applied in this study, present a validation of 
the results and discuss the sensitivity to various forms of inputs and potential 
sources of uncertainty. The last section of this article wraps up and discusses the 
main findings and their implications.

2. ESTIMATION OF LAND DEMAND: REVIEW OF EXISTING 
APPROACHES
The estimation of future built-up area demand is usually done in the context of 
scenario studies but rarely the implications of the selected approaches are analysed 
or even discussed (Hoymann, 2012). The appropriateness of the approaches is 
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likely to vary according to the study area, spatial resolution and temporal scope 
of each application. Hoymann (2012) identified three approaches to calculate 
demand for built-up area: trend extrapolation, regression models and density 
measures. In the same study, a validation exercise of the three approaches to 
calculate future built-up area was implemented for Germany and Czech Republic 
at two different spatial scales. Different models were calibrated with historical 
data and simulations were made for current built-up areas and then compared 
with observed data. One striking conclusion was that different approaches to 
determine future urban demand could lead to different outcomes, thus highlighting 
the uncertainty associated particularly with long-term projections.

Trend extrapolations apply observed growth rates of built-up area to estimate 
future land demand. This approach does not take into account any driving 
force, and simply assumes that past trends will remain constant in the future. 
This assumption may hold for short-term projections. However, the accuracy 
is expected to deteriorate with time as no causal factors are taken into account. 
On the contrary, regression models integrate explanatory variables to drive 
land use changes. Interactions between different drivers of land use change can 
be combined in multiple regression models. The selection of the variables to 
integrate the regression models are either subject to theory or automatic selection 
through exploratory analysis.

In the work of Reginster & Rounsevell (2006) population and gross domestic 
product (GDP) were used as predictors of urban land use by means of a regression 
approach. The coefficients for the two independent variables of the regression 
were estimated using data from the year 2000 for Europe. Then, these coefficients 
were applied to different projected population and GDP in order to calculate 
future urban land use demand for different scenarios for the temporal range 2000-
2080. However, a formal validation of the regression model was not performed. 
Seto et al. (2011) studied the urban expansion between 1970 and 2000 at the 
global level by collecting and analysing results from the literature, summing a 
total of 326 case studies of 292 unique geographical locations distributed across 
the world. The annual growth rate or urban expansion was regressed against 
several socio-economic and locational variables. It was found that population 
and GDP growth rates positively influenced urban expansion, while farm 
subsidies, by increasing returns of agriculture land, hindered urban expansion. 
Results also suggested that urban growth is more sensitive to GDP growth in 
higher income countries than in lower income countries, and that in India and 
Africa, population growth is the main driver of urban expansion. The model 
also showed that low elevation coastal areas are more prone to higher expansion 
rates. Regression models to explain industrial land use have also been tested. In 
the work of Beckers & Schuur (2015), a set of regression models establishing 
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a relationship between employment and industrial land use in the Netherlands 
have been critically assessed. Their empirical findings suggest that regression 
models based on sectorial employment as the only predictors are insufficient to 
explain industrial land use, even when time lag effects and different scales of 
analysis are taken into account. De Vor (2011), on the other hand, studied the 
impact of spatial factors on the location choice of industrial sites, concluding that 
high accessibility and economies of scale (translated in high land value and size 
of the working age population) are positively related to the observed supply of 
industrial sites in a Dutch region.

In regions where land is scarce and there is pressure to develop 
available land, there is a growing concern regarding the conflicts between 
the development of land and the protection of other assets like forested 
areas, farm land, landscapes and ecosystems (Lambin & Meyfroidt, 2011). 
Particularly in China, high demographic and economic growth rates of 
urbanizing regions have led to significant land consumption in the last two 
decades, thus increasing concerns about deterioration and depletion of land. 
Moreover, the availability of land for industrial development at low prices 
by local governments does not encourage an efficient use of land, leading 
to extensive land use and increased loss of agriculture land (Huang et al., 
2011). For these reasons, in China, as well as in other densely populated 
parts of the world like Japan and the Netherlands, the promotion of land use 
efficiency is becoming an important aspect in sustainable spatial planning 
(Chen et al., 2007; Huang et al., 2011; Louw et al., 2012; Meng et al., 
2008). In this context, measures of land use efficiency are being used by 
land use researchers and planners. Studies like those from Meng et al. 
(2008) and Huang et al. (2011) have measured land use intensity/efficiency 
for the industrial land use in two different areas in Beijing, China. In its 
most simple form, land use intensity is measured as the economic output (in 
monetary terms) per unit of land surface. Empirical evidence collected and 
presented in both studies showed that land use intensity varies greatly across 
sectors, and that these differences may reach a factor of 40 between the 
least and the most land efficient sectors. In a study carried out for the whole 
of the Netherlands, it was also found that the average land use intensity of 
industrial land varies considerably across regions, and that those variations 
are mainly related to the sector composition of each region (Louw et al., 
2012). In line with what has been diagnosed for China, Louw et al. (2012) 
also argued that, in the Dutch case, the supply of generous amounts of low-
priced industrial land by municipalities (as a way to foster local economy) 
does not encourage the land use efficiency.

Intensity measures of the land use can also be used in the context of the 
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estimation of future land demand, as proposed by Hoymann (2012). The general 
principle of the approach is formulated below:
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where LUI stands for Land Use Intensity of the land use u, in a region r in the 
year t. V refers to a socio-economic variable related to the amount of land A. 
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To illustrate, say that, for a given region in a given time in the past, both the 
GDP and the industrial and commercial land use are measured in monetary and 
surface area terms, respectively. GDP can be obtained from official national or 
regional statistics, while the industrial and commercial land can be obtained either 
from land use maps or statistical registries. The land use intensity is obtained by 
dividing the GDP by the total industrial and commercial area, and expressed as 
units of currency per hectare of industrial and commercial use (eq. 1). Given a 
projected GDP for a year in the future, the amount of industrial and commercial 
land required to ‘support’ the expected GDP can be calculated (eq. 2). This 
approach assumes a stationary land use intensity over time. Yet, a dynamic land 
use intensity could be inferred from time-series analysis or estimated through 
regression techniques.

Another family of approaches to estimate future urban growth is the System 
Dynamics. System dynamic modelling was first introduced in the mid-1950’s 
by Forrester and was initially applied to solve engineering problems related 
to control systems in industry (Forrester, 1961). Soon after, the precursor of 
this family of models realized the potential for application to a wide range of 
social and economic problems, and dedicated a publication to urban dynamics 
(Forrester, 1969). This framework is suited for resolving non-linear and complex 
problems, allowing a representation of the behaviour of dynamic systems over 
time and the feedbacks between the various elements. The use of system dynamic 
techniques in the context of land use change modelling has become particularly 
popular among researchers from China. For example, Luo et al. (2010) and Zheng 
et al. (2012) have used the system dynamics approach to compute urban land 
demand, and then used the CLUE-S model to allocate the demands in the spatial 
dimension. In both studies, the demand was the result of a complex system where 
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demography, economy and land use were interrelated. In addition, the work of 
Wu et al. (2011) is an example of how system dynamic models can be used to 
make ex-ante evaluation of the impacts of scenarios of different urban land use 
policies. Even more recently, Lauf et al. (2012) were inspired by the system 
dynamic principles to address the problem of modelling urban systems where 
growth and shrinkage occur simultaneously within the same city-region due to 
contradictory factors (declining population; changing of population/household 
structure; changing of housing preferences).

Fragkias & Geoghegan (2010) developed a spatially explicit model for a county 
in the United States focusing on industrial and commercial land use change. 
The objective of this study was not so much concerned with the estimation of 
aggregated land demands for industrial and commercial areas, but more related to 
understanding the local factors affecting the discrete choices of land conversions. 
The underlying model is mainly econometric and land use changes are function 
of individual decisions to convert undeveloped into developed land parcels 
(residential, industrial or commercial). Two main assumptions are present in the 
econometric model. First, landowners seek the maximization of their earnings 
with respect to the net expected returns of a variety of possible conversions. 
Second, each land parcel has characteristics that influence both the one-time net 
return of the land conversion and the returns related to earnings of the land in its 
undeveloped state. Distance to urban centres and transportation networks/nodes, 
neighbourhood, environmental conditions, planning and regulations are among 
such characteristics. In sum, this approach could be described as purely bottom-
up, whereby the land demand for industrial or commercial use is not calculated 
a priori, but rather the result of individual decisions over time. This exhaustive 
modelling approach, though, requires a wealth of detailed data which is often not 
available for entire countries let alone for larger regions.

In the scope of the European SENSOR project2, an integrated approach to 
calculate demand for different land uses was proposed (Jansson et al., 2008). One 
component of the entire modelling framework was the NEMESIS econometric 
model, which was adapted in order to calculate endogenously demand for different 
land uses: agriculture, forestry, tourism, transport infrastructures, natural areas 
and urban. The latter is further differentiated in housing and commercial/industrial 
built-up. The investment in commercial and industrial buildings is computed for 
each given moment in time as a negative function of rental price of buildings, 
a positive function of production and a negative function of technical progress. 
The net investment in buildings for a given time t corresponds to the building 
stock, in Euros, in time t minus the building stock in time t-1 times a parameter 

 http://www.sensor-ip.eu2
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reflecting the rate of decay of buildings. The net investment is determined for 
over 30 economic sectors represented in the model, and then summed to obtain 
the total net investment in commercial and industrial buildings. A ‘technical 
coefficient’ transforms the total net investment, expressed in monetary terms, 
in actual land requirements. A similar approach is used to obtain demand for 
new residential land. However, the investment in housing buildings is, instead, 
a positive function of real disposable income, and negative functions of the real 
interest rates and building prices. Calibrated with data from 2000, the model is 
able to make estimations on demand for housing and commercial and industrial 
areas by first determining the net investment in buildings for any given year. 
The land demands are computed at the country level and then passed on to the 
CLUE-S model for spatial allocation at the resolution of 1 km2 (Jansson et al., 
2008). An important characteristic of this approach is the linkage between the 
economic dynamics and its consequences in terms of potential land uptake, as 
well as the consideration of feedbacks in the process. As a result, the land claims 
of the different sectors are “price elastic to the extent that they will respond 
negatively to any increase in building price” (Le Mouël et al., 2009).

In a nutshell, and despite all the progress made so far in the field of land use 
change, specific focus on the industrial and commercial areas has been limited so 
far. Models addressing dynamics of industrial and commercial land are usually 
applied at local scales and/or require data inputs inaccessible or even non-existent 
at continental scales. In addition, formal validations of the various approaches 
are lacking. Yet, nowadays, policy support at supra-national level demands more 
integrated assessments together with more spatial and thematic detail.

3. METHODS TO ESTIMATE DEMAND FOR INDUSTRIAL AND 
COMMERCIAL LAND

3.1 Overview
The objective of this study is to develop and validate approaches to estimate 
demand for industrial and commercial land. The approaches should be relatively 
straightforward so that they can be easily replicable and applicable to large 
spatial regions (e.g., countries and continents) in the context of land use 
modelling. We propose to explore in particular those approaches based on land 
use intensity measures. The main reason for this choice relies on the fact that, as 
reviewed in the previous section, these measures are not especially intensive to 
calculate, requiring only a few aggregate variables, characteristics which become 
relevant when working at very large spatial extents. Still, intensity measures are 
informative and conceptually easy to interpret. Moreover, they link to sector-
specific processes of economic development that are expected to be relevant for 
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the land uptake of industrial and commercial use. Using intensities allows linking 
land use simulations to regional economic projections.

Below in this section, several variants of the land use intensity approach 
are formally introduced. By definition, intensity measures integrate one driver 
of land use change at a time. In this study, sector gross value added (GVA) is 
used as a proxy for sector economic output. In addition to the land use intensity 
approaches, trend extrapolations are also tested. Trend extrapolations can be seen 
as the simplest way to make estimations because they do not specifically address 
drivers of land use change, but rather apply observed growth trends to describe 
possible future conditions. The main reason to consider trend extrapolations in 
this study is to create an adequate term of comparison for the estimations based 
on intensity measures.

Once introduced, the models will be applied to estimate the demand for 
industrial and commercial land for a set of countries in Europe.

3.2 Models description

3.2.1 Trend extrapolation (models 1 & 2)
Two trend extrapolation methods are considered: a linear extrapolation (model 
1) and an exponential extrapolation (model 2). The linear extrapolation is 
formulated in equation 3:

where A refers to the industrial and commercial area, t0 and t1 correspond to the 
starting and ending years of the calibration, respectively, and ε is the error term. 
In this method, the average yearly absolute growth of the calibration period (t0 
to t1) is multiplied by the total forecasting years (t2 – t1) to obtain the estimate for 
desired year t2. In the exponential extrapolation, the average yearly growth rate 
G observed between t0 and t1 is firstly obtained through equation 4, and it is then 
applied to estimate the industrial and commercial land in t2 (Eq. 5). The graph in 
Figure 1 shows the application of both models to a hypothetical region with 200 
ha of industrial and commercial land in 1990, and 300 ha in 2000.
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Figure 1. Extrapolation models for hypothetical region with 200 and 300 hectares of 
industrial and commercial land in 1990 and 2000.

3.2.2 Region specific land use intensity (models 3 & 4)
The economic product and surface area of commercial and industrial uses are 
consistently highly correlated at the regional level. If we take the sum of the 
regional gross value added of the industrial, commercial and service sectors and 
relate it to the respective surface area as reported by the CORINE Land Cover 
(CLC) datasets, correlation coefficients ranging between 0.74 and 0.76 can be 
found for the years 1990, 2000 and 2006, in Europe. This suggests that, in general, 
the higher the economic product of a region, the more physical infrastructure is 
required to support the economic activity.

Models 3 and 4 are characterized by using economic output or product P of 
regions as the driver of development of industrial and commercial areas. In both 
models, a land use intensity approach is used to relate the economic product with 
the respective area of industrial and commercial units. In model 3, the land use 
intensity LUI is computed for the year t1 and measured as economic output per 
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hectare of industrial and commercial land (Eq. 6). Then, assuming a stable land 
use intensity in time, and knowing the product P for t2, the total industrial and 
commercial land is predicted (Eq. 7).

This model takes the whole regional product and the whole existing area 
of industry and commerce per region in t1 to compute the land use intensity. 
However, the total amount of industrial land is strongly related to historic 
developments and only partly dependent on current economic performance. 
In fact, as existing industrial and commercial land is likely to remain (with or 
without actual economic activity), this inertia is not captured by a single and 
static snapshot of the land use intensity. So we should perhaps focus especially 
on changes in economic development and related changes in the amount of land 
needed. This implies that the land use intensity of new developments is important 
in order to capture shifts in the production structure. Model 4 builds upon this 
idea. It measures land use intensity only of the industrial and commercial land 
developed during the calibration period t0 and t1 (Eq. 8). The ‘land use intensity 
of the recently developed land’ is then used to estimate the extra land related to 
the growth of the product in the subsequent period (t1:t2) (Eq. 8). Contrary to 
the model 3, this approach ignores the land use intensity of the industrial and 
commercial land developed prior to t0.

We call these approaches ‘region specific’ because the intensity measures 
described above can be computed separately for any set of regions composing 
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the whole of any area of interest. Consequently, regional differences in land use 
intensity (which are underpinned by differences in productivity and production 
structure) are captured.

3.2.3 Region and sector specific land use intensity (models 5 & 6)
Industrial and commercial land is a rather broad and heterogeneous land use class. 
For example, in the CORINE Land Cover nomenclature, the homonymous land 
use class includes factories of all different kinds of industries, facilities for energy 
production and telecommunication networks, facilities related to defence and 
security, shopping malls and exposition sites, and a wide range of facilities related 
to public or private services likes schools, university and research campuses and 
hospitals (Büttner et al., 2006). Trying to model such a heterogeneous class as a 
whole poses obvious limitations. Most obvious of all, land use intensities vary 
considerably among industries (Huang et al., 2011; Louw et al., 2012; Meng et 
al., 2008), let alone the differences between the various economic sectors.

To address this limitation, one could think of making the land use intensity 
measures both region and sector specific. In this case, the economic product of a 
given sector s would be related to the land area A known to be used by sector s 
in year t1 (Eq. 10). At this point, it would be possible to estimate the aggregated 
industrial and commercial land for a given t2 (Eq. 11). Conceptually, this 
formulation is more robust than models 3 and 4 because it allows the integration 
of land use intensities specific to n number of sectors (model 5). In addition, a 
factor ω could be used to transform the land use intensities when calculating A 
in t2, as a function of the observed changes in LUI between t0 and t1, that is ωs = 
f(ΔLUIs,t0,t1). In this study, we let ω = 1 for all sectors.

This model can be also combined with the concept of ‘land use intensity of 
the recently developed land’, as introduced in model 4. This is done by applying 
equations 12 and 13 (model 6):
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4. CASE STUDY: ESTIMATION OF INDUSTRIAL AND 
COMMERCIAL LAND USE IN EUROPE

4.1 Overview of the case study set-up
The case study consists of estimating the amount of industrial and commercial 
land use in Europe and comparing the estimates against reference land use 
data. Estimates will be produced by each of the six models described in the 
previous section and listed in Table 1, for a set of Central and Western European 
countries. Countries from Scandinavia, the Balkans Eastern Europe and the UK 
were not included in the analysis due to incomplete land use and/or economic 
data time-series. The spatial unit of analysis used was the NUTS2 regions3.

In order to measure the predictive power of land change models, Pontius et al. 
(2004) and Pontius & Malanson (2005) recommended that the calibration and 
validation should be separated processes, and that the modelling results should 
be compared to a ‘null model’. The null model predicts pure persistence, i.e., 
no change during the modelling time span. In line with these recommendations, 
each of our models is calibrated using historical data for two points in time, t0 
and t1, and is then used to estimate industrial and commercial land for a third 
point in time, t2. Finally, all models (including the null model), are compared in 
terms of their ability to predict the actual total industrial and commercial land 
for t2  as reported in a reference data source.

The following subsection will focus on the data used to feed the models 
and generate the estimates. Finally, the indicators used to measure the model 
performances are presented, and the results are reported and commented.

 The Nomenclature of Territorial Units for Statistics (NUTS) is Eurostat’s official regional subdivision for 
collection and reporting of statistical data. It is structured in four hierarchical levels, from NUTS-0 (countries) 
to NUTS-3 (sub-regions).

3
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Table 1. Main model characteristics

Model 
no.

Family of approach Driver of 
land use 
change

Calibration 
years

Recent land 
use intensity

Sector 
specific LUI

Equations

M1
Trend extrapolation  

(linear)
None 1990, 2000 3

None 1990, 2000 4 & 5

2000 6 & 7

2000 10 & 11

1990, 2000 8 & 9

1990, 2000 12 & 13

Gross Value 
Added

Not  
applicable

Not  
applicable

Not  
applicable

Not  
applicable

No No

No Yes

Yes No

Yes Yes

Gross Value 
Added

Gross Value 
Added

Gross Value 
Added

Trend extrapolation 
(exponential)

Land use intensity  
measures

Land use intensity  
measures

Land use intensity  
measures

Land use intensity  
measures

M2

M3

M4

M5

M6

4.2 Data

4.2.1 Economic data
Gross value added per sector of activity was collected from Eurostat’s online 
database4 at regional level (NUTS3). A time-series comprising the period 1985 to 
2009 was compiled. All values were initially collected in current prices in Euros. 
The existing gaps were filled by using United Nations (UN) data5, which were 
available in current US Dollars at country level only. For the missing years in the 
Eurostat database, annual growth rates were derived from the UN data, and then 
applied to generate country level data in Euros. Finally, the country values were 
regionally disaggregated using the regional shares of the closest available year 
in Eurostat. For the specific purpose of the case study, two additional procedures 
were applied. The values in current prices in Euros were transformed to constant 
prices as of 2005. The economic output expressed in constant prices is more 
suitable for time-series analysis because the effect of inflation is removed, thus 
reflecting the actual economic growth. Finally, the NUTS3 values were aggregated 
to NUTS2 to match with the spatial unit of analysis used in this study. GVA from 
three main categories of economic activity was used: industry; commerce and 
private services; and public services and administration.

https://ec.europa.eu/eurostat/ 

http://data.un.org

4
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4.2.2 Land use data
The source for ‘industrial and commercial land’ is the CORINE Land Cover 
(CLC). The three available editions (1990, 2000, 2006) were used. In the context 
of this case study, we considered 1990 as t0, 2000 as t1 and 2006 as t2. The maps 
produced in the context of the CLC project are the only datasets providing a time-
series of land use change that are consistent across European countries (Batista 
e Silva et al., 2013; European Environment Agency, 2006) because common 
nomenclature and standard methodology guidelines were used in its elaboration 
(Büttner et al., 2006; European Environment Agency, 2007). However, one 
major disadvantage of CORINE Land Cover is related to the thematic detail of its 
nomenclature. As mentioned earlier, the CLC class ‘industrial and commercial’ 
land use class aggregates a broad range of land use sub-categories that are not 
distinguishable by any further breakdown. As a result, CLC alone does not 
provide the minimum necessary sectorial detail to implement models 5 and 6.

To address this limitation, we focused on two countries in more detail. 
These countries were selected based on their different economic structure 
and the availability of detailed land use datasets and comprise of Spain6 and 
the Netherlands7. To calculate sector specific land use intensities, we first had 
to correspond the broad economic sectors with land use classes found in the 
Spanish and Dutch land use maps (see Table 2). This correspondence allowed 
us to compute the land use intensities for the three broad economic sectors s for 
the Spanish and Dutch NUTS2 regions, using equation 10 where the economic 
product P was represented by the GVA. The land use intensities were computed 
for t = 2005 in the case of Spain and for t = 2006 in the case of The Netherlands. 
These years were chosen in order to match the reference dates of the national 
land use data sources.

We found that LUIcommerce > LUIservices > LUIindustry for all regions, i.e., the highest 
economic output (GVA) per unit of land occurs in the commerce sector, followed 
by the services sector and by the industry sector. This relationship can also be 
interpreted as the area necessary to produce the same monetary unit, which is 
highest in the ‘industry’ sector and lowest in the ‘commerce’ sector. To find whether 
these patterns were consistent across regions, the coefficient of variation CV was 
computed for each sector s and country c, with σLUI and μLUI being the standard 
deviation and the average of the land use intensity, respectively (see Eq. 14).

Sistema de Información de Ocupacióm del Suelo en España, http://www.siose.es/

Statistics Netherlands, http://www.cbs.nl
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Table 2. Correspondences between broad economic sectors and land use nomenclatures (SIOSE and 
CBS). Between brackets are the respective class codes of both Spanish and Dutch land use maps.

Broad sector label Land use classes (SIOSE, Spain) Land use classes (CBS, Netherlands)

Industry
Industry (821, 822, 823); mining and  

quarrying (833); energy (891, 892, 893, 
894, 895, 896); water supply (911, 913)

Commerce and offices (841); hotels 
(842); recreation parks (843);  

camping (844)

Public administration (851);  
health (852); education (854); 

penitentiary (855)

Business estates (24);  
mining area (33)

Retail and catering (21)

Public facilities (22); socio-cultural 
facilities (23)

Commerce and 
private services

Public 
services and 

administration

Table 3 presents the average land use intensities per sector and per country 
and the respective coefficient of variation. The results show a relatively small 
variance of the land use intensities of each sector within each country (CV < 1 
for all sectors in both countries). In addition, considering Spain and Netherlands 
altogether, we could infer that the commerce and service sectors are, on average, 
27.6 and 6.7 times more land use intense than the industry sector (see values 
between brackets in Table 3). These values can be interpreted as ‘land use 
weights’. The higher the ‘weight’ the higher the land use intensity and, therefore, 
the less land required to produce one monetary unit of GVA.

These empirical findings can be used to make an estimation of the sector 
composition of the ‘industrial and commercial’ class of CLC, i.e., how much of the 
whole land classified as ‘industrial and commercial’ in CLC refers to the generic 
sectors ‘industry’, ‘commerce’ and ‘services’ individually. At first, we weighted 
the sector product (GVA) by the sector land use weights ws (Eq. 15). The area of 
each sector is then calculated by multiplying the whole ‘industrial and commercial’ 
area (as reported in the CLC) by the estimated share (Eq. 16). By definition, At= 
∑s As,t. This procedure was applied to ‘disaggregate’ the CLC class ‘industrial 
and commercial’ and thus obtain estimates of its sectorial composition for the 
calibration years t0 and t1 for all regions covered in this study.

Eq. 15

Eq. 16
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Table 3. Land use intensities and coefficient of variation (CV) per sector of main economic 
activity and per country.

Industry
Commerce and private 

services
Public services and 

administration

Country LUI (M€/Yr*ha) LUI (M€/Yr*ha) LUI (M€/Yr*ha)

0.53 (1.0) 14.47 (27.1) 4.83 (9.0)

1.16 (1.0) 33.92 (29.1) 4.14 (3.6)

0.67 (1.0) 18.60 (27.6) 4.53 (6.7)

CV LUI CV LUI CV LUI

0.58 0.46 0.28

0.43 0.42 0.33

0.70 0.69 0.32

Spain

Netherlands

Spain + 
Netherlands

Note: Values between brackets correspond to each sector’s land use intensity in respect to the industry’s 
land use intensity (LUIs / LUIindustry).

4.3 Validation results
All models were calibrated with data up to the year 2000 and were then applied 
to estimate the industrial and commercial land in 2006. The validation is done 
by comparing each model’s estimates with the actual amount of industrial and 
commercial land as reported by the CLC 2006, which is the nearest available 
to ground truth for the whole study area. The indicators used to measure the 
performance of the models are summarized in Table 4 and the results can be 
consulted in Tables 5 and 6 and in Figure 2.

Results reported in Table 5 show that all models performed better than the 
null model which tell us that modelling demand for industrial and commercial 
areas appears to be a worthwhile exercise. However, all models have more or 
less underestimated the total amount of industrial and commercial land in 2006. 
While models 2 and 3 have best approximated the absolute expansion of land 
use for the whole study area, it can also be concluded that no model sufficiently 
reproduced the actual observed growth for the period 2000-2006. Nonetheless, 
most of the underestimations fall in a relatively narrow range, from -0.56% to 
-3.36%, and -7.06% in the worst case.

Overall, model 1 seems to be the best performer, as it scored best for AAE 
and TAE, and also showing one of the lowest relative differences. In addition, 
this model also shows the narrowest distribution of errors (see Figure 2). This 
indicates that the models that incorporated the economic output as driver for 
land use change were not able to perform better than trend extrapolations. Among 
the models that use GVA as driver of land use change, model 3 stands out, as its 
predictions are overall closer to the known land use in 2006 than predictions from 
the others. Models 4 and 6, which used the land use intensity of the land developed 
in the period 1990-2000 to estimate the land developed in 2006 performed worse 
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than models 3 and 5, respectively, the latter using the overall land use intensity of 
all existing industrial and commercial land use. Finally, the models which integrated 
both regional and sectorial specific land use intensities (models 5 and 6) did not 
outperform the models which relied only on an overall land use intensity per region.

Performances vary significantly country wise (Table 6). Countries like Belgium, 
Denmark, France, Germany and Spain show fairly low errors for most modelling 
approaches, whereas the estimations for Austria, Ireland and Luxembourg were 
overall much worse, with all models severely underestimating the observed land 
use expansion. The negative outlier points identified in the box-whisker plot 
(Figure 2) correspond to NUTS2 regions of the latter countries. Even though the 
linear extrapolation (model 1) showed the lowest overall estimation errors, model 3 
performed best for Austria, Denmark, Spain, Ireland and Luxembourg. In addition, 
models 4 and 5 obtained second best estimations for a number of countries.

Figure 2. Distribution of the errors for each model (%).
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Table 4. Validation indicators computed for each model.

Indicator name Short description Formula

Relative  
difference (RD)

Relative difference between the 
estimated and the observed industrial 
and commercial area for the whole 
study area. It shows the magnitude 
of the aggregated deviation as well 

as the sign of the deviation. Negative 
and positive values mean under 

and overestimation, respectively. 
Expressed as percentage.

Average of all absolute regional 
deviations. It is always positive. 

Expressed in hectares.

Sum of all absolute regional 
deviations. It is expressed as 
percentage of the total known 

industrial and commercial land in 
2006. It is always positive.

Average Absolute 
Error (AAE)

Total Absolute  
Error (TAE)

100*1
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Note: A – Known industrial and commercial area in 2006 (as reported in CLC2006); A’ – Estimated 
industrial and commercial area for 2006; r – NUTS2 region; n – total number of NUTS2 regions.

Table 5. Validation results.

Model nr. RD (%) AAE (ha) TAE (%)

Null

M1

M2

M3

M4

M5

M6

-11.68

-2.70

-0.56

-2.03

-3.36

-7.06

-2.55

1033

501

563

571

631

700

854

11.75

5.70

6.40

6.49

7.18

7.97

9.72
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Table 6. TAE per country (%).

Models

Country

Austria

Belgium

Ireland

Germany

Italy

Denmark

Luxembourg

Malta

Spain

France

Netherlands

Null M1 M4M2 M5M3 M6

35.5 31.9 30.431.4 29.527.7 31.4

5.7

37.1

6.8

23.3

6.1

23.3

9.2

17.1

2.8

31.8

8.0

15.9

2.0

34.6

8.9

13.2

4.5

7.2

4.9

11.1

5.0

7.8

6.9

10.4

5.1

8.0

11.9

11.8

9.6

23.7

3.6

18.0

3.7

17.9

3.7

17.3

6.2

15.3

2.3

3.0

5.7

17.4

17.7

4.3

7.1

11.3

8.7

7.9

7.8

12.0

10.9

13.7

6.3

19.6

13.0

8.3

8.4

17.2

3.3

5.4

4.0

7.2

3.3

7.3

3.7

11.5

4.2

9.4

4.5

11.0

Portugal

Slovenia

15.0 5.1 10.412.4 10.68.5 11.8

0.9 0.3 0.10.3 21.525.9 0.5

4.3.1 Sensitivity to land use data
As all models strongly depend on land use data, we can expect the final results 
to be very sensitive to the accuracy of such input. Biases and inaccuracies in the 
reporting of observed land use propagate to the land use intensity measures which 
thus influence the final land use demand estimation. Regional industrial and 
commercial land use areas were derived from CLC data, which covers all Europe 
with a time-series comprising the years 1990, 2000, and 2006. Despite the common 
nomenclature and mapping methods, temporal and spatial inconsistencies have been 
reported (Batista e Silva et al., 2013). Moreover, the large minimum mapping unit 
(MMU) of 25 hectares may create mapping artefacts. For example, land use patches 
smaller than the MMU in t0 are ‘hidden’ within the dominant surrounding land use 
patch of another land use class. If the former patch expands to an area above the 
MMU in t1, the patch is then mapped, thus giving the impression of an overestimated 
land use expansion between t0 and t1.

To test whether the results obtained in the validation were influence by CLC 
data issues, we have applied the same six models to the Dutch regions using finer 
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land use time-series data from a national source8. The economic data was kept 
the same, as well as specifications for all six models. A comparison of modelling 
errors for the Netherlands using CLC and CBS land use data is reported in Table 
7. Two major conclusions can be drawn from the figures presented. First, there is 
a clear improvement of performances of all models when using finer land use data 
from a national source. Moreover, the proportion of performance improvement 
to the null model is higher when using finer land use data. Second, the consistent 
underestimation of land use demand when using CLC data is not observed when 
using finer data. This leads us to infer that issues directly related to the land use data 
partly explain the consistent model underestimation for the European case study. 
More specifically, these results may indicate that CLC underestimated the amount 
of industrial and commercial land use in 1990 and 2000 in relation to 2006, thus 
contributing to an overestimation of the land use intensities in 1990 and 2000.

In addition to these aspects, we must acknowledge temporal nonstationarities 
that might be present in the real world but which are not captured by any of the 
models. For example, in certain regions, spatial planning policies driven by expected 
economic growth may have led to oversupply of business estates that remain empty, 
thus decreasing the land use intensity in 2006. Other economic dynamics, such as 
changes in economic structure (e.g., shifts from labour intensive to capital intensive 
industries), can lead to appreciable changes in the land use intensity of regions over 
time. The uncertainties related to the future trends in regional land use intensities 
will be addressed in the following chapter.

Table 7. Validation results for Netherlands using different land use sources (CLC and CBS).

RD (%) AAE (ha) TAE (%)
Model nr.

Null

M1

M6

M2

M3

M4

M5

CLC data CBS data CLC dataCLC data CBS dataCBS data

-17.16% -6.93 17.161163 6.93734

-2.58%

-0.24%

1.44

-6.14

5.38

10.95

364

742

2.02

7.09

214

751

3.87% 2.24 7.31495 2.66282

-9.13% 1.42 9.41637 2.47261

-5.87% -3.75 7.24490 3.75397

-9.12% -1.13 9.70657 3.48369

 Statistics Netherlands, http://www.cbs.nl8
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5. ANALYSIS OF LAND USE UNCERTAINTY

5.1 Overview
It has been noted that “when model parameters are fit by calibration to historical data, 
additional uncertainty is introduced due to the inherent temporal nonstationarity of 
processes” (National Research Council, 2013).

In this section we explore the main sources of uncertainty related to our modelling 
approach and their implications in terms of predicted land use demand. As explained 
in chapter 3, we proposed a deterministic method to estimate future demand for 
industrial and commercial land uses. The method relies on a single parameter, the land 
use intensity, which is calculated based on regional data on land use and economy. 
The land use intensity is expressed in terms of gross value added per hectare of 
industrial and commercial land in a given year in each region. This parameter is 
then assumed to remain constant in time and it can be used to predict future demand 
for industrial and commercial land given regional economic projections. The total 
uncertainty of the resulting land use demand predictions includes both the uncertainty 
of the land use intensity parameter and the uncertainty of the economic projections.

In this paper we focus only on the uncertainty of the land use intensity parameter. 
The uncertainty of economic projections is beyond the scope of this paper, as it is a 
field of research in its own. Moreover, the primary concern of this study is to design 
and test methods to translate given economic projections into future demand for 
industrial and commercial land use. The economic projections are herein dealt as 
exogenous assumptions, whose uncertainties shall be estimated in the appropriate 
framework of the economic modelling. Under this premise, the uncertainty of the 
estimates of future land use demand boils down to the land use intensity parameter. 
The uncertainty related to this parameter exists in two forms: first, the uncertainty 
of the measurement itself for a given moment in the past; second, the uncertainty 
regarding its future evolution. The sections below will focus on each of these two 
aspects of uncertainty.

5.2 Accounting for land use mapping errors
The land use intensity of a region is determined by dividing the regional GVA by the 
regional land use acreage. The latter is normally described in the form of spatially 
explicit land use maps, while the former is typically reported by governmental 
agencies according to international conventions. In Europe, Eurostat – the official 
statistical body of the European Commission – ensures standardization and 
discloses GVA data for all European countries and regions. Figures about the state 
of the economy can be subject to various distortions, such as measurement errors, 
intentional biases from reporting entities, exclusion of the parallel (not officially 
registered) economy. The uncertainty of the national accounts figures is, however, 
not communicated and thus cannot be included in this analysis. Therefore, we 
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focus our uncertainty analysis on the errors associated with the land use maps 
we apply and that relate to aspects such as classification errors, and minimum 
mapping unit. The latter issue is particularly critical when using CLC data, as 
demonstrated previously.

Notwithstanding the importance of CLC as the sole European-wide land use/
cover map, there has been limited reporting on its quality. Only the 2000 version 
of this dataset was subject to an extensive and systematic validation (European 
Environment Agency, 2006). The thematic accuracy of CLC 2000 was assessed by 
comparing its classification with a classification derived from a field survey carried 
in the year 2000, the land use/cover area frame survey, better known as LUCAS. 
However, the validation yielded statistically inconclusive results for a number of 
land use classes for which the sample size was particularly small. This was the case 
of the land use class ‘industrial and commercial units’, for which only 34 points 
were controlled in all Europe.

To obtain an idea about the mapping errors in CLC we, therefore, rely on a 
statistically sound validation of CLC 2006 that was performed for one specific 
country (Caetano et al., 2009). In this validation effort for Portugal, a stratified 
random sampling scheme was adopted, with 100 sample points randomly selected 
for each land use class, in order to guarantee “a representative and meaningful 
basis for accuracy assessment” (Caetano et al., 2009). For each sample point, the 
mapped land use class was compared with visual observations of land use, enabling 
the construction of a ‘contingency table’ (or ‘confusion matrix’) which allows map 
accuracy indicators to be calculated (Card, 1982). The contingency table for the 
Portuguese CLC 2006 is reported in the work of Caetano et al. (2009).

The binomial distribution is often applied to discrete land use classifications 
because each land use class can either occur or be absent at each location. When 
the sample size is large enough, it can be assumed that the proportion of errors of a 
land use class with the other land use classes is normally distributed. This allows the 
confidence intervals of land use accuracy assessments to be estimated through the use 
of a normal approximation of the binomial distribution. Given the large sample size, 
this approach is recommended by (Cochran, 1977), and was adopted, for instance, 
by Card (1982), the European Environment Agency (2006), and Carrão et al. (2010). 
By applying the detailed formulas presented by Carrão et al. (2010) to the validation 
figures reported in the contingency table from Caetano et al. (2009), we were able 
to estimate the true total area of the industrial and commercial land use for each 
Portuguese region, and the respective variances. The unbiased estimate of the true 
total land use and the respective estimated variance for each region depends upon the 
confusion between land uses presented in the contingency table and the abundance 
in each region of land use classes with which the industrial and commercial classes 
are confused with. After estimating the variance, confidence intervals can be drawn 
for each region around the estimated true total area of the industrial and commercial 
land use. Because a normal approximation of the binomial distribution was adopted, 
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the confidence interval associated with each estimated parameter (i.e., true industrial 
and commercial land use in each region) is symmetric.

The results for Portugal are depicted in Figure 3A. For each NUTS2 region, it 
shows the amount of industrial and commercial sites mapped in CLC, the estimates 
of the true area of industrial and commercial land use, and its 90% confidence 
interval. If we take as example the region PT16, we find that the amount of industrial 
and commercial sites reported in CLC approximates the estimated true value, and 
that it is 90% likely to find the true value between 10.2 and 13.7 thousand hectares 
(based on the validation sample).

The uncertainty in the accounting of the industrial and commercial land use 
propagates to the land use intensity parameter. As such – and assuming that the GVA 
figures are correct, as discussed earlier –, the distribution of the land use intensities 
for the Portuguese regions is depicted in Figure 3B. The regions PT11 and PT15 are 
particularly sensitive to the uncertainties regarding the true amount of industrial and 
commercial land use, while PT16, PT17 and PT18 are considerably less sensitive.

Summing up, in this section we looked at the uncertainty of the land use 
intensity in an indirect way: we first assessed the uncertainty of the industrial and 
commercial acreage reported in the land use map (figure 3A), and then looked at 
the impact of such uncertainty in the actual measurement of the land use intensity 
(figure 3B). Higher relative uncertainties of industrial and commercial acreage 
cause higher uncertainties on the true land use intensity. In the next section, we 
will combine the uncertainty of the land use intensity parameter (as just discussed) 
with the uncertainty of its future evolution.

5.3 Accounting for nonstationarity in land use intensity
To account for nonstationarity in land use intensity we analysed temporal changes 
in observed intensity figures for the Portuguese regions. We focus on this country 
as it allows us to assess the impact of nonstationarity in relation to the mapping 
error addressed in the previous section. Figure 3C shows the measured land use 
intensity of the Portuguese regions for the years 1990, 2000 and 2006, using data 
from Eurostat and the CLC time-series. We can observe an increase in intensity 
from 1990 to 2000, followed by a slight decrease between 2000 and 2006.

In studies by Chen et al. (2007), Meng et al. (2008), and Louw et al. (2012), 
increases in land use intensity over time were observed for different study areas. 
Regional differences in land use intensity have been attributed to agglomeration 
economies, differences in economic structure and production characteristics. In 
addition, Louw et al. (2012) argued that policy-related factors influence land use 
intensity, in particular by interfering with the supply of industrial land. The existing 
research, however, does not provide a solid framework to anticipate future changes 
in land use intensity for the European regions. To account for this uncertainty, we 
constructed two extreme trends for the future evolution of the land use intensity. 
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One trend assumes that the land use intensity will continue to increase as observed 
in the period 1990-2006 for each respective region. The other assumes that the 
land use intensity will decrease as observed in the period 2000-2006. These two 
variants for the unknown evolution of the land use intensity are seen as bracketing 
the likely future values, thus providing a worst-case scenario for the uncertainty 
range of future land use intensity.

To illustrate the potential variance in estimates of future land use demand, we 
apply our demand model 3 to a scenario in which the economic output of regions 
is assumed to grow linearly until 2020, as observed in the period 1995-2008. Based 
on these premises, we constructed five possible trends of future industrial and 
commercial land use demand:

    • Trend 1 (central estimation, constant land use intensity). The estimated true 
        land use intensity for 2006 and for each region remains constant in time.
     • Trend 2 (central estimation, increasing land use intensity). The estimated true 
            land use intensity for 2006 increases in the same pace as observed in the 
          period 1990-2006 in each region.
      • Trend 3 (central estimation, decreasing land use intensity). The estimated true 
        land use intensity for 2006 decreases in the same pace as observed in the 
       period 2000-2006 in each region.
    • Trend 4 (maximum estimation, decreasing land use intensity). The upper 
   endpoint of the 90% confidence interval for the land use intensity for 2006 
             decreases in the same pace as observed in the period 2000-2006 in each region.
   • Trend 5 (minimum estimation, increasing land use intensity). The lower 
     endpoint of the 90% confidence interval for the land use intensity for 2006 
        increases in the same pace as observed in the period 1990-2006 in each region.

 Figure 3D shows the resulting aggregated demand for industrial and commercial 
land use for Portugal. Trend 1 is a typical central and deterministic trajectory, which 
does not incorporate the uncertainties related to the land use mapping and assumes 
a stationary land use intensity over time. Trends 2 and 3 incorporate the uncertainty 
related to the future evolution of the land use intensity, thus providing lower and upper 
bounds for the future land use demand assuming we are certain about the measured 
land use in 2006. In 2020, the estimated value in trend 3 is circa 1.7 times higher 
than the one estimated in trend 2. Finally, trends 4 and 5 incorporate the uncertainty 
related to the future evolution of the land use intensity plus the uncertainty regarding 
the true acreage of industrial and commercial in 2006. In 2020, the estimated value 
in trend 4 is circa 2.7 times higher than the one estimated in trend 5.

These trends were constructed in order to translate the likely maximum 
variance of future demand for industrial and commercial land use, avoiding any 
underestimation of uncertainties. These results indicate that the uncertainty band 
for the projected land use is rather large, which is not surprising given the coarse 
resolution of the CLC and the unforeseen trajectories of future land use intensity.
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6. DISCUSSION AND CONCLUSIONS
Estimating demand for future industrial and commercial land use is a challenging 
exercise. Very few attempts are known in the literature, and, when attempted, 
demands are estimated for small study areas, with detailed input data on land use 
and economy. In this study we aimed at developing and testing straightforward 
methods to estimate demand for new industrial and commercial land at continental 
scale with sub-national detail. The main difficulties concerned the input land 
use data, the CORINE Land Cover, which provides low spatial detail (minimum 
mapping unit of 25 hectares) and low thematic detail (the industrial, commercial 
and services land uses are all lumped together in one single land use class). 
The CLC, however, has key advantages: it provides a times-series (1990, 2000, 
2006) and was designed for temporal and spatial consistency. Time series of 
consistent, more detailed national land use maps are scarce, the presented Dutch 

Figure 3. A: Industrial and commercial land use in 2006 per region, with 90% confidence 
interval; B: Land use intensity in 2006 per region, with 90% confidence interval; C: Land 
use intensities 1990-2006 per region; D: Scenarios of future demand for industrial and 
commercial land use (sum of all Portuguese regions).
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case being an exception. In effect, detailed national land use datasets are often not 
comparable (between years and between countries) due to different nomenclatures 
and mapping protocols. On the other hand, the drivers of the development of 
industrial, commercial and services land uses are difficult to grasp. Does economic 
development lead to spatial impacts or the other way around? Or, is there a more 
complex non-linear interaction between land use change and regional economic 
performance? These questions, although legitimate and pertinent, were not the 
focus of this study.

Given the high correlation between the economic output of a region and its 
total industrial, commercial and services land use, we started out assuming a direct 
and linear relationship between those two variables. Four methods based on land 
use intensity measures were devised and compared to simple trend extrapolation 
techniques in a case study for South and Western European countries. All models 
were, in addition, compared with the null model, which assumes no land use change 
during the validation time interval. The models were calibrated using information 
for the period 1990-2000 and then used to estimate the observed industrial and 
commercial land use in 2006, as reported in the CLC.

All models performed substantially better than the null model, which indicates 
that any of the devised modelling approaches is better than not modelling at all. 
However, none of the land use intensity approaches consistently outperformed 
the linear trend. Results seem to indicate that simpler assumptions to estimate 
industrial and commercial land return overall higher accuracies at least for short-
term estimations. Nonetheless, by analysing the validation results at the country 
level we cannot discard that approaches based on land use intensity measures yield 
superior accuracies for many regions and even whole countries (see Table 6). It 
seems, indeed, that there is not a one best approach for the entire set of tested 
countries.

The linear extrapolation has slightly produced less error dispersion when 
compared to other methods, despite the fact that it does not integrate any actual 
independent driver of land use change. As the estimation period extends, the high 
performances of the linear extrapolation model may phase out quicker than those 
of any model which relies on the economic activity as a proxy for land use changes. 
While for short-term estimations the linear extrapolation might actually produce 
very plausible overall estimations, for the medium and long term estimations, 
simple linear trends are thus conceptually unacceptable.

It is worth exploring the reasons why approaches based on intensity measures 
did not work as well as one could have expected at the start of this study. Even 
though GVA and total industrial and commercial land use are highly correlated 
at NUTS2 level, it cannot be inferred that change in GVA and change in land 
use are equally correlated. Changes in the economic structure will certainly lead 
to changes in the ratio between economic output and required land. On top of 
that we can expect time-lags between economic developments and their spatial 
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impact and vice-versa. Old industrial sites (brownfields) may wait decades for 
redevelopment and thus remain present in the landscape long after their economic 
activities cease. While on the other hand expected economic development may 
lead to the construction of new offices and business estates that may remain 
empty for years. As mentioned earlier, complex issues like these call for more 
in depth study of the spatial development of industrial and commercial land use 
and its interaction with the underpinning economic drivers. Finally, the methods 
based on regional and sector specific land use intensity did not perform better 
than those based only on regional specific land use intensity. The failure to obtain 
better results for these particular methods may be at least partially explained by 
the weaknesses in the correspondences between a) the NACE classification, in 
which the GVA data is based, b) the CLC nomenclature, and c) the nomenclature 
of the two national land use datasets. All these three elements were required, first 
to disaggregate the sectorial composition of CLC class ‘industrial and commercial 
units’, and second, to estimate regional and sector-specific land use intensities. In 
fact, the assumptions made when coupling different nomenclatures may have led 
to uncertainties and errors that propagated to the final results of models 5 and 6.

The use of static land use intensities, as measured in the calibration years, was 
yet another drawback. In fact, the assumption of stable land use intensities has 
contributed to the overall error of these approaches. For the model 5 in particular, a 
factor ω was introduced, allowing for change in the land use intensities. However, 
in this case study, the factor was set to 1 in order to have a neutral effect on the 
land use intensities. Later, by making ωs a function of the observed changes in the 
sectorial land use intensities between 1990 and 2000, we observed a substantial 
increase in the accuracy of the model 5. The total relative difference decreased 
to -4.78%, the average absolute error decreased to 572 ha, and the total absolute 
error dropped to 6.51%, thus making M3 and M5 very close in terms of overall 
accuracy. This demonstrates how important it is to account for temporal changes 
in the land use intensities, rather than keeping them static. However, the study 
of the changes in land use intensities, their trends and drivers, is yet to be made. 
Unfortunately, the available data at European level is yet insufficient for an 
appropriate assessment. Finally, even if more detailed land use maps are available 
for some European countries, consistent time-series are still lacking.

Another intriguing aspect stood out from the validation results. All models have 
underestimated the amount of industrial and commercial land use in 2006 (Table 5). 
We tested the hypothesis that the observed consistent underestimation was at least 
partially a consequence of issues related to the input land use data from CLC. By 
applying all six methods to the Dutch regions using a more detailed national land 
use source, substantial reduction of deviations was observed for all models, and 
the resulting relative differences between known and estimated land use were much 
less biased, with models 1, 2 and 3 actually producing slight overestimations (see 
Table 7). These results, although referring to a small portion of the entire case study, 
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demonstrate how sensitive the methods are to the detail and accuracy of the input 
land use data.

Finally, to illustrate the practical application of the land use intensity-based 
methods, we used model 3 (best performer among all the tested models) to project 
industrial and commercial land use demand, given a hypothetical scenario of 
linear economic growth up to 2020 for the Portuguese NUTS2 regions. While 
implementing this ‘forecasting’ exercise, we identified the main sources of 
uncertainty related to the model used. The land use intensity parameter itself, 
which was measured for the year 2006 using the CORINE Land Cover and 
economic statistics from Eurostat, was found to be uncertain due to inaccuracies 
in the land use mapping. Based on a statistically sound validation of the CLC 
2006 for Portugal, it was possible to draw a 90% confidence interval around 
the land use intensity for each region. In addition, we proposed two extreme 
scenarios for the evolution of the regional land use intensities, based on past 
trends. From one single hypothetical economic scenario, we arrived to 5 possible 
trajectories of future industrial and commercial land use demand, confirming 
that the uncertainties can be substantial.

Despite the limitations herein summarized, we argue that straightforward 
approaches, such as the ones based on land use intensity measures were lacking, 
and are relevant and suitable for large study areas, where data are limited. 
Whereas the uncertainties of these methods could be narrowed in part by 
using more detailed and consistent land use time series data, the uncertainties 
related to economic forecasts will remain and are intrinsic to the source of the 
forecast (i.e., economic models). The likely future evolution of regional land 
use intensities remains unknown for the most part, and more detailed studies are 
needed to grasp the underpinning factors. However, the dynamic change in land 
use intensities could be addressed, for instance, as proposed in equation 11, or 
through any other suitable variant. The ω factor can be the result of a calibration 
process or used as a ‘policy parameter’ in the context of scenario analyses and 
ex-ante impact assessment of policies. In sum, the proposed methods allow 
the generation of sensible and scenario-dependent results, on developments of 
industrial and commercial land uses across regions, which are linked to macro-
economic models. As for the limitations and uncertainties, they should be 
acknowledged and dealt with transparency, as in any other modelling exercise.
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HARCI-EU, a harmonized gridded  
dataset of critical infrastructures in  
Europe for large-scale risk assessments1

ABSTRACT
Critical infrastructures (CIs) are assets, systems, or parts thereof that are 
essential for the maintenance of socioeconomic functions, health, safety and 
well-being of people. The exposure of CIs to natural and man-made hazards 
poses a risk to the economy and society. The spatial distribution of CIs and 
their economic value are a prerequisite for quantifying risk and planning 
suitable protection and adaptation measures. However, the incompleteness 
and inconsistency of existing information on CIs hamper their integration 
into large-scale risk frameworks. We present here the ‘HARmonized grids of 
Critical Infrastructures in EUrope’ (HARCI-EU) dataset. It represents major 
CIs in the transport, energy, industry and social sectors at 1 km2 expressed 
in sector-specific, economically-relevant units. The HARCI-EU grids were 
produced by integrating geospatial and statistical data from multiple sources. 
Correlation analysis performed against independent metrics corroborates the 
approach showing average Pearson coefficients ranging between 0.61 and 0.95 
across the sectors. HARCI-EU provides a consistent mapping of CIs in key 
sectors that can serve as exposure information for large-scale risk assessments 
in Europe.

 This chapter was first published as Batista e Silva, F., Forzieri, G., Marín Herrera, M. A., Bianchi, A., Lavalle, 
C., & Feyen, L. (2019). HARCI-EU, a harmonized gridded dataset of critical infrastructures in Europe for  
large-scale risk assessments. Scientific Data, 6(1), 126. https://doi.org/10.1038/s41597-019-0135-1

1
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1. INTRODUCTION  
Critical infrastructures (CIs) are physical or virtual assets or systems of assets 
that are vital to ensuring health, well-being and security of people and whose 
disruption or destruction may undermine communities or countries at large 
(Belluck et al., 2007; European Council, 2008). They include (and are not limited 
to) infrastructure related to transport, energy generation and transmission, water, 
industry, education and health, information and communication technology. 
Exposure of CIs to hazards poses a risk to economies and societies (Forzieri 
et al., 2018; Handmer et al., 2012; Kreibich et al., 2014). Recent events, such 
as the Eyjafjöll volcanic eruption in Iceland in 2010 (Gislason et al., 2011), 
the Great East Japan Earthquake in 2011 (Mimura et al., 2011), and Hurricane 
Harvey in the Unites States in 2017 (Klotzbach et al., 2018), have shown how 
disruption of key systems and essential services can lead to substantial socio-
economic impacts. The main threats presented by hazards to CIs include damage 
or destruction from extreme events (Cruz & Krausmann, 2013; Ghobarah et al., 
2006; Michaelides et al., 2014; Schaeffer et al., 2012; Wilson et al., 2014), whose 
effects can be exacerbated when multiple hazards co-occur (Baba, 2013; Gill & 
Malamud, 2016; Kappes et al., 2012; Zscheischler et al., 2018). Dependency 
networks of CIs may further amplify economic damages and trigger cascading 
failures (Dueñas-Osorio & Vemuru, 2009) with possible global scale effects 
(Eidsvig et al., 2017; Gill & Malamud, 2016; Meyer et al., 2013). This is of 
particular concern for Europe, as the severity and frequency of weather-related 
hazards is expected to intensify in view of climate change (Forzieri et al., 2016).

The development of reliable and resilient infrastructure is among the 
United Nations’ Sustainable Development Goals2. Besides, there is increasing 
interest in identifying and assessing disaster risk at large scale, expressed by 
the Sendai Framework for Disaster Risk Reduction 2015-2030 (United Nations, 
2015) and the Decision on a European Union Civil Protection Mechanism3 that 
calls participating states to perform National Risk Assessments with periodic 
reporting. The aim of the latter is to promote an effective and coherent approach 
to prevention of and preparedness for disasters.

Risk assessment requires the integration of hazard, exposure and vulnerability 
(IPCC, 2014). The hazard represents the agent that may affect CIs, exposure 
refers to the spatial distribution of CIs and their associated services exposed to 

  United National General Assembly Resolution A/RES/70/1 from 21st October 2015 on Transforming our 
world: the 2030 Agenda for Sustainable Development.

Decision No 1313/2013/EU of the European Parliament and of the Council of 17 December 2013 on a Union 
Civil Protection Mechanism, Official Journal of the European Union L347/924 (2013). https://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D1313&from=EN

2

3
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the hazard, and vulnerability expresses the propensity of CIs to be affected by the 
hazard. Typically, a risk assessment consists in overlaying geospatial information 
on infrastructures and key socioeconomic assets with hazard maps.

Information on the spatial distribution of CIs is, therefore, a prerequisite for 
quantifying hazard risk to CIs and planning suitable risk reduction measures in 
order to safeguard CIs and ultimately secure the functioning of societies (Fekete 
et al., 2016). However, geospatial data on CIs is often incomplete and scattered 
across multiple and inconsistent data sources, thus hampering their integration 
in large-scale risk frameworks. The European Pollutant Release and Transfer 
Register (E-PRTR), for instance, contains the location of industrial, energy and 
waste treatment facilities. Its original scope was to monitor emissions of pollutants 
from the main emitters; hence, facilities whose emissions levels fall under a 
certain threshold are not included, regardless of their economic importance. 
Other sources, such as the voluntary geographical information project Open 
Street Map (OSM), or the proprietary navigation dataset TomTom Multinet miss 
many features of the real world, especially those deemed less interesting to the 
average user. Data completeness differs between data sources and across domains 
or geographical areas within the same data source. Furthermore, information on 
data quality and completeness often does not exist due to the lack of benchmarks 
and validation efforts.

Data inconsistency may arise in various ways: different nomenclatures 
and/or mapping criteria across data sources or types of critical infrastructures. 
For example, transport infrastructure can be represented in a Geographical 
Information System (GIS) using alternative data structures: roads or railways 
are typically represented by line segments, while ports and airports by points 
or polygons. Such variety in format and spatial representation raises a series of 
technical problems for their use in a common risk assessment framework. How, 
for example, can a port represented as point feature in a GIS be compared to 1 
km of road? How can 1 km of motorway be compared to 1 km of local road? 
How can a metal industry be compared to a refinery, or a hospital to a school? In 
order to compare impacts of a given hazardous event on different infrastructure 
types and sectors using a consistent methodology applicable at large scale, there 
is need for harmonized exposure information.

Here, we describe and make publicly available the ‘HARmonized grids of 
Critical Infrastructures in EUrope’ (HARCI-EU) (Batista e Silva et al., 2019), 
employed in a previous study to quantify future risks to CIs in Europe due 
to climate extreme events (Forzieri et al., 2018). To solve the referred data 
completeness and inconsistency issues, we integrate CIs-relevant geospatial data 
from state-of-the-art sources with national-scale statistics of their productivity or 
use. HARCI-EU is a novel, coherent representation of CIs in Europe, consisting 



151

CHAPTER 5

of 22 grid maps at 1 km spatial resolution, covering the transport, energy, 
industry and social sectors. Each map represents the spatial distribution of a 
given infrastructure type expressed in sector-specific economic units. 

2. MATERIALS AND METHODS
We structured the production of the harmonized grids of CIs in three main phases 
as shown in the workflow chart in Figure 1: a) selection of CI types; b) data 
collection and preparation; and c) data harmonization.

We used the definition of CI mentioned earlier to guide the selection of 
infrastructure types. Given the broad definition of CI, we constrained the selection 
to physical infrastructures for which data were more readily available and which 
are more likely to be exposed to physical threats such as natural hazards, while 
fulfilling the priorities set by the relevant European Directive (i.e., energy and 
transport sectors)(European Council, 2008). Therefore, we considered various 
infrastructures in four key sectors as follows: transport, energy, industry, and 
social infrastructure. We further subdivided each sector in two or more subsectors, 
with each subsector containing one or more specific infrastructure types (see full 
classification in Table 2).

A significant part of this study was devoted to collecting detailed geospatial 
information of current CIs from multiple data sources. Information on CIs in 
Europe was rather scattered and mixed, with alternative sources for different 
infrastructure types, as well as for the same infrastructure type. We browsed for 
potential datasets, and selected the most suitable candidate for each infrastructure 
category based on following criteria:

     • Geographical coverage: European datasets were preferred over national or 
       worldwide ones, in order to avoid inconsistent data across countries or too 
       low detail, respectively.
     • Data completeness: the highest data completeness was preferred.
     • Data consistency: datasets with transparent and consistent mapping and 
       reporting methodologies.
     • Spatial resolution: highest possible.
     • Data update: most recent.
     • Thematic coverage: datasets covering the largest possible number of 
       infrastructure types within a sector.

In total, we resorted to seven data sources, with reporting years between 2010 
and 2014. A geo-database was constructed from them according to the structure and 
characteristics laid down in Table 2. The spatial information is stored in vector format 
as either points or polylines, depending on the infrastructure type, and covering the 
EU-28 + EFTA countries (i.e., Iceland, Lichtenstein, Norway and Switzerland).
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Figure 1. General workflow of the production and validation of the HARCI-EU dataset.

In the data harmonization phase, infrastructure types belonging to the same 
sector were expressed in a common measurement unit, so that their relative 
importance can be evaluated. In that process, we adopted the following principles:

a) The total value of assets being considered within a country or region is not 
         affected by missing CI locations;

b) Each CI is quantitatively evaluated at its geographical location and expressed 
          in a sector-specific economic unit, as a proxy of its societal value/usefulness.

The data harmonization consisted of a two-fold data transformation. First, 
we converted vector data (points and polylines) to gridded data (i.e., raster) with 
a cell size of 1 km x 1 km. This conversion is instrumental for impacts models, 
as they typically work with gridded data structures. The spatial resolution of the 
output was chosen to properly represent the spatial distribution of CIs at a level 
of detail suitable for country or continent-wide risk assessments.

Subsequently, we assigned to each raster cell an ‘intensity’ score reflecting 
its relative economic value. Given the large scale scope, there is no sufficient 
information to characterize each CI in terms of its actual capital stock value 
expressed in a common currency. Therefore, our approach was to proxy the 
economic value of each CI using a sector-specific metric of its use: annual 
freight transported (transport), energy produced or transported (energy), annual 
turnover (industry) and annual expenditure (social) (see Table 1). This approach 
has already been successfully applied to estimate the economic damages to CIs 
due to climate hazards (Forzieri et al., 2018). The referred economic variables 
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have been collected from Eurostat at national level for the five most recent years 
available (typically 2009-2013). Values were averaged over the 5 year time 
window in order to minimize eventual outliers in the time series and the resulting 
values were finally assigned to infrastructures.

Table 1. Economic variables and units used per sector.

Sector   Economic variable   Unit

Transport infrastructure          Annual freight transported                             k tonnes

Energy infrastructure Annual energy produced / transported k tonnes oil equivalent

Industry infrastructure Annual turnover  Million EUR

Social infrastructure Annual expenditure  Million EUR

Depending on the type of infrastructure, we used two methods to assign 
economic values to infrastructure locations:

a) Direct assignment
b) Downscaling
The direct assignment is the most accurate method, but was applicable only 

for ports and airports, for which Eurostat reports annual freight transported 
specifically for each site. The downscaling procedure, on the other hand, consists 
of disaggregating the total national economic value associated with the operation 
of each infrastructure typology to the locations (i.e., cells) of the relevant 
infrastructures within the respective country. For example, the total electricity 
production from gas power plants of a country was disaggregated over all 1 km2 

cells containing gas power plants located in the given country. In this process, the 
share of the national values assigned to each cell is proportional to the relative 
size or use of the local infrastructure in the country total. 

The generic downscaling procedure is described by equation 1:

Eq. 1

     = economic value of infrastructure type j in a 1 km2 pixel i
= economic value related to the operation of infrastructure j in country c,  
as reported by Eurostat

w = weight = f(j)
for j = roads, wi,j = lengthi,j * capacityi,j * populationi,j, where length is 
the sum of the length of all road segments within i, capacity is a score of 

where:



154

potential load of vehicles, and depends on the type of road (motorways = 5, 
national roads = 3, local roads = 2), and population is a proxy for the number 
of users, calculated as the number of residents within a 20 km radius around i.
for j = rails or inland water ways, wi,j = lengthi,j * average transport flowi,j
for j = energy production, wi,j = installed capacityi,j
for j = electricity grid, wi,j = lengthi,j * voltagei,j
for j = gas pipelines, wi,j = lengthi,j * pipeline diameteri,j
for j = industry, wi,j = number of facilitiesi,j
for j = social infrastructure, wi,j = potential usersi,j = populationi / number of 
facilitiesi, where population is a proxy for the number of users, and number 
of facilities is the number of schools or hospitals. Both terms are calculated 
within a radius of 20 km around i, as a potential service area.

The number of residents at pixel level was taken from a high-resolution 
European population density map (Batista e Silva et al., 2013). The average 
transport flows for railways and inland waterways were estimated by the 
model Transtools II (Rich & Mabit, 2011). The weight parameters for energy 
infrastructures (i.e., installed capacity, voltage and pipeline diameter) were 
available from the Platts database (https://www.spglobal.com/platts). We 
recognize that such approach introduces potential sources of subjectivity, 
such as the choice of type and number of predictors and their combination in 
the weighting functions. The technical validation, described in the dedicated 
section later on, addresses this issue and supports the identified functions.

A key advantage of the proposed harmonization approach is that it converts 
the original categorical information in comparable economic terms, and allows 
the summation of economic value of different infrastructure types j of the same 
sector s, as expressed in equation 2.

Eq. 2



CHAPTER 5

Table 2. List of infrastructures used in this study, sources used, reference dates, and raster filenames. 
Sector Sub-sector Infrastructure 

type
Data 

structure
Source Source  

description
Reference 

date
Raster filename 
(Batista e Silva  

et al., 2019)

Tr
an

sp
or

t
E

ne
rg

y
In

du
st

ry
So

ci
al

Local roads

Open Street Map 
(http://download.
geofabrik.de)

Voluntary 
Geographic 
Information

2014

2013

2012

2013

2013

2010

2013

2014

ci_tra_01.tif

ci_tra_02.tif

ci_tra_03.tif

ci_tra_04.tif

ci_tra_05.tif

ci_ene_01.tif

ci_ene_02.tif

ci_ene_03.tif

ci_ene_04.tif

ci_ene_05.tif

ci_ene_06.tif

ci_ene_07.tif

ci_ene_08.tif

ci_ene_09.tif

ci_ene_10.tif

Public (UNECE); 
Proprietary 
(EuroRegionalMap)

Public (CLC); 
Proprietary 
(EuroRegionalMap)

UNECE (https://
www.unece.org/
trans/main/sc3/
maps.html) + 
EuroRegionalMap 
(https://
eurogeographics.
org/products-
and-services/
euroregionalmap)

CORINE Land  
Cover (CLC)  
(https://land.
copernicus.eu/
pan-european/
corine-land-cover) + 
EuroRegionalMap 
(https://
eurogeographics.
org/products-
and-services/
euroregionalmap)

Vector 
(lines)

Vector 
(lines)

Vector 
(points)

Vector 
(points)

Platts (https://
www.spglobal.
com/platts)

E-PRTR (https://
prtr.eea.europa.eu)

E-PRTR (https://
prtr.eea.europa.eu)

Open Street 
Map(http://download.
geofabrik.de)

Global Energy  
Observatory  
(http://globalenergy 
observatory.org)

Proprietary, 
specialized 
geodatabase

Public

Public

Public

Open, Voluntary 
Geographic 
Information

Vector 
(points)

Vector 
(points)

Vector 
(points)

Vector 
(points)

Vector 
(lines)

Roads of national 
importance

Motorways

Railways

Inland 
waterways

Ports

Airports

Coal power plants

Gas power plants

Oil power plants

Hydro power plants

Solar power plants

Wind power plants

Electricity 
distribution / 
transmission
Gas pipelines

Metal industry ci_ind_01.tif

Mineral industry ci_ind_02.tif

Chemical industry ci_ind_03.tif

ci_ind_04.tif

ci_ind_05.tif

ci_soc_01.tif

ci_soc_02.tif

Refineries

Nuclear power plants

Biomass and 
geothermal  
power plants

Roads

Other 
transport 
networks

Non-
renewable 
energy 
production

Renewable 
energy 
production

Energy 
transport

Education

Health

Education facilities

Health facilities

Heavy 
industries

Water/waste 
treatment

Water and waste 
treatment
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3. RESULTS

3.1 The HARCI-EU dataset
The HARCI-EU dataset corresponds to the final output of the data harmonization 
procedure as described in Materials and methods section and is publicly 
available from the Figshare repository (Batista e Silva et al., 2019). The 
HARCI-EU dataset contains 22 grids in GeoTIFF format with a resolution of 1 
km2. The grids use the ETRS89 coordinate system and the Lambert Azimuthal 
Equal Area map projection. They represent values in sector-specific economic 
units (see Table 1) ranging between zero (i.e., absence of infrastructure) and CI-
specific maximum value resulting from the downscaling procedure described 
in Materials and methods section. Raster cells outside the area of interest have 
null values. These files are best visualized and manipulated using appropriate 
GIS software.

Table 2 indicates for each infrastructure type the sector and sub-sector it 
belongs to, the original data structure type, sources used, reference data and raster 
filename. The items referring to ‘local roads’, ‘roads of national importance’ 
and ‘motorways’ are merged in one single raster file representing the whole 
road network. Figures 2 to 5 show extracts of the original vector data and the 
corresponding harmonized grids for the geographical area around Paris, France.

3.2 Quality assessment
The production of the HARCI-EU grids (Batista e Silva et al., 2019) relied on 
three types of data inputs:

     • Location of CIs obtained from seven different sources of geospatial data;
        • Economic value associated with the operation of each infrastructure type from 
       Eurostat at country level;
          • Weighting parameters for the spatial disaggregation of country volumes, based  
           on infrastructure characteristics available from the geospatial data or auxiliary  
              sources (e.g., gridded population, transport model).

For obtaining the location of CIs and the attributes used in the weighting 
functions, we carefully selected data sources and evaluated their appropriateness. 
A systematic, quantitative validation of each selected source is out of the scope of 
this study. The economic value associated with the operation of each infrastructure 
type was obtained from an official source of statistical data, but at a coarse spatial 
resolution. An additional source of uncertainty concerns the assumption of 
linearity between the economic value of infrastructures and the chosen weighting 
parameters. This key assumption governed the downscaling of country volumes 
of activity for each infrastructure type to grid cell level, as specified in equation 1.
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Railways

!( Ports

Inland
waterways

!( Airports

(e)(a)

(f)(b)

(g)(c)

(h)(d)

100
200
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transported

Motorways

National
roads
Local
roads

Figure 2. Location and economic value of various transport infrastructure types around 
Paris, France, according to HARCI-EU. Panels (a) to (d) show infrastructures represented 
in the original vector format and panels (e) to (h) show the corresponding harmonized 
grids at 1 km resolution.
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Figure 3. Location and economic value of various energy infrastructure types around 
Paris, France, according to HARCI-EU. Panels (a) to (c) show infrastructures represented 
in the original vector format and panels (d) to (f) show the corresponding harmonized 
grids at 1 km resolution.
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Figure 4. Location and economic value of various industry infrastructure types around 
Paris, France, according to HARCI-EU. Panels (a) to (c) show infrastructures represented 
in the original vector format and panels (d) to (f) show the corresponding harmonized 
grids at 1 km resolution.

Waste/water
treatment

Turnover
€ million

50
100
200
400
800

(d)(a)

(e)(b)

(f)(c)

Metal
industry

Mineral
plants

Chemical
industry

Refineries



160

Figure 5. Location and economic value of various social infrastructure types around Paris, 
France, according to HARCI-EU. Panels (a) and (b) show infrastructures represented in the 
original vector format and panels (c) and (d) show the corresponding harmonized grids at 1 
km resolution.

The multiple sources of uncertainty and their potential propagation require a 
validation of the final output. Yet, the lack of alternative datasets representing the 
same economic metrics of HARCI-EU impedes a standard validation exercise. 
The approach to assess the validity of HARCI-EU therefore consisted of 
evaluating the plausibility of the resulting spatial distribution of CI harmonized 
values per sector and per sub-national units across Europe.

We used an independent source of data (Cambridge Econometrics European 
Regional Database, CE-ERD(Cambridge Econometrics, 2017)) consisting of a 
time series for three key variables available at sub-national level: total population, 
gross value added (GVA) in the industry sector and GVA in all goods-related 
sectors (defined as the total GVA minus the GVA for financial and business 
services and non-market services). The time series spanned from 2009 to 2013 
(to match temporally with the CI economic values), and the average over this 
period was taken. The spatial resolution corresponded to the NUTS3 level. The 
NUTS classification is hierarchical system of territorial units used for statistical 
data reporting in Europe. The NUTS3 level corresponds to country provinces 
or districts, and comprises 1359 regions within the area of interest (EU+EFTA), 
with a median size of 1724 km2 (NUTS3 version 2010). 
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Due to the importance of CIs for the socioeconomic system, the chosen 
independent variables at the regional level are a good benchmark to evaluate the 
appropriateness of the framework applied to map CIs and their economic value. To 
this aim, for each sector we correlated the total economic value of CIs represented 
in the HARCI-EU grids with the selected independent variables at NUTS3 level.

Because the total number of NUTS3 is relatively high, we were able to stratify 
the calculation of the Pearson correlation per country, allowing a much better 
insight than a single measure of fit over the whole spatial domain for each sector. 
Countries with few NUTS3 were grouped as follows:

     • Cyprus and Greece
     • Czech Republic and Slovakia
     • Estonia, Latvia and Lithuania
     • Italy and Malta
     • France and Luxembourg
     • Iceland and Norway

In all other cases, correlations were based on NUTS3 for single countries. 
For the energy sector, however, statistical data at regional level were limited. We 
were able to find regional (NUTS2 or NUTS3) values of electricity production 
for a sample of representative countries (France, Italy, Poland, Portugal and 
Slovakia). Table 3 summarizes the main characteristics of the reference data used 
for the validation for each sector of critical infrastructures, and Table 4 reports 
the results obtained for each sector.

High correlation values between CI maps and the independent sources 
indicate that HARCI-EU grids represent properly the economic value of sector-
specific assets and their regional distribution. For example, it is plausible to 
assume that more densely populated regions require more social infrastructure 
and expenditure. Similarly, higher GVA for goods-related sectors implies denser 
transport infrastructure and more freight transported. From the four sectors, the 
highest correlations were obtained for the social and energy infrastructures, with 
average country correlation of 0.97 and 0.95, respectively, and with individual 
country correlations always above 0.9 (except a slightly lower score in Portugal 
for the energy infrastructure). The transport sector also showed an overall very 
high correlation of nearly 0.85. However, this sector showed more variability in 
the country scores, ranging from around 0.67 in Poland and the UK to 0.95 or 
more in Bulgaria, Finland, Greece/Cyprus, Spain and Sweden.

Less satisfactory is the result obtained for the industry sector, with an 
average country correlation of 0.61, but with values as low as 0.31 in Bulgaria 
and 0.04 in Croatia. In Belgium, Greece/Cyprus, Spain, Ireland, Italy/Malta 
and Slovenia correlations are equal to or above 0.8. This outcome relates to at 
least two reasons: a) The source used to obtain the location of industrial and 
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waste treatment facilities (i.e., EPRTR) focuses only on polluting facilities 
above a certain dimension, hence being incomplete by design. b) The fact that 
we considered only heavy industries and waste treatment plants as part of the 
industrial infrastructures, while the industrial GVA includes more industry types. 
In fact, the latter point may imply that, in countries with low correlation, heavy 
industry and waste treatment are less relevant for their total industrial output.

Table 3. Characteristics of the reference data used for the validation for each sector of critical 
infrastructures.

Sector Source 
 

Independent variable 
used for the validation

 

Coverage Spatial 
unit

Transport 
infrastructure 

GVA in goods-related 
sectors 

Energy 
infrastructure 

Electricity 
production 

National Statistical 
Offices 

France, Italy, 
Poland 

Portugal, Slovakia NUTS3

NUTS2 

GVA in industry 
sector 

CE-ERD EU-28 NUTS3

Population (no. of 
inhabitants)

CE-ERD EU-28, EFTA NUTS3

Industry 
infrastructure 

Social 
infrastructure 

CE-ERD EU-28 NUTS3 
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Table 4. Results of the technical validation. Assessment for countries marked with ’ was 
performed at NUTS2 level (applicable to the Energy sector only). Values marked with * have 
p-values < 0.01.

Country / 
group of 
countries 

No. of 
NUTS 
regions

Transport Industry Social 

Pearson 
corr.

Pearson 
corr.

Pearson 
corr.

Pearson 
corr.

Spatial unit

AT

BE
BG
GR_CY
CZ_SK
DE
DK
EE_LV_LT
ES
FI
FR’
FR_LU
HR
HU
IE
IT’
IT_MT
NL
PL’
PL
PT
RO
SE
SI
SK
UK
CH
NO_IS

35
44
28
52
22

412
11
21
59
19
22
97
21
20

8
19

112
40
16
66
30
42
21
12

8
139

26
21

0.590*

0.818*
0.314

0.796*
0.742*
0.514*

0.523
0.468

0.852*
0.777*

-
0.665*

0.037
0.677*

0.798
-

0.798*
0.471*

-
0.459*
0.612*
0.551*
0.572*
0.903*

-
0.550*

-
-

0.911*

0.739*
0.945*
0.987*
0.928*
0.853*
0.814*
0.754*
0.956*
0.991*

-
0.844*
0.732*
0.896*
0.912*

-
0.880*
0.712*

-
0.671*
0.867*
0.786*
0.986*
0.785*

-
0.675*

-

-

0.996*

0.986*
0.981*
0.995*
0.970*
0.963*
0.977*
0.978*
0.989*
0.987*

-
0.991*
0.972*
0.907*
0.977*

-
0.995*
0.989*

-
0.913*
0.971*
0.921*
0.997*
0.963*

-
0.917*
0.986*
0.965*

-
-
-
-
-
-
-
-
-
-

0.995*
-
-
-
-

0.942*
-
-

0.937*
-

0.867*
-
-
-

0.986*
-
-
-

Average 0.847 0.613 0.970 0.946
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4. DISCUSSION AND CONCLUSIONS
The data harmonization approach transformed discrete and categorical vector 
records of CIs into a data format with uniform representation (regular grid cells 
of 1 km2) and described by the economic value of assets with common units 
within each sector, enabling comparability of exposure across CI types within the 
same sector. It further minimized the effects of missing infrastructures in the input 
data sources as the total economic value of a given infrastructure type in a given 
country was preserved within that country. This means that even if a particular 
CI location is missing, the total value associated with that infrastructure type 
is retained within the country, enabling aggregated impacts between countries 
to be compared. However, it must be noted that the harmonization procedure 
does not prevent underestimation of exposure at site-specific level whenever 
infrastructure data were missing.

The HARCI-EU layers can be combined with hazard maps to derive an 
impact measured in the same unit as of the harmonized layers. The assumption 
is that – under a similar vulnerability scenario (CI- and hazard-specific) – 
locations with higher economic value are associated with higher impacts in 
case of a hazardous event. Translating impact into potential monetary losses 
is possible by applying cost coefficients (or cost curves) that link estimated 
impacts (harmonized layers * hazard) with actual observed losses due to 
hazards, as applied by Forzieri et al. (2018) for climate related hazards. Figure 
6 shows an example of original road data and its respective harmonized version 
overlaid onto a flood extent (Alfieri et al., 2015).

More sophisticated risk assessment approaches may account for ‘network 
effects’, such as when the disruption of a network segment or node affects 
a wider service area (spatial spillovers), as well as ‘cascading effects’, 
i.e., chain of negative events triggered by an initial disruption in a system, 
possibly resulting in sector spillovers. While the HARCI-EU layers are 
readily applicable for straightforward, overlay-based risk assessments, their 
integration in complex system modelling to account for the referred effects 
may require further elaboration.

The quality of the exposure layers affects the reliability of the final risk 
estimates. While it is not feasible to systematically assess the accuracy of every 
input and for every CI type, the technical validation carried out supports the 
overall plausibility of the resulting HARCI-EU layers for risk assessment at 
least at mesoscale (e.g., sub-national) and particularly for transport, energy and 
social CIs.

The European Directive (European Council, 2008) set high priority for 
the identification, designation and protection of energy and transport Critical 
Infrastructures. Although HARCI-EU goes beyond these two sectors alone, it is 
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not an account of all possible infrastructures that may be considered critical. For 
example, the United States Presidential Policy Directive on critical infrastructure 
Security and resilience cites 16 sectors of CIs, some of which are not included 
in HARCI-EU (e.g., defence, food, finance, water supply) (The White House, 
2013). Notwithstanding, the high spatial and thematic resolution and coverage 
make HARCI-EU a potentially useful exposure dataset for assessing the risks of 
hazards to critical infrastructures in Europe. Future developments should focus 
on expanding HARCI-EU to encompass further CI categories.

MilanoNovara
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Flood extent
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Figure 6. Original road vector data and HARCI-EU road layer overlaid onto a 100-year 
return period flood extent.
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Analysing spatiotemporal patterns  
of tourism in Europe at high-resolution 
with conventional and big data sources1

ABSTRACT
Available statistics on tourism from official European sources are limited in 
terms of both the spatial and temporal resolutions, curbing potential analyses 
and applications relevant for tourism management and policy. In this study, 
we produced a novel, complete and consistent dataset describing tourist 
density at high spatial resolution with monthly breakdown for the whole of 
the European Union. This is achieved thanks to the integration of data from 
conventional statistical sources with big data from emerging sources, namely 
two major online booking services containing the precise location and capacity 
of tourism accommodation establishments. The produced dataset allowed us 
to uncover key spatiotemporal patterns of tourism in Europe at unprecedented 
detail, showcasing the usefulness of complementing official statistical data 
with emerging big data sources.

 This chapter was first published as Batista e Silva F., Marín Herrera, M. A., Rosina, K., Barranco, R., Freire, S., 
& Schiavina, S. (2018). Tourism Management, 68, 101–115. https://doi.org/10.1016/j.tourman.2018.02.020
1
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1. INTRODUCTION: THE DASYMETRIC MAPPING  
Tourism is a phenomenon with increasing social and economic importance but 
which has characterised human behaviour for centuries (Butler, 2015). The recent 
boom in tourism made it an important economic sector in the European Union 
(EU), but also in other parts of the world. In 2016, the EU had an estimated 
40.5% market share of global international tourist arrivals, or around 500 million 
(UNWTO, 2017). According to available estimates, the total contribution (direct 
+ indirect + induced) of the travel and tourism sector to the EU’s GDP in 2016 
was 10.2%, but with strong variation between countries, ranging from more than 
20% in Malta, Croatia or Cyprus to about 5% in Poland, Netherlands or Romania 
(World Travel & Tourism Council, 2017). Besides, the importance of tourism as 
a factor of economic growth has also been demonstrated in many countries by 
recent studies (Brida et al., 2016; Ohlan, 2017; Perles-Ribes et al., 2017; Salmani 
et al., 2014; Seghir et al., 2015).

Tourism has an important territorial dimension, with uneven spatial 
distribution between and within countries, and delivering localized impacts. The 
importance of the spatial dimension of tourism is also underscored by findings 
indicating that tourism growth in one region influences positively tourism in 
neighbouring regions (Romão et al., 2017), or that public policy can impact on 
the spatial patterns of tourism demand (Kang et al., 2014). Seasonality is another 
distinctive feature of this economic sector, with significant socioeconomic and 
environmental implications (Butler, 2001; Chung, 2009). Seasonality itself has 
a marked geographical structure, varying considerably from region to region, 
depending on climate and type of destination (e.g., city, sea-side, mountain) 
(Butler, 2001). Together, these two dimensions of tourism, i.e., the spatial and the 
temporal, are fundamental to characterise and study tourism in a given territory. 
And the more countries or regions the area of study encompasses, the more 
diverse it is likely to be, and the higher the need for sufficiently detailed and 
comparable spatiotemporal data on tourism.

Consistent tourism data for the EU are primarily assembled and published by 
Eurostat. However, currently available data from Eurostat have limited spatial 
and temporal resolutions, hindering EU-wide characterisation of tourism at fine 
spatial and temporal scales. Unconventional, big data sources are emerging, 
with the potential to improve our knowledge of tourism at unprecedented detail 
for vast world regions. But, to the best of our knowledge, there are still only 
a few examples of the use of such emerging sources of data to characterise 
spatiotemporal patterns of tourism and typically for limited study areas.

The main aim of this study and, simultaneously, its main contribution to 
international literature is to improve the existing knowledge base of current 
spatiotemporal distribution of tourism in the EU-28 to enable new insights and 
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applications relevant to tourism management and policy. This main objective 
can be broken down in four intermediate objectives or tasks, each leading to 
a tangible output: (i) increase the geographical detail of existing statistics on 
spatial distribution of tourism demand down to regional level; (ii) derive regional 
temporal profiles (monthly) of tourism demand; (iii) generate tourist density 
maps at high spatial resolution on a monthly basis and (iv) exploit the produced 
information to assess relevant dimensions of tourism regionally such as tourism 
intensity, seasonality and vulnerability.

To accomplish these objectives, we combined data from two distinct sources: 
European official statistical bodies, namely Eurostat and National Statistical 
Offices (NSOs) and online booking services. From Eurostat, we collected nights 
spent and accommodation capacity at regional level. From NSOs we assembled 
nights spent or arrivals at tourist accommodation establishment per quarter 
or month and per region. Finally, from online booking services, geographic 
coordinates and other descriptors of accommodation establishments were mined, 
totalling ca. 843 thousand individual records. The datasets were then combined 
using a predefined protocol to produce multi-temporal grid maps of tourist 
density at high spatial resolution (100 x 100 metre).

In the following section, we briefly review the current state-of-the-art 
concerning existing official tourism statistics and examples of the use of 
unconventional, big data sources for the study of tourism. In the Data and Methods 
section, we describe in more detail the various input data and the methodology 
applied to combine them. In the Results section, we show maps of tourist density 
for Europe and report findings concerning tourism prevalence, seasonality, and 
intensity, which we finally combine to assess regional vulnerability to shocks in 
the tourism sector. The last section of the paper wraps-up and discusses the work 
done and sets out areas that would benefit from further development.

2. STATISTICAL AND BIG DATA FOR TOURISM  
When looking at tourism for a territory as large as the EU, the primary source of 
data is Eurostat2. Official statistical bodies such as Eurostat assemble and publish 
an important set of tourism-related statistical data with regional breakdown. 
Eurostat usually dedicates a chapter to tourism in its regional statistical yearbooks 
(e.g., Eurostat 2016). Statistical data from Eurostat with regional breakdown 
include, on the demand side, arrivals and nights spent at tourist accommodation 
establishments, while, on the supply side, capacity of tourist accommodation 
establishments. All the regional data provided by Eurostat is available on a yearly 
basis (figures per region and per reporting year). Although relevant to characterising 

 http://ec.europa.eu/eurostat2
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tourism demand and supply density in Europe at the regional level, these statistics 
do not permit uncovering the spatiotemporal patterns at fine resolution.

While the spatiotemporal resolution offered by official statistical data sources 
might remain limited, other non-conventional data sources are emerging. These 
new sources of information, often called ‘big data’ sources, for their variety, 
volume and velocity (Katal et al., 2013), are enabling new opportunities for 
research and analysis in a myriad of domains, including tourism (Benjelloun et 
al., 2015; Rodríguez-Mazahua et al., 2016). In fact, the applications of big data 
for tourism analytics seem to be growing by the day, and are now numerous and 
diverse. Social media has been used as a source of user-generated content (e.g. 
user/customer reviews, posts, photos) to assess international mobility patterns 
(Hawelka et al., 2014), estimate visitation rates of specific attractions (Wood et 
al., 2013), identify tourist hot-spots in cities (Garcia-Palomares et al., 2015), or 
to fine-tune tourism marketing strategies (Marine-Roig & Anton Clavé, 2015). 
Other studies have used web search engine queries to forecast tourism demand 
for specific destinations (Li et al., 2017), or scraped online booking services to 
monitor hotel prices (Goni et al., 2017).

Mobile network operator (MNO) data is another emerging input for tourism 
analytics and a particularly promising one for mapping and monitoring patterns of 
presence of tourists at high spatial and temporal resolutions. Data derived from the 
use of mobile phones and geo-located to antennas already enabled researchers to 
assess spatiotemporal visitation patterns of tourist destinations in Estonia (Ahas 
et al., 2008; Raun et al., 2016). Following these early advances, statistical bodies 
are conducting pilot studies to test the use of MNO data in the production of 
official tourism statistics (Dattilo & Sabato, 2017; Demunter & Seynaeve, 2017). 
However, the use of this data source in a systematic fashion is still hurdled by 
data access constraints, as profit-driven MNOs are still reluctant to release their 
data, as proper business models are not yet well established (Debusschere et al., 
2017). In addition, there are several methodological challenges associated with 
the use of MNO data. These include incomplete penetration rates and lack of data 
for ‘roaming’ users (Dattilo & Sabato, 2017), heterogeneous market shares of 
MNOs across regions and socioeconomic groups and issues with mobile phone 
usage patterns by different users, all leading to selection biases (Demunter & 
Seynaeve, 2017).

For the reasons reviewed above, the potential of official statistics and big 
data sources when used in isolation is still limited, especially for applications 
requiring high spatial and temporal resolutions for vast study areas. But their 
combination, as proposed and applied in this paper, can yield what is still lacking 
in international literature: a comprehensive, consistent assessment of current 
spatiotemporal patterns of tourism for the EU-28 at high resolution.
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3. DATA AND METHODS
To advance the spatiotemporal mapping of tourist density in Europe, we aimed 
at producing a set of tourist density grids at high spatial resolution on a monthly 
basis, i.e., 12 tourist density grids at 100 x 100 metre resolution. Herein, ‘tourist 
density’ is short for ‘average daily number of overnight tourists’ per given spatial 
reporting unit. In other words, an approximation to the number of tourists that 
can be found at a given location in a typical day of the month. Here, locations 
refer to accommodation establishments, i.e., where tourists stay predominately 
during the night-time for shelter and rest, and tourist density encompasses all 
types of visitors regardless of the motivation of the visit (e.g., business, leisure or 
personal purpose)3, and includes both domestic (i.e., national) and non-domestic 
(i.e., international) visitors, while excluding same-day visitors.

To produce the tourist density grids, we resorted to variables sought from 
various sources, and with different characteristics regarding the spatial and 
temporal detail, data structure and format. Table 1 summarises the main data 
inputs used and their characteristics. The data were then integrated following a set 
of operations conducted using statistical software and Geographical Information 
Systems (GIS). The methodological workflow is outlined below in five main 
steps, with the letters in brackets referring to the datasets listed in Table 1. Figure 
1 illustrates the workflow.

1. Downscale yearly nights spent (a) from NUTS-2 to NUTS-34 level 
proportionally to the number of bed-places available per NUTS-3 (b);

2. Breakdown the resulting yearly nights spent at NUTS-3 level by months using 
the share of nights spent (or arrivals) per month derived from NSOs data (c);

3. Transform the resulting monthly nights spent per NUTS-3 to ‘average 
daily number of overnight tourists’ by dividing the total nights spent in 
a month by the total number of days of the corresponding month (e.g. 
January has 31 days, so every 31 nights spent correspond to an average of 
1 tourist on a daily basis);

4. Aggregate the number of rooms from point data (d) to a grid system of 
100 x 100 metre cells;

5. Disaggregate the average daily number of overnight tourists per month and 
per NUTS-3 from step 3 to grid level proportionally to the accommodation 
capacity as derived according to step 4.

Consistent with the definition of ‘tourism’ from UNWTO (2010).

The Nomenclature of Territorial Units for Statistics (NUTS) is Eurostat’s official regional subdivision 
for collection and reporting of statistical data. It is structured in four hierarchical levels, from NUTS-0 
(countries) to NUTS-3 (sub-regions).

3
4
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Table 1. Data and sources used.

Variable / dataset description Spatial 
resolution

Temporal 
resolution

Reference 
year

Source(s)Ref.

NUTS-2

NUTS-3

NUTS-2/3

Annual

Annual

Quarterly  
or monthly

Lat.  
and long. 

coordinates

Not  
applicable

2016

2011

2011

2017

Eurostat

Eurostat

National 
Statistical 

Offices

Online 
booking 
services

Nights spent at tourist  
accommodation establishments

Nights spent or arrivals at tourist 
accommodation establishments

Location and capacity (no. of rooms)  
of tourism accommodation facilities

Number of bed-places

a

b

c

d

Figure 1. Tourism data disaggregation workflow.

The procedure described in step 1 assumes a good fit between demand and 
supply at the NUTS-3 level. While that correlation cannot be assessed at that level 
with available data, the NUTS-2 level data indicates a strong positive correlation 
of 0.88 between total nights spent and accommodation capacity measured as the 
available number of bed-places. The reason, however, for an imperfect correlation 
between demand and supply relates to regional variability in accommodation 

 Regression analysis was employed to assess additional factors determining tourism demand at regional 
level. Although factors such as total regional GDP, capital region, and distance to the most relevant airport 
were found significantly associated with nights spent at the NUTS-2 level, the contribution to explanatory 
power was negligible when compared to a model using only the number of bed-places.

5
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occupancy rates, related to regional-specific drivers and typologies of tourism, 
difficult to assess EU-wide5.

As for step 2, the monthly breakdown of yearly nights spent was supported 
by data collected from every NSO in EU-28. Data were either extracted 
directly from the NSO website or delivered upon prior written request. From 
each NSO, we used nights spent or no. of arrivals per NUTS-3 or NUTS-2, 
and per month or quarter, depending upon data availability. The extracted 
data were used to derive region- and month-specific shares of nights spent 
or arrivals, which were then applied to the yearly nights spent per NUTS-
3 obtained in step 1. When only quarterly data were available, a mean-
preserving smoothing interpolation (Rymes & Myers, 2001) was applied to 
generate monthly shares. Greece was the only country for which temporal 
data were not available at sub-national level. One issue concerning this step 
relates to the mismatch between the years of observation of the regional 
monthly data (2011) and the regional yearly tourism demand figures that we 
wanted to break down (2016). This issue should, however, be fairly minor 
because seasonal patterns of tourism demand tend to be stable due to climate, 
institutional reasons and inertia (Butler, 2001)6.

The monthly share of nights spent or arrivals, as per the above-mentioned 
NSO data, can be plotted to reveal rather distinct seasonal curves amongst 
regions, as shown in Figure 2. The curves show the ratio between each month’s 
average daily number of overnight tourists and the minimum value observed 
in the series so that 1 = month with the lowest number of tourists. Several 
patterns can be identified: strong unimodal distribution for the Algarve 
region (predominantly a beach destination) with a strong peak in August; 
very marked bimodal distribution for the Tirol region (mountain tourism); 
multimodal distribution for Lapland; the relatively flat curve and bimodal 
distribution for Seville, and the even flatter curve for Paris, indicating a 
constant inflow of tourist throughout the year.

The procedure described in step 3, whereby total nights spent are converted 
to average daily number of tourists, was introduced in this study for three 
reasons. First, it corrects for the different number of days of each month, 
which slightly distorts the total number of nights spent per month. Second, 
number of tourists is more tangible than number of nights spent, thus easing 
the interpretation. Third, it allows for a more straightforward comparison with 
other regional socioeconomic figures such as on residents or employment.

 This has been confirmed for regions in selected countries (i.e., Spain, France and The Netherlands), where 
series of regional monthly nights spent for different years between 2011 and 2016 were compared, often 
showing correlations of nearly 1.

6
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 The data were obtained using ad-hoc routines for web data extraction. The data collected consisted of the 
geographical coordinates of accommodation establishments and the respective number of rooms, and used for 
the sole purpose of this non-profit, non-commercial research.

7

Figure 2. Seasonal curves for selected regions in the EU-28, 2011. Source: NSOs. Own 
elaboration.

The aggregation of the point-based number of rooms to 100 x 100 metre 
grids cells (step 4) took into account two major online booking services, 
Booking.com and TripAdvisor7. Table 2 reports basic statistics regarding 
the volume of each of the two datasets for the EU-28. To ensure maximum 
coverage of accommodation establishments, we considered information 
from both datasets, while minimising potential double counting. A procedure 
was therefore designed to identify and remove overlapping accommodation 
establishments between the two datasets. The Booking.com dataset was 
defined as the baseline due to the higher amount of records. Each record from 
TripAdvisor was then evaluated against records from Booking.com within a 
250 m radius. Duplicates were identified by applying a degree of similarity 
that took into account positional proximity as well as the difference in the 
number of rooms between records. As a result, about 127 thousand records 
from TripAdvisor dataset were considered to have a duplicate in the Booking.
com dataset and were discarded. The mean separation distance between 
duplicates was 45 m, and over 94% of the removed pairs had equal room 
count in both datasets.

The final combined dataset included more than 716 thousand points, 
nearly 35% more than in the Booking.com dataset (see Table 2). Official 
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figures from Eurostat (2016) report about 20% fewer establishments than 
the number of records in the combined dataset for the same geographical 
area. Reasons for this apparent mismatch could be related to the definition of 
establishments (e.g., one establishment in official statistics corresponding to 
more than one record in online booking services), reporting biases (lack of 
certain accommodation categories in official statistics) and under-detection 
of duplicates in the combined dataset. Notwithstanding, the ratio between the 
total number of bed-places from Eurostat and the number of rooms from our 
combined point dataset yields a plausible 2.3 bed-places per room. Figure 3 
shows the resulting room density per grid cells of 10 x 10 km.

Table 2. Number of accommodation establishments, rooms and bed-places by data source 
for the EU-28.

Establishments Rooms Bed-places

Booking.com 532,346 7,528,249

TripAdvisor

Combined

Eurostat

310,958 9,818,732

716,103 13,218,804

597,358 n/a

n/a

n/a

n/a

30,850,722

Notes:
1. All values refer to the territory of EU-28, excluding Atlantic islands of Portugal and 

Spain and French overseas territories.

2. Figures from Eurostat refer to the year 2016, except for Ireland and Portugal (2015).

3. Figures regarding Booking.com and TripAdvisor as of February 2017 and August 
2017, respectively.
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Figure 3. Tourism capacity in the EU-28 in 2017. Source: Booking.com and TripAdvisor. 
Own elaboration.

Finally, in step 5, overnight tourists per month in each NUTS-3 were 
disaggregated to 100 m cells containing accommodation rooms proportionally 
to the number of rooms in the cell. The resulting grid map allocates tourists 
to accommodation establishments, thus being a plausible representation of 
tourist density during the night-time when most tourists are assumed to be 
located in their rooms for shelter and rest.

In summary, the above-described workflow can be put as a set of 
sequential variable downscaling or disaggregation steps, first from NUTS-2 
to NUTS-3 level, then from annual to monthly (‘temporal disaggregation’) 
and finally from NUTS-3 to fine grid cell level. The spatial disaggregation 
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steps are often referred in the literature to as dasymetric interpolation or 
dasymetric mapping (Mennis, 2003). Batista e Silva et al. (2013) defined it 
as “cartographic technique whereby ancillary thematic data is used to refine 
the geographical representation of a quantitative variable reported at coarse 
spatial aggregations”. Although dasymetric mapping is mostly applied to 
produce fine-grained maps of residential population distribution from coarser 
statistical zoning systems, applications to other variables have been reported 
such as mobile phone users (Järv et al., 2017), crime events (Mennis, 2016) 
or even tourist density (Vaz & Campos, 2013).

In addition to the obvious gains in spatial detail and accuracy, another key 
advantage of fine-grained tourist density grids is that they allow for flexible 
variable aggregations to any other zoning system, including alternative 
regular grid systems. Furthermore, contrary to administrative boundaries, 
regular grid systems allow for comparability of variables across spatial units 
due to their homogenous size, thus reducing the zone effect of the so-called 
Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984).

Figure 4. Tourist density in August 2016 in selected locations: a) London, b) Paris, c) Rimini d) 
Santorini, e) Venice. Source of background map: Stamen Design with data by OpenStreetMap.
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Figure 5. Tourist density in selected months of the year in the EU-28, 2016.

4. RESULTS

4.1 Main spatiotemporal patterns of tourism in Europe
To illustrate the rich spatial granularity of the produced dataset, Figure 4 shows 
tourist density in the month of August at 100 x 100 metre resolution for a selection
of different popular tourist destinations across Europe. The dataset reveals 
significant differences in the spatial distribution of tourism, including sprawled 
patterns (London and Paris), clustered (Santorini), concentrated (Venice) and 
linear (Rimini), owing to local geography and typology of tourism.

To facilitate the visualisation of tourist density at European scale, we aggregated 
the grids originally produced at 100 x 100 metres to a larger cell size. The maps 
in Figure 5 show tourist density per 10 km2 cells for selected months (i.e. January, 
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May, August and November). The maps’ legends were kept invariant across months 
to allow comparing the spatiotemporal variation of tourist density.

Although not in every location, tourist density is generally the highest in 
August. The largest cities in Europe tend to be hotspots of tourism throughout the 
year. Coastal areas and islands are also popular year-round but peak significantly 
in summer months. Alpine areas display high tourist densities in both summer and 
winter but are comparatively less dense in mid-season (spring and fall). Many parts 
in the centre and west of Europe, particularly the Netherlands, Germany, as well 
as Britain have typically very high tourist densities throughout the year. A possible 
explanation is the high population density of these countries, possibly combined 
with a high prevalence of business- and/or cultural-related tourism which are less 
affected by climate conditions. Conversely, the northern and eastern European 
countries show generally lower tourist densities.

To further ease visualisation and analysis, the monthly gridded tourist densities 
were aggregated to regular hexagons each 25 km wide and 541 km2 in size. We 
found that among the top ten locations (i.e., hexagons) by tourist density, seven 
correspond to capital cities (London, Paris, Berlin, Madrid, Rome, Prague and 
Vienna). The remainder corresponds to beach-tourism destinations in Spain. Table 
3 shows the average daily number of overnight tourists in the top ten locations in 
Europe in 2016 according to our results.

The maps in Figure 6 highlight the top 5% and 10% most popular locations 
(regarding the number of tourists) for each of the four seasons. It is noticeable that 
many locations are persistently popular across the various seasons; in particular, 
the largest cities in Europe, the Alps, many parts of the Netherlands, Britain, west 
Germany and centre-north of Italy, but also many seafront areas. However, the 
coast of the Black Sea, the Greek, Italian and French islands and the Croatian coast 
are only among the most popular in the warm months. In the mid-season, some 
sparse locations in Ireland and Scandinavia are among the most attractive as well.

Figure 7 indicates the season with the highest number of overnight tourists 
per region, confirming that summer is the most popular season for almost every 
region in Europe. This is explained by two important, correlated facts: the summer 
months, and particularly August, are those when most people traditionally go on 
holidays, and when many activities are closed (e.g. education) or have reduced 
activity (e.g. manufacturing). In addition, the warm temperatures are a very 
important pull factor for holidays in the majority of regions. Nonetheless, there 
are some exceptions. The winter season is the most popular in some alpine and 
Scandinavian regions due to favourable natural conditions for winter sports/
activities. Autumn seems to be very popular in Ireland as well as in some inland 
regions of Romania, Bulgaria and Croatia. Finally, spring is the most popular in 
some city-regions such as Rome, Brussels, Madrid, Bucharest, Milan, or Linz, 
plus areas in Andalusia, Bulgaria, east Croatia and north of Paris.
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Figure 6 Most popular locations for tourism per season in the EU-28, 2016.

Table 3. Top 10 locations by tourist density in the EU-28 in 2016.

Rank Location Average daily no. of overnight tourists (‘000)
1
2
3
4

Paris
Berlin

Gran Canaria

111.4
99.9
73.5
58.9

5
6 Tenerife

49.7
47.8

7
8

Rome
Prague

44.6
43.3

9
10

Vienna
Palma de Mallorca

37.6
35.6

London

Madrid
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Figure 7. Most popular season per NUTS-3 in the EU-28, 2011.

4.2 Tourism intensity, seasonality and vulnerability
In the previous section, spatiotemporal patterns of tourism in Europe were 
examined using the herein constructed tourist density dataset, revealing 
substantial uneven distribution of tourism demand both in space and time. It is 
thus evident that regions are affected by tourism very differently: some are little 
or not touristic at all, while others are very touristic (‘tourism intensity’); some 
receive fairly steady tourist inflows year-round, while inflows are particularly 
uneven throughout the year in others (‘tourism seasonality’).

Tourism intensity could be defined as the relative importance of tourism for 
a region. This can be measured, for example, by calculating the ratio between 
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tourism demand and residential population. According to Eurostat (2010), this 
simple indicator is a “better guide to the economic significance of tourism for a 
region than the absolute number of overnight stays. Furthermore, in the context 
of the sustainability of tourism, it can also be seen as an indicator of the possible 
tourism pressure”. In turn, tourism seasonality is the fluctuation or variation of 
tourist inflows during the year in a given territory. According to Butler (2001), 
seasonality is influenced by factors related to both the demand and supply sides. 
Demand-side factors include response to climate variation between seasons, 
institutionalised holidays and vacation tradition/inertia. Supply-side factors 
include climate conditions, physical attractions, opportunities for activities 
and socio-cultural events. Although very common, seasonality is usually seen 
as an undesirable aspect of tourism, as it determines fluctuation of revenue, 
employment, as well as under-and over-utilisation of infrastructure, services and 
resources. Seasonality can, however, also have positive effects as it provides 
a period of rest for the regeneration of natural resources or reestablishment of 
socio-cultural features (Bender et al., 2005; Chung, 2009; Grizane, 2016).

Although these two properties, tourism intensity and seasonality, are in 
themselves interesting to characterise tourism at regional level, we argue that their 
combination can reveal a third, policy-relevant, property of tourism in regions: 
regional vulnerability to shocks in the tourism sector, or regional vulnerability to 
tourism, for short. We define regional vulnerability to tourism as the susceptibility 
of a region to be affected in case of shocks or disruptions in the tourism sector.

Regions with both high tourism intensity and high seasonality are deemed 
to be more vulnerable to the tourism sector and any shocks that may affect it 
(e.g., economic crises reducing overall demand for tourism, terrorism events, 
environmental or socioeconomic disruptions reducing demand for, or transport 
access to, certain destinations). Conversely, a region with low tourism intensity 
and low seasonality is less vulnerable to shocks affecting the tourism sector. 
Indeed, recent studies point out high seasonality as a factor of vulnerability of 
tourism destinations (van der Veeken et al., 2015).

Based on the dataset developed in this study, we propose a regional vulnerability 
to tourism index that relies on the two pillars described above. The implemented 
strategy is threefold. First, we measure the degree of tourism intensity and 
seasonality in each region using suitable quantitative and continuous variables. 
Second, we chunk each series based on quartiles, with each region scoring from 
1 to 4 for both intensity and seasonality. Third, tourism vulnerability is calculated 
as the product of the respective scores for intensity and seasonality, thus ranging 
from 1 to 16.

Tourism intensity is often defined as the ratio between a measure of tourism 
demand (e.g., tourist arrivals or nights spent) and a measure of the demographic 
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where tourists corresponds to the average daily number of overnight tourists over 
the year (i.e., number of nights spent / 365), pop is the total resident population, 
i is a NUTS-3 region and n is the total number of NUTS-3 regions in the study 
area (EU-28). The location quotient is a way of quantifying how concentrated a 
particular activity is in a region as compared to a reference territorial unit (e.g., 
country, continent). In this case, any NUTS-3 region with LQtur > 1 is more 
tourism-intensive than the average tourism intensity in EU-28. In Equation 1, total 
employment could have been used instead of total resident population. However, 
we argue that to assess the relative importance of tourism for a region, the most 
appropriate denominator is total population, as the revenue from tourism may spill, 
directly or indirectly, to people who are not employed (e.g., through rents, informal 
economy or family ties). The resulting LQtur is robust to the use of population or 
employment (correlation of 0.98 between the two options). According to Voltes-
Dorta et al. (2014), tourism intensity is possibly better defined as the tourism-
related tax revenues relative to the total tax revenue by municipalities. However, 
such information is not available, nor it would be consistent amongst the countries 
within our study area. Figure 8 shows the tourism intensity as herein defined for the 
EU-28 NUTS-3 regions in 2016. Tourism intensity is highest in the alpine region, 
Spanish and Greek islands, Algarve, Corsica, central Italy, Croatian and Bulgarian 
coast, and also parts of Britain.

A possible way to measure seasonality across EU regions is to apply the 
coefficient of variation (CV) (Bender et al., 2005; Yacoumis, 1980) to each region’s 
monthly series of the average daily number of overnight tourists. Because CV is 
defined as the ratio between the standard deviation and the mean, it can be used 
for comparing regions regardless of the total number of tourists. A high CV means 
that the number of tourists varies significantly between months as compared to the 
annual average, hence high seasonality. Figure 9 shows the tourism seasonality 
as herein defined for the EU-28 NUTS-3 regions. Most of the regions highly 
affected by seasonality are islands and coastal, hence predominantly oriented to 
beach tourism and thus dependent on climate conditions.

Figure 10 shows the resulting regional vulnerability index to tourism, as 
the product of the regional scores for tourism intensity and seasonality. This 

Eq. 1

or economic size of a region, as in Eurostat (2010), Dumbrovská & Fialová 
(2014) or Liu & Pratt (2017). In here, we apply the following location quotient 
of tourism (LQtur) (Voltes-Dorta et al., 2014):
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Figure 8. Tourism intensity per NUTS-3 in the EU-28, 2016.

assessment comes as a useful complement to the tourist density maps from 
Figure 4. Although some regions in Northern Europe attract modest numbers of 
tourists, they are significantly exposed to the tourism sector due to the relative 
importance of tourism regionally and/or to high seasonality. Conversely, EU 
capital cities are amongst the most popular destinations, but score low or very 
low in the regional vulnerability index due to low seasonality and low relative 
importance of the tourism sector. In general, regions most vulnerable to the 
tourism sector are coastal (Mediterranean, Atlantic, Baltic and in the Black sea), 
mountainous (both the Alps and the Pyrenees), plus most of the Mediterranean 
islands. Italy is a remarkable case with a large share of its regions scoring high 
vulnerability.
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Figure 9. Tourism seasonality per NUTS-3 in the EU-28, 2016.
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Figure 10. Regional vulnerability to tourism index per NUTS-3 in the EU-28, 2016.

5. DISCUSSION, CONCLUSIONS AND WAY FORWARD
Available statistical data from official European data sources on tourism is 
limited in terms of both the spatial and temporal resolutions, curbing potential 
analyses and applications relevant for tourism management and policy. 
However, combined with emerging, big data sources, conventional statistical 
data can be enriched by furthering its spatial and temporal granularity. In this 
paper, we sought, obtained and combined data from multiple data sources to 
upgrade the state-of-the-art knowledge on tourism for the European Union. 
We produced a novel, complete and consistent dataset describing the average 
daily number of overnight tourists per regions and regular grid cells of various 
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shapes and spatial resolutions with monthly breakdown. The produced dataset 
allowed us to distil key spatiotemporal patterns and characteristics of tourism 
in Europe at both regional and local scales.

Two main ‘ingredients’ were integrated with demand-side tourism statistics 
from Eurostat to achieve the  dataset mentioned above: 1) regional seasonal 
curves derived from data from National Statistical Offices of the EU-28 and, 
2) the location and capacity of accommodation establishments from two 
major worldwide online booking services. The data extraction from NSOs, 
although indispensable for the refinement of the temporal detail of tourism 
demand at regional level, proved to be a particularly laborious task due to 
the number and diversity of databases (28 in this case), posing problems for 
data extraction automation and scalability. As for the second input used, the 
completeness of accommodation establishments cannot be fully warranted, 
even if information from two major worldwide online booking services has 
been used. Notwithstanding, the information used provides, to the best of our 
knowledge, the most complete, spatially detailed, and up-to-date picture of the 
location of accommodation establishments available so far.

Although the produced dataset has value on its own as a contribution to the 
state-of-the-art of tourism research in Europe, we exploited the novel dataset to 
deliver new insights concerning current (i.e., 2016) regional patterns of tourism 
intensity, tourism seasonality and, ultimately, a generic assessment of regional 
vulnerability to shocks in the tourism sector. In brief, our data and analyses 
indicate clearly that the relative impact of tourism in Europe and its seasonality 
vary greatly from country to country and, even more so, from region to region 
and from locality to locality. Cities, as well as islands, coastal areas and the 
Alps, tend to be major hotspots for tourism in Europe. Based on the assessment 
of regional vulnerability to tourism, cities are less susceptible to shocks in 
the tourism sector as compared to other areas because their dependence on 
tourism is relatively low and are less affected by seasonality. Although these 
characteristics are generally acknowledged amongst tourism researchers, the 
dataset herein produced allows for an inspection of the varying tourist density 
and intensity levels at unprecedented high spatial and temporal resolutions, 
consistently for the whole of the EU-28.

The proposed index of regional vulnerability to shocks in the tourism sector 
integrates the relative importance of tourism (i.e., tourism intensity) and the 
degree of seasonality per region, demonstrating the analytical potential of the 
fine-grained tourism data harnessed in this study. Although fairly simple in 
conception, this indicator’s strengths lie on its transparency, consistency and 
quantitative nature, allowing comparisons between EU’s regions. Moreover, 
it can be updated and improved with a more precise definition of tourism 
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intensity, e.g., a definition based on the actual economic contribution of tourism 
regionally, should appropriate and comparable data become available for all 
EU regions. One limitation of the indicator, however, is that it does not account 
for the capacity or potential of regions to overcome events or conditions that 
compromise the sector. Finally, as an all-purpose indicator, it is not specific to 
different types of shocks or to different typologies of tourism destination. Liu & 
Pratt (2017), for example, have studied the more specific case of vulnerability 
and resilience of tourism to terrorism at country scale, while Terkenli (2005) 
argued that in the case of Crete, Greece, impacts of seasonality in the landscape 
and society may as well vary according to development stage of tourism. A 
more comprehensive framework to study vulnerability and resilience of tourism 
destinations has been proposed by Calgaro et al. (2014).

A follow-up of the herein presented work should focus on the improvement of 
the seasonal variation of tourism demand regionally by exploiting information 
from emerging, big data sources. An alternative to resorting to somewhat 
heterogeneous seasonal data from separate NSOs across Europe could be the 
use of data available from TripAdvisor. This source provides the number of 
reviews per accommodation establishment and per season, which could be 
used to generate consistent and seasonal curves per any desired geographical 
delimitation. Finally, the accommodation capacity and tourist density maps 
described in this paper are already being used as input to the production of 
high-resolution population density grids for Europe that take into account 
major daily and seasonal population variations (Batista e Silva et al., 2017).
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A high-resolution population grid 
map for Europe1

ABSTRACT
Population figures are usually collected by national statistical institutes at 
small enumeration units (e.g., census tracts or building units). However, still 
for many countries in Europe, data are distributed at coarser geographical 
units like municipalities. This level of resolution is insufficient for analysis in 
many fields. In addition, the heterogeneity of the size of the geographical units 
causes great distortions in analysis, i.e., the Modifiable Areal Unit Problem 
(MAUP). Dasymetric mapping techniques have long been applied world-wide 
to derive finer (and MAUP-free) depictions of the population distribution. These 
techniques disaggregate population figures reported at coarse source zones into a 
finer set of zones using ancillary geographical data. Previous attempts to map the 
European population at high resolution have used CORINE Land Cover (CLC) 
as the main source of ancillary data. In this article, we test new geographical 
datasets to produce an updated and improved European population grid map. It 
is tested whether using more detailed ancillary data in the dasymetric mapping 
significantly yields higher accuracies. As final outcome of this cartographic 
exercise, a European population grid map for the reference year of 2006, with 
a spatial resolution of 100 × 100 metres, is presented and validated against 
reference data. Resident population reported at commune level, a refined version 
of CLC and information on the soil sealing degree are used as the main inputs to 
produce the final map.

 This chapter was first published as Batista e Silva F., Gallego J., & Lavalle C. (2013). A high-resolution 
population grid map for Europe. Journal of Maps 9(1), 16-28. https://doi.org/10.1080/17445647.2013.764830
1
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1. INTRODUCTION: THE DASYMETRIC MAPPING   
FUNDAMENTALS
The size and the geographical distribution of the population within a given 
region are some of the most basic socio-economic indicators. Nonetheless, the 
knowledge of these aspects is essential for understanding and responding to 
problems in many fields (Wang & Wu, 2010). Obtaining proper cartographic 
representations of population distribution is an issue that dates back to the mid 
nineteenth century, when the first censuses and the earliest developments in 
thematic cartography emerged. In the 1920s and 1930s, the innovative dasymetric 
technique was created and used to produce more realistic depictions of population 
distributions. The most well-known example of these early developments is the 
work of (Wright, 1936).

Dasymetric mapping can be defined as a cartographic technique whereby 
ancillary thematic data is used to refine the geographical representation of a 
quantitative variable reported at coarse spatial aggregations. When manually 
implemented, the dasymetric technique is a laborious and time consuming 
task. However, advances in computer technology and in geoprocessing through 
Geographical Information Systems (GIS) renewed the interest in this technique 
in the 1990s. Abundant literature has shown that dasymetric techniques increase 
the spatial accuracy compared to more conventional mapping techniques, 
i.e. choropleth mapping (Eicher & Brewer, 2001; Gallego, Batista, Rocha, & 
Mubareka, 2011; Holt, Lo, & Hodler, 2004; Langford, 2007; Mennis & Hultgren, 
2006). In addition, dasymetric mapping solves the distortions caused by the 
Modifiable Areal Unit Problem (Openshaw, 1984).

Even though dasymetric techniques can be applied to map any kind of 
statistical variable, these are more commonly used to map human population. A 
typical formulation of many dasymetric population mapping applications is as 
follows:

Eq. 1

where  refers to the known population at the source zone  and refers to the 
estimated population in the target zone . The source zones are the discrete 
geographical units used to collect and/or report statistical data, while the target 
zones are finer zones within each source zone, and are the result of the intersection
between the source zone and ancillary spatial data (e.g., land use polygons). Finally, 

 refers to the area of target zone, and  is a weighting parameter related to the 
population density of the target zone. Note that the sum of the area of the target 

i 
Ps Ps 

Ai  
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zones within a source zone is equal to the area of the source zone, . This 
formulation guarantees the so called pycnophylactic property, as coined by (Tobler, 
1979), which means that the disaggregation process preserves the exact sum of 
people originally reported for each source zone.

Most dasymetric techniques disaggregate original population counts (usually 
reported at administrative zones) into finer spatial units (usually raster cells), but 
may differ in two components: (a) the geographical ancillary data used to inform 
the disaggregation and (b) the way the  term is inferred. As for the ancillary data, 
data derived and/or extracted from remote sensing imagery (e.g., land use/cover, 
night-time light emissions) and from topographic or base maps (e.g., road network, 
layout of buildings) can often provide good proxies of where people live.

Several dasymetric variants have been developed and documented. An 
incomplete list would comprehend the following: binary allocation (Langford, 
Maguire, & Unwin, 1991); limiting variable estimation (Eicher & Brewer, 2001; 
Gallego et al., 2011); empirical estimation of local densities (Mennis, 2003; Mennis 
& Hultgren, 2006); regressions (Briggs, Gulliver, Fecht, & Vienneau, 2007; 
Flowerdew & Green, 1989); kernel functions applied to point data (Bracken & 
Martin, 1995; Martin, 1989); estimation-expectation algorithm (Dempster, Laird, 
& Rubin, 1977) and its applications (Flowerdew, Green, & Kehris, 1991; Gallego 
et al., 2011; Harvey, 2002) and geostatistical estimations (Kyriakidis, 2004; Liu, 
Kyriakidis, & Goodchild, 2008; C. Wu & Murray, 2005). The paper of Wu, Qiu, 
& Wang (2005) systematizes and reviews most of existing population estimation 
methods. Recent developments in this field of research are related to the use of 
innovative ancillary data sources, like very high-resolution imagery and LIDAR 
data (Light Detection And Ranging) (e.g., Lu, Im, Quackenbush, & Halligan, 2010); 
the estimation of intercensal population by combining population disaggregation 
techniques and urban growth simulation models (Zhan, Tapia Silva, & Santillana, 
2010); and the day-time population mapping using detailed census or survey data 
(Hofstetter & Herzog, 2011; Martin, 2011).

Whereas most of the documented dasymetric applications mapped population 
for small area extents (local, regional or national applications), only a few 
continental or global-scale studies have been conducted. The Gridded Population 
of the World (Balk & Yetman, 2004) and the LandScan (Bhaduri, Bright, Coleman, 
& Dobson, 2002; Dobson, Bright, Coleman, Durfee, & Worley, 2000) are two 
well-known global datasets that report population at respectively 2.5 and 0.5 
minute-arc resolution. Efforts to produce a European population map have been 
conducted and reported by Gallego & Peedell (2001), Gallego (2010) and Gallego 
et al. (2011). As reported in the cited papers, several algorithms were tested to 
disaggregate official European population counts (for the years 1990 and 2000) 
into 100 metre cells, using the Corine Land Cover (CLC) as main ancillary dataset. 

Σi Ai  = As 

W 
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Another approach was applied by Briggs et al. (2007), whereby the CLC and night-
time light emissions were combined to produce a European population map at the 
resolution of 200 metres for the reference year of 1990.

2. PRODUCING A POPULATION GRID MAP FOR EUROPE

2.1 Objectives, data and workflow
The final aim of the work herein presented is to produce an entirely new European 
population grid map for the reference year of 2006 with a spatial resolution of 
100 × 100 metres (pixel size). A parallel objective is to test the assertion of Martin, 
Tate, & Langford (2000: 358) that the ‘input data quality is more important than 
algorithmic detail’. In order to make this assessment, three dasymetric approaches 
are applied and validated: a ‘control’ approach uses the original CLC 2006 as the 
sole source of ancillary data for the disaggregation procedure, while two ‘test’ 
approaches use a refined version of the CLC 2006 (Batista e Silva et al., 2013) 
and the soil sealing layer2.

As for population data, figures at commune level3 referring to the year 
2006 were provided by Eurostat. The original datasets are mostly inter-census 
estimates produced by national statistical institutes in Europe. At the time of this 
study, actual census data from 2011 had not yet been released and the most recent 
European land use/cover datasets referred to the year 2006. As a consequence, 
the year 2006 was the most recent year allowing a temporal match between 
population and ancillary data sources.

The workflow followed in this cartographic exercise is depicted in Figure 1 
and it comprehends the following four main steps:

1. Data preparation:
a) Creation of a refined version of the CLC 2006 from finer spatial datasets;
b) Aggregation of the original population reported at commune level to the 
     NUTS3 level4.

 The soil sealing layer is a European wide map that measures the soil imperviousness as percentage.  
It is derived from satellite imagery and is distributed by the European Environmental Agency. The version  
of 2006 was used.

 In this paper, the word ‘commune’ refers to LAU2, Local Administrative Unit, level 2, as defined by 
Eurostat, corresponding to the lowest administrative level of each country. For Lithuania and Portugal, 
LAU1 was used instead. In total 100,925 local administrative units were used, with an average size of 46 km2.

 The Nomenclature of Territorial Units for Statistics (NUTS) is Eurostat’s official regional subdivision 
for collection and reporting of statistical data. It is structured in four hierarchical levels, from NUTS-0 
(countries) to NUTS-3 (sub-regions). (https://ec.europa.eu/eurostat/web/nuts/background). For the work 
herein presented, a total number of 819 NUTS3 regions were used, with an average size of nearly 5,700 km2.

2

3

4



204

Figure 1. Workflow for population map production and validation.
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2. Implementation of different disaggregation approaches:
a) Disaggregation of NUTS3 population using three different approaches. 
      Three population grid maps, at the resolution of 100 × 100 metres, are  
      obtained;

3. Validation of the three population grid maps at commune level:
a) Aggregation of the pixel level estimations to the commune level;
b) Comparison between known and estimated population at commune 

       level in order to assess the accuracy of the population spatial 
        redistribution.

4. Production of the final population grid map: the original population
    reported at commune level is disaggregated using the best performing   
    approach, as assessed in step 3 (see the map attached to this article).

2.2 Creation of a refined version of the CLC 20065 
Previous efforts to produce European population distribution maps have 
used CORINE Land Cover as the main ancillary data to inform the spatial 
disaggregation. However, CLC has important limitations, one of which being its 
minimum mapping unit (MMU) of 25 hectares, which means that land use/cover 
patches smaller than that threshold are not captured. To compensate for the fact 
that considerable amounts of urban and residential areas could be missing in the 
land use/cover maps due to generalization rules, cartographers (e.g., Eicher & 
Brewer (2001)) found ways to assign population to vast cultivated and forested 
areas, thus creating less plausible population distribution patterns.

To overcome this problem, an improved land use/cover dataset was developed 
and used to disaggregate population counts. The approach was based on refining 
the spatial detail of CLC 2006 by combining land use/cover information present 
in various higher-resolution thematic maps available for Europe such as the CLC 
change map, soil sealing layer, Tele Atlas® Spatial Database, Urban Atlas, and 
SRTM Water Bodies Data.

The resulting refined version of CLC (CLC_r) has an improved minimum 
mapping unit of 1 hectare for all types of artificial surfaces and inland waters, 
while retaining the original 100 metre cell size. The increase in the reported area 
of artificial surfaces ranges from 2.81% to 53.23%, depending on the specific 
land use/cover class. Another improvement of the CLC_r compared to its original 

The creation of the ‘refined’ CLC is thoroughly documented in a dedicated paper (Batista e Silva, Lavalle, & 
Koomen, 2013).
5
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Table 1. Disaggregation approaches used in this study.

Approach M3Approach M2Approach M1

 Population reported at NUTS3.
     Reference year: 2006. Source: Eurostat / National Statistical Institutes.

Source population data

Ancillary data                           CLC 2006 

Land use/cover classes used                 All 

Disaggregation algorithm              Limiting variable 

CLC 2006 refined

Urban fabric

Densities defined by 
regression

Densities proportional  
to soil sealing degree

2.3.1 Approach M1
The first approach uses the original CLC 2006 map and the ‘limiting variable’ 
disaggregation algorithm. This algorithm was firstly proposed by Eicher & 

counterpart is the increase in the number of populated communes with urban 
fabric pixels. According to Eurostat's 2006 population figures at commune level, 
if the original version of CLC is considered, 9.3 million inhabitants are reported 
to live in communes without any urban fabric pixel. But if CLC_r is considered, 
the value is significantly reduced to only 0.25 million inhabitants. Improved 
thematic detail was also introduced in the CLC_r by the rearrangement of the two 
urban fabric classes present in CLC into three new classes: high-density urban 
fabric; medium-density urban fabric; and low-density urban fabric.

2.3 Creation of population grid maps for validation purposes
Three different approaches were implemented. The first method (M1) is 
considered a ‘control’ approach because it replicates a known and documented 
disaggregation algorithm, as applied by Gallego et al. (2011) and uses the 
original CLC as the only geographical ancillary data. On the other hand, two 
‘test’ approaches (M2 and M3) make use of finer ancillary data combined 
with alternative disaggregation algorithms. ‘Test’ and ‘control’ disaggregation 
approaches are firstly implemented using population aggregated at NUTS3 
(source zones), while the original commune counts are kept aside for validation 
purposes. Each approach originates a population grid for all Europe, with 
population downscaled to the 100 metre pixel level.

A summary of the main characteristics of the different approaches is presented 
in Table 1. In the following sub-sections, more details on the disaggregation 
procedures are given for each approach.
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Eq. 2Ps = β0 + β1U1 + β2U2 + β3U3 + εs

The  coefficients reflect the different population densities of each urban fabric 
class, with c = {1,2,3} denoting high, medium and low density urban fabric classes, 
respectively. Based on Langford’s (2006: 166) findings6, we further assumed that 
the coefficients are non-stationary in space, which means that the same urban fabric 
class can hold different population densities across regions and that is dependent 
on the overall region’s density. To capture this spatial variability, the NUTS3 
regions were classified in three strata, according to their average population density 
computed as inhabitants per hectare of total urban fabric.

The regression was then applied to each stratum, and different coefficients 
were obtained for each urban fabric class and for each stratum (Table 2). The 
high r-squared values obtained for each regression demonstrate the validity 
of the initial assumption. As expected, we observe that the denser the regions 

βc

Brewer (2001) and later applied to map population in Europe by Gallego et al. 
(2011) with satisfactory results.

The procedure starts by defining the maximum population density that can 
be assigned to each land use/cover class. These ‘density thresholds’ are region 
specific, and are obtained by empirical means. Then, land cover classes are 
ranked according to their population-density threshold in ascending order. The 
disaggregation starts by distributing people equally among all land cover classes 
in each NUTS3 region. Starting from the lowest ranked land use/cover class in 
each NUTS3, the excessive population (i.e., when the attributed density is above 
the threshold) is re-distributed in the remaining denser classes. The process 
continues for all classes, step-wise. At the end of the allocation process, eventual 
remaining population (i.e., not yet allocated due to the density thresholds) is 
redistributed to all classes proportionally to the thresholds.

2.3.2 Approach M2
In method 2, we assume that the number of people living in a region is directly 
related to the amount of urban fabric reported in the refined version of the CLC 
dataset. To capture this association, a multiple regression model was set up, 
whereby the amount of people P in NUTS3 region s is the dependent variable 
and the amount of urban fabric U of each class c are the explanatory variables. 
The model is formalized as follows:

 Langford has found ‘some degree of spatial variation in the relationship between population density and 
land cover type’.
6
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 The soil sealing layer could not be used directly to inform the location of residents because it comprehends 
many uninhabited sealed surfaces such as road and rail infrastructure, as well as all kinds of non-residential 
built-up (e.g., industrial and commercial units, public facilities, etc.) (Sanchez & Kahabka, 2008 in Caetano, 
Araújo, Nunes, & Carrão, 2008).

7

Table 2. Strata definition, R-squared and obtained coefficients for each regression.

Strata definition Adjusted 
R-squared

β1 β2 β3

Stratum 1 

Stratum 2 

Stratum 3 

NUTS3 with pop. density
< 32 inhabitants / ha

NUTS3 with pop. density between
32 inhabitants / ha and 65 inhabitants / ha

NUTS3 with pop. density
> 65 inhabitants / ha

0.922     29.041      27.680       19.877

0.951     88.255      42.631       30.296

0.904    167.893      82.772       66.872

As opposed to a global regression from which we would have obtained only one 
set of coefficients, this approach can be seen as a simple form of spatial regression 
that captures the geographical variability of the coefficients based on three groups 
of regions. Although not used in this study, a proper spatial regression like the 
Geographically Weighted Regression (Fotheringham, Brunsdon, & Charlton, 
2002) could be applied to actually derive NUTS3-specific coefficients. Langford 
(2006: 164-166) further discusses the use of global and regional regressions to 
estimate population densities of land use/cover classes.

2.3.3 Approach M3
In method 3, the urban fabric classes of the refined version of CLC are used to 
inform the location of people and the values of the soil sealing layer are used to 
disaggregate the population from NUTS3 counts to pixel level. In other words, 
the soil sealing values are only used as a proxy for population density within the 
urban fabric classes of CLC_r7.

This approach assumes a positive linear relation between the average degree 
of soil sealing of the urban fabric classes and the amount of population. The linear 
relationship is established through the constant factor , which is calculated forks 

the greater the coefficient values for all urban fabric classes. The coefficients 
were then directly used as the W term of Equation 1 to calculate the estimated 
population at pixel level.
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each NUTS3 s by solving eq. 3. In this equation,  and denote, respectively, 
the number of urban pixels and the mean soil sealing degree of each urban fabric 
class . The factor  should be interpreted as the number of residents per unit 
(%) of sealed surface in each NUTS3 region. The last step consists in finding the 
estimated number of residents for the pixels of each urban class  within each 
source zone s,  (Equation 4).  is the final result of the disaggregation 
procedure, and .

ks = Ps / Σc (Uc * Sc)

P’cs = ks Sc

Eq. 3

Eq. 4ks = Ps / Σc (Uc * Sc)

Σc P’cs = Ps 
P’cs P’cs 

c 

ks c 

S U 

Figure 2. Population distribution in Greater Lisbon, Portugal. Results for each dasymetric 
approach. Pixel size: 100 × 100 metres.

2.4 Results and validation
An extract of the results for each approach is shown in Figure 2. Due to the use of 
the CLC_r, approaches M2 and M3 resemble quite similar in terms of the spatial 
configuration. Nevertheless, a closer inspection reveals that values at pixel level 
differ due to the different density estimation methodologies.

Pj 
The validation of each population grid (M1, M2 and M3) is done by 

comparing the population reported at commune level (known population ) 
with the population reported by the grids for each commune, i.e., the sum of all
pixel population values in each commune (estimated population ). The Total 
Absolute Error (TAE) was favored as the main indicator of model performance 
as opposed to the root mean square error (RMSE) because it is more robust for

P’j 
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 The ‘RMSE is very sensitive to moderate errors in a small number of large values and much less sensitive 
to serious errors in small values’ (Gallego et al., 2011: 2064).

The fact that the CLC_r lacks urban fabric in communes summing a total of 0.25 million inhabitants 
contributed only with +0.001 RTAE points in M2 and M3, thus a negligible effect at the European scale.

8

9

In a pycnophylactic disaggregation,   with . To 
allow a better reading, TAE can be made relative to , so . In this 
way,   . A RTAE value of 0 would mean a perfect disaggregation from 
NUTS3 level to the commune level, while a RTAE of 2 would mean a completely 
wrong disaggregation.

The chart depicted in Figure 3 shows the main results of the validation 
expressed as RTAE. Considering the entire pool of communes (Figure 3, 
all communes), the RTAE ranges between 0.31 and 0.37, from a maximum 
possible error value of 2. The worst results were obtained for M1 in communes 
below 1000 residents, where RTAE is exactly 1 (half of all possible absolute 
deviations). It is clear that approaches M2 and M3 perform consistently better 
than M1, thus leading to conclude that the use of a refined land use/cover dataset 
has a relevant and positive impact in population mapping . In addition, M3 
outperforms M2 for all commune sizes. Therefore, the information on the soil 
sealing degree appears to add value to the mapping9 of population. It is worth 
mentioning that regardless of the approach used to disaggregate population, 
there is a general propensity to obtain higher accuracies in more populated 
communes. 

TAE ∈ [ 0 , 2 * Pt ],  Pt = Σj Pj 
Pt RTAE = TAE / Pt 

RTAE ∈ [0,2] 

Eq. 5

j 

TAE = Σj |P’j – Pj | 

skewed distributions as is the case of population density8. In our case, the TAE 
is the sum of all absolute deviations for a given group of communes , and it is 
computed as follows:
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Figure 3. Results of validation by commune size expressed as .RTAE ∈ [0,2] 

When analyzing the RTAE by country (Table 3), it is clear as well that the 
approach M3 performs best in the vast majority of the countries. It must be 
finally noted that the RTAE values presented in Table 3 can only be used for 
comparison of methods within each country, and not between countries. Higher 
RTAE values for country A in respect to country B do not necessarily mean that 
the population map is less accurate for country A. This is due to the fact the 
RTAE is highly dependent on the difference in size between the source zones 
of the disaggregation (NUTS3) and the validation zones (communes). In fact, 
we observed that countries with smaller differences between the average size 
of the source and validation zones tend to have smaller RTAE values and vice-
versa.
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Table 3. Results of validation by country expressed as 

                   RTAE 

   M1   M2   M3

Austria   0.254   0.234   0.223
Belgium   0.317   0.227   0.176
Bulgaria   0.892   0.788   0.707
Switzerland  0.343   0.310   0.283
Czech Republic  0.523   0.441   0.417
Germany   0.281   0.249   0.247
Denmark   0.315   0.313   0.314
Estonia   0.762   0.608   0.547
Spain   0.561   0.527   0.513
Finland   0.456   0.399   0.371
France   0.469   0.410   0.386
Hungary   0.474   0.379   0.357
Ireland   0.330   0.422   0.412
Iceland   0.529   0.456   0.439
Italy   0.310   0.296   0.291
Lichtenstein  0.173   0.129   0.129
Lithuania   0.673   0.545   0.479
Luxembourg  0.445   0.325   0.331
Latvia   0.425   0.342   0.319
Malta   0.475   0.168   0.179
Netherlands  0.191   0.164   0.169
Norway   0.219   0.159   0.163
Poland   0.353   0.296   0.286
Portugal   0.211   0.248   0.251
Romania   0.694   0.561   0.485
Sweden   0.381   0.377   0.309
Slovenia   0.247   0.300   0.294
Slovakia   0.600   0.505   0.475
United Kingdom  0.134   0.107   0.106

2.5 Creation and validation of the final population grid map
The previous sections explained how three different population grid maps were 
obtained by disaggregating population reported at NUTS3. The comparison 
of the three maps against known population at commune level showed that 
the approach M3 consistently yielded higher accuracies than M1 and M2. 
Therefore, the approach M3 was chosen to produce the very final map of this 
work, and population at commune level (the most detailed available data) will 
now be the starting point for the disaggregation. The accuracy of the final map 

RTAE∈[0,2]. RTAE ∈ [0,2] 
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is higher than the any of the three ‘validation maps’ simply due to the use of 
more detailed geographical source zones.

Like the maps produced in the validation stage, the final map reports 2006 
population estimates at 100 × 100 metre cells, for the territory of the EU-27 (except 
Greece), plus Andorra, Norway, Iceland, San Marino, Monaco, Lichtenstein 
and the Vatican City. The reference coordinate system is the ETRS89-Lambert 
Azimuthal Equal Area, as recommended by the European Inspire Directive.

The last step of this work was to validate the final map. The validation 
methodology is as explained in section 2.4. This time, however, the population 
reported in the final population grid map was compared to population reported 
at 1 km2 ‘bottom-up grids’ obtained for a sub-set of countries (all with the 
reference year of 2006). In bottom-up grids, the nr. of inhabitants in each cell 
is a real count, usually obtained from small area statistics collected by national 
statistical institutes10. Table 4 shows the RTAE obtained for the sub-set of 
validated countries. The values shown in Tables 3 and 4 are not comparable 
because the validation zones used were different. The fact we used regular 1 
km2 cells for the validation of the final map allows the comparison of accuracies 
between countries in Table 4.

The population grid yields the highest accuracies for Netherlands, France 
and Austria. On the other hand, the poorest result was observed for Norway. 
These differences can be attributed mainly to aspects related to input data. As a 
matter of fact, the best performances were obtained for countries with smallest 
communes (see Table 4). In addition, issues related to the ancillary land use/
cover data could have originated further inaccuracies in the population map. 
For example, the poor result obtained for Norway could be related to the fact 
that the refinement of CLC for this country was limited due to the lack of key 
land use/cover data sources11.

 The bottom-up grids in this study were kindly provided by each respective national statistical institute 
trough the intermediation of Eurostat.

 The Urban Atlas land use/cover maps were missing for Norway (Batista e Silva et al., 2012).

10

11
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3. CONCLUSIONS
By carrying this cartographic exercise, we sought to assess how dasymetric 
population mapping accuracies are influenced by the use of ancillary data of 
different characteristics and resolutions.

Three dasymetric approaches were applied to create population grid maps for 
Europe. Each approach differed in the geographical ancillary datasets used to 
inform the disaggregation. In addition, due to the use of diverse ancillary datasets, 
different ways of attributing density weights to the target zones were necessary. 
The validation scheme allowed us to systematically compare the resulting grid 
maps against reference data, and to observe consistent improvement of the 
population disaggregation accuracies as more and finer ancillary data were used. 
In this specific case study, the use of a refined version of CORINE Land Cover 
(with a minimum mapping unit of 1 hectare for artificial surfaces), combined with 
information on the soil sealing degree to derive population densities, yielded the 
highest accuracies.

The final product of this exercise is a comprehensive and highly detailed 
depiction and quantification of the spatial distribution of resident population 
in Europe. The map, however, is not exempt of errors. As in any model, the 
approach applied to disaggregate commune population to the 1 hectare grid 
cells is based on assumptions that only approximate reality. Furthermore, errors 
associated with ancillary datasets used, as well with the population source data 
themselves, propagate to the final map.

Table 4. Results of validation of the final population grid, by country, expressed as .

              RTAE 

           Final population grid map                       Median commune size (km2) 

Austria    0.388    24
Denmark    0.412    356
France    0.308    11
Netherlands   0.292    60
Norway    0.709    465
Portugal    0.536    222
Sweden    0.559    733

RTAE ∈ [0,2] 
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Uncovering temporal changes in  
Europe’s population density patterns 
using a data fusion approach1

ABSTRACT
The knowledge of the spatial and temporal distribution of human population is 
vital for the study of cities, disaster risk management or planning of infrastructure. 
However, information on the distribution of population is often based on 
place-of-residence statistics from official sources, thus ignoring the changing 
population densities resulting from human mobility. Existing assessments of 
spatio-temporal population are limited in their detail and geographical coverage, 
and the promising mobile-phone records are hindered by issues concerning 
availability and consistency. Here we present a multi-layered dasymetric 
approach that combines official statistics with geospatial data from emerging 
sources to produce and validate a European Union-wide dataset of population 
grids taking into account intraday and monthly population variations at 1 km2 
resolution. The results reproduce and systematically quantify known insights 
concerning the spatio-temporal population density structure of large European 
cities, whose daytime population we estimate to be, on average, 1.9 times higher 
than night-time in city centres.

 This chapter was first published as Batista e Silva, F., Freire, S., Schiavina, M., Rosina, K., Marín Herrera, 
M. A., Ziemba, L., Craglia, M., Koomen, E., & Lavalle, C. (2020) Uncovering temporal changes in Europe’s 
population density patterns using a data fusion approach. Nature Communications, 11(4631). https://doi.
org/10.1038/s41467-020-18344-5

1
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1. INTRODUCTION
Knowledge of population distribution is crucial for spatial analysis and policy 
support in many domains. Yet, despite all the progress since the inception of 
the first modern censuses in the early nineteenth century, and the emergence of 
digital cartography and Geographical Information Systems in the second half 
of the twentieth century, our knowledge of the spatio-temporal distribution of 
population remains remarkably incomplete.

The emergence of dasymetric mapping in the 1910s (Petrov, 2012), and its 
rediscovery many decades later (Eicher & Brewer, 2001; Mennis, 2003), thanks to 
increasing access to digital censuses, geospatial data and computing power (Leyk 
et al., 2019) contributed substantially to improve the geographical representation 
of population distribution. Dasymetric mapping can be described as a smart 
areal interpolation method (Wu et al., 2005) that operates by disaggregating 
population counts usually available per administrative units or census zones to a 
finer set of zones using a covariate of population distribution available at higher 
spatial resolution. Examples of covariates typically include land use/land cover 
(LULC) features (e.g., built-up and roads) or properties (e.g., built-up density, 
soil imperviousness and night-time lights) derived from remote sensing and other 
geospatial datasets (Batista e Silva et al., 2013; Gallego et al., 2011; Harvey, 
2002; Langford, 2013; Stevens et al., 2015; Wang & Wu, 2010; Zandbergen & 
Ignizio, 2010), as well as user-generated content from social media (Patel et al., 
2017; Zhao et al., 2018).

Dasymetric mapping is often applied to generate population grids, or 
tesselations of regular squared cells with estimates of population. Such grids 
help mitigate the distortions associated with the Modifiable Areal Unit Problem 
(Openshaw, 1984) to the extent that they increase the spatial resolution, are 
less arbitrary and remove the original areal heterogeneity vis-à-vis the original 
population enumeration zones. Population grids have become essential inputs 
for the analyses of human-environment interfaces and to support a wide range of 
applications by national and local governments, non-governmental organizations, 
and companies, including regional and urban planning, disaster risk management, 
and geomarketing (Freire & Santos, 2012).

Currently, there are multiple gridded population products of varying spatial 
resolutions and characteristics, with global or continental coverages (Center 
for International Earth Science Information Network, 2018; Leyk et al., 2019; 
Pesaresi et al., 2016; Tatem, 2017). In countries lacking up-to-date and reliable 
official demographic data, small-area estimation of population becomes 
possible, thanks to the increasing availability of Earth Observation data and 
other emerging sources of (big) geospatial data, computational power, and new 
statistical techniques (Wardrop et al., 2018). For example, in a recent application 
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in Nigeria, population was estimated independently from national census data, 
employing a bottom-up modeling approach combining a detailed mapping of 
built-up areas and a survey of local population densities (Weber et al., 2018). In 
Europe, reliable bottom-up population grids can be constructed by aggregating 
address-based population counts provided by National Statistical Institutes (as 
opposed to dasymetric, top-down grids), of which GEOSTAT 2011 is the most 
recent compilation. For a more thorough discussion of the differences between 
top-down and bottom-up approaches, please refer to the paper from Wardrop and 
colleagues (2018), while for a recent review more centered on top-down methods 
for large-scale applications and their fitness for use, we recommend the paper by 
Leyk et al. (2019).

The vast majority of population grids are based on place-of-residence 
population counts. These maps can be used as proxies for night-time population 
distribution (Bhaduri, 2016), assuming that most people stay in their declared 
places of residence at night for shelter and rest. However, population is a 
temporally dynamic variable, with major shifts in its distribution occurring in 
daily and seasonal cycles, resulting in rapidly changing densities. Consequently, 
studies requiring spatially detailed information on population distribution are 
constrained to a static and incomplete representation of this dynamic phenomenon. 
Shifting from place-of-residence to place-of-activity population grids allows us 
to produce spatially explicit representations of the present population for different 
temporal frames. Such information is helpful for applications where both the 
spatial and temporal dimensions of population density are important, such as 
transport planning, or assessment of human exposure to natural, environmental, 
epidemiological and technological hazards (Freire & Aubrecht, 2012; Freire, 
2010; Kellens et al., 2012; Panczak et al., 2020; Ramacher et al., 2019).

Daytime population distribution varies greatly from that of night-time. The 
location of population during the day is determined by the location of economic, 
social, leisure and other facilities which attract population from their residences, 
driving commuting flows and other forms of trips (Bassolas et al., 2019; Louail 
et al., 2015). Therefore, it is significantly more challenging to infer daytime 
population distribution than mapping night-time population. First and foremost, 
there is no single, measurable statistical concept instrumental for daytime 
population as the number of residents is for night-time population. When a 
person is not present in his place of residence, he or she is likely to engage 
in multiple activities during the day such as studying, working, shopping, and 
going for leisure. Fundamentally, the locations of the presence of people are a 
function of their activities. Although there are aggregate statistics describing the 
size of the groups of people engaged in various activities, these are rarely linked 
to the exact time and locations of the activity. Thus, daytime population needs 
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to be inferred from multiple, indirect sources. This complexity helps explain the 
significant delay in the development of spatio-temporal population mapping vis-
à-vis conventional resident population mapping.

The first studies trying to map daytime population distribution date back to 
the mid-twentieth century and used passenger counts in a number of cities in 
the United States (Foley, 1952, 1954). The few recent case studies focused on 
relatively small study areas and employed different methodologies and input 
data. Approaches to map spatio-temporal population can be classified into two 
broad categories: (a) the ones that combine different sources of statistical and 
geospatial data in a dasymetric manner, and (b) the ones that use direct geolocated 
measurements of population activity from mobile network operators, sensors or 
social media.

Originally motivated by the needs of emergency response, the LandScan 
population grid was an early attempt at mapping spatio-temporal population at 
the global scale, at a resolution of 30 by 30 arc-seconds (Dobson et al., 2000). It 
combined census data with several geospatial datasets to map ambient population 
(an estimate of the average present population throughout the daily cycle). The 
concept of ambient population, however, is of limited value for applications 
requiring time-specific representations of population. Subsequent work achieved 
actual daytime population estimates for the whole of United States (Bhaduri et al., 
2007; McPherson & Brown, 2004) or individual cities (Boeing, 2018). In Europe, 
such estimates have been produced for relatively small areas or single countries 
(Ahola et al., 2007; Freire, 2010; Ramacher et al., 2019). Other research (Greger, 
2015; Martin et al., 2015, 2010; Renner et al., 2018; Smith et al., 2016) focused 
on increasing the temporal resolution by combining statistics and micro data with 
detailed geospatial data yet, again, for specific regions or urban agglomerations. 
A recent study attempted to derive seasonal population variations in Greece from 
night-time lights from Earth Observation (Stathakis & Baltas, 2018).

The recent emergence and increasing availability of unconventional, big 
geospatial data sources (Goodchild, 2013) creates new opportunities for assessing 
spatio-temporal population dynamics. Geotagged posts on Twitter have been used 
to assess cross-border mobility patterns (Blanford et al., 2015). Location history 
recorded by Android smartphones has been tested to assess human mobility at 
micro-level (Ruktanonchai et al., 2018) and to characterize the structure of cities 
based on spatial mobility patterns (Bassolas et al., 2019).

One of the most promising data sources for spatio-temporal population 
originates from mobile network operators. Their data are generated by the 
interaction between mobile phone terminals and geolocated mobile network 
towers, and can be used to analyze mobility patterns of mobile phone users 
(González et al., 2008; Louail et al., 2015) and map spatio-temporal population 
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densities at potentially high temporal granularity (Chen et al., 2018; Deville 
et al., 2014; Jacobs-Crisioni et al., 2014; Tatem et al., 2014) including for 
specific population groups such as tourists (Ahas et al., 2008; Raun et al., 2016). 
Although generally seen as a promising data source, its use for systematic and 
large-area applications remains unpractical for two main reasons. First, access 
to such data is still limited. Operators are reluctant to release their data because 
of privacy issues and lack of business models (Debusschere et al., 2017). Even 
if some mobile phone operators agree to participate in pilot studies (European 
Commission, 2019), with the current legal frameworks it is not possible to 
guarantee data access from all operators across multiple countries simultaneously. 
A second important issue relates to data quality and consistency. Population 
estimates from either Call Detail Records or Signaling data from a particular 
mobile phone operator only represent the population covered by that operator, 
whereas all operators miss people without mobile devices (e.g., very young or 
old population segments). On the other hand, double counting may occur when 
the same individual carries more than one mobile device. Other technical issues 
compromise the quality of the data, such as low antenna density in rural areas 
(leading to heterogeneous spatial resolution), and antenna switching in busy 
areas. Moreover, Call Detail Records are particularly sensitive to temporal 
uncertainty (non-continuous observations), as only certain types of events (e.g., 
calls) are captured. In sum, all these issues lead to an overall spatial and temporal 
uncertainty of population estimates (Ricciato et al., 2020). Although various 
developments are underway to overcome these limitations (e.g., algorithms to 
correct data biases, switching from Call Detail Records to Signaling data, and 
trusted smart statistics frameworks to harmonize access to data from different 
operators (Ricciato et al., 2017)), substantial technical and organizational 
progress is still required for a more systematic use of these data (Ricciato et 
al., 2020). For a more complete account and discussion of the state-of-the-art 
concerning estimation of spatio-temporal population, we recommend the recent 
review from Panczak et al. (2020).

The primary objective of this work is to produce the first European Union 
(EU)-wide representation of spatio-temporal population distribution taking 
into account both the seasonal and intraday variations of population that is 
seamless and consistent across countries, and which can be accessed and used 
free of charge by researchers, policy officers, and practitioners in multiple 
fields. Due to the issues reviewed earlier, the use of Mobile Network Operator 
for this continental-scale exercise was unfeasible. Instead, we developed a 
multi-layered dasymetric approach that expands upon the generic dasymetric 
method by modeling the spatial distribution of different population groups 
separately and according to a selection of covariates obtained from emerging 
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sources of geospatial data. The output of this approach consists of a set of 
24 population grids, one daytime and one night-time grid for each month of 
the year, at a spatial resolution of 1 km2. We evaluated the quality these grids 
in four EU countries, where adequate independent data were available. We 
found a high level of agreement between estimated and reference population 
distribution, although generally higher for the night-time period. The analysis 
of European cities with a population above 1 million (n = 34) revealed that, 
on average, daytime population densities are 1.9 times higher than night-time 
densities in city centres, and then decay exponentially with distance to city 
centre.

2. RESULTS

2.1 Multi-temporal population grids
To produce the multi-temporal population grids, we downscaled monthly stocks 
of individual population groups at subnational level to grid-cell level using a 
population group-specific set of spatial covariates. The population groups 
included the number of residents, workers for different economic sectors, students, 
tourists, and non-working and non-studying population. The main stocks of 
population groups were obtained from official statistics. The monthly variations 
in population stocks were derived from school calendars as well as from monthly 
inbound and outbound tourists from official statistics. To obtain the final monthly 
day- and night-time population grids, we summed the respective monthly grids of 
specific population groups. For example, the daytime population grid for January 
corresponds to the sum of the previously generated grids for January of workers, 
students, tourists, and the non-working and non-studying population (refer to the 
Methods section for a more detailed description).

The resulting 24 population grids (or temporal frames) cover the 28 
Member States of the European Union (as of 2019), at a spatial resolution 
of 1 km2, which was selected for its adequacy to support sub-regional and 
urban analyses. This set of multi-temporal population grids represent a typical 
working day of the month. The variation between workdays and weekend is 
not addressed. The night-time frames represent an ideal situation assuming 
the whole population is at their place of residence or lodging to rest, whereas 
the daytime frames represent a situation whereby everybody is assumed to be 
at the location of their primary activity such as working or studying during 
core working hours. As such, in-between daily variations of population are not 
taken into account (e.g., commuting, pre- or after-work activities, etc.). The 
reference year for population data is 2011, to match with the latest round of the 
European censuses.
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2.2 Analysis of spatio-temporal patterns
A three-dimensional rendering of the population density at night-time and daytime 
for the city of Milan, Italy, and surrounding areas, based on the produced dataset, 
is displayed in Figure 1. It reveals substantial differences in the distribution and 
concentration of population between the two periods. To further illustrate the 
results, Figure 2 shows the absolute differences in population per 1 km2 grid cells 
between day- and night-time (yearly average), and between August and January 
(at night) for three selected areas in Europe. The top three maps provide a spatially 
explicit representation of daily variations in absolute population. For example, 
Paris, France, is characterized by a net gain in population in daytime in a rather 
large area corresponding to the city core, resulting from a large concentration of 
economic activities, surrounded by a belt of predominantly residential areas that 
lose population in daytime. Although much smaller, the city of Lisbon shows 
a similar pattern, while in Milan the areas with higher population densities in 
daytime appear more scattered. Differences between August and January also 
have very distinct spatial patterns. The historical core of Paris clearly gains 
population in August compared to January, while most of its surroundings 
display a net loss. Some positive hotspots are visible in areas such as the Charles 
De Gaulle airport and Disneyland. In the south of Portugal, population in August 
outweighs the population in January, both in the historical centre of Lisbon and 
the in southernmost coastal areas of Algarve. Finally, in the North of Italy, all the 
Milan metropolitan area loses population in August, whereas gains are observed 
around the lakes Maggiore, Como, and, even more noticeably, Garda.
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Figure 1. Bird’s-eye view of population density in the area of Milan. Population density 
based on the average of all months at night-time (A) and daytime (B). These representations 
cover an approximate swath of 150 km (East-West) by 100 km (North-South), and each 
vertical bar corresponds to a 1 × 1 km grid cell. The height of bars is linear function of 
the estimated population. The highest bar at night-time (A) records 23.3k persons and the 
highest bar at daytime (B) records 42.9k persons. (C) indicates the geographical location 
and extent of the represented area. The figure can be reproduced using the publicly 
deposited multi-temporal population grids (Schiavina et al., 2020).
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Figure 2. Spatiotemporal differences in population density in selected sites. Absolute 
differences in population at 1 km2 grid cell level between day- and night-time (average 
of all months) (A, C and E) and between August and January (at night-time) (B, D and 
F) for south of Portugal (A and B), North of Italy (C and D) and Ile-de-France (E and F). 
The circles represent a radius of 20 km from the city centres of Lisbon, Milan and Paris. 
The figure can be reproduced using the publicly deposited multi-temporal population grids 
(Schiavina et al., 2020).

To further illustrate the insights that can be extracted from the produced 
dataset, we investigated some spatio-temporal characteristics of the largest 
urban agglomerations in Europe. To select them, we used the city/greater city 
extents defined by Eurostat (2018). This definition was designed to improve 
comparability of city statistics, and applies a fixed set of criteria related to urban 
morphology to consistently characterize city limits irrespective of national 
definitions. For each of the listed 800+ cities/greater cities, we summed the 
population in day- and night-time based on yearly average grids, and selected 
those whose day- or night-time population is above 1 million people in 2011, 
resulting in a sample size of n = 34. On average, daytime population outweighs 
night-time population in Europe’s largest urban agglomerations. The average 
day-to-night-time ratio for the sampled cities is 1.097 (σ = 0.098). The highest 
ratios were observed in Budapest and Warsaw (1.31-1.32), followed by 
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Brussels (1.24), whereas the three Spanish cities of Madrid, Barcelona and 
Valencia, together with Athens and Stockholm, display surprisingly low ratios 
in the range 0.94-0.99. On average for the sampled cities, and based on yearly 
averages, the composition of the daytime population is 48.9% employees (σ = 
7.0%), 22.7% students (σ = 3.0%) and 1.2% tourists (σ = 0.7%). The remainder 
27.2% of the population correspond to the non-working and non-studying 
residents (see Appendix I, Supplementary Table 1).

As the selected 34 cities have a relatively large size (x = 776.9 km2, σ = 
464.4 km2, see Appendix I, Supplementary Table 1), high within-city variations 
of diurnal and nocturnal population densities are expected. A common way 
to characterize urban densities is by creating profiles describing the decay of 
population densities as a function of distance to city centres (Clark, 1951). 
With our multi-temporal population grids it is possible to compare day- and 
night-time population density profiles for European cities for the first time. In 
Figure 3, we plot the average population density gradients around city centres 
with a spacing of 500 m. These concentric rings typically take the town hall 
as centre and consider only the land area to avoid distortions in coastal or 
waterfront cities. Population densities and distance to centre were rescaled as 
prescribed by Lemoy and Caruso (2018) to make the radial population density 
profiles comparable across cities of different population sizes, which, in our 
sample, range over one order of magnitude. The rescaling makes all cities 
comparable in dimension to the most populous city in the sample (i.e., Paris). 
Without rescaling, the curves cannot be compared across the x and y axes, as 
more populous cities tend to be denser and extend over a larger geographical 
area to accommodate the extra population (Lemoy & Caruso, 2018).

Consistent with recent literature (Broitman & Koomen, 2019; Kroll & 
Kabisch, 2012; Lemoy & Caruso, 2018), night-time population densities are 
highest at or nearby the city centre and then decay with increasing distance 
from the city centre, fairly well described with a negative (inverse) power law 
function. Daytime population densities show a similar profile but densities at the 
city centre are significantly higher than at night-time and descend more abruptly. 
Although population density distribution shows great variation per city based on 
local conditions, its relation with the distance to city centres is remarkably stable 
within our ensemble of cities, as indicated by the high R2 obtained of 0.844 and 
0.754, with n = 1360 (34 cities × 40 concentric ring measurements) and p-value 
< 0.0001, for daytime and night-time, respectively (Figure 3a, b).

In addition, Figure 3c plots the average profile of the ratio between day- and 
night-time population, peaking at 1.9 in the city centre and descending rapidly 
until a distance of 5 km from where it hovers just above 1. The spread around 
the mean widens after a distance of 15 km, owing to the diversity of local 

 ̅
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settlement geographies. Day- and night-time density profiles for each sampled 
city can be found in Appendix I, Supplementary Figures 2 to 6.

Figure 3. Concentric population density profiles of the largest European Union cities. Average 
population density for daytime (A) and night-time (B) and average ratio between day- and 
night-time populations (C) for the 34 cities in Europe with a population above 1 million in 
2011. Population densities and distance to city centre were rescaled as prescribed by Lemoy 
and Caruso59 to make the concentric population density profiles comparable across cities of 
different population sizes. Grey dots in (A) and (B) represent individual city measurements 
of population density. Grey lines in (C) delimit the 95% confidence interval of the mean. 
In panels A and B an exponential curve was fitted to the population density of all the 34 
cities, resulting in a R2 of 0.844 and 0.754, with n = 1360 (34 cities × 40 concentric ring 
measurements) and p-value < 0.0001, for daytime and night-time, respectively.
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To get a first impression of typologies of spatio-temporal behavior in 
our sample of cities, we apply a clustering algorithm to find similarity 
between cities in the ratios of day- over night-time population densities. 
We applied k-means that is a commonly used, straightforward partitional 
algorithm (Jain et al., 1999). Our clustering relies on the rescaled distance 
from the city centre of the first 30 rings (i.e., 15 km radius) on the x-axis 
and the ratio of densities on the y-axis. It is noteworthy that the clustering 
is applied on the aggregated one dimensional description of our cities and 
does not refer to its spatial distribution in geographical space for which 
other clustering approaches would be more appropriate (see, for example, 
Sander et al. (1998)). We chose four clusters based on the analysis of 
the within groups similarity for the result of the k-means run for a pre-
specified number of clusters from 2 to 15. Figure 4 shows the resulting 
day-to-night-time ratio profiles for the identified clusters. The cluster in 
Figure 4b is the most distinct, as city centres appear to be predominantly 
residential and only towards the periphery daytime densities surpass 
night-time densities. This is the smallest cluster, composed of the three 
Spanish cities in the sample (Madrid, Barcelona, and Valencia) plus Lyon, 
France. The other clusters all show a decreasing ratio from the centre 
outwards. However, in the cluster in Figure 4c the densities are much 
higher in the centre than in cities belonging to the clusters in Figures 4a 
and 4d. Conversely, the main difference between the clusters in Figure 4a 
and 4d is that in the former the ratio picks up after 5 km, signaling major 
employment hubs or satellite cities close to the main city, whereas in the 
latter the ratio drops gently but steadily until a longer distance from the 
city centre.

2.3 Quality assessment
To evaluate the reliability of the produced population grids, we calculated the 
allocation accuracy for areas where adequate reference data were available. 
We obtained census-based estimates of day- and night-time population for the 
whole of Italy and Portugal per municipality. In addition, we obtained similar 
data specifically for three cities in Spain (Madrid, Barcelona and Valencia) 
to verify the reliability of the surprisingly low estimates of the day-to-night-
time ratios found for those cities. Finally, for Belgium, we estimated the day- 
and night-time population based on data procured from a Mobile Network 
Operator. A validation of the monthly population variation was not possible 
to perform due to the lack of adequate data at sub-regional level. However, 
in our grids, regional seasonal curves of inbound tourists and school holidays 
are both based on official sources (see Methods section).
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Figure 4. Cluster analysis of EU cities. Ratio between day- and night-time population 
densities for the 34 EU cities with a population above 1 million in 2011, grouped in  
4 clusters determined using the k-means method. Each panel from A to D corresponds  
to a subset of the 34 cities with a similar spatio-temporal population profile.

Table 1 contains the results of the cross-comparison. The results show an 
almost perfect agreement with the night-time (i.e., residential) population 
records from the censuses of Italy, Portugal, and Spain. This result is not 
surprising, as our night-time population distribution is identical to the census-
based GEOSTAT grid (see Methods section). On the other hand, the daytime 
population grid obtained a very consistent allocation accuracy of nearly 93% 
in these countries. The comparison against mobile network operator-based data 
for Belgium reveals a lower degree of agreement. Two chief reasons explain 
this outcome: the substantially smaller size of spatial zones and the conceptual 
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differences between our multi-temporal population grids and the human activity 
measurements obtained from this source. Notwithstanding, it is worthwhile 
noting a small spread between day- and night-time accuracies, suggesting that 
the quality of the day- and night-time grids is comparable.

For the three Spanish cities mentioned above, we calculated the day-to-
night-time population ratio based on the census data. The obtained ratios were 
1.014 for Madrid, 1.006 for Barcelona, and 0.963 for Valencia, which compare 
to our estimates of 0.981, 0.954, and 0.948, respectively. Although our ratios 
appear lower than what census data suggest (likely due to an underestimation 
of daytime population density within the Spanish cities), the peculiarity of the 
Spanish cities is corroborated.

Table 1. Summary of the results of the cross-comparison exercise.

Country

Italy

Night-
time

Night-
time

Daytime Daytime

Portugal

Spain

Belgium

No.  
of  
zones

Median  
zone  
size

Spatial 
zone type

Reference  
data  
source

Allocation 
accuracy

Pearson 
correlation

Municipalities Census 2011 
(ISTAT, 
Italy)

Census 
2011 (INE, 
Portugal)

Census 2011 
(INE, Spain)

Mobile 
Network 
Operator 
(Proximus)

Municipalities 278

Municipalities 53

Service areas 
of mobile 
phone towers

6,984 3.0 km2

8,092 99.2%

99.6%

99.3%

79.8%

92.8%

92.6%

92.3%

78.0%

1.0

1.0

0.999

0.866

0.996

0.980

0.999

0.849

21.8 km2

228.6 km2

22.1 km2

3. DISCUSSION
Considerable progress has been made in recent years in mapping place-of-
residence population distribution at large scale (Leyk et al., 2019). Although of 
crucial importance for many applications (Wardrop et al., 2018), such grids are a 
limited representation of reality, roughly corresponding to population densities 
during night-time. Assessments of population exposure to natural, health, and 
technological hazards, adequate planning of transport and social infrastructure 
in cities and regions, and the study of functional urban areas (Williams et al., 
2012) require knowledge of the changing population distribution in temporal 
cycles resulting from human mobility.
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Data from sources such as mobile network operators, sensors, or social 
media provide geolocated measurements of human activity at high spatio-
temporal resolution, but have a number of limitations such as restrained data 
access and data inconsistencies. In this study we developed an approach to 
model spatio-temporal population for large areas in a consistent manner, and 
that is not constrained by the latter limitations. The employed approach can 
be referred to as multi-layered dasymetric mapping and it combines official 
statistics on population groups (i.e., residents, workers, students, and tourists) 
with geospatial data from conventional (e.g., mapping agencies), as well as 
emerging data sources (e.g., voluntary geographical information). The resulting 
population grids capture both intraday and monthly population variations at 1 
km2, making this dataset the only one of its kind at continental scale. Because 
the method models individual population groups instead of total population 
counts, it is also thematically richer than what could be achieved with mobile 
phone records alone.

The performed data integration was challenging due to the volume 
and variety of data in terms of formats, definitions, nomenclatures, and/or 
semantics. The long and intricate workflow to combine such a variety of data 
inputs, each with its own inaccuracies, led inevitably to a propagation and 
accumulation of error in the final product too. Knowing the accuracy of the 
produced dataset is necessary to inform the users of the product. Therefore, 
designing a robust quality assessment strategy was no less important and 
challenging as the modelling per se. The metric selected for the quality 
assessment (i.e., allocation accuracy) is a summary metric that compares 
estimated with reference population for a set of spatial units within a study 
area. It can be interpreted as the share of the population stock that has been 
allocated to the correct spatial units. The allocation accuracy is affected by 
conceptual differences between the two instances being compared. Although 
our grids represent an ideal, or maximum population density at both day- and 
night-time, data from mobile phone operators represent observed mobile-phone 
user densities from a single mobile network operator in a specific time and day 
of the year. Therefore, deviations between our estimates and the values from 
the independent datasets cannot be strictly interpreted as errors. Lacking fully 
comparable spatio-temporal population records, the cross-comparison exercise 
cannot be considered a definitive validation, but it corroborated the plausibility 
of our population grids.

Although these grids are important to enable harmonized and more detailed 
analyses across national borders in the European context, the herein proposed 
approach can be transferred to any other region where sufficient data exists 
(or can be derived) on population stocks and location of activities. Regarding 
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the latter aspect, detailed information contained in global products such as the 
OpenStreetMap can be of help. The approach is also scalable to the amount of 
ancillary data available, obviously requiring more adaptation and concessions 
in data-poor environments.

The novel population grids were originally produced at 100 × 100 m cell 
size but were resampled to 1 × 1 km  cells for public dissemination. This 
choice reflects our preference for lower uncertainty of estimates over higher 
spatial detail and also helps avoid false precision that could potentially lead to 
overconfidence in the accuracy. In the context of risk mapping and assessment, 
this cell size is similar or smaller than that of many available hazard data 
covering the study area (e.g., pan-European seismic map (Corbane et al., 
2017)) and is suitable for baseline risk assessment of areas ranging from large 
urban areas to a whole continent. Notwithstanding, for operational disaster risk 
management (e.g., preparedness, and response) or for hazards with very high 
local variance, a higher spatial detail would be desirable. In sum, the suitability 
of the 1 km2 resolution equates more to the scale of analysis and desired level 
of precision than to the domain of application.

Another apparent limitation concerns the reference year of the population 
data (i.e., 2011). Although certain applications require more up-to-date 
information, our grids establish a milestone by providing a point of reference 
for future comparison, namely after the 2021 European censuses become 
available. Besides, although cities may grow or decline in absolute numbers, 
their internal spatio-temporal structure is not likely to suffer dramatic changes in 
short time spans. Tourism seasonality is also rather stable over the years (Batista e 
Silva et al., 2018). Therefore, for quick assessments requiring updated population 
volumes, a rescaling of the herein grids could be an acceptable compromise until 
new grids reflecting the censuses 2021 are produced.

The work towards spatio-temporal population mapping is just commencing, 
and the potential insights that can be obtained from such data have just surfaced 
in this study. It is likely to be that the diversity, quality and quantity of suitable 
input data will continue growing (Kontokosta & Johnson, 2017; Liu et al., 
2016) in tandem with the need for better assessments. For example, certain 
applications would benefit from population grids stratified by demographic 
and socioeconomic attributes such as age or income levels to be effective. 
To add more dimensions to spatio-temporal population grids it may be worth 
investigating whether and how to borrow concepts and methods applied to 
generate the synthetic populations that underpin agent-based models (Xu et 
al., 2017). Another avenue for future work is the increase of the temporal 
resolution by integrating temporal signatures of different land-use types and 
activities derived from mobile phone records.
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4. METHODS

4.1 General framework
We have developed a multi-layered dasymetric approach that models the spatial 
distribution of different population groups separately and according to a selection 
of covariates derived from novel geospatial data sources. The methodology 
follows four interlinked phases, as shown in Figure 5: (1) estimation of monthly 
and regional stocks of population groups; (2) mapping of land use features 
relevant to the location of the population groups; (3) dasymetric disaggregation 
of population group stocks to their most likely locations within regions; and (4) 
quality assessment by means of a cross-comparison against independent datasets 
for selected countries.

Figure 5. Methodological workflow. Representation of the main classes of input data and 
methodological steps (green boxes) carried to produce and validate the multi-temporal 
population grids.
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4.2 Estimation of monthly and regional population stocks
Based on their expected differences in spatial behavior, we distinguish 16 population 
groups. The basic idea is that a person’s location is determined by his or her main 
activity, as he or she is expected to spend most time there. Students, for example, can 
be associated with education facilities (e.g., schools, and university campuses) and 
workers with a range of service and production facilities depending on the economic 
sector they work in. In practice, we constructed monthly matrices with stocks of these 
population groups for each NUTS3 region in the study area for the reporting year 2011 
(12 matrices, each with dimension =1,311 regions × 16 population groups). The NUTS 
classification is a hierarchical system of nested territorial units used for statistical data 
reporting in Europe. The NUTS3 level corresponds to country provinces or districts, 
and comprises 1,311 regions within the area of interest, with a median size of 1,717 km2 
(NUTS3 version 2010). NUTS3 are aggregations of municipalities, while census zones 
are small area units within each municipality. In this study, census zones were only used 
directly in the cross-comparison exercise explained further down.

The 16 population groups include residents, employees, students, the non-working 
and non-studying population, and tourists, as detailed next.

Residents correspond to the number of registered residents within a region 
(obtained from Eurostat at NUTS3 level). Employees are subdivided in 11 economic 
sectors based on the NACE rev.2 classification of economic activities (see Appendix I, 
Supplementary Table 4) and were obtained from Eurostat reflecting the NUTS3 region 
of work.

Students are broken down in two main educational levels: primary plus 
secondary education and tertiary education and above. Student statistics were 
available from Eurostat at NUTS2 level. Students below tertiary education were 
distributed among the respective NUTS3 regions based on the proportion of the 
relevant population age groups. Higher education students were downscaled to 
NUTS3 regions based on the number of enrolled students per NUTS3 available 
from the European Tertiary Education Register, reporting year 20112. In months 
with more than 50% of school/academic holidays, students were considered 
part of the non-working and non-studying population group. Country-specific 
holiday calendars for schools and universities were obtained from existing 
European-wide inventories (European Commission/EACEA/Eurydice, 2016a, 
2016b).

The non-working and non-studying (N) population group can be associated with 
residential areas in both day- and night-time. It was calculated at NUTS2 level as:

Eq. 1

 https://www.eter-project.com2
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based on the number of unemployed, U, residents, R, active population, A, and 
students, S, from Eurostat. N was then downscaled to NUTS3 level proportionally 
to the population size.

In our approach, the monthly variation of the total present population in a 
region is primarily linked to inbound and outbound flows of people that visit and 
leave regions for any purpose, leisure, and business alike. We refer to them as 
tourists and the estimation of their monthly and regional totals involved several 
steps. First, annual number of nights-spent within each NUTS2 region (Eurostat) 
were disaggregated to NUTS3 regions proportionally to the number of bed-places 
in touristic accommodations available per NUTS3 from Eurostat. The resulting 
NUTS3 annual number of nights spent were broken down per month using 
regional (NUTS2 or NUTS3) seasonal curves constructed from data procured 
from National Statistical Institutes. Finally, we divided the regional and monthly 
nights-spent by the number of days of each month to obtain the average daily 
number of inbound tourists. A detailed account of the methodology and input 
data has been published elsewhere (Batista e Silva et al., 2018).

From National Statistical Institutes and the Organisation for Economic Co-
operation and Development (OECD), we obtained the share of inbound tourists 
per country of origin or groups of countries of origin. In the latter case, we split 
tourists per country of origin employing a model based on geographical distance 
and economic size (i.e., Gross Domestic Product), assuming larger and closer 
economies draw higher quantities of tourists. Then we summarized outbound 
tourists per country of origin. Finally, from Eurostat we obtained the fraction of 
tourism going outside the EU and added it to the previous sum to obtain the total 
amount of outbound tourists per EU country. Tourists from countries outside 
the study area represent added population to the existing stock and therefore did 
not need any further treatment. Tourists from the same country (domestic) or 
from countries within the study area (non-domestic) had to be subtracted from 
their countries and regions of origin to avoid double counting of total population 
within the study area. The share of outbound tourists per region within each 
country was assumed to be proportional to their demographic size. The resulting 
outbound tourists per region were finally subtracted from the different population 
groups proportional to their size.

4.3 Mapping of land use features
Land use and land cover features are widely used as covariates in dasymetric 
population mapping (Batista e Silva et al., 2013; Eicher & Brewer, 2001; Gallego 
et al., 2011; Leyk et al., 2019; Mennis, 2003; Wardrop et al., 2018). In this phase, 
we constructed the set of geospatial layers to be used as ancillary information in 
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the population disaggregation process. Ultimately, we created two distinct types 
of input data as follows: (a) a fine-grained land use/land cover map and, (b) a set 
of activity density layers.

The LULC map was produced by integrating geospatial data from a wealth of 
sources. The map is originally based on the CORINE Land Cover (CLC) 2012 
map and nomenclature, but achieves a significantly higher thematic and spatial 
detail. The 11 artificial land use classes from CLC are subdivided in 18 more 
specific classes, including Production facilities, Commercial or service facilities, 
Public facilities and Airport terminals which were instrumental for the allocation 
of certain population groups. The minimum mapping unit (MMU) in this new 
map is 1 ha for artificial surfaces and 5 ha for others, as opposed to 25 ha in the 
original CLC data (see Appendix I, Supplementary Note 1 for more details). The 
production and validation of this novel map has been documented in a dedicated 
article (Rosina et al., 2020).

Recent findings indicate that the quality of dasymetric population mapping 
can be increased through the integration of Point of Interest (POI) data (Yang 
et al., 2019). Therefore, complementary to the LULC map, we built a set of 
activity layers based on POI and polygon data extracted from TomTom Multinet 
and OpenStreetMap, to represent locations of activities and facilities associated 
with the presence of students and workers. The selection of these features was 
based on correspondence with the considered population groups (students and 
workers from 11 economic sectors). For each population group (e.g., workers in 
the manufacturing sector), the relevant features (e.g., factories) were processed 
into a single binary raster layer with a 100 × 100 m resolution and were treated 
as an additional land use class in the subsequent disaggregation step. For the 
disaggregation of tourists, we built a layer reporting touristic accommodation 
room density based on data from online booking platforms (Batista e Silva et al., 
2018). These activity layers were necessary to capture overlapping activities and 
because conceptual differences between point-based data and the polygon-based 
LULC map that make their integration difficult. In Appendix I, Supplementary 
Note 1, we further discuss the adequacy of the used POI data sources.

4.4 Dasymetric disaggregation of population
We downscaled each of the 16 population groups originally from NUTS3 regions 
to 100 m pixels for each month of the year using a two-tier approach. In essence, 
the stock of a population group within a region is first divided over the land-use 
types relevant to that group proportional to the occurrence of these land-use types 
within the region (Eq. 2). Consequently, population groups can be associated 
with multiple land-use types (see Appendix I, Supplementary Tables 2 and 3). 
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Conversely, specific land-use types may be associated with multiple population 
groups, in which case they will co-occur in the same land use. In the second step, the 
number of persons per land-use type are allocated to individual grid cells based on 
built-up density (Eq. 3).

Eq. 2

Eq. 3

where is the estimated population of a given j population group, in pixel 
i within a NUTS3 region r. Q is the count of 100 m grid cells in a region of 
a given land use class u, and w is a Boolean parameter that establishes the 
link between land use classes and population groups (1 if population group j 
is linked with land use class u, 0 otherwise). The links were based on expert 
judgment and can be consulted in Appendix I, Supplementary Tables 2 and 3. 
Finally, d is the built-up density based on the European Settlement Map 2012 
– release 20173. In this dataset, built-up density is the percentage of surface 
covered by all roofed constructions without considering building volumes or 
density of activities. See Appendix I, Supplementary Note 1 for more details 
concerning this dataset.

There were some exceptions to this general approach. Residents were 
downscaled from the 1 km2 GEOSTAT grid4, consistent with the Census 2011, 
and employing the same rationale as in Eq. 2 and 3. The non-working and non-
studying population layers were obtained by applying NUTS3-specific ratios 
between the non-working and non-studying, and the number of residents to the 
number of residents at 100 m level. The total number of tourists per NUTS3 
was downscaled twice, generating two distinct grids for each month of the year 
as follows: (a) one grid reflecting their night-time distribution (based on the 
touristic accommodation room density layer mentioned above) and (b) one grid 
reflecting their daytime distribution (based on a set of land use classes).

In total, the downscaling procedure generates 204 intermediate population 
grids, i.e., 12 months × 17 population groups (15 population groups + 2 × 
tourists), at a spatial resolution of 100 × 100 m. For each month of the year, the 

 https://land.copernicus.eu/pan-european/GHSL/european-settlement-map.

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/
geostat.

3
4
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respective night-time population grid was the result of the sum of the gridded 
residents with the gridded tourists at night-time. Conversely, the daytime 
population grid was the result of the sum of the 15 remainder population group 
grids (see Eq. 4). The final 24 grids were obtained by aggregating the 100 m 
pixel values to the target 1 km2 grid cells.

Eq. 5

Although the final maps are provided at 1 km2 resolution, the disaggregation 
was executed at the native 100 × 100 m resolution of the LULC map to leverage 
the maximum possible available detail of the input data (resampling the LULC 
map to 1 × 1 km would result in a gross generalization of the LULC classes). 
Moreover, this allowed us to preserve the highest possible resolution for more 
detailed inspection of the results.

4.5 Cross-comparison
To assess the quality of the produced grids, a series of cross-comparison 
analyses was performed for areas where independent night- and daytime 
population estimates at sub-NUTS3 level were available. The comparison was 
operated at the level of the native spatial units of each independent dataset, 
here denoted as m. For this purpose, our population estimates were aggregated 
from grid level to the relevant spatial units. For each country c and temporal 
frame t we computed an accuracy metric herein called allocation accuracy, AA 
(Eq. 5). It can be interpreted as the percentage of the population stock that has 
been allocated to the correct spatial units. Metrics based on the sum of absolute 
errors are common in dasymetric mapping evaluation, because they are more 
robust in the presence of outliers or for skewed distributions (Batista e Silva 
et al., 2013; Gallego et al., 2011; Willmott & Matsuura, 2005). In Eq. 5, the 
asterisk denotes the independent dataset.

For Italy, Portugal, and Spain we obtained Origin-Destination matrices with 
commuting of students and workers between municipalities from the census 
carried in 2011. This allowed us to recreate the likely size of the daytime 
population of each municipality by simply subtracting and adding the number 
of incoming and outgoing students and workers to the number of residents. 
These census-based daytime population values do not include tourists. Hence, 

Eq. 4
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for the purpose of the cross-comparison, we generated grids that did not take 
into account inbound and outbound tourists.

We further compared the population totals in our grids for Belgium with 
a dataset based on cellphone records from the Proximus, the leading mobile 
network operator in the country, accounting for nearly 40% of the mobile 
subscriptions. The number of cellphone records was calculated by Proximus 
based on signaling data, so capturing connections between the mobile devices 
and cell towers at high temporal frequency. The dataset consisted of mobile-
phone user counts at the level of Voronoi polygons around each cell tower in 
the country, with a temporal breakdown of 15 minutes for a specific weekday 
outside the holiday season (i.e., Thursday, 08/10/2015). Based on this, we 
produced day- and night-time frames based on the average observed counts 
in the periods 9:30-11.30 a.m. and 3:00-5:00 a.m., to capture core working 
and sleeping hours, respectively. We dissolved Voronoi polygons smaller than 
1 km2 with surrounding polygons to avoid spatial units smaller than the size 
of our final grids. While this dataset cannot be used directly to predict total 
population, as Proximus covers a limited market share in Belgium, we assume 
it reflects the relative presence of population in space and time. Hence, before 
applying Eq. 5, we rescaled the number of mobile-phone users to match the 
total population in Belgium, assuming a constant market share across regions, 
as in previous studies (Deville et al., 2014).

ACKNOWLEDGEMENTS
The work documented in this study was developed in the context of the 
“ENhancing ACTivity and population mapping” (ENACT) research project 
of the European Commission, Joint Research Centre. The authors thank the 
Belgium Mobile Network Operator Proximus and Eurostat for making available 
aggregated spatio-temporal counts of mobile phone users for the purpose of the 
cross-comparison.



243

CHAPTER 8

REFERENCES

Ahas, R., Aasa, A., Roose, A., Mark, Ü., & Silm, S. (2008). Evaluating passive mobile 
   positioning data for tourism surveys: An Estonian case study. Tourism Management, 
   29(3), 469–486. http://dx.doi.org/10.1016/j.tourman.2007.05.014

Ahola, T., Virrantaus, K., Krisp, J. M., & Hunter, G. J. (2007). A spatio-temporal 
   population model to support risk assessment and damage analysis for decision-making. 
   International Journal of Geographical Information Science, 21(8), 935–953.  
   https://doi.org/10.1080/13658810701349078

Bassolas, A., Barbosa-Filho, H., Dickinson, B., Dotiwalla, X., Eastham, P., Gallotti, R., 
   Ghoshal, G., Gipson, B., Hazarie, S. A., Kautz, H., Kucuktunc, O., Lieber, A., Sadilek, 
   A., & Ramasco, J. J. (2019). Hierarchical organization of urban mobility and its 
   connection with city livability. Nature Communications, 10(1), 4817.  
   https://doi.org/10.1038/s41467-019-12809-y

Batista e Silva, F., Gallego, J., & Lavalle, C. (2013). A high-resolution population grid map 
   for Europe. Journal of Maps, 9(1), 16–28. https://doi.org/10.1080/17445647.2013.764830

Batista e Silva, F., Marín Herrera, M. A., Rosina, K., Ribeiro Barranco, R., Freire, S., & 
   Schiavina, M. (2018). Analysing spatiotemporal patterns of tourism in Europe at high- 
   resolution with conventional and big data sources. Tourism Management, 68, 101–115. 
   https://doi.org/10.1016/j.tourman.2018.02.020

Bhaduri, B. (2016). Population Distribution During the Day. In Encyclopedia of GIS (pp. 1–8). 
   https://doi.org/10.1007/978-3-319-23519-6_1005-2

Bhaduri, B., Bright, E., Coleman, P., & Urban, M. L. (2007). LandScan USA: A high- 
   resolution geospatial and temporal modeling approach for population distribution and 
   dynamics. GeoJournal, 69(1–2), 103–117. https://doi.org/10.1007/s10708-007-9105-9

Blanford, J. I., Huang, Z., Savelyev, A., & MacEachren, A. M. (2015). Geo-located tweets. 
   Enhancing mobility maps and capturing cross-border movement. PLoS ONE, 10(6), 1–16.  
   https://doi.org/10.1371/journal.pone.0129202

Boeing, G. (2018). Estimating local daytime population density from census and payroll 
   data. Regional Studies, Regional Science, 5(1), 179–182. https://doi.org/10.1080/2168137 
   6.2018.1455535

Broitman, D., & Koomen, E. (2019). The attraction of urban cores : Densification in Dutch 
   city centres. Urban Studies, 1–20. https://doi.org/10.1177/0042098019864019

Center for International Earth Science Information Network - CIESIN - Columbia 
   University. (2018). Gridded Population of the World, Version 4 (GPWv4): Population 
   Count, Revision 11. NASA Socioeconomic Data and Applications Center (SEDAC). 
   https://doi.org/10.7927/H4JW8BX5

Chen, J., Pei, T., Shaw, S. L., Lu, F., Li, M., Cheng, S., Liu, X., & Zhang, H. (2018).  
   Fine-grained prediction of urban population using mobile phone location data. 
   International Journal of Geographical Information Science, 32(9), 1770–1786.  
   https://doi.org/10.1080/13658816.2018.1460753



244

Clark, C. (1951). Urban Population Densities. Journal of the Royal Statistical Society: 
   Series A (General), 114(4), 490–496. https://doi.org/10.2307/2981088

Corbane, C., Hancilar, U., Ehrlich, D., & De Groeve, T. (2017). Pan-European seismic risk 
   assessment: a proof of concept using the Earthquake Loss Estimation Routine (ELER).Bulletin of 
   Earthquake Engineering, 15(3), 1057–1083. https://doi.org/10.1007/s10518-016-9993-5

Debusschere, M., Wirthmann, A., & De Meersman, F. (2017). Official statistics and mobile 
   network operators: a business model for partnerships. New Techniques and Technologies 
   for Statistics 2017. https://doi.org/10.2901/EUROSTAT.C2017.001

Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., Blondel, 
   V. D., & Tatem, A. J. (2014). Dynamic population mapping using mobile phone data. 
   Proceedings of the National Academy of Sciences, 111(45), 15888–15893.  
   https://doi.org/10.1073/pnas.1408439111

Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., & Worley, B. A. 
   (2000). LandScan: A global population database for estimating populations at risk. 
   Photogrammetric Engineering and Remote Sensing, 66(7), 849–857.

Eicher, C. L., & Brewer, C. A. (2001). Dasymetric Mapping and Areal Interpolation: 
   Implementation and Evaluation. Cartography and Geographic Information Science, 
   28(2), 125–138. https://doi.org/10.1559/152304001782173727

European Commission/EACEA/Eurydice. (2016a). The Organisation of School 
   Time in Europe. Primary and General Secondary Education – 2016/17. Publications 
   Office of the European Union. https://doi.org/10.2797/229426

European Commission/EACEA/Eurydice. (2016b). The Organisation of the Academic Year 
   in Europe 2016/17. Publications Office of the European Union.  
   https://doi.org/10.2797/499435

European Commission. (2019). City data from LFS and Big Data (p. 51). Publications 
   office of the European Union. https://ec.europa.eu/regional_policy/en/information/ 
   publications/studies/2019/city-data-from-lfs-and-big-data

Eurostat. (2018). Methodological manual on territorial typologies. 2018 Edition. 
   Publications Office of the European Union. https://doi.org/10.2785/930137

Foley, D. L. (1952). The Daily Movement of Population into Central Business Districts. 
   American Sociological Review, 17(5), 538–543.

Foley, D. L. (1954). Urban Daytime Population: A Field for Demographic-Ecological 
   Analysis. Social Forces, 32(4), 323–330. https://doi.org/10.2307/2574113

Freire, S., & Aubrecht, C. (2012). Integrating population dynamics into mapping human 
   exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11),  
   3533–3543. https://doi.org/10.5194/nhess-12-3533-2012

Freire, S. (2010). Modeling of Spatiotemporal Distribution of Urban Population at 
   High Resolution – Value for Risk Assessment and Emergency Management. Geographic 
   Information and Cartography for Risk and Crisis Management, 53–67.  
   https://doi.org/10.1007/978-3-642-03442-8_4



245

CHAPTER 8

Freire, S., & Santos, T. (2012). Advancing geomarketing analyses with improved 
   spatiotemporal distribution of population at high resolution. 6th European Conference  
   on Information Management and Evaluation, ECIME 2012, 100–108.

Gallego, F. J., Batista, F., Rocha, C., & Mubareka, S. (2011). Disaggregating population 
   density of the European Union with CORINE land cover. International Journal of 
   Geographical Information Science, 25(12), 2051–2069. https://doi.org/10.1080/13658816 
   .2011.583653

González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual 
   human mobility patterns. Nature, 453, 779. https://doi.org/10.1038/nature06958

Goodchild, M. F. (2013). The quality of big (geo)data. Dialogues in Human Geography, 3(3), 
   280–284. https://doi.org/10.1177/2043820613513392

Greger, K. (2015). Spatio-Temporal Building Population Estimation for Highly Urbanized 
   Areas Using GIS. Transactions in GIS, 19(1), 129–150. https://doi.org/10.1111/tgis.12086

Harvey, J. T. (2002). Population estimation models based on individual TM pixels. 
   Photogrammetric Engineering and Remote Sensing, 68(11), 1181–1192.

Jacobs-Crisioni, C., Rietveld, P., Koomen, E., & Tranos, E. (2014). Evaluating the Impact 
   of Land-Use Density and Mix on Spatiotemporal Urban Activity Patterns: An Exploratory 
   Study Using Mobile Phone Data. Environment and Planning A: Economy and Space, 
   46(11), 2769–2785. https://doi.org/10.1068/a130309p

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: A Review. ACM Comput. 
   Surv., 31(3), 264–323. https://doi.org/10.1145/331499.331504

Kellens, W., Neutens, T., Deckers, P., Reyns, J., & de Maeyer, P. (2012). Coastal flood risks 
   and seasonal tourism: Analysing the effects of tourism dynamics on casualty calculations. 
   Natural Hazards, 60(3), 1211–1229. https://doi.org/10.1007/s11069-011-9905-6

Kontokosta, C. E., & Johnson, N. (2017). Urban phenology: Toward a real-time census 
   of the city using Wi-Fi data. Computers, Environment and Urban Systems, 64, 144–153. 
   https://doi.org/10.1016/j.compenvurbsys.2017.01.011

Kroll, F., & Kabisch, N. (2012). The Relation of Diverging Urban Growth Processes and 
   Demographic Change along an Urban–Rural Gradient. Population, Space and Place, 18(3), 
   260–276. https://doi.org/10.1002/psp.653

Langford, M. (2013). An Evaluation of Small Area Population Estimation Techniques 
   Using Open Access Ancillary Data. Geographical Analysis, 45(3), 324–344.  
   https://doi.org/10.1111/gean.12012

Lemoy, R., & Caruso, G. (2018). Evidence for the homothetic scaling of urban 
   forms. Environment and Planning B: Urban Analytics and City Science.  
   https://doi.org/10.1177/2399808318810532

Leyk, S., Gaughan, A. E., Adamo, S. B., de Sherbinin, A., Balk, D., Freire, S., Rose, A., 
   Stevens, F. R., Blankespoor, B., Frye, C., Comenetz, J., Sorichetta, A., MacManus, K., 
   Pistolesi, L., Levy, M., & Tatem, A. J. (2019). The spatial allocation of population:  
   a review of large-scale gridded population data products and their fitness for use. Earth 



246

   System Science Data, 11, 1385–1409. https://doi.org/10.5194/essd-11-1385-2019

Liu, J., Li, J., Li, W., & Wu, J. (2016). Rethinking big data: A review on the data quality 
   and usage issues. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 134–142. 
   https://doi.org/10.1016/j.isprsjprs.2015.11.006

Louail, T., Lenormand, M., Picornell, M., García Cantú, O., Herranz, R., Frias-Martinez, 
   E., Ramasco, J. J., & Barthelemy, M. (2015). Uncovering the spatial structure of mobility 
   networks. Nature Communications, 6(1), 6007. https://doi.org/10.1038/ncomms7007

Martin, D., Cockings, S., & Leung, S. (2015). Developing a Flexible Framework for 
   Spatiotemporal Population Modeling. Annals of the Association of American 
   Geographers, 105(4), 754–772. https://doi.org/10.1080/00045608.2015.1022089

Martin, D., Cockings, S., & Leung, S. (2010). Progress report: 24-hour gridded population 
   models. Paper Presented at the European Forum for Geostatistics Conference 2010, 
   Tallinn, Estonia, 5-7, 1–9.

McPherson, T. N., & Brown, M. J. (2004). Estimating daytime and nighttime population 
   distributions in U.S. cities for emergency response activities. Bulletin of the American 
   Meteorological Society, 557–566. https://doi.org/10.1215/9780822384625-001

Mennis, J. (2003). Generating Surface Models of Population Using Dasymetric Mapping. 
   The Professional Geographer, 55(1), 31–42. https://doi.org/10.1111/0033-0124.10042

Openshaw, S. (1984). The modifiable area unit problem. Concepts and Techniques in 
   Modern Geography, 38, 1–41.

Panczak, R., Charles-Edwards, E., & Corcoran, J. (2020). Estimating temporary 
   populations: a systematic review of the empirical literature. Palgrave Communications, 6(1), 
   87. https://doi.org/10.1057/s41599-020-0455-y

Patel, N. N., Stevens, F. R., Huang, Z., Gaughan, A. E., Elyazar, I., & Tatem, A. J. (2017). 
   Improving Large Area Population Mapping Using Geotweet Densities. Transactions in 
   GIS, 21(2), 317–331. https://doi.org/10.1111/tgis.12214

Pesaresi, M., Ehrlich, D., Ferri, S., Florczyk, A., Freire, S., Halkia, M., Julea, A., Kemper, 
   T., Soille, P., & Syrris, V. (2016). Operating procedure for the production of the Global 
   Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014 
   (JRC Techni). Publications Office of the European Union. https://doi.org/10.2788/253582

Petrov, A. (2012). One Hundred Years of Dasymetric Mapping: Back to the Origin. The 
   Cartographic Journal, 49(3), 256–264. https://doi.org/10.1179/1743277412Y.0000000001

Ramacher, M. O. P., Karl, M., Bieser, J., Jalkanen, J.-P., & Johansson, L. (2019). Urban 
   population exposure to NOx emissions from local shipping in three Baltic Sea harbour 
   cities - a generic approach. Atmospheric Chemistry and Physics, 19(14), 9153–9179. 
   https://doi.org/10.5194/acp-19-9153-2019

Raun, J., Ahas, R., & Tiru, M. (2016). Measuring tourism destinations using 
   mobile tracking data. Tourism Management, 57, 202–212. https://doi.org/10.1016/j. 
   tourman.2016.06.006



247

CHAPTER 8

Renner, K., Schneiderbauer, S., Pruß, F., Kofler, C., Martin, D., & Cockings, S. (2018). 
   Spatio-temporal population modelling as improved exposure information for risk 
   assessments tested in the Autonomous Province of Bolzano. International Journal 
   of Disaster Risk Reduction, 27(November 2017), 470–479. https://doi.org/10.1016/j. 
   ijdrr.2017.11.011

Ricciato, F., Lanzieri, G., Wirthmann, A., & Seynaeve, G. (2020). Towards a 
   methodological framework for estimating present population density from mobile 
   network operator data. Pervasive and Mobile Computing, 68, 101263.  
   https://doi.org/10.1016/j.pmcj.2020.101263

Ricciato, F., Widhalm, P., Pantisano, F., & Craglia, M. (2017). Beyond the “single-operator, 
   CDR-only” paradigm: An interoperable framework for mobile phone network data 
   analyses and population density estimation. Pervasive and Mobile Computing, 35, 65–82. 
   https://doi.org/10.1016/j.pmcj.2016.04.009

Rosina, K., Batista e Silva, F., Vizcaino, P., Marín Herrera, M., Freire, S., & Schiavina, M. 
   (2020). Increasing the detail of European land use/cover data by combining 
   heterogeneous data sets. International Journal of Digital Earth, 13(5), 602–626.  
   https://doi.org/10.1080/17538947.2018.1550119

Ruktanonchai, N. W., Ruktanonchai, C. W., Floyd, J. R., & Tatem, A. J. (2018). Using 
   Google Location History data to quantify fine   scale human mobility. International 
   Journal of Health Geographics, 17(28), 1–13. https://doi.org/10.1186/s12942-018-0150-z

Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-Based Clustering in Spatial 
   Databases: The Algorithm GDBSCAN and Its Applications. Data Mining and Knowledge 
   Discovery, 2(2), 169–194. https://doi.org/10.1023/A:1009745219419

Schiavina, M., Freire, S., Rosina, K., Ziemba, L., Marin Herrera, M., Craglia, M., 
   Lavalle, C., Kemper, T., & Batista e Silva, F. (2020). ENACT-POP R2020A - ENACT 
   2011 Population Grid. European Commission, Joint Research Centre (JRC).  
   https://doi.org/10.2905/BE02937C-5A08-4732-A24A-03E0A48BDCDA

Smith, A., Martin, D., & Cockings, S. (2016). Spatio-Temporal Population Modelling for 
   Enhanced Assessment of Urban Exposure to Flood Risk. Applied Spatial Analysis and 
   Policy, 9(2), 145–163. https://doi.org/10.1007/s12061-014-9110-6

Stathakis, D., & Baltas, P. (2018). Seasonal population estimates based on night-time lights. 
   Computers, Environment and Urban Systems, 68, 133–141. https://doi.org/10.1016/j. 
   compenvurbsys.2017.12.001

Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating Census 
   Data for Population Mapping Using Random Forests with Remotely-Sensed and 
   Ancillary Data. PLOS ONE, 10(2), e0107042. https://doi.org/10.1371/journal. 
   pone.0107042

Tatem, A. J. (2017). WorldPop, open data for spatial demography. Scientific Data, 
   4(170004). https://doi.org/10.1038/sdata.2017.4

Tatem, A. J., Huang, Z., Narib, C., Kumar, U., Kandula, D., Pindolia, D. K., Smith, D. 
   L., Cohen, J. M., Graupe, B., Uusiku, P., & Lourenço, C. (2014). Integrating rapid risk 



248

   mapping and mobile phone call record data for strategic malaria elimination planning. 
   Malaria Journal, 13(1). https://doi.org/10.1186/1475-2875-13-52

Wang, L., & Wu, C. (2010). Population estimation using remote sensing and GIS 
   technologies. International Journal of Remote Sensing, 31(21), 5569–5570.  
   https://doi.org/10.1080/01431161.2010.496809

Wardrop, N. A., Jochem, W. C., Bird, T. J., Chamberlain, H. R., Clarke, D., Kerr, D., 
   Bengtsson, L., Juran, S., Seaman, V., & Tatem, A. J. (2018). Spatially disaggregated 
   population estimates in the absence of national population and housing census data. 
   Proceedings of the National Academy of Sciences. https://doi.org/10.1073/ 
   pnas.1715305115

Weber, E. M., Seaman, V. Y., Stewart, R. N., Bird, T. J., Tatem, A. J., McKee, J. J., Bhaduri, 
   B. L., Moehl, J. J., & Reith, A. E. (2018). Census-independent population mapping in 
   northern Nigeria. Remote Sensing of Environment, 204, 786–798.  
   https://doi.org/10.1016/j.rse.2017.09.024

Williams, A. M., Foord, J., & Mooney, J. (2012). Human mobility in functional urban 
   regions: understanding the diversity of mobilities. International Review of Sociology, 
   22(2), 191–209. https://doi.org/10.1080/03906701.2012.696961

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) 
   over the root mean square error (RMSE) in assessing average model performance. 
   Climate Research, 30, 79–82.

Wu, S., Qiu, X., & Wang, L. (2005). Population Estimation Methods in GIS and 
   Remote Sensing: A Review. GIScience & Remote Sensing, 42(1), 80–96.  
   https://doi.org/10.2747/1548-1603.42.1.80

Xu, Z., Glass, K., Lau, C. L., Geard, N., Graves, P., & Clements, A. (2017). A Synthetic 
   Population for Modelling the Dynamics of Infectious Disease Transmission in American 
   Samoa. Scientific Reports, 7(1), 16725. https://doi.org/10.1038/s41598-017-17093-8

Yang, X., Ye, T., Zhao, N., Chen, Q., Yue, W., Qi, J., Zeng, B., & Jia, P. (2019). Population 
   mapping with multisensor remote sensing images and point-of-interest data.  
   Remote Sensing, 11(5). https://doi.org/10.3390/rs11050574

Zandbergen, P. A., & Ignizio, D. A. (2010). Comparison of Dasymetric Mapping 
   Techniques for Small-Area Population Estimates. Cartography and Geographic 
   Information Science, 37(3), 199–214. https://doi.org/10.1559/152304010792194985

Zhao, N., Cao, G., Zhang, W., & Samson, E. L. (2018). Tweets or nighttime lights: 
   Comparison for preeminence in estimating socioeconomic factors. ISPRS Journal of  
   Photogrammetry and Remote Sensing, 146, 1–10.  
   https://doi.org/10.1016/j.isprsjprs.2018.08.018

 



249

CHAPTER 8

APPENDIX 1: SUPPLEMENTARY INFORMATION

Supplementary Note 1. Description of key input datasets used for 
the production of the multitemporal population grids
The European Settlement Map (ESM) is a spatial raster dataset mapping human 
settlements in Europe. It is based on SPOT5 and SPOT6 satellite imagery 
at Very High Resolution and on machine learning techniques to understand 
systematic relations between morphological and textural (pantex) features 
typical of human settlements (Florczyk et al., 2016).

The ESM – release 2017 is a raster layer with a native resolution of 2.5 m 
(same as the input Very High Resolution images) classifying pixels as buildings, 
green areas, open spaces, streets, railways and water by integrating satellite 
processed images with information from other available sources (Urban Atlas, 
Tele Atlas, Open Street Map and National Datasets) (Ferri et al., 2017).

The ESM dataset is publicly available in two aggregated resolutions (10 m 
and 100 m) each composed of 13 raster layers, one for each land cover class. 
The values of the pixels in each layer represent the proportion of the respective 
land cover class within the pixel. In this study we used only the built-up layer 
at 100 m resolution as reference for the horizontal density of buildings, i.e. the 
percentage of surface covered by all roofed constructions, and varying from 0 
to 100%.

The land use/land cover (LULC) map was produced by integrating 
geospatial data from a wealth of sources. It is originally based on the CORINE 
Land Cover (CLC) 2012 map and nomenclature (https://land.copernicus.eu/
pan-european/corine-land-cover), but achieves superior spatial and thematic 
detail. The spatial detail was increased by merging CLC, European Settlement 
Map built-up layer, Urban Atlas, Copernicus high-resolution layers and other 
geodata. The original minimum mapping unit (MMU) of 25 ha was reduced 
significantly, depending on the data-source applied and LULC type. Given the 
purpose of the map, and allowed by a higher detail of the related data sources, 
artificial land cover patches as small as 1 ha were included, whereas 5 ha level 
was deemed adequate for the refinement of other classes.

In the process, new classes were derived using spatial data on building 
footprints. Urban fabric class was subdivided into four distinct density bands. 
Furthermore, the class ‘sport and leisure facilities’ was split into built-up 
and green components, airport terminals were extracted out of the airport 
class and major stations were extracted from the ground transportation class. 
Consequently, a machine-learning approach was used to breakdown the general 
‘industry/commerce’ class into more detailed classes (‘production’, ‘commerce 



250

and services’, and ‘public facilities’), based on the presence or absence of 
several categories of Points Of Interest. The expansion of 11 artificial LULC 
classes into 18 was instrumental for the allocation of certain population groups. 
The resulting map covers the EU-27 and other European countries and contains 
50 classes in total. The production and validation of this novel map has been 
documented in a dedicated article (Rosina et al., 2020).

With regards to the use of Point of Interest (POI) data, it was assumed that 
OpenStreetMap and TomTom are the most complete and accurate sources 
covering the entire territory of Europe. Although not perfect, omitting any or 
both of these sources would forbid the method we chose.

Unfortunately, there is no available literature on the quality of TomTom. 
TomTom MultiNet is a proprietary off-the-shelf dataset intended for satellite 
navigation systems; in multiple studies with European focus, it was actually 
used as a benchmark to evaluate the completeness of volunteered data (Neis et 
al., 2012; Zielstra & Zipf, 2010).

As for the quality of the OSM data, several studies suggest that despite 
being collected by volunteers, it has a great value and should not be overlooked 
(Dorn et al., 2015; Arsanjani & Vaz, 2015) and attempts were made to produce 
LULC maps (Estima & Painho, 2015; Arsanjani et al., 2013) and population 
maps (Bakillah et al., 2014) based on OSM POI.

As for the temporal relation to the population grids: the 2011 census preceded 
the collection/delivery of the used datasets by several years. In our application, 
the datasets can contain features added as late as 2017. However, due to lack 
of exact temporal validity information in the data, it is hard to approach this 
in a better way than just including all of the available features. Although it 
would be possible to exclude objects added after 2011 using the timestamp, this 
would discard the great majority of OSM POI (see chart below). The database 
completeness has been growing significantly in the period 2011-2017 due to 
increasing popularity of OpenStreetMap, rather than due to new facilities in 
existence.

The situation is similar for TomTom data –  the database is periodically 
updated, but it is not feasible to distinguish the reason behind new POI 
additions.



251

CHAPTER 8

Supplementary Figure 1. Yearly increments of POI-type objects in OpenStreeMap, based 
on a data-dump from 16/06/2016.
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Supplementary Figure 2. Day- and night-time concentric population density profiles for 
cities with names starting from letters A to B. Population densities and distance to city center 
were rescaled as prescribed by Lemoy and Caruso(Lemoy & Caruso, 2018) to make the 
population density profiles comparable across cities of different population sizes. Source data 
are provided as a Source Data spreadsheet file.
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Supplementary Figure 3. Day- and night-time concentric population density profiles for 
cities with names starting from letters C to Lis. Population densities and distance to city center 
were rescaled as prescribed by Lemoy and Caruso(Lemoy & Caruso, 2018) to make the 
population density profiles comparable across cities of different population sizes. Source data 
are provided as a Source Data spreadsheet file. 
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Supplementary Figure 4. Day- and night-time concentric population density profiles for 
cities with names starting from letters Liv to N. Population densities and distance to city 
center were rescaled as prescribed by Lemoy and Caruso(Lemoy & Caruso, 2018) to make 
the population density profiles comparable across cities of different population sizes. Source 
data are provided as a Source Data spreadsheet file.
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Supplementary Figure 5. Day- and night-time concrentric population density profiles for cities 
with names starting from letters P to Va. Population densities and distance to city center were 
rescaled as prescribed by Lemoy and Caruso(Lemoy & Caruso, 2018) to make the population 
density profiles comparable across cities of different population sizes. Source data are provided as 
a Source Data spreadsheet file. 
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Supplementary Figure 6. Day- and night-time concentric population density profiles for 
cities with names starting from letters Vi to W. Population densities and distance to city center 
were rescaled as prescribed by Lemoy and Caruso(Lemoy & Caruso, 2018) to make the 
population density profiles comparable across cities of different population sizes. Source data 
are provided as a Source Data spreadsheet file.
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Supplementary Table 1. Summary statistics for sampled cities/greater cities, based on yearly 
average. Ordered from largest to smallest city based on night-time population.
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Supplementary Table 2. Correspondence between land use classes and POI-based activity 
layers with population groups for day- and night-time population mapping.
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CHAPTER 8

Supplementary Table 3. List and description of land use classes from the LULC map and 
POI-based activity layers.

CLCr_1111
CLCr_1121
CLCr_1122
CLCr_1123
CLCr_1211
CLCr_1212
CLCr_1213
CLCr_1222
CLCr_1231
CLCr_1242
CLCr_1311
CLCr_1321
CLCr_1331
CLCr_1411
CLCr_1421
CLCr_1422
POI_A
POI_BDE
POI_C
POI_F
POI_GHI
POI_JKL
POI_MN
POI_OPQ
POI_RSTU
POI_Tour
POI_S04
POI_S56

Urban fabric dense
Urban fabric medium density
Urban fabric low density
Urban fabric very low density / isolated
Production facilities
Commercial & service facilities
Public facilities
Rail stations
Port areas
Airport terminals
Mineral extraction sites
Dump sites
Construction sites
Green urban areas
Sport and leisure green
Sport, leisure and touristic built-up
Points of Interest related to NACE sector A
Points of Interest related to NACE sectors B, D and E
Points of Interest related to NACE sector C
Points of Interest related to NACE sector F
Points of Interest related to NACE sectors G, H and I
Points of Interest related to NACE sectors J, K and L
Points of Interest related to NACE sectors M and N
Points of Interest related to NACE sectors O, P and Q
Points of Interest related to NACE sectors R, S, T, and U
Touristic accommodation room density
Locations of schools
Locations of universities

Land use class / POI activity layer Description
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Supplementary Table 4. List and description of NACE rev. 2 categories used in the study.

A
BDE
C
F
GHI
J
K
L

MN

OPQ

RSTU

Agriculture, forestry and fishing
Industry (except construction)
Manufacturing
Construction
Wholesale and retail trade, transport, accommodation and food service activities
Information and communication
Financial and insurance activities
Real estate activities
Professional, scientific and technical activities; administrative and support 
service activities
Public administration, defense, education, human health and social work activities
Arts, entertainment and recreation; other service activities; activities of 
household and extra-territorial organizations and bodies

NACE category Description
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Conclusions, discussion and future  
research avenues

1. THE GEOSPATIAL DATA PRODUCTION  
TRILEMMA AND THE ROLE OF DATA FUSION
The motivation for the research underpinning this thesis were two challenges 
posed to European scale geographic assessments of human activity: on one hand 
the missing geospatial data and, on the other hand, the geospatial data deluge. I 
encountered these two seemingly contradicting challenges while working at the 
European Commission’s Joint Research Centre providing evidence-based support 
to policy-making on issues with spatial and territorial dimensions.

With respect to the challenge of missing geospatial data, often, the existing data were 
scattered across different sources, sometimes inaccessible and/or inconsistent, incomplete 
(i.e., presence of data gaps) or lacking sufficient detail for the applications at hand. I 
also realized the production of geospatial datasets often involved trade-offs between the 
geographical area that is covered (extent) and the spatial and/or thematic detail (resolution): 
the larger the extent, the lower the resolution of the data. This trade-off relates to the 
increased productions costs associated with either enlarging the geographical coverage or 
increasing the level of detail. This can be seen as a trilemma, represented by the vertices 
of the triangle in Figure 1, whereby it is difficult to optimize geospatial data production 
for the largest possible spatial extent, highest resolution and lowest cost simultaneously.

As for the second challenge, the growing volume and variety of geospatial data was 
becoming ever more noticeable. Such new data were coming from both conventional 
sources and methods (e.g., new Earth Observation data sensors and products, new 
specialized, public or commercial databases), but also from non-traditional and 
non-official sources and methods like information and communication technology-
powered services, as well as novel approaches to geospatial data collection such as 
crowd-sourcing and voluntary geographical information (VGI) (See et al., 2016).

If, on one hand, the unprecedented volume and diversity of data from emerging data 
sources makes the challenges related to storage, processing and extraction of meaningful 
information to answer research questions even more evident than with traditional sources 
(Rodríguez-Mazahua et al., 2016), on the other hand, it may also help reconcile the 
resolution-extent-cost trilemma. So, when the challenges related to the deluge can be 
overcome, it may offer part of the solution to generate high resolution, large extent datasets 
at low cost. Additionally, data fusion (Wald, 1999), or geospatial data fusion approaches, 
can play an important role in addressing the trilemma as the integration of data from 
independent data sources can enrich existing datasets or even synthesize new ones.
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 In this thesis, I focus on developing and applying new data fusion 
approaches to integrate geospatial data from both conventional and emerging 
data sources and with very different characteristics into consistent data 
frameworks to fill specific data, information and knowledge gaps. Within the 
geospatial sciences, data fusion has been used mainly in the remote sensing 
domain (Schmitt & Zhu, 2016). Here, I try to harness the potential of data 
fusion for a broader set of geographical information science applications, 
with focus areas on land use (Chapters 2, 3 and 4), sector-specific activities 
(Chapters 5 and 6) and population distribution (Chapters 7 and 8), to ultimately 
support sustainable territorial development.

Although each chapter deals with a particular topic and specific research 
questions, geospatial data fusion is a common denominator across all chapters, 
and the overarching approach by which I try to generate new information and 
insight in a context of imperfect data at continental level. Moreover, I try to 
innovate the way emerging data sources are used and combined with more 
conventional ones.

The central question in this thesis was how can geospatial information 
from diverse sources and with different properties be combined to enhance 
the spatial representation of human activities? First and foremost, the research 
revealed that geographical research has a lot to gain by complementing 
conventional and official sources of data with data from a wide range of 
emergent sources. Among the many types of data and sources used in this 
thesis, a particularly interesting type of data identified and used were Points 
of Interest (POI) for their richness and versatility, as they indicate precise 

Figure 1. The geospatial data production trilemma (vertices) and two potential solutions: 
geospatial data deluge and geospatial data fusion (centre).

Low cost

Geospatial data deluge
Geospatial data fusion

Large
spatial extent

High 
resolution
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locations of a wide range of human activities and can be extracted from 
various sources.

On how to integrate the unprecedented volumes and variety of data, 
clearly, there is no one size fits all-approach. By means of various specific 
applications throughout this dissertation, I demonstrated that geospatial 
data can be combined in ways that can result in new meaningful and useful 
information and knowledge, and documented how the data fusion was 
performed in each case. The suite of functions in today’s GIS software 
allowing to carry many types of spatial overlay, geospatial data aggregation 
and disaggregation, coupled with semantic alignment and statistical methods, 
have been instrumental. However, adequate geospatial data fusion can only 
be performed by starting with a meaningful problem definition and a thorough 
understanding of the properties and limitations of the input data to evaluate 
their fitness for purpose. This step is especially relevant considering the 
rather heterogeneous nature of the different datasets in terms of how the data 
are constructed, made accessible, their structures and formats, underlying 
ontologies and quality parameters (e.g., completeness, accuracy, resolution).

However, possibly the most general yet insightful conclusion from this 
thesis is that geospatial data fusion does not simply exist next to the data 
deluge, but is required to deal with it in order to effectively reconcile the 
trilemma. Various chapters of this thesis demonstrate how geospatial data 
fusion is indeed necessary to make use of the disjoint data sources that are 
flooding us, and synthesize new information that is detailed, with wide 
coverage (i.e., continental), at modest cost.

Table 1 summarises the more specific outcomes and key takeaways 
from each chapter of this dissertation in relation to the research questions 
introduced in Chapter 1. To demonstrate the usefulness of the outcomes of 
this thesis, in section 2 of this chapter I will refer to their main research and 
modelling applications, as well as any follow-up developments carried out so 
far. Section 3 concludes with additional overarching insights drawn from the 
developed work focusing on the usability of emerging geospatial big data, 
while pointing to possible future research avenues.
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CHAPTER 9

2. RESEARCH APPLICATIONS AND FOLLOW-UP WORK
The enhanced spatial representation of human activity developed in this thesis 
enabled various research applications that have not been directly addressed or 
documented herein yet. This section highlights some of the links between the 
outcomes of this thesis and other fields of research such as land use modelling, 
regional development and natural hazard risk assessments. Additionally, I refer 
to specific follow-up work carried out to further improve the representation of 
land uses and activities.

Some of the work done in this thesis was carried in the context of the 
development and application of a land use model used for territorial impact 
assessment (Medeiros, 2019) of European Union trends and policies, the LUISA 
model (Jacobs-Crisioni et al., 2017; Lavalle et al., 2011, 2016). Outcomes of 
this dissertation were instrumental in improving base information layers and 
assumptions of the LUISA model. Particularly helpful in this respect were the 
refined land use/land cover information (Chapter 2) and the methods to project 
demand for industrial and commercial land use (Chapter 4). The first integration 
of both these elements is described in Batista e Silva et al. (2013). Lavalle et 
al. (2016) reflect upon the issues concerning the integration of the coarse 
CORINE Land Cover-based information for land use modelling at EU level, and 
the benefit of using refined land use/land cover information. In brief, the main 
concrete benefits of integrating the enhanced land use/land cover information 
developed in Chapter 2 include: capturing of land use patches of much smaller 
size1; more consistent classification of urban fabric areas; and higher detail in 
characterization of artificial land use classes.

Like other spatially-explicit land use models, the LUISA model simulates land 
use changes in a temporally dynamic and recursive manner, based on multinomial 
discrete choices of mutually exclusive land use categories2. Land use is treated 
as a nominal variable and admissible values are typically defined by existing 
land use nomenclatures. Therefore, the respective model inputs and outputs 
do not allow for direct inferences regarding the intensity of human activities 
and their spatial variability. Instead, an activity-based model would focus on 
modelling human activities expressed as continuous variables at each location 

1 hectare of minimum mapping unit for artificial surfaces and 5 hectares for non-artificial surfaces, in 
contrast with 25 hectares for all types of land use/land cover types in case the CLC were used.

For further information, in LUISA, the discrete land use allocation takes into account: a) bottom-up factors 
such as local biophysical characteristics (e.g., land-use, terrain, soil, climate, distance to specific economic 
infrastructure, etc.) and neighborhood effects, which determined the local suitability for different land-uses 
of each cell; b) top-down factors, generally demand for different land uses from different socioeconomic 
sectors or activities (top-down factors); and c) policies influencing land use (at both local and macro level) 
(Lavalle et al., 2016).

1

2
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using a meaningful unit of account, and referring to human presence, action or 
fruition of land for purposes such as housing, business, manufacturing, farming, 
tourism or leisure. For example, housing could be expressed as the number of 
dwellers, tourism as the number of tourists or nights-spent, manufacturing as 
the number of employees or yearly turnover, and so forth. This approach allows 
for capturing intensity of human activity while overcoming the limitation of 
mutually-exclusive representation of land uses, as spatially overlapping human 
activities are admissible.

The limitation of many land use models in representing overlapping land uses 
and human activity as continuous phenomena is not necessarily of conceptual 
or methodological nature, but rather a legacy of the more commonly available, 
conventional discrete and mutually-exclusive land use/land cover datasets. The 
availability of activity layers such as gridded residential population distribution 
(as in Chapter 7) contributed to the implementation of a mixed configuration in 
the LUISA model, whereby the discrete allocation of land uses coexists with 
a continuous allocation of dwellers (Jacobs-Crisioni et al., 2017)3. Further 
redevelopment of the LUISA model towards activity-based land use modelling 
may be enabled by the development of new grids portraying aspects such as 
tourism and employment, as in Chapters 6 and 8, respectively.

Besides their use to improve land use modelling, the land use/land cover and 
population datasets developed in this thesis were used as inputs for other policy-
support studies, such as: an assessment of regional potential for solar power 
generation (Perpiña Castillo et al., 2016); the modelling of impacts of transport 
infrastructure improvements on accessibility and territorial cohesion (Jacobs-
Crisioni et al., 2016); and the risk assessment of weather-related hazards to the 
European population (Forzieri et al., 2017). Additionally, the spatially explicit 
economic valuation of critical infrastructures in Europe (Chapter 5) was used 
for a multi-hazard risk assessment under a climate change scenario (Forzieri 
et al., 2018). The findings of the mentioned studies could aid in prioritizing 
regional development-oriented investments to strengthen territorial cohesion and 
resilience in Europe.

In terms of follow-up research, the refined land use/land cover information 
described in Chapter 2 was updated for more recent reference dates (i.e., 2012, 
2018). Rosina et al. (2020) and Pigaiani and Batista e Silva (2021) document 
the most recent methodological developments on top of the original research 
presented here. In these recent updates, an even larger number of sources of 
geospatial data was integrated, and a data-intensive machine learning procedure 

Other developments in the same direction have been documented by van Vliet et al. (2012) and White et 
al. (2012).
3
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was devised to break down the industrial and commercial land use class in three 
sub-classes: production facilities, commercial/service facilities, and public 
facilities – an unprecedented advancement in the representation of land use/land 
cover at continental level. These developments in land use/land cover information 
have been incorporated in newer versions of the LUISA territorial modelling 
platform, as documented by Jacobs-Crisioni et al. (2017). Finally, the research 
line on tourism activity (Chapter 6) progressed further, with a novel regional 
tourism typology based on hotel location patterns and geographical criteria to aid 
tourism management (Batista e Silva et al., 2021).

3. REFLECTIONS ON THE USABILITY OF GEOSPATIAL BIG 
DATA AND FUTURE RESEARCH AVENUES
Throughout this dissertation, I used geospatial data from selected emerging 
sources to improve the assessment of the spatial distribution of human activities. 
Despite their promising potential, important challenges related to the use of the 
many emerging sources of geospatial data must not be ignored.

One of the most exciting types of data used in this dissertation were Points 
of Interest (POI) (Chapters 5, 6 and 8). POIs are particularly interesting to 
discuss due to their relative novelty and potential, yet with limited adoption 
in geographical analyses. As these data can be generated and extracted from 
multiple sources (e.g., open crowd-sourced, commercial navigation datasets, the 
web), they must be used with awareness of the characteristics and limitations 
inherent to the source and the methods involved in their production/collection 
(Jackson et al., 2013; Jonietz & Zipf, 2016).

The quality of POI data in terms of completeness and spatial and thematic 
accuracy varies significantly across data sources (Deng & Newsam, 2017; 
Hochmair et al., 2018) and geographical areas, depending typically on the rate 
of user penetration of the different services generating data in different parts of 
the globe. This issue is not exclusive of POI data, but it is related to bottom-
up geospatial production methods such as crowd-sourcing or volunteered 
geographic information (VGI) more generally. While VGI enables massive 
and widespread mapping due to the involvement of large pools of contributors 
globally, the level of adherence is uneven across regions (Neis et al., 2013), and 
the consistency of the generated data is presumably harder to ensure than in 
commercial and centrally managed cartographic products. Hence, other datasets 
such as transportation networks and building footprints usually present in 
OpenStreetMap may be affected by the same issues.

This calls for adequate quality assessments of such data (Brovelli & Zamboni, 
2018; Jackson et al., 2013). However, the quality of these data is difficult or 
costly to assess systematically because of a lack of adequate benchmarks, that 
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is, ground-truth data with which to compare the completeness and validity of the 
aspects and features being represented by data collections from different sources. 
Throughout this dissertation I resorted to data from emerging sources to improve 
the spatial representation of land use, activities and population. Since it was 
impractical to quality-check all individual data inputs in a systematic fashion, I 
have, firstly, accepted such inputs as good after preliminary inspections and any 
required pre-processing, second, executed the data integration steps and, third, 
performed a validation of the final results. If the result of the data integration 
improved the spatial representation of features of interest, then it could be assumed 
that the inputs were valid as they had a net positive contribution. Although with 
different nuances, this generic approach was adopted in chapters 2, 4, 5, 7 and 8.

The combination of POI data from various sources is a possible strategy to 
increase coverage and completeness, by maximizing the amount of data used and 
limiting missing data. This approach requires, however, addressing the problem 
of overlapping information or reconciling different nomenclatures. In Chapter 6, 
hotel listings from two booking platforms were merged using an algorithm that 
identify and remove potential double counting by considering spatial proximity 
and attribute similarity, while in Chapters 5 and 8 semantic alignment was used 
to integrate data from different nomenclatures.

POI data from most data sources consist of indication of location and limited 
attribute information providing only a basic description of the type of facility 
or infrastructure being represented. So, additional information capturing the 
size, importance and other descriptors are often missing. For instance, in the 
case of hospitals, it could be meaningful to assess the type of hospital (large, 
small, public, private), its capacity, quality and diversity of services offered and 
other properties, depending on the type of study these data are applied in. These 
issues are of particular importance for assessments of accessibility to services of 
general interest, a topic relevant to spatial planning and territorial development 
and cohesion (Kompil et al., 2019; OECD & European Commission, 2021; Sá 
Marques et al., 2020; Tahmasbi et al., 2019). Clearly, enriching the attributes 
of POI data is an area requiring further investment in the future. An excellent 
example in this direction is the European Tertiary Education Register (ETER), 
a spatially explicit database of tertiary education establishments with dozens 
of attributes characterizing the type of establishments, staff, students, and 
educational offer (Lepori et al., 2020).

Temporal inconsistency is another issue affecting many emerging sources 
of geospatial data. Differences in information obtained at different times from 
the same source may not necessarily be related to actual temporal changes 
in the underlying phenomena, but rather refer to changes in data quality and 
coverage. Unlike most of the conventional datasets such as official statistics or 
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land use/land cover maps, data from various emerging sources are produced in a 
continuous fashion. This is the case with, for instance, crowd-sourced geographic 
information. When accessing such data, one assumes it is the best representation 
of the current time. However, there are two issues. Firstly, one cannot be sure 
entities or features represented in the dataset are still present on the ground, or 
are correctly classified as to the current activity or use, since such data may 
be outdated. Secondly, retrieving information for previous reference dates is 
challenging if not impossible. Such known unknowns request a good deal of 
faith from the users in the accuracy of the data.

Mobile Network Operators (MNOs) are another unconventional geospatial 
data source. Data from MNOs are often regarded as the prime source to assess 
the present population at high temporal frequency (Ricciato, Lanzieri, et al., 
2020). However, MNO data are problematic in various ways. They are scattered 
across many operators in many countries, making it difficult to obtain complete 
data access in a consistent way. There also issues relating to 1) selection bias 
as not all individuals possess mobile devices even in developed countries (e.g., 
children) and 2) heterogeneous spatial resolution across space, as the network of 
antennas which capture mobile signals from users have an uneven spatial density 
(generally denser in urban settings than in rural areas).

Yet, the most stringent issue relates to the data availability. While some 
operators have been open to release their data for some experimentation and 
research for case studies with limited spatial and temporal scope4, they are usually 
reluctant to make their data openly available for research or statistical purposes 
in a systematic fashion. In chapter 8 I devised an approach to produce the first 
ever seamless assessment of EU population density at 1 km resolution taking into 
account monthly and daily variations. The assessment was solely based on data 
fusion of official statistics with a wealth of fine-grained data from conventional 
and non-conventional geospatial data sources. In that chapter, MNO-based data 
were used for cross-comparison.

Clearly, one important lesson learnt is that geographical research should not 
be limited to official, or authoritative datasets and sources. Immense potential 
for geographical analysis lies in emerging sources of data, regardless of their 
properties of ownership, access, generation processes or formats. To a high 
degree, the quality of a dataset is in the eye of the beholder, depending on the 
purpose he/she has. Many datasets have been built with specific purposes or 
costumers in mind, but may be repurposed for other applications. Hence, the 
evaluation of their quality in view of the intended use (fitness for purpose), as 

See examples of case studies using data provided by MNOs by Deville et al. (2014), Jacobs-Crisioni et al. 
(2014), Raun, Ahas, and Tiru (2016), Romanillos et al. (2021), to cite just a few.
4
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stressed by Jonietz and Zipf (2016), is necessary ahead of each application.
It is finally important to refer to the sustainability of emerging sources 

of geospatial data as accessible, reliable and frequent data providers. While 
official statistical bodies have the mandate and, usually, a sustained flow of 
public resources to produce statistics with sound standards in terms of quality 
and frequency, this is not the case with many of the service providers which 
are flooding the world with new data. Many of the emerging, commercial 
sources of data depend on the activity of private entities whose main goal 
is – legitimately – profit, not the production of reliable statistics that are 
consistent over time and space, or that are structured according to theoretically 
sound ontologies. Instead, these data sources are closely tied to the ability 
to generate revenue from the underlying activity, and are therefore at risk 
of drying up should market conditions change. Changes to commercial data 
policies affecting research use cases are not unprecedented. For example, in 
2019, the Twitter social network removed support for precise geotagging of 
posts in its platform, impacting on-going and future research in various fields 
(Hu & Wang, 2020). A related open question is whether not-for-profit VGI 
projects such as the notable OpenStreetMap are more or less sustainable in 
the long-run vis-à-vis commercial sources.

Another issue compromising sustainability relates to legal aspects that may 
arise when fetching data. This is especially relevant for web sources. While it 
may be useful and appealing to scrape web contents (as illustrated in Chapter 
6 with hotel locations from tourism booking platforms), such activity may be 
regarded as abusive (or even illegal) by the owner/publisher of the content, 
thus undermining the wider usability of certain potentially useful sources.

For all the above, ‘big geospatial data’ or the emerging data sources 
should not be seen as a panacea for the future of territorial and geographical 
analysis. Instead, non-conventional data sources are best used to complement 
conventional ones, or to make informed but cautious guesses in relation to 
topics that are not adequately covered by official sources. In fact, many of 
the chapters included in this dissertation illustrate how the combination of 
emerging sources of geospatial data and official statistics can yield products 
with significant added value for applications requiring detailed information 
on land uses, sectorial activities and spatiotemporal population distribution.

Official statistical bodies are themselves acknowledging and adapting to 
the new reality where many and diverse data providers emerge, often with 
useful data for policy support and the wider public. Trusted Smart Statistics 
is a new paradigm for generating statistics from multiple external sources 
and for multiple purposes. It relies on a technological infrastructure and 
governance linking private data providers and the official statistical bodies 
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to ensure trust between parties and data quality. The European Statistical 
System is engaged in the development of Trusted Smart Statistics in what 
Ricciato and colleagues (2020) consider “the evolution of official statistics 
in response to the challenges posed by the new datafied society”. However, 
this is just one of the many possible technical and governance solutions to 
manage and harness the increasing stream of data as a resource in the digital 
economy. Other technical innovations, combined with new governance 
models, involving the public and private sectors and citizens in different 
arrangements are emerging, as reviewed in a recent European research project 
(Craglia et al. 2021).

In sum, the limitations of emerging geospatial data sources reviewed above 
point to three main areas of future development: 1) enriching the data with more 
thematic and temporal attributes, 2) carrying quality assessments with suitable 
metrics and benchmarks, 3) improving data availability and sustainability with 
legal clarity and new governance systems. In terms of applications, as Engin 
and others (2020) put it, “the opportunities afforded by new sources of data (…) 
are only just beginning to be explored”. But, if I had to select one specific area 
meriting future work, it would be the improvement of spatiotemporal population, 
for its relevance to urban management, regional planning and disaster risk 
mitigation. The EU-wide mapping of spatiotemporal population was a major 
breakthrough presented in this dissertation, but next steps are needed to address 
the still limited temporal resolution attained5. A technical implementation has 
been proposed by Martin, Cockings, and Leung (2015) allowing continuous 
spatiotemporal representations of present population. However, its use beyond 
small case study areas poses challenges that remain unaddressed.

As enunciated in Chapter 1, I believe the approach I sustained and applied 
in this dissertation will remain relevant at least until technology and novel data 
collection processes can fully bridge the geospatial data production trilemma 
through more detailed continental assessments in a more cost-efficient manner. 
This time might come sooner than later given the accelerating speed of innovation 
in technology and socioeconomic organization. Yet, even then, the need for 
geospatial data fusion might not be completely ruled out, as new applications 
and research questions keep emerging.

The temporal resolution attained in the work developed in Chapter 8 consisted of 24 static temporal 
snapshots (one day-time and one night-time grid for each month of the year).
5
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