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Deep inelastic leptoproduction of spin-one hadrons

A. Bacchetta and P. J. Mulders
Division of Physics and Astronomy, Faculty of Science, Free University, De Boelelaan 1081, NL-1081 HV Amsterdam, the Neth

~Received 13 July 2000; published 19 October 2000!

In this paper we analyze deep inelastic one-particle inclusive processes for the case of spin-one targets or for
the case of spin-one produced hadrons, such asr mesons. This allows the measurement of new distribution and
fragmentation functions not available in the spin-half case, and provides new ways to probe functions other-
wise difficult to measure. We will analyze only contributions leading order in 1/Q, but we will include effects
of the transverse momentum of partons. We also include time-reversal odd functions.

PACS number~s!: 13.60.Hb, 13.85.Ni, 13.87.Fh
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I. INTRODUCTION

Cross sections in deep inelastic scattering~DIS! can be
expressed in terms of distribution and fragmentation fu
tions, which provide information on the quark and glu
structure of hadrons. The energy scale of the process is g
by Q252q2, q being the four-momentum transfer of th
lepton. Depending on the number of observables one is
to measure, one can extract a variety of functions. The fu
tions appearing in leading order in 1/Q can be interpreted a
partonic probability densities.

We will study the case of one-particle inclusive expe
ments, which require the measurement of one hadron am
the ones produced in the scattering event. We will empha
the importance of including transverse momenta of parto
We will also include time-reversal odd functions. We w
give a systematic list of the various functions that come i
play up to leading order in 1/Q when we deal with either
spin-1 targets or spin-1 outgoing hadrons. The second ca
of interest in analyzing vector meson production.

To properly study the distribution and fragmentati
functions including transverse momentum dependence,
will start from a field-theoretical formalism, as outlined
@1#. This approach has been fully exploited only to stu
spin-12 targets and spin-1

2 outgoing hadrons. After an over
view of the general properties of spin-1 particles and of
general formalism needed to deal with them~Sec. II!, we
turn to the most general parametrization of the correlat
functions when spin-1 hadrons are included and we de
the distribution and fragmentation functions~Sec. III!. Dis-
tribution and fragmentation functions integrated over tra
verse momenta have been partially studied already in a n
ber of papers@2–4#. An incomplete treatment of transvers
momentum dependent functions has been performed in@5#.

The distribution functions for a spin-1 target could
used for the deuteron, but is not the main goal of our stud
the deuteron is in essence a weakly bound system of
spin-12 nucleons. The spin-1 distribution functions are use
as a passage to the fragmentation functions for spin-1 h
rons. The latter, however, require final state polarimetry
the produced hadron, i.e. the study of the angular distribu
of its decay products. The most common of such hadron
the r meson. It is abundantly produced in leptoproducti
experiments, and it should be possible to measure its po
ization in detail, as has already been done in diffractive p
0556-2821/2000/62~11!/114004~14!/$15.00 62 1140
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duction @6–8# and in hadronicZ0 decay@9#. Another possi-
bility is the observation of polarization in the inclusiv
leptoproduction off mesons, for which there should be le
hadronic background.

In the last section we focus more specifically on dee
inelastic leptoproduction of spin-1 hadrons and we list all
possible cross sections for different polarization conditio
in terms of the usual spin-1

2 distribution functions and the
newly defined spin-1 fragmentation functions.

II. DESCRIPTION OF SPIN-ONE PARTICLES

The description of particles with spin can be attained
using a spin density matrixr in the rest frame of the particle
The parametrization of the density matrix for a spin-J par-
ticle is conveniently performed with the introduction of irre
ducible spin tensors up to rank 2J. For example, the density
matrix of a spin-12 particle can be decomposed on a Cartes
basis of 232 matrices, formed by the identity matrix and th
three Pauli matrices,

r5
1

2
~11Sisi !, ~1!

where we introduced the~rank-one! spin vectorSi .
To parametrize the density matrix of a spin-1 particle

can choose a Cartesian basis of 333 matrices, formed by the
identity matrix, three spin matricesSi ~generalization of the
Pauli matrices to the three-dimensional case! and five extra
matricesSi j . These last ones can be built using bilinear co
binations of the spin matrices. In three dimensions th
combinations are no longer dependent on the spin matr
themselves, as would be for the Pauli matrices. We cho
them to be~see@10# and @11# for a comparison!

Si j 5
1

2
~SiSj1SjSi !2

2

3
1 d i j . ~2!

With these preliminaries, we can write the spin dens
matrix as

r5
1

3 S 11
3

2
SiSi13 Ti j Si j D , ~3!
©2000 The American Physical Society04-1
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A. BACCHETTA AND P. J. MULDERS PHYSICAL REVIEW D62 114004
where we introduced the symmetric traceless rank-two s
tensorTi j .

We choose the following way of parametrizing the sp
vector and tensor in the rest frame of the hadron:

S5~ST
x ,ST

y ,SL!, ~4!

T5
1

2 S 2
2

3
SLL1STT

xx STT
xy SLT

x

STT
xy

2
2

3
SLL2STT

xx SLT
y

SLT
x SLT

y 4

3
SLL

D . ~5!

In Appendix A we give some explicit forms and other deta
of the density matrices and parameters involved in Eq.~5!. In
an arbitrary frame, different from the rest frame, the s
vector and tensor satisfy the conditionsPmSm50 and
PmTmn50, wherePm is the momentum of the hadron. I
Appendix B we also discuss how the tensor polarization o
producedr meson can be extracted from the angular dis
bution of the decay productsp1p2.

III. CORRELATION FUNCTIONS

Cross sections of DIS events are proportional to the c
traction between a purely leptonic tensor and a purely h
ronic tensor. While the leptonic tensor can be calcula
theoretically, we are not able to do the same for the hadro
tensor, because we lack knowledge of the inner, n
perturbative structure of hadrons.

In the Bjorken limit, it is possible to separate the hadro
tensor into a hard part~virtual photon-quark scattering! and a
soft part, containing information on the parton distributi
inside the hadron. This soft part is a correlation functio
defined as the matrix element of quark fields between h
ronic states. In one-particle inclusive processes we need
correlation functions, one describing the quark distributio
in the target hadron and one describing the hadronizatio
a quark into the detected final state hadron.

In leading order in 1/Q ~also referred to as ‘‘leading
twist’’ or ‘‘twist-2’’ ! we are concerned only with quark
quark correlation functions entering the handbag diagram
Fig. 1. They are defined as follows~using Dirac indicesa
andb):

Fab~p,P,S,T!

5E d4j

~2p!4
e2 ip•j^P,S,Tuc̄b~j!ca~0!uP,S,T&, ~6!

Dab~k,Ph ,Sh ,Th!

5E d4j

~2p!4
e1 ik•j^0uca~j!uPh ,Sh ,Th&

3^Ph ,Sh ,Thuc̄b~0!u0&, ~7!
11400
in

a
-

-
d-
d
ic
-

c

,
d-
o

s
of

in

and describe the quark distribution and fragmentation,
spectively. Here,p is the momentum of the quark emergin
from the target, whilek is the momentum of the quark de
caying into an outgoing hadron after being struck by a virt
photon~see Fig. 1!. The vectorP (Ph) is the momentum of
the hadronic target~outgoing hadron!, the quantitiesS (Sh)
andT (Th) are the spin vector and tensor.

The correlation functions can be expressed in sev
terms, each one being a combination of the Lorentz vectop
~k! andP (Ph), the Lorentz pseudo-vectorS (Sh), the Lor-
entz tensorT (Th) and the Dirac structures

1, g5 , gm, gmg5 , ismng5 .

The spin vector and tensor can only appear linearly in
decomposition. Moreover, each term of the full express
has to satisfy the conditions of Hermiticity and parity inva
ance:

F~p,P,S,T!5g0F†~p,P,S,T!g0 Hermiticity, ~8!

F~p,P,S,T!5g0F~ p̃,P̃,2S̃,T̃!g0 parity, ~9!

wherep̃, P̃ andS̃ represent respectively the vectorsp, P and
S having space components with inverted sign andT̃ repre-
sents the tensorT having mixed space-time components wi
inverted sign. For the distribution partF one also obtains a
constraint from time-reversal inversion~leaving out effective
time-reversal odd parts coming from for instance gluo
poles@12,13#!:

F~p,P,S,T!5g1g3 F* ~ p̃,P̃,S̃,T̃! g3g1 time reversal.
~10!

For the fragmentation partD, containing out-states in the
definition, time-reversal invariance cannot be used as a c
straint @14–16# and one is left with the so-called time
reversal odd~TR odd! contributions, leading in particular to
interesting single spin asymmetries@17,18#. We will include
the TR odd contributions in our discussion ofF, because it
will be used as the general case of correlation functio
Throughout the rest of the article we will put time-revers
odd terms between brackets to make them easily identifia

FIG. 1. Diagrammatic representation of semi-inclusive DIS.
4-2
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The most general decomposition of the correlation functionF imposing Hermiticity and parity is

F~p,P,S,T!5M A1 11A2 P” 1A3 p”1S A4

M
smnPmpnD1~ iA5 p•Sg5!1M A6 S” g51A7

p•S

M
P” g51A8

p•S

M
p” g5

1 iA9 smng5SmPn1 iA10smng5Smpn1 iA11

p•S

M2
smng5Pmpn1S A12

emnrsgmPnprSs

M D1
A13

M
pmpnTmn 1

1
A14

M2
pmpnTmnP” 1

A15

M2
pmpnTmnp”1S A16

M3
pmpnTmnsrsPrpsD 1A17 pmTmngn1S A18

M
snrPr pmTmnD

1S A19

M
snrpr pmTmnD1S A20

M2
emnrsgmg5Pnpr ptT

tsD . ~11!
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The amplitudesAi are real functionsAi5Ai(p•P,p2).
The decomposition of the correlation functionD is analo-
gous. The amplitudesA4 , A5 , A12, A16, A18, A19 andA20
are TR odd.

In order to select leading twist contributions we perform
Sudakov decomposition of the Lorentz structures we ha
We choose two light-like vectorsn1 and n2 satisfying
n1•n251. We will call the plane perpendicular to thes
vectors the ‘‘transverse plane.’’ We define the two project

gT
mn5gmn2n1

$mn2
n% , ~12!

eT
mn5emnrsn1 rn2 s , ~13!

where the curly braces around the indices denote symm
zation of these indices. Given a vectoram we will sometimes
make use of the notationaT

m5gT
mnan and we will denote its

two-dimensional component lying in the transverse plane
aT .

We assume the following decompositions of the Lore
structures we are interested in:

Pm5P1n1
m 1

M2

2P1
n2

m , ~14!

pm5xP1n1
m 1pT

m1p2n2
m , ~15!

Sm5SL

P1

M
n1

m 1ST
m2SL

M

2P1
n2

m , ~16!

Tmn5
1

2 F4

3
SLL

~P1!2

M2
n1

m n1
n 1

P1

M
n1

$mSLT
n%

2
2

3
SLL~n1

$mn2
n%2gT

mn!1STT
mn2

M

2P1
n2

$mSLT
n%

1
1

3
SLL

M2

~P1!2
n2

m n2
n G . ~17!
11400
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When only one hadron is considered, e.g. in inclus
DIS, there is an arbitrariness in the choice ofn2 , though this
does not affect physical observables. In processes where
other hadron is present, such as one-particle inclusive le
production,n2 can be conveniently connected to the m
mentum of the produced hadron, so thatPm5Ph

2n2
m

1(Mh
2/2Ph

2)n1
m . This choice of light-like directions is par

ticularly useful to analyze current fragmentation in leptop
duction. In this case one finds that up to order in 1/Q2 only
one light-like component of the hadron momentum is re
evant. If we choose the relevant component of the tar
momentum to beP1, then the relevant component of th
outgoing hadron momentum will bePh

2 . We need to define
the decomposition of the fragmenting quark momentumkm

5(1/z)Ph
2n2

m 1kT
m1k1n2

m , while to obtain the decomposi
tion for the outgoing hadron’s spin vector and tensor, it
sufficient to interchange the1 and 2 components in Eq.
~16! and Eq.~17!.

In semi-inclusive DIS one needs to consider the followi
integrated correlation function:

F~x,pT!5
1

2E dp2 F~p,P,S,T!U
p15xP1

, ~18!

D~z,kT!5
1

4zE dk1 D~k,Ph ,Sh ,Th!U
k25P

h
2/z

.

~19!

In inclusive processes or after integrating the semi-inclus
cross sections over the outgoing hadron’s perpendicular
mentum one needs to consider the following ones:

F~x!5
1

2E d2pT dp2 F~p,P,S,T!U
p15xP1

, ~20!

D~z!5
z

4E d2kT dk1 D~k,Ph ,Sh ,Th!U
k25P

h
2/z

.

~21!
4-3
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Note that in the case of fragmentation, it is conventiona
integrate over2z kT , which is the transverse momentum
the produced hadron with respect to the quark. This can
checked by applying a Lorentz transformation that does
affect the minus component or the integration over the p
component. Using coordinates@a2,a1,aT#, the required
transformation is

F Ph
2 ,

Mh
2

2Ph
2

,0TG→F Ph
2 ,

M21z2 kT
2

2Ph
2

,2z kTG ~22!

FPh
2

z
,k1,kTG→F Ph

2

z
,k12

z kT
2

2Ph
2

,0TG . ~23!

We are going to separate different parts of the correla
functions depending on the polarization conditions they
quire to be observed. We will use the subscriptU to denote
unpolarized hadrons, the subscriptsL andT to denote respec
tively longitudinal and transverse vector polarization and
nally the subscriptsLL, LT andTT to denote longitudinal-
longitudinal, longitudinal-transverse and transver
transverse tensor polarization.

In leading order in 1/Q, the parametrization of thepT
dependent correlation function, defined in Eq.~18!, is ~we
remind the reader that terms in parentheses are TR odd!

FU~x,pT!5
1

4 H f 1~x,pT
2!n”11S h1

'~x,pT
2! smn

pT
m

M
n1

n D J ,

~24!

FL~x,pT!5
1

4 H g1L~x,pT
2!SL g5 n”1

1h1L
' ~x,pT

2!SL ismng5n1
m

pT
n

M J , ~25!

FT~x,pT!5
1

4 H g1T~x,pT
2!

ST•pT

M
g5 n”1

1h1T~x,pT
2!ismng5n1

m ST
n

1h1T
' ~x,pT

2!
ST•pT

M
ismng5n1

m
pT

n

M

1S f 1T
' ~x,pT

2!emnrsgmn1
n

pT
r

M
ST

sD J , ~26!

FLL~x,pT!5
1

4 H f 1LL~x,pT
2!SLL n”1

1S h1LL
' ~x,pT

2!SLL smn

pT
m

M
n1

n D J , ~27!
11400
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-

FLT~x,pT!5
1

4 H f 1LT~x,pT
2!

SLT•pT

M
n”1

1S g1LT~x,pT
2!eT

mnSLT m

pT n

M
g5 n”1D

1@h1LT8 ~x,pT
2!ismng5n1

m eT
nrSLT r#

1S h1LT
' ~x,pT

2!
SLT•pT

M
smn

pT
m

M
n1

n D J ,

~28!

FTT~x,pT!5
1

4 H f 1TT~x,pT
2!

pT•STT•pT

M2
n”1

2S g1TT~x,pT
2!eT

mnSTT nr

pT
rpT m

M2
g5 n”1D

2S h1TT8 ~x,pT
2!ismng5n1

m eT
nrSTT rs

pT
s

M D
1S h1TT

' ~x,pT
2!

pT•STT•pT

M2
smn

pT
m

M
n1

n D J .

~29!

The parametrization of the correlation function after in
gration uponpT , as defined in Eq.~20!, is

FU~x!5
1

4
f 1~x!n”1 , ~30!

FL~x!5
1

4
g1~x!SL g5 n”1 , ~31!

FT~x!5
1

4
h1~x!ismng5n1

m ST
n , ~32!

FLL~x!5
1

4
f 1LL~x!SLL n”1 , ~33!

FLT~x!5
1

4
„h1LT~x!ismng5n1

m eT
nrSLT r…, ~34!

FTT~x!50, ~35!

where
4-4
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TABLE I. List of leading twist distribution functions, divided in time-reversal~TR! even and time-
reversal odd.

@g1# @g1g5# @ is i 1g5#

TR even TR odd TR even TR odd TR even TR odd

U f 1 (h1
')

L g1L h1L
'

T ( f 1T
' ) g1T h1T h1T

'

LL f 1LL (h1LL
' )

LT f1LT (g1LT) (h1LT8 h1LT
' )

TT f1TT (g1TT) (h1TT8 h1TT
' )
o-
s
s,

b
o

re

ur
u
ic

-

-

d

g1~x!5E d2pT g1L~x,pT
2!, ~36!

h1~x!5E d2pT h1~x,pT
2!

5E d2pTS h1T~x,pT
2!1

pT
2

2M2
h1T

' ~x,pT
2!D , ~37!

h1LT~x!5E d2pT h1LT~x,pT
2!

5E d2pTS h1LT8 ~x,pT
2!1

pT
2

2M2
h1LT

' ~x,pT
2!D .

~38!

The decomposition of the correlation functionD is iden-
tical after the replacements $x,pT ,S,M ,n1%
→$z,kT ,Sh ,Mh ,n2% and the notation replacementf→D,
g→G, h→H.

In Appendix C all possible distribution functions are pr
jected out of the complete correlation function. In Table
and II we give a summary of all the distribution function
respectively before and after integration uponpT .

The functionf 1LL has been already studied in@2#, where
it was given the nameb1 ~note that actually f 1LL
52 2

3 b1). Although this name has been already used also
other authors~e.g. @5,4#!, we felt the need to change it t
follow a more systematic naming. The functionf 1LT is
analogous to the functionc1 introduced in@5#, although the
different approach followed in that article requires a mo
careful comparison.

It is worthwhile to note that, as suggested by Eq.~34!,
dealing with spin-1 particles offers the possibility of meas
ing a time-reversal odd function in leading twist and witho
considering the intrinsic transverse momentum. The part
lar fragmentation functionH1LT , equivalent to the distribu-
tion functionh1LT , has been introduced in@3#, where it was
namedĥ1̄ .

It is sometimes useful~for instance for calculation of azi
muthal asymmetries! to consider thepT

a-weighted function

1

M
F]

a~x![E d2pT

pT
a

M
F~x,pT!. ~39!
11400
I

y

-
t
u-

Non-vanishing at twist two we have

1

M
~F]

a!U~x!52
1

4
„h1

'(1)~x!sann1 n…, ~40!

1

M
~F]

a!L~x!52
1

4
h1L

'(1)~x!SL ismag5n1 m , ~41!

1

M
~F]

a!T~x!52
1

4
$g1T

(1)~x!ST
a g5 n”1

1„f 1T
'(1)~x!emnasgmn1 nST s…%, ~42!

1

M
~F]

a!LL~x!52
1

4
„h1LL

'(1)~x!SLL sann1 n…, ~43!

1

M
~F]

a!LT~x!52
1

4
$ f 1LT

(1) ~x!SLT
a n”1

1„g1LT
(1) ~x!eT

maSLT m g5 n”1…%, ~44!

1

M
~F]

a!TT~x!5
1

4
„h1TT

(1) ~x!STT
am smnn1

n
…, ~45!

where we used the notation

TABLE II. List of remaining leading twist distribution functions
after integration uponpT , divided in time-reversal even and time
reversal odd.

@g1# @g1g5# @ is i 1g5#

TR even TR odd TR even TR odd TR even TR od

U f 1

L g1

T h1

LL f 1LL

LT (h1LT)
TT
4-5
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h1
'(1)~x!5E d2pT h1

'(1)~x,pT
2!5E d2pT

pT
2

2M2
h1

'~x,pT
2!,

~46!

and we introduced the function

h1TT~x,pT
2!5h1TT8 ~x,pT

2!1
pT

2

2M2
h1TT

' ~x,pT
2!. ~47!

IV. SEMI-INCLUSIVE CROSS SECTIONS WITH TENSOR
POLARIZATION IN THE FINAL STATE

We consider one-particle inclusive DIS events where
target consists of a spin-1

2 hadron and the fragment is
spin-1 hadron with tensor polarization only. We allow on
time-reversal odd fragmentation functions to occur, assu
ing that there are no time-reversal odd distribution functio

A short note on the kinematics is the first necessary
gredient. In Sec. III we defined with the help of the mome
P andPh the transverse projectorgT

mn and transverse vectors
From the experimental point of view it is customary to wo
with vectors constructed from the momentaq and P. They
are used to define a space-like directionq̂m5qm/Q, an or-
thogonal time-like directiont̂m5(1/Q)(2xBPm1qm), where
xB5Q2/2(P•q) ~neglecting mass corrections of ord
1/Q2), and perpendicular directions via the tensor

g'
mn5gmn1q̂mq̂n2 t̂m t̂ n. ~48!

After introducing the scaling variablezh52Ph•q/Q2

.P•Ph /P•q ~neglecting order 1/Q2 corrections! and using
gT

mn or g'
mn we can write the relation

xBPm2
Ph

m

zh
1qm5qT

m52
Ph'

m

zh
, ~49!

showing that the combination on the left-hand side is eit
the transverse component ofq ~since PT5PhT50) or the
perpendicular component of2Ph /zh ~sinceP'5q'50).

To explicitly write cross sections we also need the scal
variabley5P•q/P• l , wherel denotes the incoming lepto
momentum and the azimuthal anglef l of the lepton scatter-
ing plane. Cross sections will be differential with respect
the variablesxB , zh , y, f l and Ph' . When they do not
vanish, we will also give cross sections integrated overPh'

andf l . The general formula is

2p ds~ l 1H→ l 81h1X!

df l dxB dzh dy d2Ph'

5
pa2

2Q4

y

zh
Lmn 2MWmn,

~50!

whereLmn is the lepton tensor andWmn is the hadronic ten-
sor given by the convolution of the soft parts,

2MWmn52zhE d2pT d2kT d2~pT1qT2kT!

3Tr @2F~xB ,pT!gm 2D~zh ,kT!gn#, ~51!
11400
e

-
.
-

a

r
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where it is understood that a charge squared weighted
over quark flavors has to be included. The full form of t
hadronic tensor can be obtained by introducing the corr
tion functions described in the previous section~see Appen-
dix D!. To shorten the formulas we will use the notation

I @•••#5E d2pT d2kT d2~pT1qT2kT!•••. ~52!

It is convenient to express the perpendicular vectors w
respect to the only measured perpendicular direction, i.e.
of Ph' , the outgoing hadron’s perpendicular momentu
Defining the unit vector in this directionĥ5Ph' /uPh'u, we
are then going to use the following notation:

a'
m5ax ĥm1ay e'

mnĥn . ~53!

As has been shown in@1#, the difference betweengT
mn in

Eq. ~12! andg'
mn in Eq. ~48! is of order 1/Q, i.e.~neglecting

order 1/Q2 parts!

g'
mn5gT

mn2
A2n1

$mqT
n%

Q
or gT

mn5g'
mn2

QT

Q
A2n1

$mĥn%,

~54!

whereQT5uPh'u/zh . This relation implies that if we already
have projected out a transverse vector, the additional pro
tion with g'

mn does not give additional terms, i.e.aT'
m

5g'
mraTr5aT

m , even if a'
mÞaT

m ~see Appendix B!. This is
true up to corrections of order 1/Q2.

We will indicate asfS
h the angle betweenST andPh' , as

fh
l the angle betweenPh' and the scattering plane, and asfS

l

the angle betweenST and the scattering plane.
For the tensorTh we introduce azimuthal angles define

as

tan~fh LT
h !5tan~fh LT

l 2fh
l !5

Sh LT
y

Sh LT
x

,

tan~2fh TT
h !5tan~2fh TT

l 22fh
l !5

Sh TT
xy

Sh TT
xx

, ~55!

and the the quantities

uSh LTu5A~Sh LT
x !21~Sh LT

y !2,

uSh TTu5A~Sh TT
xx !21~Sh TT

xy !2. ~56!

In a real experiment, where polarimetry is performed
the final-state hadron, cross section will not depend on
spin tensor parameters but rather on the analyzing pow
determined from the momenta of decay products. We o
writing explicit differential cross sections in terms of th
momenta of the decay products, but we merely point out t
spin tensor parameters in cross section formulas must be
placed by the corresponding analyzing powers, as given
Appendix B.
4-6
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A. Unpolarized lepton beam and unpolarized target„UU…

In this case, the differential cross section is

dsUU~ l 1H→ l 81hWW 1X!

dxB dzh dy d2Ph'

5
4pa2s

Q4 S 12y2
y2

2 D xBH Sh LL I @ f 1 D1LL#1uSh LTucos~fh LT
h !I F kx

Mh
f 1 D1LTG

1uSh TTucos~2fh TT
h !IF ~kx!22~ky!2

Mh
2

f 1 D1TTG J , ~57!

while after integration overPh' the differential cross section is

dsUU~ l 1H→ l 81hWW 1X!

dxB dzh dy
5

4pa2s

Q4 S 12y2
y2

2 D xB Sh LL f 1~xB!D1LL~zh!. ~58!

B. Polarized lepton beam and unpolarized target„LU …

Indicating byle the helicity of the incoming lepton, the differential cross section is

dsLU~ lW1H→ l 81hWW 1X!

dxB dzh dy d2Ph'

5
4pa2s

Q4
le yS 12

y

2D xBH uSh LTusin~fh LT
h !I F kx

Mh
f 1 G1LTG

1uSh TTusin~2fh TT
h !IF ~kx!22~ky!2

Mh
2

f 1 G1TTG J . ~59!

C. Unpolarized lepton beam and longitudinally polarized target„UL …

2p dsUL~ l 1HW → l 81hWW 1X!

df l dxB dzh dy d2Ph'

5
4pa2s

Q4
xB S 12y2

y2

2 DSLH uSh LTusin~fS
l 2fh

l ! I F kx

Mh
g1L G1LTG

1uSh TTucos~2fh TT
h !IF ~kx!22~ky!2

Mh
2

g1L G1TTG J
1

4pa2s

Q4
xB ~12y!SLH uSh LTusin~fh LT

l 1fh
l !I Fpx

M
h1L

' H1LTG
1uSh TTusin~2fh TT

l !I F p•k

MMh
h1L

' H1TTG1Sh LL sin~2fh
l !I Fpxkx2pyky

MMh
h1L

' H1LL
' G

2uSh LTusin~fh LT
l 23fh

l !IF px@~kx!22~ky!2#22 kxkypy

2MMh
2

h1L
' H1LT

' G2uSh TTu

3sin~2fh TT
l 24fh

l !IF2@~kx!22~ky!2!] ~kxpx2kypy!2kT
2~p•k!

2MMh
3

h1L
' H1TT

' G J . ~60!

D. Polarized lepton beam and longitudinally polarized target„LL …

dsLL~ lW1HW → l 81hWW 1X!

dxB dzh dy d2Ph'

5
4pa2s

Q4
2 le SL xB yS 12

y

2D H Sh LL I @g1L D1LL#1uSh LTucos~fh LT
h !I F kx

Mh
g1L D1LTG

1uSh TTucos~2fh TT
h !IF ~kx!22~ky!2

Mh
2

g1L D1TTG J . ~61!
114004-7
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E. Unpolarized lepton beam and transversely polarized target„UT…

2p dsUT~ l 1HW → l 81hWW 1X!

df l dxB dzh dy d2Ph'

5
4pa2s

Q4
xBS 12y2

y2

2 D uSTu H uSh LTucos(fS
l 2fh

l )sin(fh LT
l 2fh

l )I F pxkx

MMh
g1T G1LTG

1uSh TTucos(fS
l 2fh

l )sin(fh TT
l 2fh

l ) IF px[(kx)22(ky)2]

MMh
2

g1T G1TTG
1uSh LTusin(fS

l 2fh
l )cos(fh LT

l 2fh
l )I F pyky

MMh
g1T G1LTG

1uSh TTusin(fS
l 2fh

l )cos(fh TT
l 2fh

l )IF2 pxkxky

MMh
2

g1T G1TTG J
1

4pa2s

Q4
xB~12y!uSTuH uSh LTusin~fh LT

l 1fS
l !I @h1 H1LT#1uSh TTu

3sin~2fh TT
l 1fS

l 2fh
l ! I F kx

Mh
h1 H1TTG1Sh LL sin~fS

l 1fh
l !I F kx

Mh
h1 H1LL

' G
2uSh LTusin~fh LT

l 2fS
l 22fh

l !IF ~kx!22~ky!2

2Mh
2

h1 H1LT
' G1uSh LTu

3sin~fh LT
l 2fS

l 12fh
l !IF ~px!22~py!2

2M2
h1T

' H1LTG2uSh TTusin~2fh TT
l 2fS

l 23fh
l !

3IF kx F ~kx!22~ky!22
kT

2

2 G
Mh

3
h1 H1TT

' G1uSh TTusin~2fh TT
l 2fS

l 1fh
l !

3IFkx @~px!22~py!2#12 pxpyky

2M2Mh

h1T
' H1TTG2Sh LL sin~fS

l 23fh
l !

3IFkx @~px!22~py!2#22 pxpyky

2M2Mh

h1T
' H1LL

' G2uSh LTusin~fh LT
l 1fS

l 24fh
l !

3IF @~kx!22~ky!2#@~px!22~py!2!24 pxpykxky

4M2Mh
2

h1T
' H1LT

' G2uSh TTusin~2fh TT
l 2fS

l 23fh
l !

3IF kx@~px!22~py!2#F ~kx!22~ky!22
kT

2

2 G22 pxpyky F ~kx!22~ky!21
kT

2

2 G
2M2Mh

3
h1T

' H1TT
' G J .

~62!

After performing the integration overPh' we obtain the cross section

2p dsUT~ l 1HW → l 81hWW 1X!

df l dxB dzh dy
5

4pa2s

Q4
xB~12y!uSTu uSh LTusin~fh LT

l 1fS
l !h1~xB!H1LT~zh!. ~63!

We want to point out the importance of this last case, which would allow the measurement of the chiral odd distr
function h1 together with a time-reversal odd and chiral odd fragmentation function, requiring neither contributions
non-leading in 1/Q or the measurement of the transverse momentum of the outgoing hadron.
114004-8
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F. Polarized lepton beam and transversely polarized target„LT …

dsLT~ lW1HW → l 81hWW 1X!

dxB dzh dy d2Ph'

5
4pa2s

Q4
2 le xB yS 12

y

2D uSTu H Sh LL cos~fSl
h

!I Fpx

M
g1T D1LLG

1uSh LTucos~fS
h!cos~fh LT

h !I F pxkx

MMh
g1T D1LTG

1uSh TTucos~fS
h!cos~2fh TT

h !IF px @~kx!22~ky!2#

MMh
2

g1T D1TTG
1uSh LTusin~fS

h!sin~fh LT
h !I F pyky

MMh
g1T D1LTG

1uSh TTusin~fS
h!sin~2fh TT

h !IF2 pykxky

MMh
2

g1T D1TTG J . ~64!
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V. CONCLUSIONS

In this paper we have studied quark distribution and fr
mentation functions for hadrons with spin one. We ha
given a complete list of the functions that can appear at le
ing order in 1/Q in electroweak hard processes. We ha
included the intrinsic transverse momentum depende
useful for the treatment of processes in which more than
hadron is involved, such as 1-particle inclusive leptoprod
tion. We have included time-reversal odd functions. In p
ticular, time-reversal odd fragmentation functions show up
single spin asymmetries. We have not estimated the var
functions, since they contain soft physics and as s
are uncalculable at present. At best some positivity bou
can be given and issues like scale dependence may be
ied. Some of these aspects will be addressed in future s
ies.

Our treatment is complete, allowing the calculation of
clusive and semi-inclusive leptoproduction involving sp
one hadrons in the initial or final state at the tree level and
to leading order in 1/Q, but including the full spin structure
in the initial ~beam and target polarization! or final state~po-
larimetry!.

In Sec. IV we have focused on the specific process of
deep-inelastic leptoproduction of vector mesons (r mesons!
for which polarimetry is possible from the analysis of t
decay products (pp final state!. We calculated all cross sec
tions measurable with different beam and target polariza
~in fact, our results provide the specificP-wave contribution
in the more general analysis of two-pion production@19# in
the vicinity of ther mass!.

Among the results, we want to emphasize that vector m
son leptoproduction off transversely polarized nucleons
lows the observation of the chiral-odd transverse-spin dis
bution, h1(x), in a single spin asymmetry involving th
time-reversal odd fragmentation function,H1LT(z). Unlike
the situation involving spin 1/2 particles, this does not
11400
-
e
d-
e
e,
e
-
-
n
us
h
s

ud-
d-

-

p

e

n

e-
l-
i-

-

quire any azimuthal asymmetries, although the funct
H1LT itself is not known.
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APPENDIX A: INTERPRETATION OF THE COMPONENTS
OF THE SPIN TENSOR

A particular component of the spin tensor measure
combination of probabilities of finding the system in a ce
tain spin state~defined in the particle rest frame!.

As ‘‘analyzing’’ spin states we can choose the eigensta
of the spin vector operator in a particular direction. We c
write the spin vector operator in terms of polar and azimut
angles,

Si n̂i5Sx cosu cosw1Sy cosu sinw1Sz sinu, ~A1!

and we can denote its eigenstates asum(u,w)&, m being their
magnetic quantum number. The probability of finding one
these states can be calculated as

P~m(u,w)!5 Tr $r um(u,w)&^m(u,w)u%. ~A2!

Inserting in Eq.~3! the spin tensor, Eq.~5!, and the spin
vector, Eq.~4!, the explicit form of the spin density matrixr
turns out to be
4-9
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r5S 1

3
1

SLL

3
1

SL

2

SLT
x 2 iSLT

y

2A2
1

ST
x2 iST

y

2A2

STT
xx 2 iSTT

xy

2

SLT
x 1 iSLT

y

2A2
1

ST
x1 iST

y

2A2

1

3
2

2SLL

3

2SLT
x 1 iSLT

y

2A2
1

ST
x2 iST

y

2A2

STT
xx 1 iSTT

xy

2

2SLT
x 2 iSLT

y

2A2
1

ST
x1 iST

y

2A2

1

3
1

SLL

3
2

SL

2

D . ~A3!

From this explicit formula one can check that

SLL5
1

2
P~1(0,0)!1

1

2
P~21(0,0)!2P~0(0,0)!, SLT

x 5P~0(2 p/4,0)!2P~0(p/4,0)!, SLT
y 5P~0(2p/4,p/2)!2P~0(p/4,p/2)!,

STT
xx 5P~0(p/2,2p/4)!2P~0(p/2,p/4)!, STT

xy 5P~0(p/2,p/2)!2P~0(p/2,0)!.

Below, we suggest a diagrammatic interpretation of these probability combinations. Arrows represent spin statesm511
andm521 in the direction of the arrow itself, while dashed lines denote spin statem50 again in the direction of the line
itself.
ar
ie

a-
The probabilistic interpretations suggest straightforw
bounds on the values the spin tensor parameters can ach
namely

21<SLL<
1

2
,

21<SLT
i <1, ~A4!

21<STT
i j <1,

wherei , j 5x,y.
11400
d
ve,

Finally, it is possible to define a total degree of polariz
tion,

d5H 3

4
SiSi1

3

2
Ti j Ti j J 1/2

5H 3

4
@SL

21~ST
x !21~ST

y !2#1
3

2 F2

3
SLL

2 1
1

2
~~SLT

x !21~SLT
y !2

1~STT
xx !21~STT

xy !2!G J 1/2

, ~A5!

whose value ranges between 0 and 1.
4-10
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APPENDIX B: MEASUREMENT OF THE SPIN TENSOR
VIA DECAY ANALYSIS

In this appendix we show how it is possible to reconstr
the correspondence between spin tensor and analyzing
ers of ar meson by studying its decay into two pions.

In general the decay distribution of a spin-1 particle
two spin-0 particles is given by

W~u,w!5 Tr $r R~u,w!%, ~B1!

whereu andw are the polar and azimuthal angles of one
the decay products in the parent particle’s rest-frame.

The decay matrixR is defined as

Rmn~u,w!5M m → 0
† ~u,w!Mn → 0~u,w!. ~B2!

The decay amplitudes can be written in terms of Wign
rotation functions

M1→0~u,w!5A 3

4p
D10

1 * ~w,u,2w!52A 3

8p
sinu eif,

M0→0~u,w!5A 3

4p
D00

1 * ~w,u,2w!5A 3

4p
cosu,

M21→0~u,w!5A 3

4p
D210

1 * ~w,u,2w!5A 3

8p
sinu e2 if.

~B3!

As can be checked by explicit comparison, Eq.~B2! can be
rewritten as

R~u,w!5
1

4p F113 Si j S 1

3
d i j 2 p̂c.m.

i ~u,w! p̂c.m.
j ~u,w! D G ,

~B4!

where p̂c.m.
i is the flight direction of one of the produce

pions.
In general, the decay matrix can be expressed in term

analyzing powers,

R~u,w!5
1

4p S 11
3

2
Si Ai~u,w!13 Si j Ai j ~u,w! D ,

~B5!

and the decay distribution can be obtained accordingly a

W~u,w!5
1

4p S 11
3

2
Si Ai13 Ti j Ai j D ~B6!

By comparing Eq.~B4! with Eq. ~B5! we can identify

Ai50

Ai j 5
1

3
d i j 2 p̂c.m.

i p̂c.m.
j .
11400
t
w-

f

r

of

The tensor analyzing power can be written in a covari
form. By introducing the four-momenta of the two outgoin
pions,P1

m and P2
m , since the two particles are identical, w

can make the replacement

p̂c.m.
m 5

~P1
m2P2

m!

uP12P2u
5

~P1
m2P2

m!

AM r
224Mp

2
~B7!

and we obtain the covariant expression of the tensor ana
ing power:

Amn5
1

4Mp
2 2M r

2 ~P1
m2P2

m!~P1
n2P2

n!2
1

3 S gmn2
Ph

mPh
n

M r
2 D .

~B8!

If the polar axis in the decay analysis is chosen along
r direction of motion, as it has been done in@6–8#, then we
can use a parametrization forAi j analogous to that of the
spin tensor, Eq.~5!, to obtain

ALL52
1

2
~cos2 u1cos 2u!,

ALT
x 52sin 2u cosw,

ALT
y 52sin2u sinw,

ATT
xx 52sin2 u cos 2w,

ATT
xy 52sin2u sin 2w. ~B9!

Substituting the explicit form of the decay matrix in E
~B1! or, equivalently, the explicit form of the tensor analy
ing power in Eq.~B6!, we obtain the decay distribution~cf.
@20#!

W~u,w!5
3

8p S 2

3
2

2

3
SLL~cos2 u1cos 2u!

2SLT
x sin 2u cosw2SLT

y sin 2u sinw

2STT
xx sin2 u cos 2w2STT

xy sin2 u sin 2w D .

~B10!

In the case where the polar axis is chosen in the direc
of the virtual photon, in order to determine the relevant
variant quantity forSL , SLL , SLT

m andSTT
mn , we construct the

covariant comparison as in Eq.~49!, using the relation be-
tweeng'

mn and gT
mn . It is then easy to find for any hadro

~neglecting order 1/Q2 corrections!,

SL5
M ~S•q!

P•q
, ~B11!

ST
m5S'

m2SL

P'
m

M
, ~B12!
4-11
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2

3
SLL5

M2~qrTrsqs!

~P•q!2
, ~B13!

1

2
SLT

m 5
M ~g'

mrTrsqs!

P•q
2

2

3
SLL

P'
m

M
, ~B14!

1

2
STT

mn5g'
mrTrsg'

sn2
1

2

P'
$mSLT

n%

M
2

2

3
SLL

P'
mP'

n

M2

5g'
mrTrsg'

sn2
P'

$mg'
n%rTrsqs

P•q
1

2

3
SLL

P'
mP'

n

M2
.

~B15!

APPENDIX C: DISTRIBUTION FUNCTIONS

Distribution functions can be defined in terms of proje
tions of the correlation function on specific Dirac structur
Using the notation

F [G]~x,pT!5 Tr @F~x,pT! G#, ~C1!

F [G]~x!5 Tr @F~x! G#, ~C2!

we can list all possible twist-2 projections and conseque
define all possible twist-2 distribution functions. In the fo
lowing formulas distribution functions on the right side a
understood to be functions ofx andpT

2 . Latin indices,i, j and
l, indicate only the two transverse components. Before in
gration uponpT we obtain

FU
[g1]~x,pT!5 f 1 ,

FL
[g1]~x,pT!50,

FT
[g1]~x,pT!5S eT

mnST n

pT m

M
f 1T
' D ,

FLL
[g1]~x,pT!5SLL f 1LL ,

FLT
[g1]~x,pT!5

SLT•pT

M
f 1LT ,

FTT
[g1]~x,pT!5

pT•STT•pT

M2
f 1TT ,

~C3!

FU
[g1g5]

~x,pT!50,

FL
[g1g5]

~x,pT!5SL g1L ,

FT
[g1g5]

~x,pT!5
ST•pT

M
g1T ,

FLL
[g1g5]

~x,pT!50,
11400
-
.

ly

-

FLT
[g1g5]

~x,pT!5S eT
mnSLT n

pT m

M
g1LTD ,

FTT
[g1g5]

~x,pT!5S 2eT
mnSTT nr

pT
rpT m

M2
g1TTD , ~C4!

FU
[ is i 1g5]

~x,pT!5S eT
i j pT j

M
h1

'D ,

FL
[ is i 1g5]

~x,pT!5SL

pT
i

M
h1L

' ,

FT
[ is i 1g5]

~x,pT!5ST
i h1T1

ST•pT

M

pT
i

M
h1T

' ,

FLL
[ is i 1g5]

~x,pT!5S SLL

eT
i j pT j

M
h1LL

' D ,

FLT
[ is i 1g5]

~x,pT!5~eT
i j SLT j h1LT8 !1S SLT•pT

M

eT
i j pT j

M
h1LT

' D ,

FTT
[ is i 1g5]

~x,pT!5S eT
i j STT jl

pT
l

M
h1TT8 D

1S pT•STT•pT

M2

eT
i j pT j

M
h1TT

' D . ~C5!

After integrating overpT the following distribution func-
tions remain:

FU
[g1]~x!5 f 1~x!,

FLL
[g1]~x!5SLL f 1LL~x!,

FL
[g1g5]

~x!5SL g1~x!,

FT
[ is i 1g5]

~x!5ST
i h1~x!,

FLT
[ is i 1g5]

~x!5„eT
i j SLT j h1LT~x!….

~C6!

The list of pT
a-weighted functions is

1

M
~F]

a!T
[g1]~x!52„eT

anST n f 1T
'(1)~x!…, ~C7!

1

M
~F]

a!LT
[g1]~x!52SLT

a f 1LT
(1) ~x!, ~C8!

1

M
~F]

a!T
[g1g5]

~x!52ST
a g1T

(1)~x!, ~C9!

1

M
~F]

a!LT
[g1g5]

~x!52„eT
maSLT m g1LT

(1) ~x!…, ~C10!
4-12
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1

M
~F]

a!U
[ is i 1g5]

~x!52„eT
ia h1

'(1)~x!…, ~C11!

1

M
~F]

a!L
[ is i 1g5]

~x!52SL gT
ia h1L

'(1)~x!, ~C12!

1

M
~F]

a!LL
[ is i 1g5]

~x!52„SLL eT
ia h1LL

'(1)~x!…, ~C13!
11400
1

M
~F]

a!TT
[ is i 1g5]

~x!52„eT
im STTm

a h1TT
(1) ~x!…. ~C14!

The list of fragmentation functions can be obtained
applying the notation replacementsf→D, g→G,
h→H and the replacements $x,pT ,S,M ,g1,s i 1%
→$z,kT ,Sh ,Mh ,g2,s i 2%.
,

the
APPENDIX D: HADRONIC TENSOR WITH A TENSOR POLARIZED OUTGOING FRAGMENT

We give the formulas for the complete hadronic tensor up to leading order in 1/Q and for different polarization conditions
starting from the expression

2MWmn52zhE d2pT d2kT d2~pT1qT2kT!Tr @2F~xB ,pT!gm 2D~zh ,kT! gn#. ~D1!

We limit ourselves to the case where the target is a spin-1
2 hadron and the fragment is a spin-1 hadron~e.g. ar meson

whose polarization is measured through its decay! with tensor polarization only. Therefore, spin vector components refer to
target, while spin tensor components refer to the outgoing hadron~we label them with an indexh). When we use the
expressionsSh LT

m andSh TT
mn we mean the extensions to four dimension of the purely transverse vectorSh LT and tensorSh TT .

These extensions have therefore only transverse components.

1. Unpolarized target: Tensor polarized fragment

2MWS
mn52zE d2kT d2pT d2 ~pT1qT2kT!H 2g'

mnFSh LL f 1 D1LL1
Sh LT•kT

Mh
f 1 D1LT1

kT•Sh TT•kT

Mh
2

f 1 D1TTG J ~D2!

2MWA
mn52zE d2kT d2pT d2 ~pT1qT2kT!H ie'

mnF kT•eT•Sh LT

Mh
f 1 G1LT1

~kT•eT!•~Sh TT•kT!

Mh
2

f 1 G1TTG J ~D3!

2. Longitudinally polarized target: Tensor polarized fragment

2MWS
mn52zE d2kT d2pT d2 ~pT1qT2kT!H 2g'

mnFSL

kT•eT•Sh LT

Mh
g1L G1LT1SL

~kT•eT!•~Sh TT•kT!

Mh
2

g1L G1TTG
2

pT
$me'

n%tkTt1kT
$me'

n%tpTt

2MMh
FSL Sh LL h1L

' H1LL
' 1SL

Sh LT•k

Mh
h1L

' H1LT
' 1SL

kT•Sh TT•kT

Mh
2

h1L
' H1TT

' G
2

pT
$me'

n%tSLT t1Sh LT
$m e'

n%tpT t

2M
@SL h1L

' H1LT8 #1
pT

$me'
n%tSTT ts kT

s1kT
s STT s

$m e'
n%t pT

t

2MMh
@SL h1L

' H1TT8 #J ~D4!

2MWA
mn52zE d2kT d2pT d2 ~pT1qT2kT!H ie'

mnFSL Sh LL g1L D1LL1SL

Sh LT•kT

Mh
g1L D1LT

1SL

kT•Sh TT•kT

Mh
2

g1L D1TTG J . ~D5!
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3. Transversely polarized target: Tensor polarized fragment

2MWS
mn52zE d2kT d2pT d2 ~pT1qT2kT!H 2g'

mnFST•pT

M

kT•eT•Sh LT

Mh
g1T G1LT1

ST•pT

M

~kT•eT!•~Sh TT•kT!

Mh
2

g1T G1TTG
2

pT
$me'

n%tkTt1kT
$me'

n%tpTt

2MMh
FST•pT

M
Sh LL h1T

' H1LL
' 1

ST•pT

M

Sh LT•k

Mh
h1T

' H1LT
' 1

ST•pT

M

kT•Sh TT•kT

Mh
2

h1T
' H1TT

' G
2

ST
$me'

n%tkTt1kT
$me'

n%tS't

2Mh
FSh LL h1T H1LL

' 1
Sh LT•k

Mh
h1T H1LT

' 1
kT•Sh TT•kT

Mh
2

h1T H1TT
' G

2
pT

$me'
n%tSLT t1Sh LT

$m e'
n%tpT t

2M FST•pT

M
h1T

' H1LT8 G1
pT

$me'
n%tSTT ts kT

s1kT
s STT s

$m e'
n%t pT

t

2MMh
FST•pT

M
h1T

' H1TT8 G
2

ST
$me'

n%tSLT t1Sh LT
$m e'

n%tS' t

2
@h1TH1LT8 #1

ST
$me'

n%tSTT ts kT
s1kT

s STT s
$m e'

n%t ST
t

2Mh
@h1TH1TT8 #J ~D6!

2MWA
mn52zE d2kT d2pT d2 ~pT1qT2kT!H ie'

mnFST•pT

M
Sh LL g1T D1LL1

ST•pT

M

Sh LT•kT

Mh
g1T D1LT

1
ST•pT

M

kT•Sh TT•kT

Mh
2

g1T D1TTG J . ~D7!
B
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