Analysis of the Properties of Current Penalty Schemes for Violations of Antitrust Law
Motchenkova, E.; Kort, Peter

Publication date: 2004

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. apr. 2017
ANALYSIS OF THE PROPERTIES OF CURRENT PENALTY SCHEMES FOR VIOLATIONS OF ANTITRUST LAW

By E. Motchenkova, P.M. Kort

September 2004
Analysis of the properties of current penalty schemes for violations of antitrust law.*

Evgenia Motchenkova† Peter M. Kort‡

Abstract

The main feature of the penalty schemes described in current sentencing guidelines is that the fine is based on the accumulated gains from cartel or price-fixing activities for the firm. These gains are usually difficult to estimate, but they can be approximated by a fraction of the turnover. The regulations thus suggest modeling the penalty as an increasing function of the accumulated illegal gains from price-fixing to the firm, so that the history of the violation is taken into account.

We incorporate these features of the penalty scheme into an optimal control model of a profit-maximizing firm under antitrust enforcement. In order to determine the effect of taking into account "the history of the violation", we compare the outcome of this model with a model where the penalty is fixed. The main result of the analysis of the later model is that complete deterrence can be achieved only at the cost of shutting down the firm. The proportional scheme improves upon the fixed penalty since it can ensure complete deterrence in the long run, even when penalties are moderate.

Phase-diagram analysis shows that the higher the probability and severity of punishment, the sooner cartel formation is blocked. Further, a sensitivity analysis is provided to show which strategies are most successful in reducing the degree of price-fixing. It turns out that, when the penalties are already high, the antitrust policy aiming at a further increase in the severity of punishment is less efficient than the policy that increases the probability of punishment.

JEL-Classification: C61, L41, K21

Keywords: Dynamic analysis, Antitrust Policy, Antitrust Law

*The authors thank Eric van Damme, Thomas Fent and an anonymous referee for stimulating discussions and valuable comments.
†Tilburg University, Department of Econometrics & OR and CentER, P.O.Box 90153, 5000 LE Tilburg, The Netherlands.
‡Tilburg University, Department of Econometrics & OR and CentER, P.O.Box 90153, 5000 LE Tilburg, The Netherlands. Department of Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp 1, Belgium.
1 Introduction.

This paper analyses the optimal policies for the deterrence of violations of antitrust law. We study the effects of penalty schemes, determined according to current US and EU antitrust laws, on the behavior of the firm. We investigate intertemporal aspects of this problem using a dynamic optimal control model of utility maximization by the firm under antitrust enforcement.

This paper addresses the problem of whether the fine, determined on the basis of accumulated turnover of the firm participating in a cartel, can provide a complete deterrence outcome. We assume that the imposed fine takes into account the history of the violation. This means that when the violation of antitrust law is discovered, the regulator is able to observe all accumulated rents from cartel formation. Consequently, it will impose the fine that takes into account this information. We also compare the deterrence power of this system with the fixed penalty scheme.

The OECD report (2002) provides a description of the available sanctions for cartels according to the laws of member countries\(^1\). Those laws allow for considerable fines against enterprises found to have participated in price-fixing agreements. In some cases, however, the maximal fines determined by these laws may not be sufficiently large to accommodate multiples of the gain to the cartel, as suggested by expected utility theory. In most of the countries the maximal fines are expressed either in absolute terms or as a percentage (10\%) of the overall annual turnover of the firm\(^2\). However, according to experts’ estimations, the best policy is to impose the penalties, which are a multiple of the illegal gains from price-fixing agreements to the firms. This, of course, would be difficult to estimate in real life, so it is still common practice to use the percentage of turnover as a proxy of the gains from price-fixing activities.

Several countries, namely the US, Germany, and New Zealand, have already accommodated this more advanced system. Instead of total turnover, in the US and Germany the maximal fine is stated in terms of unlawful gains. In Germany the maximal fine equals the maximum of the administrative fine of EUR 511518 or three times the additional profit from the cartel. In the US the maximal fine is the maximum of USD 10 million or twice the gain to the cartel\(^3\). New Zealand has the most advanced system. It provides for three alternatives: the maximum of NZD 10 million, three times the illegal gain, or if the illegal gain is not known, 10\% of the

\(^3\)US sentencing guidelines for organizations (2001)
total annual turnover of the enterprise. In general, the determination of the final amount of the fine, to be paid by the firm in each particular case, is based on the degree of offence, which is proportional either to the amount of accumulated illegal gains from the cartel or to its proxy, turnover involved throughout entire duration of infringement.

So, we can conclude that the current penalty schemes for antitrust law violations are mainly based on the turnover involved in the infringement throughout the entire duration of the infringement, which serves as a proxy of the accumulated gains from cartel or price-fixing activities for the firm. At the same time there exists an upper bound for the penalties for violations of antitrust law. The fine is constrained from above by the maximum of a certain monetary amount, a multiple of the illegal gains from the cartel, or if the illegal gain is not known, 10% of the total annual turnover of the enterprise. The idea of the current paper is to incorporate these features of the current penalty systems into a dynamic model of intertemporal utility maximization by a firm, which is subject to antitrust enforcement.

Similar to Fent et al. (1999), the set up of the problem leads to an optimal control model. The main difference compared to Fent et al. (1999) or Feichtinger (1983) is that the gain from the cartel accumulated by the firm over the period of infringement takes the role of a state variable, whereas the idea of Fent et al. (1999) was to take the offender’s criminal record as a state variable of the dynamic game. An increase in the state variable is thus positively related to the degree of price fixing by the firm, and increases the fine the firm can expect in case of being convicted.

Furthermore, this framework allows us to analyze the consequences of two major modifications of the penalty systems for violations of competition law, which have been recently suggested by the OECD and US Department of Justice (DOJ). The modification suggested by the OECD was concerned with the increase of the multiplier for the base fine, while DOJ suggests to increase the upper bound for the fine up to $100 million. By solving the optimal control problem of the firm under antitrust enforcement, we will investigate the implications of the different penalty schedules.

The main results are that, for the benchmark case, i.e., when the penalty is fixed, the outcome with complete deterrence of cartel formation is possible but only at the cost of shutting down the firm. In other words, the fixed penalty, which can ensure complete deterrence, is too high, because it leads to immediate bankruptcy. However, the result can be improved by relating the penalty to the illegal gains from price-fixing. The proportional scheme appears to

be more appropriate than the fixed penalty, since it can ensure complete deterrence in the long run even in case penalties are moderate. We also study the impact of the main parameters of the penalty scheme (probability and severity of punishment) on the efficiency of deterrence and analyze the optimal trade-off between changes in the scale parameter of the proportional penalty scheme and probability of law enforcement. It turns out that, the higher the probability and severity of punishment, the earlier the cartel formation is blocked. The sensitivity analysis shows that when the penalties are already high, the antitrust policy aiming at a further increase in the severity of punishment is less efficient than the policy that increases the probability of punishment.

The paper is organized as follows. In section 2 we describe the general setup of an optimal control model of the firm under antitrust enforcement. In section 3 we consider the case where the upper bound for the penalty is an exogenously given fixed monetary amount. Moreover, we will derive an analytical expression for this upper bound, which allows to achieve the result of complete deterrence of price-fixing. In section 4 we investigate the implications of the penalty being proportional to the accumulated gains from price-fixing. We also conduct sensitivity analysis of the equilibrium values of the variables of the model with respect to the parameters of the penalty scheme. Section 5 summarizes the results of the analysis and suggests directions for future work.

2 Optimal control model. The general setup.

We introduce the basic ingredients of the intertemporal optimization problem of a profit maximizing firm, which participates in an illegal cartel. The key variable is the accumulated gains from prior criminal offences (in case of a cartel, these offences are price-fixing activities).

Dynamics of the accumulated rents from price-fixing.

The accumulated rents from price-fixing, \(w(t) \), is the state variable of the model, which increases depending on the degree of offence (price-fixing). Using a continuous time scale the dynamics of the accumulated rents from price-fixing equals\(^5\)

\[
\begin{align*}
\dot{w}(t) & = \pi^m q(t)(2 - q(t)), \\
 w(0) & = w_0 \geq 0.
\end{align*}
\]

\(^5\)To simplify the analysis for the rest of this section we assume \(w_0 = 0 \). However, relaxing this assumption does not change the results stated in propositions of the paper.
Where \(\dot{w}(t) \) stands for the change in the value of the state variable, \(q(t) \) denotes the degree of price-fixing by the firm at instant \(t \), and \(w_0 \) is the initial wealth of the firm before the start of the planning horizon. Expression (1) rests on the assumption of the demand function being linear. A complete derivation of expression (1) is given in Appendix 1 of the paper, where \(\dot{w}(t) \) is associated with instantaneous producer surplus for the firm caused by fixing price levels above the competitive level. The main idea behind this formulation is that cartel formation leads to higher prices. The "normal" price is \(c \) (competitive equilibrium) leading to zero profits. Then \(q \) denotes the degree of violation, i.e. when the cartel fixes a higher price than "normal". From the definition of \(q \) in the Appendix it is clear that in case of such a violation, i.e. when price is higher than competitive level, \(q \) is positive. Based on the simple linear demand function\(^6\), profit, or producer surplus, can be expressed as a concave function of \(q \). Now the state variable \(w(t) \) adds up the profits over time, and as such \(w(t) \) is the total gain from crime (too high prices) from time 0 up to \(t \).

There are strong legal and economic reasons for introduction of the state variable in the form of accumulated rents from price-fixing. It is related to the fact, that in US and EU guidelines for imposition of fines for antitrust violations, the penalty imposed in many cases is based mainly on the turnover involved in the infringement throughout the entire duration of the infringement. Clearly, the accumulated turnover serves as a proxy for accumulated gains from cartel or price-fixing activities for the firm.

In addition, according to the OECD survey, the fines imposed recently, expressed as a percentage of the gain, varied widely, from 3\% to 189\%. In only four cases the fines were more than 100\% of the estimated gain, and in no case the fine was as high as two or three times the gain, as recommended by some experts. So, we can conclude that sanctions actually imposed have not reached the optimal level for deterrence, which, according to a well known Becker’s (1968) result, suggests that the fine should be a multiple of illegal gains.

Profit function.

The instantaneous illegal gains from price-fixing for the firm equal \(\pi^m q(t) (2 - q(t)) \). This function has been derived from the microeconomic model underlying the problem of price-fixing\(^7\). Obviously, this function implies that the marginal profit for the firm is always positive and strictly declining in the interval \(q(t) \in [0, 1] \). Moreover, for each positive level of offence the profit is also positive.

\(^6\)See Appendix.

\(^7\)For complete derivation of this expression see appendix.
The instantaneous profit at time t will also be influenced by accumulated rents from price-fixing. This variable also measures the experience the firm has in forming a cartel. The more it has experience, the more efficiently the firm colludes and, consequently, the higher the instantaneous profits from price-fixing. This influence is reflected in the term $\gamma w(t)$ which enters additively the objective function of the firm (see expression (4) below)\(^8\).

Law enforcement policy.

The goal of the current section is to incorporate the features of the penalty system for antitrust law violations, described above, into the optimal control model of intertemporal utility maximization by the firm in the presence of a benevolent antitrust authority, whose aim is to minimize the loss of consumer surplus, i.e. to block any degree of price-fixing. So, in order to capture the specifics of the sentencing guidelines and current antitrust practice, we model the penalty for violations of antitrust law as a linear increasing function of the accumulated rents from price-fixing for the firm. Therefore, it can be written as

$$s(w(t)) = \alpha w(t).$$

This setup will also allow to study the effects of the changes of the multiplier for the base fine (refinement suggested by OECD) on the deterrence power of the penalty scheme.

According to Becker (1968) the cost of different punishment to an offender can be made comparable by converting them into their monetary equivalent or worth. And this is satisfied in our model, since we measure the accumulated rents from price-fixing for the firm in monetary units.

Moreover, our specification of the penalty function satisfies three main conditions specified in Fent et al. (1999), namely:

1. It is strictly increasing in the level of offence (since $w(t)$ is strictly increasing in $q(t)$).
2. Firms which do not collude at all should not be punished: $s(w_0) = 0$.
3. Any detected positive level of offence should lead to a positive amount of punishment: $s(w(t)) > 0$, for any $w(t) > w_0$, which is equivalent to $q(t) > 0$ for some $t \in [0, T]$. This implies

\(^8\)It may be more realistic to express this term as a nonlinear function of w. In particular, a concave formulation may be very tractable since there might be decreasing marginal returns from experience. However, it will not change the results of the paper in a qualitative sense. The solution of the model in case experience gain is modeled as $\gamma \sqrt{w}$ gives the outcome with complete deterrence similar to Proposition 2 and results of sensitivity analysis for the model with proportional penalty still hold. The analysis of the model, where penalty is fixed, with $\gamma \sqrt{w}$ term gives the same qualitative result but the model can only be solved numerically.

A complete proof of this statement is available from author upon request.
that, if the firm has been checked, violated the law in the current period and participated in the cartel in some of the previous periods, the fine will be imposed on the basis of the whole accumulated gains from price-fixing, \(w(t) \), and thus not only on the basis of the current degree of offence, \(q(t) \).

Further, we will compare the efficiency and deterrence power of the penalty systems for a model in which the penalty is given by expression (2) and a model in which the penalty is fixed \((s(t) = S^\text{max}) \), where \(S^\text{max} \) is the fixed upper bound for the penalty introduced in the sentencing guidelines, which is not related to the level of offence.

Costs of being punished.

The cost of being punished at time \(t \) equals the expected value of the fine that has to be paid. This will be defined as the multiple of the probability of being checked by antitrust authority, \(p \) (level of law enforcement), times the degree of offence at time \(t \), \(q(t) \), times the level of punishment, which depends on time as well:

\[
\text{expected penalty} = s(t)q(t)p
\]

\(p \in [0, 1] \)

So, the expected penalty is determined by expression (3), where \(pq(t) \) is the probability of being punished at time \(t \) and \(s(t) \) is the fine, which may either be fixed or can be expressed as a function of accumulated gains from price-fixing.

We should stress here that the firm can only be caught at time \(t \) if \(q(t) > 0 \), i.e. the offence is committed exactly at this time. Of course this need not be the case for criminal acts in general: you can convict a thief, if the police has found the stolen things without having caught the burglar in action.\(^9\) However, it does apply to antitrust law practices. According to the US sentencing guidelines (2001) and OECD report (2002), investigation concerning past behavior only starts at the moment it is observed that the current price exceeds the competitive price, thus when \(q(t) > 0 \). After this is proved (usually on the basis of empirical analysis of price mark-ups), the antitrust authority will start a more detailed investigation and get access to accounting books and documents that can prove the existence of a cartel agreement. Only after that the gains from price-fixing \((w(t)) \) become “perfectly observable”, so that the court (or competition authority) can take them into account while determining the amount of fine to be paid.

\(^9\)We thank an anonymous referee who pointed out this difference.
Here it is also important to realize that the probability of being caught at instant t is $pq(t)$. So that the firm can only be caught at time t_1 if it does price fixing on that date, so if $q(t_1) > 0$. Later in time, say at time $t_2 > t_1$, the firm cannot be punished because of the offence at time t_1. At t_2 it can only be caught and punished if $q(t_2) > 0$. At the moment the firm is caught it has to pay a fine, $s(t)$. In one scenario this fine is an increasing function of $w(t)$. So this means that if the firm did a lot of price-fixing in the past, implying that $w(t)$ is large, the fine will be larger. In this sense repeated offenders are more heavily punished, and this is what quite frequently happens in modern democratic societies. So if the firm is caught at time t_2, it is convicted for the crime on t_2, and the level of the fine depends on what the firm did in the past, thus also what it did at time $t_1 < t_2$ as well. In other words, the higher the degree of price fixing at t_1, the larger the fine will be at t_2. This is independent of how many times the firm was caught in the past: the fine the firm paid before will not be subtracted from w. Since w is non-decreasing over time, it is implicitly taken into account that repeated offenders will be more heavily punished.\(^\text{10}\)

Optimization problem.

The firm making the decision about the degree of price-fixing faces the following intertemporal decision problem:

\[
\max J(q(t)) := \int_0^\infty e^{-rt}[\pi^m q(t)(2 - q(t)) + \gamma w(t) - s(t)pq(t)]dt
\]

\[
\text{s.t.} \quad \dot{w}(t) = \pi^m q(t)(2 - q(t)) \quad \text{and} \quad q(t) \in [0, 1].
\]

The parameter r is the discount rate. The objective functional $J(q(t))$ is the discounted profit stream gained from engaging in price-fixing activities. The term $\pi^m q(t)(2 - q(t))$ reflects the instantaneous rents from collusion and the term $-s(t)p(t)q(t)$ reflects the possible punishment for the firm, if it is caught. Note that the higher the degree of collusion, the higher the $q(t)$, the higher the expected punishment. $\gamma w(t)$ reflects the experience of the firm in cartel formation which increases future instantaneous gains from cartel formation.

\(^{10}\)In reality it works as follows. If the firm is convicted for the second time its fine is increasing in the amount of price fixing, but compared to the fine for the first conviction, the fine to be paid for the second conviction will be multiplied with a higher number. To model this, ideally after the first conviction the fine is $\alpha w(t_1)$, while for the second conviction the fine should be $c\alpha(w(t2) - w(t1))$ with $c > 1$. We did not see a chance to model this in a tractable optimal control framework. Therefore, we decided to approximate this with having a fine equal to $\alpha w(t)$. Since $w(t)$ is non-decreasing over time, it is implicitly taken into account that repeated offenders will be more heavily punished.
Having made the assumptions of section 2 we define the current value Hamiltonian:

\[H^c(q, w, \mu) = \pi^m q(t)(2 - q(t)) + \gamma w(t) - s(t)p q(t) + \mu(t)(\pi^m q(t)(2 - q(t))) \quad (5) \]

where \(\mu(t) \) is the current value adjoint variable representing the shadow price of the offence. The Hamiltonian is well-defined and differentiable for all nonnegative values of the state variable \(w(t) \) and all values of the control variable \(q(t) \) in its domain \([0, 1]\).

3 Analysis of the model where the penalty is represented by a fixed monetary amount.

In this section we would like to model the situation where penalty for violations of antitrust law is represented by a fixed monetary amount. In this case we assume that the fine does not depend on the accumulated gains from price-fixing and constant over time. This might be a good framework to study the efficiency of antitrust enforcement in an environment where there exists an upper bound for penalties and offences are so grave that punishment always reaches its upper bound, which is true for highly cartelized markets. The analysis of this model is quite essential, since the imposition of the upper bound for penalties for violations of antitrust law is still a current practice in most countries. Only Norway and Denmark do not have this limitation. This model will also allow to take into account DOJ new policy that suggests to increase the upper bound for the fine for violations of antitrust law up to $100 million. We modify the model of section 2 in such a way that the fine is given by some fixed monetary amount, \(S_{\text{max}} \), which denotes the maximal penalty. In other words, the antitrust authority commits to a policy of the following form: the rate of law enforcement is constant \(p(t) = p \in (0, 1] \) for all \(t \), and, when the firm is inspected, the penalty is given by \(s(t) = \begin{cases} S_{\text{max}} & \text{if } q(t) > 0 \\ 0 & \text{if } q(t) = 0 \end{cases} \).

In this section we show that if the fixed penalty (or upper bound for the fine imposed by law) is not high enough, complete deterrence is never possible. Moreover, we will derive an analytical expression for the upper bound, which allows to achieve the result of complete deterrence of price-fixing. The main difference with the model with proportional penalty is that the penalty does not depend on accumulated illegal gains. For simplicity, we assume that there is no discounting \((r = 0^{11}) \), the planning horizon is finite \((T < \infty) \), salvage values for both

\(^{11}\text{To make the analysis more transparent and analytically solvable we assume here that } r = 0. \text{ However, imposing that } r > 0 \text{ does not change the qualitative predictions of the model. Only the dynamics of the costate}
players are equal to zero, so that the transversality conditions are $\lambda(T) = 0$, $\mu(T) = 0$ for both players.

We derive the dynamic system for the optimal control $q(t)$ from the following necessary optimality conditions:

$$ q(t) = \text{argmax}_q H^c(q, w, \mu) $$ (6)

and

$$ \dot{\mu}(t) = -\frac{\partial H(q, w, \mu)}{\partial w} $$ (7)

The expression (7) gives $\dot{\mu}(t) = -\gamma$. Solving this simple differential equation in case of finite planning horizon, we get $\mu(t) = \gamma(T - t)$. Consequently, we get $\mu(t) \geq 0$ for all $t \in [0, T]$. This allows us to conclude that the Hamiltonian (5) is strictly concave with respect to q. Therefore, condition (6) is equivalent to $H_q^c = 0$. It leads to

$$ q^*(t) = 1 - \frac{p_{\text{avg}}}{2\pi^m(1 + \gamma(T - t))} = C $$ (8)

However, the control region of the offence rate q is limited by $[0, 1]$, by construction. This implies that the expression for the optimal degree of price-fixing by the firm is given by

$$ q^*(t) = \begin{cases}
0 & \text{if } C \leq 0 \\
C & \text{if } 0 < C \leq 1
\end{cases} $$ (9)

We can represent the optimal degree of price-fixing by the firm, q, as a decreasing function of both the penalty for violation and time, which is depicted in Figure 1. The first part of this statement is quite intuitive, since a higher expected penalty will, obviously, increase the incentives for the profit maximizing firms to avoid participation in price-fixing agreements and thus reduce the degree of offence, q. The negative relationship between the degree of price-fixing and time is related to the fact that higher gains from price-fixing in the beginning imply that for a longer time period the firm can take an advantage of it, in the sense that due to increased experience profits from price-fixing will be higher. So, incentives to commit crime decrease over time and, hence, the degree of offence falls.

variable of the firm changes. The equation for $\mu(t)$ becomes $\mu(t) = \frac{2}{\pi^m}(1 - e^{(t - T)})$. A complete proof of this statement is available from author upon request.
Figure 1: Representation of optimal degree of price-fixing as a decreasing function of penalty for violation and time for parameter values: $T = 10, \pi = 2, \gamma = \frac{1}{2}, p = \frac{1}{2}$

The state-control dynamics.

After we substitute (8) into (1) the differential equation describing the dynamics of the state variable will be as follows:

$$\dot{w}(t) = \pi^m (1 - \frac{S_{\text{max}} p}{2 \pi^m (1 + \gamma (T - t))^2})$$

(10)

The solution of this differential equation in general form will have the following form:

$$w(t) = \pi^m t - \frac{1}{4 \pi^m} (S_{\text{max}})^2 \frac{p^2}{\gamma (1 + \gamma T - \gamma t)} + C_1,$$

where C_1 is an arbitrary constant determined from the initial condition $w(0) = w_0$.

To understand the exact dynamics of the state and control variables over time we consider a numerical example. For parameter values $p = \frac{1}{2}, S_{\text{max}} = 2, \pi^m = 2, \gamma = \frac{1}{2}, T = 10$, the solution of this differential equation in general form will be as follows: $w(t) = \frac{1}{2(-12 + t)} + 2t + C$. Taking $w(0) = 1$, we get

$$w(t) = \frac{1}{2(-12 + t)} + 2t + \frac{25}{24}$$

The optimal degree of price-fixing will have the following form: $q^*(t) = 1 - \frac{1}{24 - 2t}$ and taking into account the boundaries of the control region we obtain

$$q^*(t) = \begin{cases}
0 & \text{if } 1 - \frac{1}{24 - 2t} \leq 0 \\
1 - \frac{1}{24 - 2t} & \text{if } 0 < 1 - \frac{1}{24 - 2t} \leq 1 \\
1 & \text{if } 1 - \frac{1}{24 - 2t} > 1
\end{cases}$$

The results for different values of S_{max} are summarized in the following table:

<table>
<thead>
<tr>
<th>penalty</th>
<th>accumulated gains from collusion</th>
<th>degree of price-fixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$w(t) = \frac{1}{2(-12 + t)} + 2t + \frac{25}{24}$, $\rightarrow w(T) \approx 20.792$</td>
<td>$q^*(t) = 1 - \frac{1}{24 - 2t}$, $\rightarrow q(T) \approx \frac{3}{4}$</td>
</tr>
<tr>
<td>10</td>
<td>$w(t) = \frac{25}{2(-12 + t)} + 2t + \frac{49}{24}$, $\rightarrow w(T) \approx 15.792$</td>
<td>$q^*(t) = 1 - \frac{5}{24 - 2t}$, $\rightarrow q(T) = 0$</td>
</tr>
<tr>
<td>20</td>
<td>$w(t) = \frac{50}{(-12 + t)} + 2t + \frac{31}{6}$, $\rightarrow w(T) \approx 0.166$</td>
<td>$q^*(t) = 1 - \frac{10}{24 - 2t}$, $\rightarrow q(T) = 0$</td>
</tr>
</tbody>
</table>
Consequently, when all the parameters of the model are fixed, $w(t)$ is increasing over time and the degree of offence is a decreasing function of time. Unfortunately, we must conclude that, for example, when the fixed penalty equals 2, which is the instantaneous monopoly profit for the firm for these parameter values, it does not allow to achieve complete deterrence even in the last period. On the contrary, the last period degree of price-fixing is quite high (75% out of 100%).

We can conclude that the policies with fixed penalty appear to be highly inefficient, since to achieve $q^*(t) = 0$ for all $t \in [0, T]$ we should have $1 - \frac{s(t)p}{2\pi^m(1+\gamma(T-t))} \leq 0$, which implies $s(t) \geq \frac{2\pi^m(1+\gamma(T-t))}{p}$. In the example with parameter values $T = 10$, $\pi^m = 2$, $\gamma = \frac{1}{2}$, $p = \frac{1}{2}$ we get $s(0) \geq 48 = 24\pi^m$ and $s(T) = s(10) \geq 8 = 4\pi^m$. This enormous penalty will drive the firm bankrupt immediately. Moreover, this result is counterintuitive and unfair, since the firm colluding for one period will obtain less extra gain than a firm colluding for ten periods, and, consequently, should be punished less.

The main result of the analysis of the model with fixed penalty is represented in the following proposition:

Proposition 1 In the optimal control model, where $p(t) = p > 0$ for all $t \in [0, T]$, the no collusion outcome (i.e. complete deterrence of price-fixing) occurs when $S^{\text{max}}(t) \geq \frac{2\pi^m(1+\gamma(T-t))}{p}$ for all $t \in [0, T]$, thus when $S^{\text{max}}(0) \geq \frac{2\pi^m(1+\gamma T)}{p}$.

The implication of this result is that the penalty for antitrust violation, which potentially can provide complete deterrence, should be imposed by the antitrust authority (thus, not by the court), i.e. by the authority which has complete information about the probability of law enforcement. The fine should be inversely related to the probability of investigation (similar to Becker (1968)). Moreover, the penalty should be based mainly on the instantaneous monopoly profits in the industry. Of course, this value is different for each industry, so the specifics of the industry also should be taken into account when the optimal fine for antitrust violations is determined. The length of the planning horizon should also be taken into account.

However, in real life the implementation of this scheme is problematic, since the court (not the antitrust authority) imposes the penalty and, consequently, the parameter p cannot be verified.

Unfortunately, the fixed penalty system does not always work. For $S^{\text{fixed}} < \frac{2\pi^m(1+\gamma(T-t))}{p}$ for some t, the result with no price-fixing outcome during the whole planning period is not possible. However, the new DOJ policy may be quite successful, since 100 million seems to be
higher than $\frac{2\pi^m(1+\gamma T)}{p}$ for reasonable parameter values (such as $p = \frac{1}{5}, \pi^m = 1\text{ million}, \gamma = \frac{1}{5}, T = 10$).

Moreover, this result resembles the result of Emons (2002), where the subgame perfect punishment for repeated offenders in a repeated games setting was investigated. The final conclusion of the paper is that if the regulator’s aim is to block violation at the lowest possible cost, the penalty should be a decreasing function of time. Moreover, he concludes that the first period penalty (penalty for the first detected violation) should be the highest and should extract the entire wealth of the offender. So, another drawback of this system is that it does not explain escalating sanctions based on offense history which are embedded in many penal codes and sentencing guidelines.

Another problem with this result is that the fixed penalty, which can ensure complete deterrence, is too high. It is clearly unbearable for the firm and leads to immediate bankruptcy. Already for the first violation we have to punish twenty times more than the maximal per-period monopoly profit. To resolve this "impossibility result" we look for another scheme. Again we take an example from current legislation. This other system relates the penalty to the illegal gains from price-fixing. It has already been implemented in the US, Germany, New Zealand and some other countries.

In particular, in the next section we introduce the penalty as a linear increasing function of accumulated gains from price fixing for the firm given by the expression (2) above. The proportional scheme appears to be better than the fixed penalty, since it can ensure complete deterrence in the long run even in the case where penalties are moderate.

4 Analysis of the model, where the penalty schedule is given by $s(t) = \alpha w(t)$.

This setup reflects another important feature of the penalty systems for violations of antitrust law suggested by current sentencing guidelines. Namely, that the fine is proportional to the illegal gains from cartel formation. This more advanced system has already been implemented in the US, Germany, New Zealand and some other countries.

Utility maximization.

As before, we derive the optimal control $q(t)$ from the following necessary optimality con-
ditions:

\[q(t) = \arg\max_{q} H^c \quad (11) \]

\[\dot{\mu}(t) - \gamma \mu(t) = -\gamma + \alpha q(t) \quad (12) \]

Since the control region of the offence rate \(q \) is limited by \([0, 1]\), the maximization condition (11) is equivalent to:

\[q^*(t) = \begin{cases}
0 & \text{if } C < 0 \\
\frac{C}{C_0} & \text{if } 0 < C \leq 1 \\
1 & \text{if } C > 1
\end{cases} \quad (13) \]

where

\[C = 1 - \frac{\alpha w(t)p}{2\pi m(1 + \mu(t))} \quad (14) \]

We conclude that the optimal degree of price-fixing by the firm is a decreasing function of both the penalty for violation and the probability of law enforcement. This is also quite intuitive from an economic point of view. The profit maximizing firm will reduce their optimal degree of price-fixing in response to the increase in the rate of law enforcement, since it makes conviction more likely. Secondly, increase in accumulated rents from collusion also raises the expected penalty, and this gives an additional incentive for the firm to reduce the degree of price-fixing. This allows the system to gradually converge to the socially desirable outcome with no price-fixing.

The analysis of the state-costate dynamics.

Substituting (14) into (1) and (12) gives the following system of differential equations:

\[
\begin{align*}
\dot{w}(t) &= \pi(1 - \left(\frac{\alpha w(t)p}{2\pi m(1 + \mu(t))}\right)^2) = 0 \\
\dot{\mu}(t) &= -\gamma + \alpha p(1 - \frac{\alpha w(t)p}{2\pi m(1 + \mu(t))}) + \gamma \mu = 0
\end{align*}
\quad (15)
\]

A stationary point can be obtained by intersecting the locuses \(\dot{w} = 0 \) and \(\dot{\mu} = 0 \). The \(\dot{w} = 0 \) isocline is given by \(w(\mu) = 2\pi \frac{\gamma + \gamma \mu}{\alpha p} \) and the \(\dot{\mu} = 0 \) isocline satisfies \(w(\mu) = 2\pi \frac{\gamma + \gamma \mu}{\alpha p} \).

The steady state of the system (15), being located in the positive orthant, is given by

\[(\mu^* = \frac{\gamma}{\gamma}, w^* = \frac{2\pi(1 + \frac{\gamma}{\gamma})}{\alpha p}) \rightarrow q^* = 0). \]

Existence of stationary points.

Both the \(\dot{w} = 0 \) and \(\dot{\mu} = 0 \) locuses are clearly increasing in \(\mu \). From the expression for \(\dot{\mu} = 0 \) we obtain \(w(0) = 2\pi \frac{\gamma + \gamma \mu}{\alpha p} \) and \(\lim_{\mu \to \infty} w(\mu) = \infty \). Similarly, from the expression for \(\dot{w} = 0 \) it follows \(w(0) = \frac{2\pi}{\alpha p} \) and \(\lim_{\mu \to \infty} w(\mu) = \infty \).
Now we see that one condition for the existence of a stationary point in the positive orthant (where $w \geq 0$) is $\frac{2\pi}{p^2} \geq 0$, which is always true. Another necessary condition for the existence of a stationary point in the positive orthant is $2\pi \frac{\gamma+\beta}{\alpha^2 p^2} \leq \frac{2\pi}{p^2}$. This is always true. The final condition, that has to be satisfied in order to obtain the existence of a unique point of intersection of the locuses $\dot{w} = 0$ and $\mu = 0$ in the positive orthant, is that the slope of the line that corresponds to $\dot{\mu} = 0$ in (μ, w)-plane is greater than the slope of $\dot{w} = 0$. $\dot{w} = 0$ gives $w'(\mu) = \frac{2\pi}{p^2}$ and $\dot{\mu} = 0$ implies that $w'(\mu) = 2\pi \frac{\gamma+\beta}{\alpha^2 p^2}$. Comparing these two expressions, we can conclude that the final condition for existence of stationary points in the positive orthant is satisfied for any non-negative μ only in case that $\gamma \leq r$. This means that, when the extra benefits for the firm from cartel formation do not increase much with the experience of the firm in cartel formation, the outcome with no collusion is more likely to be sustained in the long run, since it is less attractive for the firm to participate in the cartel agreements. So a unique stationary point in the positive orthant always exists, except when $p = 0$ (i.e. the probability to be caught is zero) or when $\gamma > r$ (i.e. the extra benefits for the firm from cartel formation increase very fast when the experience of the firm in cartel formation increases). The optimal control problem does not have a stable solution in these cases.

Example. Next, the solution procedure and construction of the phase portrait is illustrated via an example.

We construct the phase portrait when the parameters are $\gamma = 0.5$, $\pi = 1$, $\alpha = 2$, $p = 0.2$, $r = 0.2$. The $\dot{w} = 0$ isocline is given by $1 - \left(\frac{2w}{2(1+\mu)}\right)^2 = 0$, which implies that $\mu = 1 + \frac{1}{2}w$. Similarly, the $\dot{\mu} = 0$ isocline is given by $-\frac{1}{2} + \frac{2}{5}(1 - \frac{2w}{2(1+\mu)}) + \frac{1}{5} \mu = 0$, so that $\mu = -\frac{1}{4} + \frac{1}{25} \sqrt{(225 + 160w)}$. The stationary point then satisfies $-1 + \frac{1}{5}w = -\frac{1}{4} + \frac{1}{25} \sqrt{(225 + 160w)}$. This implies that $w^* = \frac{35}{2}$ and $\mu^* = 2.5$.

![Phase portrait](image.png)
Figure 2: Phase portrait in the \((w, \mu)\)-space for the optimal control model for the set of parameter values \(\gamma = 0.5, \pi = 1, \alpha = 2, p = 0.2, r = 0.2\), where the penalty schedule is given by
\[
s(t) = \alpha w(t). \]

Studying the stability of the steady state equilibrium \(w^* = \frac{35}{2}\) and \(\mu^* = 2.5\) we obtain the following expressions for the values of trace and determinant of the Jacobian matrix of the system (15):
\[
\text{trace } J = -\left(\frac{\frac{35}{2}}{4}\right)^2 + \frac{\frac{35}{2} \left(\frac{\gamma}{\mu}\right)^2}{2 \left(\frac{35}{4}\right)^2} + \frac{1}{5} = \frac{1}{5} > 0,
\]
\[
det \ J = -\left(\frac{\frac{35}{2}}{4}\right)^2 \left(\frac{\gamma}{\mu}\right)^2 + \frac{\frac{35}{2} \left(\frac{\gamma}{\mu}\right)^2}{2 \left(\frac{35}{4}\right)^2} + \frac{2(\gamma)^2}{4(\frac{35}{4})^3} = -\frac{4}{175} < 0.
\]

This allows us to conclude that the point with \(w^* = \frac{35}{2}, \mu^* = 2.5, q^* = 0\) is a saddle point.

Stability analysis.

Starting with the system dynamics (15) in the state-costate space, we can calculate the Jacobian matrix
\[
J = \begin{pmatrix}
-\left(\frac{\alpha p}{(1+\mu)}\right)^2 & \frac{2w}{4\pi} \\
-\frac{(\alpha p)^2}{2\pi(1+\mu)} & \frac{2(\alpha pw)^2}{4\pi(1+\mu)^2} + r
\end{pmatrix}.
\]

Obviously, the determinant has to be evaluated in the steady state \((\mu^*, w^*, q^*)\). It turns out that \(\text{trace } J > 0\) and \(\text{det } J < 0\), so that the steady state is a saddle point.

In general, with arbitrary values of the parameters and arbitrary equilibrium values the matrix \(J\) has two real eigenvalues of opposite sign and the steady state has the local saddle-point property. This means that there exists a manifold containing the equilibrium point such that, if the system starts at the initial time on this manifold and at the neighborhood of the equilibrium point, it will approach the equilibrium point at \(t \to \infty\).

This proves the following proposition.

Proposition 2 \(The \ outcome \ with \ complete \ deterrence \ is \ sustainable \ in \ the \ long \ run, \ given \ that \ the \ parameter \ \(p\) \ is \ strictly \ greater \ than \ zero. \ The \ steady \ state \ with \ \(\mu^* = \frac{\gamma}{r}, w^* = \frac{2\pi(1+\frac{\gamma}{p})}{\alpha p}\) \ and \ \(q^* = 0\) \ is \ a \ saddle \ point.\)

Proposition implies that in the long run the full compliance behavior arises in a sense that the outcome with \(q^* = 0\) is the saddle point equilibrium of the model. This means that one can always choose the initial initial value for the adjoint variable such that the equilibrium trajectory starts on the stable manifold and converges to the steady state. Economically speaking, the firm which maximizes profits over time under a proportional penalty scheme will gradually reduce the degree of violation to zero. However there is one exception: for \(p = 0\) the degree
of offence is maximal. The parameter α influences only the speed of convergence to the steady state value, not the steady state value of the control variable. Clearly, a higher α increases incentives for the firm to stop the violation earlier. Basically, deciding on the time of stopping the violation the firm compares the expected punishment and expected benefits from crime. Consequently, since in the setup with proportional penalty the expected punishment also rises when the benefits from price-fixing rise, in the long run the system will end up in the equilibrium with full compliance.

Trajectories of the state, control and costate variables of the model.

It is also illuminating to investigate the behavior of the variables of the model over time and with respect to the main parameter of the penalty scheme.

We can obtain analytical solutions for control, state and costate variables of the model only in case $p = 0$ for all t .

$$p^* = 0 \implies q^* = 1 \text{ for all } t \in [0, T] \implies \mu(t) = \gamma(T - t) .$$

Substituting this result into the state dynamics (1) we obtain that $w(t) = \pi^m t + w_0$

![Diagram](image)

Figure 3: Trajectories of the state, control and co-state variables of the model, where $p = 0$

for all t and $\alpha = 2, \pi^m = 2, w_0 = 0, \gamma = \frac{1}{2}, T = 10, r = 0$.

Note that $p^* = 0$ never leads to complete deterrence, since (14) implies that the best response of the firm in this case is $q^* = 1$.

Now consider the situation where $p > 0$. Combining (15) and (14) we obtain that

$$\dot{w} = \pi^m \left(1 - \frac{\alpha w(t)p}{2\pi^m (1 + \mu(t))^2}\right), \ w(0) = w_0$$

(16)

Even if we have the information about the dynamics of $\mu(t)$ we cannot obtain an analytical solution for the differential equation (16). We can only conclude that in the model, where
the penalty is determined by $s(t) = \alpha w(t)$, the antitrust authority, whose aim is to achieve no price-fixing outcome at least by the end of the planning period will have to commit to the following policy:

$$s(t) = \alpha w(t) \text{ for all } t \in [0,T] \text{ and } p(t) = \begin{cases} 1 \text{ for all } t \in [0,t^{**}] \\ \min\{1, \frac{2\pi^n(1+\mu(t))}{\alpha w(t^{**})}\} \text{ for all } t \in [t^{**},T] \end{cases}$$

Where t^{**} is the root of the equation $q(t) = 1 - \frac{\alpha w(t)}{2\pi^n(1+\mu(t))} = 0$ (see (14)).

Note, that $\mu(t) > -1$ for all t is an additional condition for the existence of the root of this equation. Since $\mu(T) = 0$, this will be ensured by the condition $\mu(t) = -\frac{\partial H^2}{\partial w} = -\gamma + \alpha p(t) < 0$ for all $t \in [0,T]$.

So the trajectories of the state, control and costate variables of the firm together with the most cost efficient policy of the antitrust authority will have the following form. When the firm is subject to antitrust enforcement with proportional penalty, the degree of offence by the firm gradually declines and finally reaches its steady state value. This happens because the expected penalty rises over time as well when the firm commits offence more often. Consequently, the accumulated rents from price-fixing activities to the firm increase over time, but the speed of this increase declines when the system approaches the steady state equilibrium level. The aim of the antitrust authority is to block the violation as fast as possible. In this case the most cost efficient policy of the antitrust authority in response to this behavior of the firm would be to keep the probability of law enforcement at the highest possible level until the state variable reaches its steady state value and then reduce the efforts gradually keeping expression (14) $q^*(t) = 1 - \frac{\alpha w^{**} p(t)}{2\pi^n(1+\mu(t))}$ equal to zero (see Figure 4).
Figure 4: Trajectories of the state, control and co-state variables of the model, with optimally chosen p and $\alpha = 2, \pi^m = 2, w_0 = 0, \gamma = \frac{1}{2}, T = 10, r = 0$.

A no price-fixing outcome ($q(t) = 0$) can be sustained, but it occurs only at the end of the planning period. To be more precise, the dynamics of the optimal behavior of the firm is such that, given the parameters of the penalty system (p and α), the firm gradually reduces the degree of offence to zero, which happens at time t^{**}. After that no more collusion will take place. Consequently, accumulated gains from price-fixing will gradually increase and after $t = t^{**}$ will stay at the level $w(t^{**})$. The parameters of the penalty system (p and α) have an impact on the optimal behavior of the firm and consequently on the deterrence power of the penalty system, which is measured by the timing of optimal deterrence or, in other words, by the value of t^{**}. The higher the α and p the closer the t^{**} to the origin, and consequently the earlier the cartel formation is blocked.

Sensitivity analysis.

Here we investigate in which direction the saddle point equilibrium moves if the set of parameter values changes. Analyzing the properties of the proportional penalty scheme ($s(t) = \alpha w(t)$), the main parameters of our interest are the scale parameter of the penalty schedule, α, and the parameter which determines the certainty of punishment, p. They appear to be also quite important parameters for the firm, whose objective is to maximize the expected rents from price-fixing in the presence of antitrust enforcement. Clearly, the firm will condition its behavior on the parameters of the penalty scheme, chosen by the regulator (see expression (4)). Moreover, the result obtained below will provide hints on how to choose the optimal enforcement policy to minimize the steady state degree of price-fixing by the firms.

As a result of the necessary optimality conditions, in the steady state equilibrium it holds that

\[
w(t) = f(q, w, \mu, \alpha) = \pi q (2 - q) = 0,\
\mu(t) = r \mu(t) - H_w(q, w, \mu, \alpha) = r \mu - \gamma + \alpha pq = 0,
\]

\[
H_q(q, w, \mu, \alpha) = (2\pi - 2\pi q)(1 + \mu) - \alpha wp = 0.
\]

Computing the total derivative of the above equations with respect to α we get

\[
\begin{pmatrix}
f_\mu & f_w & f_q \\
f_w - r & H_{ww} & H_{wq} \\
f_q & H_{qw} & H_{qq}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial q}{\partial \alpha} \\
\frac{\partial w}{\partial \alpha} \\
\frac{\partial \mu}{\partial \alpha}
\end{pmatrix} =
\begin{pmatrix}
-f_\alpha \\
-H_{w\alpha} \\
-H_{q\alpha}
\end{pmatrix} \rightarrow
\]
\[
\begin{pmatrix}
0 & 0 & 2\pi(1 - q) \\
-r & 0 & -\alpha p \\
2\pi(1 - q) & -\alpha p & 2\pi(1 + \mu)
\end{pmatrix}
\begin{pmatrix}
\frac{\partial \mu}{\partial \alpha} \\
\frac{\partial w}{\partial \alpha} \\
\frac{\partial q}{\partial \alpha}
\end{pmatrix}
= \begin{pmatrix}
0 \\
pq \\
wp
\end{pmatrix}.
\]
Performing the same exercise for parameter \(p \) we obtain that
\[
\begin{pmatrix}
0 & 0 & 2\pi(1 - q) \\
-r & 0 & -\alpha p \\
2\pi(1 - q) & -\alpha p & 2\pi(1 + \mu)
\end{pmatrix}
\begin{pmatrix}
\frac{\partial \mu}{\partial p} \\
\frac{\partial w}{\partial p} \\
\frac{\partial q}{\partial p}
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
\alpha q
\end{pmatrix}.
\]
The next step is solving this system of linear equations with Cramer’s rule. In order to determine the signs of \(\frac{\partial \mu}{\partial \alpha}, \frac{\partial w}{\partial \alpha}, \frac{\partial q}{\partial \alpha} \), and \(\frac{\partial \mu}{\partial p}, \frac{\partial w}{\partial p}, \frac{\partial q}{\partial p} \) we first observe the sign of the determinant \(\Delta \) of the matrix of the coefficients:
\[
\Delta = 2\pi(1 - q)r\alpha p > 0.
\]
The sign of \(\frac{\partial \mu}{\partial \alpha} \) can now be derived by determining the fraction \(\frac{\Delta_\mu}{\Delta} \), with
\[
\Delta_\mu := \det\begin{pmatrix}
0 & 0 & 2\pi - 2\pi q \\
pq & 0 & -\alpha p \\
wp & -\alpha p & 2\pi(1 + \mu)
\end{pmatrix} = -2\pi(1 - q)\alpha q p^2 < 0.
\]
So we can conclude that \(\frac{\partial \mu}{\partial \alpha} = \frac{\Delta_\mu}{\Delta} = -\frac{2\pi(1 - q)\alpha q p^2}{2\pi(1 - q)\alpha p} = -\frac{qp}{r} < 0 \). The same result holds for behavior of the costate variable with respect to a change in the probability of law enforcement,
\[
\frac{\partial \mu}{\partial p} = -\frac{2\pi(1 - q)\alpha^2 q p}{2\pi(1 - q)\alpha p} = -\frac{\alpha q}{r} < 0.
\]
This means that the equilibrium steady state value of the shadow price decreases when the slope of the penalty function \((\alpha) \) increases or the rate of law enforcement increases. The reason is that with higher \(\alpha \) or \(p \) a higher accumulated wealth increases the expected punishment much faster than in the case when \(\alpha \) or \(p \) are low.

In the same way we can derive the sign of \(\frac{\partial w}{\partial \alpha} \) and \(\frac{\partial w}{\partial p} \), which we get through computing \(\frac{\Delta_w}{\Delta} \)
\[
\Delta_w := \det\begin{pmatrix}
0 & 0 & 2\pi(1 - q) \\
-r & pq & -\alpha p \\
2\pi(1 - q) & wp & 2\pi(1 + \mu)
\end{pmatrix} = -2\pi(1 - q)\alpha q p^2(1 - q)^2 < 0
\]
This implies that \(\frac{\partial w}{\partial \alpha} = \frac{\Delta_w}{\Delta} = -\frac{2\pi(1 - q)\alpha q p^2(1 - q)^2}{2\pi(1 - q)\alpha p} = -\frac{w}{\alpha} - \frac{2\pi(1 - q)q}{r\alpha} < 0 \).

Similar calculations for the parameter \(p \) give that \(\frac{\partial w}{\partial p} = \frac{-2\pi(1 - q)\alpha q p^2(1 - q)^2}{2\pi(1 - q)\alpha p} = -\frac{w}{p} - \frac{2\pi(1 - q)q}{r\alpha} < 0 \).

This means that either an increase in the scale parameter of the penalty scheme or an increase in the certainty of punishment would cause a reduction of the equilibrium accumulated rents from collusion, so that the firms will try to reduce their gains in order to be punished less.

Finally, we have a look at the change of the offence level caused by a change in the slope of the punishment function or a change in the rate of law enforcement. That means we are now
interested in the signs of \(\frac{\partial q}{\partial \alpha} \) and \(\frac{\partial q}{\partial p} \). Computing the determinants we find that \(\frac{\partial q}{\partial \alpha} = \frac{\partial q}{\partial p} = 0 \).

So we can conclude that the effect of either change in certainty or in severity of the penalty on the equilibrium value of the degree of offence is absent. It follows logically from the model, since \(q^* = 0 \) is a steady state solution of the model and its absolute value and existence does not depend on the size of the parameters \(\alpha \) and \(p \).

The change in \(\alpha \) or in \(p \) only influences the \(t^{**} \) value in the Figure 5\(^{12} \). Numerical analysis of the behavior of the state and control variables of the model with respect to the main parameters of the penalty scheme (\(\alpha \) and \(p \)) shows that a higher \(\alpha \) or \(p \) leads to earlier deterrence, i.e. \(t^{**} \) moves closer to the origin (see Figure 5). Consequently, the degree of price fixing is lower at each instant of time and total accumulated gains from price-fixing by the colluding firm are lower. Moreover, this policy allows to reduce the costs for society as well, since we can block violation earlier and hence reduce the control efforts earlier.

![Graphs showing effect of changes in \(\alpha \) and \(p \) on \(t^{**} \) and \(q(t) \).](image)

Figure 5: Numerical analysis of the behavior of the state and control variables of the model with respect to the scale parameter of the penalty scheme (\(\alpha \)) when parameter values are

\[\gamma = 0.5, \pi = 1, p = 0.2, r = 0.2. \]

Looking at the partial derivatives of the state variable of the model with respect to the main parameters of the penalty scheme we obtain the following proposition.

Proposition 3

a) *Under the policies that provide underdeterrence, i.e. when \(\alpha \) is low, i.e. \(\alpha = p \in [0, 1] \), the effects of detection probability and severity of punishment on the deterrence power of the penalty scheme in the steady state are equal.*

\(^{12}\)Recall also Figure 4 in the part where we describe optimal trajectories of the state, control and costate variables of the model.
b) When α is high, i.e. under the policies that can potentially provide more efficient deterrence, the effect of the increase of probability of punishment on the deterrence power of the penalty scheme in steady state is much stronger.

Proof:

Consider the partial derivatives of the state variable of the model with respect to the main parameters of the penalty scheme. Following the above analysis they are

\[
\frac{\partial w}{\partial \alpha} = -\frac{w}{\alpha} - \frac{2\pi(1 - q)q}{r \alpha} \quad (17)
\]

\[
\frac{\partial w}{\partial p} = -\frac{w}{p} - \frac{2\pi(1 - q)q}{r p} \quad (18)
\]

Now we can show that, when α is potentially higher than p, thus, for instance, when $\alpha > 1$, the decrease in w, in absolute terms, when α increases, is much less than the decrease in w, in absolute terms, when p increases. Assume $\alpha > 1$, then from (17) we obtain \(\left| \frac{\partial w}{\partial \alpha} \right| < \frac{wr + 2\pi(1 - q)q}{r} \). Similarly, keeping in mind that $p \in [0, 1]$ by construction, from (18) we obtain that

\[
\left| \frac{\partial w}{\partial p} \right| > \frac{wr + 2\pi(1 - q)q}{r}.
\]

End of the proof.

The general conclusion of this subsection is that, when $w_0 = 0$, only partial deterrence is feasible. But nevertheless, $q(t) = 0$ for some $t \in [t^*, T]$ can be achieved in the model if $p(t) > 0$ for all $t \in [0, T]$ and the equilibrium with $q^* = 0$ can be sustained as the long run saddle point steady state equilibrium of the model with penalty system given by $s(t) = \alpha w(t)$ and $p > 0$ under certain additional conditions on the parameters of the model.

Moreover, studying the sensitivity of the steady state values of the main variables of the model with respect to the parameters of the penalty scheme we found an interesting result, which gives new insights into the problem of optimal trade-off between the probability and severity of punishment. This problem has been studied quite extensively in a static setting by Polinsky and Shavell (1979) and later by Garoupa (1997) and (2001). The result, stated in proposition 3, shows that, when the penalty is high a further increase in the severity of punishment is less efficient than an increase in probability of punishment.

5 Conclusions.

The main problem addressed in this paper is how the fine, which takes into account the history of the violation, i.e. determined on the basis of accumulated turnover of the firm participating in cartel, affects the efficiency of the deterrence. To study this problem, we refer to two
main features of penalty systems for violations of the antitrust law prescribed by the current sentencing guidelines. Firstly, there exists an upper bound for the fine. The penalty is constrained from above by either a certain monetary amount or by the amount of 10% of the total annual turnover of the firm. Secondly, the penalty is based on the accumulated gains from cartel or price-fixing activities for the firm. These regulations suggest to model the penalty as an increasing function of the accumulated illegal gains from price-fixing to the firm.

The main innovation of the paper compared to the existing literature, e.g. Fent et al. (1999) or Feichtinger (1983), is the idea that the accumulated wealth of the firm takes the role of the state variable in the optimal control model. This modification allows to incorporate two main features of the current penalty systems for antitrust law violations, discussed above, into a dynamic model of intertemporal utility maximization by the firm under antitrust enforcement. In particular, this modification allows to develop a framework, in which the penalty for antitrust violations can be constructed in such a way that it can capture the history of the violation. In order to capture the history, we model the penalty for price-fixing as an increasing function of the accumulated gains from price-fixing throughout the entire duration of the infringement (which is the state variable of the model).

First, we look at the case where the penalty is fixed. We derive an analytical expression for this penalty, which allows to achieve the result of complete deterrence of price-fixing, given a strictly positive rate of law enforcement by the antitrust authority. Numerical calculations show that the new policy suggested by DOJ might be successful. But, unfortunately, this system does not solve the problem of optimal deterrence as well, since the penalties in this case, which allow to achieve complete deterrence, are too high, and thus unbearable for the firm because they can drive the firm to immediate bankruptcy.

We also analyze the optimal control model, in which the penalty is determined as a linear increasing function of the accumulated rents from price-fixing. On the basis of this analysis we conclude that the parameters of the penalty system have an impact on the optimal behavior of the firm and consequently on the deterrence power of the penalty system, which is measured by the timing of optimal deterrence. The higher the probability and severity of punishment the earlier the cartel formation is blocked. Moreover, a proportional system seems to be more fair than fixed and allows to achieve a complete deterrence outcome in the long run. The analysis of this model also confirms that modification of penalty systems suggested recently by OECD is quite promising, since it will lead to earlier deterrence.

In addition, we conduct sensitivity analysis of the equilibrium values of the main variables
of the model with respect to the changes in the scale parameter of the proportional penalty scheme and probability of law enforcement. Studying the sensitivity of the steady state values of the main variables of the model with respect to the parameters of the penalty scheme we found an interesting result, which gives new insights into the problem of optimal trade-off between the probability and severity of punishment. This result states that when the penalties are high a further increase in the severity of punishment is less efficient than the increase in certainty of punishment. This implies that in order to achieve improvements in deterrence when penalties are already high, it is more efficient to spend resources and increase the probability of punishment rather than simply raise the upper bound for the fine.

We can also suggest a number of possible extensions of the model. One possibility is to introduce a second state variable (offender’s criminal record) into the model in addition to accumulated gains from price-fixing. This will allow to relate penalty to both important factors: gravity of the violation and past reputation of the offender (recidivistic behavior). This extension will help to explain escalating sanctions based on offence history which are embedded in many penal codes and sentencing guidelines. Another interesting direction is to extend the analysis to two players case and consider a similar problem in the framework of differential games. One would say that a dynamic game situation would be more appropriate to describe the problem at hand. A pursuit-evasion game of the Feichtinger (1983) type would help to reflect the idea that competition authority can also act strategically and not rule based. However, the scope of the current paper, which is aiming to compare the effects of fixed and proportional penalties on the behavior of the firms that violate competition law, does not require a competition authority acting strategically. Although, the differential game framework would be an interesting extension of the problem at hand in case we want to find an optimal combination of both instruments of antitrust authority (fine and rate of law enforcement), which allows to achieve the result of complete deterrence.

6 Appendix. Static microeconomic model of price-fixing.

Let us consider an industry with \(N \) symmetric firms engaged in a price fixing agreement. Assume that they can agree and increase prices from \(p^e = c \) to \(p > c \) each, where \(c \) is the marginal cost in the industry. Since firms are symmetric, each of them has equal weight in the coalition and consequently total cartel profits will be divided equally among them according to the Shapley
value cooperative solution concept.13 Hence, the whole market for the product (in which
the price-fixing agreement has been achieved) will be divided equally among \(N\) firms, so each
firm operates in a specific market in which the inverse demand function equals \(p(Q) = 1 - Q\).
They are identical in all submarkets. Under these assumptions we can simplify the setting
by considering not the whole cartel (group of violators) but only one firm, and apply similar
sanctions to all the members of cartel.14

Further we denote: \(p^m\) is the monopoly price in the industry under consideration and
\(p = 1 - Q\) is the inverse demand for a particular firm.

In order to be able to represent consumer surplus and extra profits from price fixing for the
firm (\(\pi\)) in terms of the degree of collusion, we specify the variable \(q\) as follows.

Let \(q = \frac{p-c}{p^m-c}\), where \(p^m\) is the monopoly price, and \(p\) is the price level agreed by the firms.

Then we can conclude that \(q \in [0,1]\) and instantaneous extra profits from price-fixing for
this particular firm will be determined according to the following formula:

\[
\pi = q(\frac{1-c}{p^m-c} - q)(p^m - c)^2
\]

Let \((p^m - c)^2 = A\). With linear demand \(p = 1 - Q\) we observe that \(p^m = \frac{1+c}{2}\), so that
\(
\frac{1-c}{p^m-c} = 2
\)
and, consequently, it holds that \(A = \frac{(1-c)^2}{4} = \pi^m\) (monopoly profit in this particular
market).

The instantaneous producer surplus, consumer surplus and net loss in consumer surplus are
represented in Figure 6.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.png}
\caption{Representation of producer and consumer surpluses in the price-quantity diagram.}
\end{figure}

13We also assume that there is no strategic interaction between the firms in the coalition in the sense that we
abstract from the possibility of self-reporting or any other non-cooperative behavior of the firms towards each
other.

14Of course, in these settings the incentives of the firms to betray the cartel can not be taken into account and
the possibility to influence the internal stability of the cartel is not feasible. But this is the topic for another
paper.
So, instantaneous Producer Surplus will be determined as $PS(q) = \pi(q) = \pi^m q(2 - q)$.

Net Loss of Consumer Surplus will be the area of the right triangle, i.e.

$$Net\ Loss\ of\ CS = \frac{1}{2} \pi^m q^2.$$

Consumer Surplus will be determined by the area of triangle abc: $CS(q) = \frac{1}{2} \pi^m (2 - q)^2$.

Note, $PS''(q) < 0$, $Net\ Loss\ of\ CS''(q) > 0$, $CS''(q) > 0$.

These three functions $\pi^m q(2 - q), \frac{1}{2} \pi^m q^2, \frac{1}{2} \pi^m (2 - q)^2$, given that π^m is equal to $\frac{1}{4}$ (or $c = 0$), are represented in the Figure 7.

![Graph of CS and PS as functions of the degree of price-fixing](image)

Figure 7: Representation of consumer and producer surpluses as a continuous differentiable functions of the degree of price-fixing.

References:

Emons, W., 2001, A note on optimal punishment for repeat offenders, mimeo, University of Bern and CEPR.

European system. Guidelines on the method of setting fines imposed (PbEG 1998.)

US system. Guidelines manual (chapter 8-Sentencing of organizations)

Dutch system. Guidelines for the setting of fines. (Section 57(1) of Competition Act.)
