Measuring functional limitations in rising and sitting down: Development of a questionnaire
Roorda, L.D.; Roebroeck, M.E.; Lankhorst, G.J.; van Tilburg, T.G.; Bouter, L.M.

published in
Archives of Physical Medicine and Rehabilitation
1996

DOI (link to publisher)
10.1016/S0003-9993(96)90005-2

document version
Publisher’s PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
Measuring Functional Limitations in Rising and Sitting Down: Development of a Questionnaire

Leo D. Roorda, MD, PT, Marij E. Roebroeck, PhD, Gustaaf J. Lankhorst, MD, PhD, Theo van Tilburg, PhD, Lex M. Bouter, PhD

Objective: Develop and test a self-administered questionnaire that measures perceived and actual functional limitations in rising and sitting down.

Setting: Private practices for physical therapy and outpatient clinics of hospitals and rehabilitation centers.

Patients: 345 outpatients (43% male, aged 14 to 92 years) with different grades of functional limitations and different types of lower extremity orthopedic or rheumatologic disorders.

Methods: The Questionnaire Rising and Sitting Down (QR&S) was developed on the basis of a literature review and careful operationalization of functional limitations. Five dimensions concerning different objects (high chair, low chair, toilet, bed, and car) and one global dimension were postulated to be contained in the instrument. Mokken scale analysis was used to test the postulated dimensions (scalability coefficient H). Furthermore, robustness with respect to patient characteristics was determined, as well as intrarater reliability (reliability coefficient Rho), test-retest reliability (intraclass correlation coefficient ICC), content validity (coverage of operationalized aspects), and construct validity (testing of seven hypotheses).

Results: Mokken scale analysis confirmed the existence of 5 object dimensions (H = .53-.59). However, two global dimensions were found (H = .50-.54). The resulting hierarchical scales, consisting of subsets of the 32 final QR&S items, are robust and measure functional limitations in a reliable (Rho .77-.91; ICC .72-.90) and valid (3 out of 4 aspects covered, 2 hypotheses rejected for 3 out of 7 scales) manner.

Conclusion: The QR&S is a reliable and valid self-administered questionnaire. It consists of hierarchical scales and measures perceived and actual functional limitations in rising and sitting down.

© 1996 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

RISING AND SITTING DOWN are basic mobility skills that play a critical role in independence and mobility. Problems with rising and sitting down are especially prevalent in the arthritic and the elderly. Munton and coworkers found that 42% of a study population in this category reported difficulty with rising from and 23% with sitting down into their easy chairs. In the noninstitutionalized Dutch population, 7% of the general population and 36% of the elderly population (those 85 years and older) reported difficulty with rising or sitting down.

Although rising and sitting down is of critical importance in maintaining independence, there has been little insight into the actual functional limitations that patients perceive at home when rising and sitting down. Furthermore, little is known about factors that contribute to the problems in rising and sitting down and the prevalence of different grades of limitations in various patient groups. It appears, then, that an assessment instrument is needed to study these phenomena adequately.

To our knowledge, such a comprehensive and detailed instrument is not yet available. Existing instruments only provide a global measure of functional limitations in rising and sitting down, because these limitations are not the primary goal of measurement. Other instruments are disease-specific, making valid comparisons of results across diagnostic categories impossible. Some instruments measure patients' performance in a laboratory setting; however, competence in a laboratory setting does not necessarily indicate competent performance in a patient's own environment and the consequent absence of problems at home. Similarly, incompetence in a laboratory setting does not necessarily indicate perceived problems in the patients' own environment.

Since existing instruments did not meet our needs, we decided to develop a questionnaire to assess perceived and actual functional limitations in rising and sitting down at home. The questionnaire was intended to be a discriminative index, measuring cross-sectional differences between patients, to distinguish between patients with varying degrees of limitations in rising and sitting down. Furthermore, the questionnaire had to be applicable in clinical and survey studies. For clinical studies the questionnaire had to provide a comprehensive and detailed picture of limitations, while for survey studies a more global picture would suffice. Finally, the questionnaire had to be applicable to outpatients with different degrees of functional limitations and different types of orthopedic or rheumatological lower extremity disorders in order to make comparisons across diagnostic categories.

This article reports on the development and testing of the Questionnaire Rising & Sitting Down (QR&S). The testing involved the study of scalability, robustness, and reliability, as well as content and construct validity.

METHODS

Item Selection

Items were derived from a literature review on rising and sitting down. On the basis of this review, and to create a comprehensive and detailed measure of limitations in rising and sitting down, it was decided to measure limitations in rising and sitting down regarding five objects—(1) high chair, (2) low chair, (3) toilet, (4) bed, and (5) car—thereby assuming 5 object
dimensions. Furthermore, one global dimension was postulated to be present which underlies the five object dimensions. For each of the five objects, the aspects (1) velocity, (2) use of arm(rest)s, (3) use of help, and (4) "other differences" in performance (eg, shifting forward before rising) were operationalized. Items were formulated in behavioral terms. Dichotomous response options were chosen to facilitate uniform interpretation."

A draft version of the QR&S was pretested twice and subjected to the opinions of experts (physicians, physical and occupational therapists, sociologists) resulting in rewording of some items and patient instruction. This revision resulted in a questionnaire with 54 items which was used in this study. A summary of the patient instruction and the (final) item set are listed in the Appendix.

Study Population

Patients had to meet the following criteria: (1) be 12 years of age or older, (2) be living at home, and (3) have had an orthopedic or rheumatologic disorder of the lower extremity for at least 2 weeks. Consecutive eligible cases were sampled from (1) 7 private practices for physical therapy, (2) 4 outpatient clinics of hospitals (orthopedic, rehabilitation, rheumatology, and trauma departments), and (3) 7 outpatient clinics of rehabilitation centers. The sample strategy was intended to represent patients with different grades of functional limitations in rising and sitting down and aimed at recruiting equal numbers of patients for the three different settings.

The patients completed the self-administered questionnaire at home and gave additional information about age, sex, educational level, disorder, and the way the questionnaire was filled in (alone or with help from another person). The information about the disorder was checked by their doctors or therapists.

Item Scaling and Reduction

The postulated existence of 5 object dimensions (high chair, low chair, toilet, bed, and car) and 1 global dimension was tested using Mokken scale analysis, which can be viewed as a probabilistic version of Guttman scale analysis or more generally as a nonparametric approach to item response theory. Mokken scale analysis assumes the existence of a latent unidimensional scale (eg, "functional limitations") represented by a set of dichotomous items related to this scale. When scale criteria are met (see below), the respondents can be ordered with respect to this latent scale by means of the item set. Furthermore, the items can also be ordered hierarchically with respect to this latent scale. Thus, when items representing serious functional limitations are answered affirmatively by the respondents, items representing less serious limitations will also be predominantly answered affirmatively by the respondents.

Scale criteria are met when all coefficients of scalability for pairs of items \(H_j \) are positive, while the scalability coefficients for the items in relation to the scale at issue \(H_i \) and for the whole item set \(H \) do not fall below a positive constant \(c \) chosen by the investigator. A minimum value of \(c = .30 \) is recommended, but higher values for \(H \) and \(H \) imply fewer violations and thus a better hierarchy. A rule of thumb is to speak of a "strong scale" for \(H \geq .50 \), of a "moderate scale" for \(.40 \leq H \leq .50 \), and of a "weak scale" when \(.30 \leq H < .40 \). \(\) H is based on the number of "correct" answers by the respondents to the items representing less serious limitations, given their answers to items representing serious limitations. More specifically, \(H \) equals one minus the number of correct answers expected (by answer frequency) divided by the number of correct answers found.

When these scale criteria are met, the order of the subjects on the latent scale corresponds with the number of affirmative responses the subjects give to the item set. This is called the sum score. To permit mutual comparison of scales with different numbers of items, the scale sum scores are standardized, ie, scores (range 0 to 10) are calculated as the proportion of the total possible score for the scale at issue multiplied by ten. The hierarchical order of the items corresponds with the order of the proportion of subjects responding affirmatively to the items, as expressed in the item mean score.

Robustness

Robustness is concerned with differences between subgroups of patients in scalability of the item set. Differences in scalability induce bias when comparing subgroups. In this study, subgroups were distinguished by (1) age (younger than 55 years versus 55 years and older), (2) sex, (3) educational level (primary versus secondary school), (4) localization of the disorder (unspecified, foot/ankle, knee, hip, multiple localizations), (5) type of disorder (unspecified, soft tissue injury, postfracture, osteoarthritis, rheumatoid arthritis, postoperative, amputation, peripheral neurologic, multiple disorders), (6) setting (private practice for physical therapy, hospital, rehabilitation center) and (7) questionnaire administration (filled in alone versus with the help of another person). Robustness was tested by performing a significance test \(\alpha < .05 \) for independent \(H \) values of the subgroups based on the coefficient of scalability \(H \) and its standard error.

Reliability

Reliability refers to the reproducibility of measurements with an instrument. The intratest reliability was determined by calculating the reliability coefficient Rho. In a typical Mokken scale there is a substantial variation in the level of item difficulties. In such cases Cronbach's alpha strongly underestimates the intratest reliability.

Test-retest reliability was determined on a subgroup of patients from the rehabilitation outpatient hospital clinic. This subgroup consisted of 28 patients with stable disease, according to their doctors. These patients filled in the questionnaire twice with a 1-week interval. To estimate the test-retest reliability of the scale sum scores the intraclass correlation coefficient was calculated.

Content Validity

Content validity refers to the completeness with which an index covers the important areas of the domain that it is attempting to represent. The questionnaire was based on an extensive literature review of rising and sitting down, resulting in the operationalization of limitations in rising and sitting down, focusing on different aspects (eg, high chair) and on different aspects (eg, velocity). Furthermore, patients and experts were invited during pretesting to check the item set for completeness. After item reduction, coverage of the operationalized objects and aspects was checked once more.

Construct Validity

Construct validity is concerned with the extent to which a particular measure relates to other measures in a manner that is consistent with theoretically derived hypotheses concerning the concepts that are measured. Before examining our data we formulated seven hypotheses: the functional limitation sum scores for all scales will show significant \(\alpha < .05 \) positive correlations with (1) a doctor's or therapist's global assessment of functional limitations (as measured on a 10-point scale),

Arch Phys Med Rehabil Vol 77, July 1996
Table 1: Characteristics of the Study Population (n = 345)

<table>
<thead>
<tr>
<th>Age</th>
<th>Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (%)</td>
<td>52 (21)</td>
<td>14-92</td>
</tr>
<tr>
<td>Educational level (%)</td>
<td>56</td>
<td>74</td>
</tr>
<tr>
<td>Localization of disorder (%)</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>Type of disorder (%)</td>
<td>56</td>
<td>74</td>
</tr>
<tr>
<td>Setting (%)</td>
<td>26</td>
<td>33</td>
</tr>
</tbody>
</table>

(2) self-assessed functional limitations in walking outdoors and walking stairs (as measured by a preliminary questionnaire about functional limitations in walking and walking stairs), (3) self-assessed walking distance and time, and self-assessed number of flights of stairs walked (as measured by a 13-, 11-, and 9-point scale, respectively), and (4) the age of the patient.

Furthermore, functional limitations sum scores for all scales will show no statistically significant (α < .05) difference between (5) male and female patients. Finally, functional limitations sum scores for all scales will be significantly (α < .05) smaller (6) for primary school patients than for hospital patients and (7) for hospital patients than for rehabilitation center patients.

Doctors and therapists were instructed to assess functional limitations independently from patients' responses to the questionnaire. To test the hypotheses, Spearman's rank correlation coefficient (one-tailed) was used, as well as the Mann-Whitney test (hypothesis 5, two-tailed; hypotheses 6 and 7, one-tailed).

RESULTS

Patients

Between 1991 and 1993 the QR&S was filled out at home by 345 patients living in the Amsterdam region. The study population characteristics are shown in table 1.

Scalability

Mokken scale analysis confirms the existence of five object dimensions. Five strong (H ≥ .53) hierarchical unidimensional scales can be formed, with 6 (high chair), 7 (low chair), 6 (toilet), 6 (bed), and 7 (car) items, respectively (table 2). The severity of functional limitations increases in the scales from top to bottom. For example, in scale 1 (high chair) minor limitations in rising and sitting down involve the use of the arms during rising. An increase in limitation involves the use of arms during sitting down. A further increase results in a longer duration of rising and makes patients sit only in high chairs with armrests. Severe limitations bring about sitting down in a different manner (involving dropping) and a longer duration of sitting down.

Furthermore, Mokken scale analysis confirms the existence of one global dimension underlying the five object dimensions, albeit, with the characteristics of a weak scale (H = .39, data not shown). Therefore, to obtain a strong scale (H ≥ .50), the less well-fitting items were removed. This resulted in a first combination scale containing 14 items about functional limitations in rising and sitting down with respect to high chairs, toilets, and beds (table 2). Mokken scale analysis of the removed items revealed a second strong combination scale. This second combination scale contains nine items about low chairs and cars (table 2). The resulting object and combination scales comprise 32 (out of 54) items.

With regard to the resulting scales, it can be observed that items about both rising and sitting down regarding a specific object fit into the same scales. This phenomenon applies to all scales. Furthermore, it can be noted from the similarly worded items (which differ only with respect to rising or sitting down) that minor limitations involve problems with rising, whereas with an increase in limitations problems with sitting down are evoked as well (eg, table 2: items 1 and 5). This pattern applies to all items. Finally, it is observed that, with respect to the objects high chair (1), low chair (2), toilet (3), and bed (4), minor limitations involve the use of arms during rising, whereas an increase in limitations results in rising in a different manner or a longer duration of rising (eg, table 2: items 2, 6, and 18, and items 4, 11, and 12). The same pattern is found for sitting down.

Robustness

Robustness of all object and combination scales was tested (table 3). Scalability does not differ significantly with respect to sex, educational level, localization of disorder, and setting. Scalability differs significantly with respect to age for two scales: (bed, p < .01; combination scale 1, p < .01) and questionnaire administration for one scale (toilet, p < .05). Differences in scalability with respect to type of disorder (high chair, p < .001; low chair, p < .01; bed, p < .05) are mainly attributable to the patients with rheumatoid arthritis. The H values for this patient group are relatively low (high chair, H = .39; low chair, H = .27; bed, H = .35). Results indicate that the scales are in general robust.

Reliability

The reliability coefficient Rho for object and combination scales ranges from .77 to .91 (table 2), indicating that the intratest reliability of the scales is good. The intraclass correlation coefficient ranges from .72 to .90 (table 3), indicating test-retest reliability of the scale sum scores is in general sufficient.

Content Validity

The object scales 1 to 5 comprise 32 items in total. Concerning the operationalized objects, 6 statements related to high chairs, 7 to low chairs, 6 to toilets, 6 to beds, and 7 to cars. Furthermore, with respect to the operationalized aspects, 10 statements related to velocity, 13 to use of armrests, none to use of help, and 9 to "other differences" in performance.
The combination scales 1 and 2 comprise 23 statements in total. From these, 5 relate to high chairs, 5 to low chairs, 5 to toilets, 4 to beds, and 4 to cars. Furthermore, 9 statements relate to velocity, 10 to use of arm(rest)s, none to use of help, and 4 to “other differences” in performance. These results indicate that the operationalized objects are covered well by the reduced item set, in both object and combination scales. The same applies to the operationalized aspects, with the exception of the aspect of help.

Construct Validity

Scale sum scores correlate .30 to .41 (p < .001) with doctor’s or therapist’s global assessment of functional limitations (table 3). Sum scores correlate .20 to .50 (p < .001) with self-assessment of functional limitations in walking outdoors and walking stairs. Scale sum scores correlate .17 (p < .01) to .58 (p < .001) with self-assessment of walking distance and time, and number of flights of stairs walked (table 3). Low chair sum score does not correlate significantly with age. The other sum scores correlate .15 (p < .01) to .44 (p < .001) with age. All except two correlation coefficients are between .20 and .60, which are usual values when testing construct validity. All scale sum scores do not differ significantly (p > .05) between male and female patients (table 3). All scale sum scores are significantly (p < .05) smaller for private practices patients than for hospital patients. Low chair (median standardization sum score 2.9 and 4.3, p = .14), car (4.3 and 5.7, p = .11), and combination scale 2 (3.3 and 4.4, p = .09) scale sum scores do not show a significant difference between hospital patients and rehabilitation center patients. The other sum scores are significantly (p < .001) smaller for hospital patients than for rehabilitation center patients. Thus, results from construct validity testing were as hypothesized for 5 out of 7 hypotheses. The fourth hypothesis (age) was rejected for 1 out of 7 scales (low chair). Hypothesis 7 (hospital versus rehabilitation center) was rejected for 3 out of 7 scales (low chair, car, and combination scale 2).
Abbreviation: NS. not significant.

Table 3: Robustness, Test-Retest Reliability, and Construct Validity of the QR&S Scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Combination Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Chair</td>
<td>46.54</td>
<td>46.54</td>
<td>46.54</td>
<td>46.54</td>
<td>46.54</td>
<td>46.54</td>
</tr>
<tr>
<td>Low Chair</td>
<td>52.56</td>
<td>52.56</td>
<td>52.56</td>
<td>52.56</td>
<td>52.56</td>
<td>52.56</td>
</tr>
<tr>
<td>Toilet</td>
<td>49.79</td>
<td>49.79</td>
<td>49.79</td>
<td>49.79</td>
<td>49.79</td>
<td>49.79</td>
</tr>
<tr>
<td>Bed</td>
<td>41.57</td>
<td>41.57</td>
<td>41.57</td>
<td>41.57</td>
<td>41.57</td>
<td>41.57</td>
</tr>
<tr>
<td>Car</td>
<td>4.50</td>
<td>4.50</td>
<td>4.50</td>
<td>4.50</td>
<td>4.50</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Robustness
(1) High Chair | 46.54 | 46.54 | 46.54 | 46.54 | 46.54 | 46.54 |
(2) Low Chair | 52.56 | 52.56 | 52.56 | 52.56 | 52.56 | 52.56 |
(3) Toilet | 49.79 | 49.79 | 49.79 | 49.79 | 49.79 | 49.79 |
(4) Bed | 41.57 | 41.57 | 41.57 | 41.57 | 41.57 | 41.57 |
(5) Car | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 |

DISCUSSION

The QR&S was intended to be a discriminative index. First, such an index requires a carefully selected item pool. Items were carefully selected by distinguishing and operationalizing different objects and aspects about rising and sitting down. Second, response sets must facilitate uniform interpretation. Therefore, dichotomous response options were chosen. A third requirement is that redundant items are deleted. According to Kirshner and Guyatt, ensuring that the instrument meets cumulative scaling criteria is a very powerful method to reduce the number of items. Therefore the item set from the QR&S was reduced using Mokken scale analysis. Fourth, a discriminative index requires a large and stable intersubject variation. This was demonstrated for our item set through a sufficient test-retest reliability of the scale sum scores. Further research will have to confirm the stability of the intersubject variation because the 1-week interval for testing of test-retest reliability was relatively short. Fifth, a discriminative index requires cross-sectional construct validity. This was made plausible for our item set because results from hypotheses testing were in general as hypothesized.

Furthermore, the QR&S had to provide both a comprehensive and detailed, as well as a more global picture of perceived and actual functional limitations in rising and sitting down. To create a comprehensive and detailed measure five object dimensions were assumed to be present. The existence of these five object dimensions was confirmed by the results of the scale analyses. The resulting object scales (high chair, low chair, toilet, bed, and car) fulfilled the criteria for strong hierarchical scales. To create a global measure the existence of one global dimension was assumed. Although our assumption concerning one global dimension was not rejected, we were not satisfied with the resulting weak scale. Therefore, two strong hierarchical “combination scales” were distinguished. Combination scale 1 (high chair, toilet, bed) and combination scale 2 (low chair and car) are easy to interpret because they contain different objects. Further research will have to confirm the existence of two combination scales. Furthermore, which factors make the item set fall apart into two combination scales will have to be investigated. Since functional limitations seem to be the result of impairment, intraindividual, and extraindividual factors, the existence of two combination scales can be caused by each of these factors. Impairment factors, such as differences in range of motion of the major joints among patients, might cause the existence of two combination scales. Similarly, extraindividual factors, such as differences among patients with respect to low chair and car avoidance (related to fear for accidental falls), may cause the existence of two combination scales. In this interpretation, combination scale
1 contains hard-to-avoid activities and combination scale 2 easy-to-avoid activities. The resulting object and combination scales provide an insight into the way behavioral changes relate to grade of functional limitation. Patients who had more problems with rising than with sitting down, which confirms the study of Munton. The finding that minor limitations involve the use of arms during sitting down while an increase of limitations results in sitting in a different manner is in agreement with the item about sitting down in Tintelli’s performance test.

Moreover, to create a comprehensive and detailed measure, different aspects of rising and sitting down were operationalized. After item reduction, coverage of the operationalized aspects by the reduced item set was still considered to be sufficient. The aspect of use of help was not covered by the reduced item set. The items about use of help were dropped because of their low mean scores (in general below 3%), which made them inefficient in discriminating patients with functional limitations. These low mean scores can be attributed partially to the use of Mokken scale analysis, which requires extremely formulated items (eg, I always get help, etc.).

Finally, the QR&S had to be applicable to outpatients with different grades of functional limitations and different types of orthopedic or rheumatological lower-extremity disorders. The study population sampled from different settings did actually represent patients with different grades of functional limitations, as was illustrated during construct validity testing. Moreover, scales proved to be robust with respect to setting. Furthermore, the study population consisted of different groups with respect to localization and type of disorder. The instrument proved to be fairly robust with respect to the different localizations and types of disorders, suggesting that the scales can be generalized to similar patient groups. Problems with respect to robustness were mainly restricted to the patients with rheumatoid arthritis. For this patient group the object scales 1, 2, and 5 proved to be less homogeneous. Therefore, for the patients with rheumatoid arthritis we recommend the use of the combination scales only.

In summary, the QR&S fulfills the requirements for a discriminative index and appears capable of distinguishing patients with varying degrees of limitations in rising and sitting down. The instrument is applicable to outpatients with different grades of functional limitations and different types of orthopedic or rheumatological lower-extremity disorders, making it suitable for comparisons across different diagnostic categories. For a detailed assessment (eg, clinical studies) the use of the object scales is recommended. The use of the combination scales is recommended when only a global picture of functional limitations is needed (eg, in survey studies).

Acknowledgment: For their commentary on the manuscript of the questionnaire or for their contribution to the data collection we would like to thank (in alphabetical order): Ms. W. Bamink, A.E. de Bruin, Ms. A. van Dasselar-Laroy, P.D. Deutz, A.J. van Dijk, I.W. van der Fijcken, M.K. Galenkamp, T. van Gils, N. Groot, K.J. Hamelynck, B. Heelting, Ms. I. Hermans, M.A. Hoelen, H.J.J. JGris, T. van Klaveren, der Eijken, M.K. Galenkamp, T. van Gils, N. Groot, K.J. Hamelynck, B. Kiihlmann, H. Laman, Ms. A. Linssen, B. Nobels, Ms. G. Schutte, W. Tolman, Ms. N. Vijn, Ms. T. Voogelaar, Ms. M. Winter, L. de Witte, W. Yspeert, and K. Zondervan. We also thank L. de Witte for his commentary on a draft version of this manuscript.

References

APPENDIX: STATEMENTS OF THE QR&S AND A SUMMARY OF THE INSTRUCTIONS FOR THE PATIENTS*

Please answer every statement with YES that (1) applies to your current situation and also (2) is connected with your health.

1. It takes me longer to get up from a chair with a high seat, eg, from a dining chair, a kitchen chair, or an office chair.
2. I always use my arms to get up from a chair with a high seat, eg, I pull myself up from the table, I push myself off of the armrests, I push myself off the seat.
3. It takes me longer to get up from a low chair or sofa, eg, from an easy chair or a deep sofa.
4. I always have to shift forward a little before I get up from a low chair or sofa.
5. I always use my arms to get out of a low chair or sofa, eg, I pull myself up from the table, I push myself off of the armrests, I push myself off the seat.
6. It takes me longer to get up from the lavatory.
7. I always shift forward a little before I get up from the lavatory.
8. I always grasp for support to get up from the lavatory, eg, the door post, the wash-basin, a handle, or an assist bar.
9. It takes me longer to get up from my bed.
10. I always shift to the edge of the bed before I get up.
11. I always use my arms to get up from the bed, eg, I hold on to something or I push myself from the bed.
12. It takes me longer to get out of a car.
13. When I get out of a car I do it in a different way, eg, I put both my legs on the ground and then I stand up.
14. I always use both hands to hold on to something while I get out of a car.
15. It takes me longer to get on a chair with a high seat, eg, on a dining chair, a kitchen chair or an office chair.
16. When I sit down onto a chair with a high seat I always let myself drop the last bit.
17. I always use my arms to get on a chair with a high seat, eg, I hold the table, I lean on the armrests, or I lean on the seat.
18. It takes me longer to sit down on a low chair or sofa, eg, on an easy chair or a deep sofa.
19. When I sit down into a low chair or sofa I always let myself drop the last bit.
20. I always use my arms to sit down on a low chair or sofa, eg, I hold the table, I lean on the armrests, or I lean on the seat.
21. It takes me longer to sit down on the lavatory.
22. I always hold on to something when I sit down on the lavatory, eg, the door post, the wash-basin, a handle, or an assist bar.
23. I only sit down on an "extra high" bed, and never on an ordinary bed.
24. It takes me longer to sit down on the bed.
25. I always use my arms to sit down on the bed, eg, I grasp hold of something, or I lean with my hands on the bed.
26. It takes me longer to get into a car.
27. When I get into a car I do it in a different way, eg, I first sit down and then I pull my legs inside.
28. When I get into a car I always let myself drop the last bit.
29. I always use two hands to hold on to something to get into a car.
30. I only sit on a chair with a high seat that has armrests and never on one without armrests.
31. I only sit on a low chair or sofa that has armrests and never on a low chair or sofa without armrests.
32. I only make use of lavatories that have assist bars and I never use lavatories that do not have assist bars.

(*Translation of the original Dutch instruction and statements. A copy of the QR&S with its manual is available on request from the first author.)