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Abstract. We study the conditions for the emergence of cooperation in a spatial common-pool
resource (CPR) game. We consider three types of agents: cooperators, defectors and enforcers.

The role of enforcers is to punish defectors for overharvesting the resource. Agents are located
on a circle and they only observe the actions of their two nearest neighbors. Their payoffs are
determined by both local and global interactions and they modify their actions by imitating

the strategy in their neighborhood with the highest average payoffs on average. Using theo-
retical and numerical analysis, we find a large diversity of equilibria to be the outcome of the
game. In particular, we find conditions for the occurrence of equilibria in which the three

strategies coexist. We also derive the stability of these equilibria. Finally, we show that
introducing resource dynamics in the system favors the occurrence of cooperative equilibria.

Key words: common property, cooperation, evolutionary game theory, local and global

interaction game, self-organization

JEL classification: C72, Q2

1. Introduction

The common-pool resource (CPR) game is an excellent vehicle to study social
dilemmas. A social dilemma is a situation in which the pursuit of individual
interest comes at the expense of the collective goals. In the context of the
management of common-pool resources, such a social dilemma results in
overexploitation and inefficiency compared to the Pareto optimum.

Are people’s actions always governed by selfish behavior? Recent evidence
has led economists to reconsider their assumptions on behavior. In practice, a
certain proportion of the population often exhibits cooperative behavior that
seems in contradiction with a rational, selfish agent perspective. Such
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behavior is especially commonwhen social norms prevail. These can operate in
a decentralized way through a system of mutual trust, reward or punishment.

Ostrom (1990) collected a large range of case studies of rural commu-
nities in which the presence of social norms led to sustainable management
of common-pool resources. An example that has received much attention
is the lobster industry in Maine. In this community, fishermen were
assigned a spatial territory to spread their traps. In order to increase their
catch, free-riders tried to expand their territory. Every fisherman, however,
was allowed to defend his territory using different degrees of sanctions
ranging from reprimands to opening or destroying the traps of the free-
riders (Acheson 1988). In other settings, ceasing cooperation with rather
than punishment of free-riders has also proved effective. For example,
Japanese villagers, Irish fishermen and inhabitants of the Solomon islands
chose to cut contact with other members of the community who were
overfishing (Taylor, 1987; McKean 1992; Hviding and Baines 1994). In this
way, free-riders are deprived of the benefits provided by cooperation in
other economic activities.

Next to case studies, there is also much experimental evidence that
supports the persistence of cooperation. This literature is too large to be
reviewed here. Seminal work has been done by Ostrom et al. (1994) and Fehr
and Gächter (2001). The latter study shows that often a small proportion of
‘altruistic punishers’ in the population is sufficient to enforce cooperation in
the group. Van Soest and Vyrastekova (2004) provide an application in the
field of renewable resources.

A key theoretical question that follows from this is: Why does cooperative
behavior emerge in the first place? Compared to the real world evidence there
is not so much theory on this subject. Fehr and Schmidt (1999) develop a
theoretical model of inequity aversion. They assume that a small proportion
of people is willing to sacrifice material payoffs if this leads to more ‘fair’ and
equitable outcomes. Sethi and Somanathan (1996) discuss the view expressed
by Dasgupta (1993), who offers three possible explanations.

1. Small communities can be considered as mini states with the capacity to
force members of the community to accept rules of behavior. Sethi and
Somanathan (1996) do not find this a strong argument, because it
cannot explain the fact that sanctioning by private individuals can be
spontaneous and may entail destructive actions that are often prohib-
ited at the state level.

2. Rationality in a repeated game can be reconciled with cooperation. This
is the well-known Folk theorem. But the problem here is of course that
the set of potential equilibrium outcomes is very large and that
alternating periods of cooperation and defection can arise, contradict-
ing observed persistence of strategies.
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3. Social norms are internalized through ‘‘communal living, role modeling,
education and through experimenting rewards and punishments’’
(Dasgupta 1993, p. 208). They can then thus motivate agents to do
what they do.

To address the problem associated with explanation 2 and analyze the
solution offered under 3, adopting an evolutionary game setting is a prom-
ising option. By tracing the evolution of cooperation (and defection) it can
help to determine which hypothetical equilibria with or without cooperation
are actually feasible from a dynamic as well as from a disaggregate (popu-
lation) perspective.

Theoretical models to explain or analyze the role of social norms to
sustain cooperation in a resource setting are rare. Sethi and Somanathan
(1996) aim to analyze which norms, as mentioned under point 3 above, can
be internalized, using an evolutionary game theoretic framework. In their
model, agents can choose between three strategies: defection, cooperation
or enforcement. Agents who choose to be enforcer punish defectors, even
though they incur a cost for doing so. The sanction level and the cost of
sanctioning borne by defectors and enforcers depend on the number of
defectors and enforcers in the population. Payoffs are related to the size of
the resource stock and, for defectors (and enforcers), to the sanction
(punishing) cost level. The agents can modify their strategy over time
through a process of social learning. They learn by imitating the strategy
that yields above average profits in the population. This is modeled by a
replicator dynamics that mimics the evolution of social norms in the
population. Sethi and Somanathan identify two main equilibria: a popu-
lation composed of only defectors and a population composed of only
cooperators and enforcers.

Another theoretical study of the role of social norms in solving social
dilemmas is Eshel et al. (1998), who consider a model of local interactions
between altruistic and egoistic agents. Although they do not deal with a
resource, they nevertheless suggest relevant elements for our approach. In the
first place, they assume that agents imitate the strategy in their direct
neighborhood with the highest average profit. Second, they are able to derive
analytical results for a setting in which agents are spatially distributed on a
circle and interact only with their two nearest neighbors.

In the present paper, we consider a spatial evolutionary CPR game that
combines both local and global interactions. Agents can be cooperators,
defectors or enforcers, and imitate the strategy yielding above average
payoffs in their neighborhood. We model space just like in Eshel et al.
(1998) by assuming a circle with agents that only observe their two nearest
neighbors. This is a logical conceptual-analytical starting point, while it
also provides a quite accurate picture of how interactions occur in a large
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range of CPR issues, for example irrigation problems. Indeed, in many
rural communities experiencing water conflicts, the monitoring of water
quotas is exerted by the farmer located upstream or downstream of the
water flow (see Ostrom 1990; Smith 2000), suggesting a linear (or circular
to avoid edge problems) model. In line with this, we assume in our model
that enforcers can only punish defectors located in their immediate
neighborhood, which implies local interaction. Payoffs further depend on
the aggregate harvesting effort and on the evolution of the stock of the
resource, which means global interactions. In other words, our model
combines local and global interactions. We derive theoretical and numer-
ical results on type of limit states that emerge in such a system. We obtain
two main innovative results compared to previous work. First, equilibria in
which the three types of strategies coexist survive in the long-run. Second,
the emergence of such equilibria, and of cooperative equilibria in general,
is facilitated when resource dynamics is introduced.

The paper is organized as follows. Section 2 presents the standard CPR
game and its evolutionary version. Section 3 sets out the main results
obtained with our model for the case without resource dynamics. Section 4
discusses the stability of equilibria. Section 5 presents the results with
resource dynamics. Section 6 concludes.

2. The CPR Game

We consider the performance of three types of agents: cooperators, defectors
and enforcers. They play a game that involves the exploitation of a common
pool of a renewable natural resource. Cooperators and enforcers are sup-
posed to display social behavior, meaning that they restrict the level of
harvesting effort exercised. Defectors, however, are only interested in their
own profits, and harvest with a relatively high effort level, thereby possibly
harming the other players. In order to be more precise with regard to these
concepts we introduce here briefly the standard CPR game as a benchmark
(see e.g., Dasgupta and Heal 1979; Chichilnisky, 1994; or Ostrom et al.
1994). We consider first the case of no resource dynamics. Subsequently we
discuss the case where the natural resource changes over time. Then we
introduce the evolutionary CPR game.

2.1. THE STANDARD CPR GAME

A fixed population of n (n>1) agents has access to a common pool of
resources. Initially, we assume that the size of the pool is constant over time.
The exploitation of the resource leads to harvest. The individual effort level
of agent i is denoted by xi (i = 1, 2,... ,n). The individual cost of effort is
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denoted by w. Total effort is:

X ¼
Xn

i¼1
xi: ð1Þ

Harvest depends on individual as well as aggregate effort. When aggregate
effort is X total harvest is equal to F(X). It is assumed that F is strictly
concave and increasing, F(0) = 0, F¢(0)>w, and F¢(¥)<w. The harvested
commodity is taken as the numeraire. Each agent i receives a share of total
revenues equal to his share in aggregate effort. Individual profits are then
given by:

piðxi;XÞ ¼
xi
X
FðXÞ � wxi: ð2Þ

Aggregate profits are:

PðXÞ ¼
Xn

i¼1
piðxi;XÞ ¼ FðXÞ � wX: ð3Þ

The Pareto efficient, aggregate profit maximizing, level of effort is defined by
F¢(XP) = w. The zero profit level of efforts is defined by F(X0) = wX0. The
symmetric Nash equilibrium aggregate effort follows from

n� 1

n

FðXCÞ
XC

þ 1

n
F 0ðXCÞ ¼ w: ð4Þ

Clearly X0>XC>XP. So, the Nash equilibrium is suboptimal, but yields
positive rents.

In the case of resource dynamics the social optimum can be described in
several ways. One option (in continuous time) is to consider the maximiza-
tion of the present value of total profits

max

Z1

0

e�rt½FðXðtÞ;NðtÞÞ � wXðtÞ�dt

subject to

_NðtÞ ¼ GðNðtÞÞ � FðXðtÞ;NðtÞÞ;Nð0Þ ¼ N0:

Here r is the social discount rate, N(t) denotes the resource stock at time t, G
is the natural growth function, and F is the harvest function, increasing in
aggregate effort as well as in the existing stock. Social behavior can then be
defined as behavior consistent with a dynamic extraction path that follows
from present value maximization. The Nash equilibrium is the solution to the
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differential game where each agent takes the time path of efforts of all other
players as given and maximizes his own total discounted profits.

2.2. THE EVOLUTIONARY CPR GAME

In the evolutionary CPR game a distinction is made between cooperators,
defectors and enforcers. Defectors do not behave according to the social
norm, and may be punished by enforcers. We first introduce the set of
strategies. Next, we discuss the payoffs. Then, we go into the spatial structure
of the game. Finally, we introduce replicator dynamics.

2.2.1. Strategies

In our evolutionary framework agents have a fixed strategy reflecting
bounded rationality. The individual effort by cooperators and enforcers is
denoted by xL and the effort by individual defectors is xH.

For the case of no resource dynamics it is assumed that these effort rates
are constant and satisfy

XP � nxL<nxH: ð5Þ

Hence, if all players (n) are cooperators or enforcers they end up more closely
to the Pareto efficient outcome than when all players are defectors.1

For the case of resource dynamics there are several plausible ways of
modeling effort by individual agents. As suggested above, cooperation can be
modeled by assuming that if all agents were cooperators, they would mimic
the present value maximizing extraction path. A feature common to evolu-
tionary approaches, however, is that agents use rules of thumb rather than
adopt individually or socially optimal strategies. One way to capture this is to
assume that effort rates of agents are constants, that may, however, differ
across types of agents. For example, the individual effort of cooperators and
enforcers is xL with nxL close to Xpv, defined as the steady state effort of the
present value maximizing program, whereas effort by defectors is larger:
xH>xL. If nxL = Xpv and all agents are cooperators, convergence to the
present value optimal steady state ocurs. An alternative approach allows for
the strategy to depend on the existing stock, in line with the work of Sethi
and Somanathan (1996). They assume that all players can observe the
existing resource stock, or are informed about the stock by an agency. Then
one can define xL(t) = a LN(t) and xH(t) = aHN(t) with a L and a H positive
constants with a H>a L. In particular, a L can be chosen such that con-
vergence occurs to Npv, the present value maximizing steady state resource
stock. It need not be the case that the socially optimal steady state coincides
with the steady state arising from present value maximization. Other objec-
tives than present value maximization can be pursued as well.
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2.2.2. Payoffs

The numbers of cooperators, defectors and enforcers are denoted by nC, nD

and nE, respectively. All cooperators and enforcers exercise an effort level of
xL(N) (obviously the argument N can be suppressed when resource dynamics
is not taken into account) each. Enforcers punish defectors, at a cost c per
detected defector. Defectors make an effort xH(N) and pay a sanction d per
enforcer that detects them. Define Z(X,N) = F(X,N)/X)w, which can be
interpreted as aggregate profit per unit of effort. Individual profits, can be
written as follows:

pCðX;NÞ ¼ xLðNÞZðX;NÞ; ð6Þ

pD
k ðX;NÞ ¼ xHðNÞZðX;NÞ � dk; ð7Þ

pE
mðX;NÞ ¼ xLðNÞZðX;NÞ � cm: ð8Þ

Here pk
D(X,N) denotes the profits of a defector punished k times and p m

E(X,N)
is the payoff of an enforcer punishing m times.

2.2.3. Spatial structure

Sethi and Somanathan (1996) assume that all enforcers in the population can
detect all defectors and punish them. Formally, this means that k = nE and
m = nD. Obviously, the spatial structure is irrelevant then. In contrast, we
assume that an enforcer can only detect and punish a defector in his imme-
diate neighborhood. This calls for a definition of neighborhood. There are
several straightforward ways to do so. Eshel et al. (1998) describe players as
located on a circle, implying that every agent has exactly two direct neighbors.
Hence k and m take the values 0,1, or 2. One could extend the notion of
neighborhood to two positions on the circle at each side. Then k and m run
from 0 to 4. Another convenient way of defining neighborhood is on a torus.
A torus is a two dimensional lattice whose corners are pasted together to
ensure that all cells are connected, so that there are no edge effects. Then an
agent’s neighbors are, for example, those to the west, east, north and south. In
this case k and m run from 0 to 4. One could include also those to the north–
east etc., at the cost of higher complexity. In the present paper we focus on the
circle with each agent having two neighbors, because this allows us to derive
interesting theoretical results that are much more difficult to obtain for the
torus. For an extensive numerical analysis on the two-dimensional torus,
using a different learning rule as well, we refer to Noailly et al. (2004).
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The sanctioning cost falling upon an enforcer is proportional to the
number of defectors detected and punished, which expresses the efforts made
by the enforcer. Similarly, in our setup it matters by how many enforcers a
defector is detected. In the case of two enforcers, the cost to the defector is
twice as high as in the case of only one enforcer. This can be regarded either
as reflecting the sum of the damages inflicted upon the defector by individual
enforcers or as the level of punishment being dependent on the amount of
evidence provided by all enforcers together.

2.2.4. Replicator dynamics

A common element of evolutionary game theory is replicator dynamics,
describing when, how and why agents switch strategies. In Sethi and
Somanathan (1996) agents are assumed to be able to observe their own
profits and the average profits in the population. The decision to change
strategy is based on the comparison of these profits. This gives rise to a
replicator dynamics equation of the following form:

_nj ¼ njðpj � pÞ; j ¼ C;D;E ð9Þ

where p ¼ ðnCpC þ nDpD þ nEpEÞ=n, the average payoff in the entire pop-
ulation at time t. Therefore, agents do not necessarily switch to the most
profitable strategy instantaneously. It follows that an equilibrium with all
three strategies, a so-called CDE-equilibrium (with Cooperators, Defectors
and Enforcers) will never prevail, because in such an equilibrium enforcers
would do strictly worse than cooperators. In contrast to Sethi and Soma-
nathan we explicitly take into account that agents do not observe the payoffs
of the entire population. We make the more realistic assumption that agents
only observe the payoffs of all agents in their neighborhood, including
themselves. The aggregate replicator dynamics formulation then has to be
dropped. Several alternative imitation or selection mechanisms can be
adopted. One is that an agent imitates the strategy in his neighborhood with
the highest payoff. The advantage of this rule is its simplicity. But it can lead
to outcomes that may be considered implausible. Consider, for example, the
case where a cooperator is surrounded by two defectors, one not being
punished (and better off than the cooperator) and the other one severely
punished, paying a very high sanction. In such a case it might not be con-
sidered very plausible for the cooperator to switch to defection. On the torus,
with a cooperator surrounded by three defectors, one of which is not pun-
ished and the other three severely punished, the example might even be more
appealing. However, there are no fundamental objections against modeling
the imitation dynamics in this way. An alternative approach is to switch to
the strategy that is doing best on average in the neighborhood. This implies a
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certain degree of rationality on behalf of the agent. Applying this rule to the
previous example, the cooperator becomes a defector if on average the
defectors in the cooperator’s neighborhood do better than the cooperator.
This is the rule employed by Eshel et al. (1998) and we will use it the present
paper too.

3. No Resource Dynamics

This section deals with the case where resource dynamics is not taken into
account. Consequently, the variable N, denoting the resource stock, is sup-
pressed. At any instant of time s the system is characterized by the number of
agents of each type, nC(s), nD(s) and nE(s), summing up to the given number
n, and by the location of each agent on the circle. For convenience, we fix
one position on the circle and call it position 1. Then a state of the system
can be represented by a vector of length n consisting of ordered C’s, D’s and
E’s. So, with n = 5, the notation CDEDE means that there is a cooperating
agent at position 1, there are defectors at positions 2 and 4, and enforcers at
positions 3 and 5 (note, however, that this state is essentially the same as
DEDEC). Time is considered discrete. At time s + 1 the system finds itself
in a new state, as a consequence of agents switching from one strategy to
another. In first instance strategy changes occur only on the basis of repli-
cator dynamics. Mutation is studied in Section 4. The questions we address
in the present concern the limiting behavior of the system, as s goes to
infinity.

We have been able to identify a rich set of limit states. First of all there are
equilibria. A state is called an equilibrium if no agents wants to change
strategy. Second, there are blinkers. A state is called a blinker if agents
change strategy, but the new resulting state is a rotation of the original state.
For example: the state characterized by CDEED is a blinker, if, after all
agents have made their choice of strategy, the new state is DCDEE. So,
essentially neither the numbers of cooperators, defectors and enforcers, nor
their relative positions on the circle have changed. We also found cycling,
where composition of the population of strategies as well as locations change
over time, but where after one period the system reproduces.

As shown by the profit equations given in the previous section, payoffs are
affected by both local and global factors, namely sanctioning among
neighbors and aggregate efforts, respectively. The combination of these two
types of factors is an innovative feature of the present paper. However, it
entails the inconvenience to render the model much more complex to ana-
lyze. Under some assumptions with regard to the ranking of profits, general
theoretical results can be derived for equilibria and blinking. With regard to
cycling we restrict ourselves to providing an example to show that it can
actually occur.
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3.1. EQUILIBRIA AND BLINKERS

We aim to derive conditions for the existence of certain types of equilibria
and blinkers. Profit rankings are not unambiguous: we might have
p1
E(X)<p1

D(X) for some values of X and p1
E(X)>p1

D(X) for other values.
This complicates a theoretical analysis and makes it difficult to obtain clear-
cut results. Therefore, we concentrate on unambiguous profit rankings here.
To avoid clutter we omit the argument X when there is no danger of
confusion. For example, p0

D> pC means p0
D(X)>pC(X) for all relevant X

(i.e., nxL £ X £ nxH). To allow for a theoretical approach, we assume that the
following three sets of profit rankings hold:

1.

pD
0 >pC ¼ pE

0 :

pE
0>pE

1>pE
2 :

pD
0 >pD

1 >pD
2 :

These rankings derive from the fact that we neglect the case of negative
profits. This rules out the possibility that defectors do worse than coopera-
tors even if they are not punished. Profits from harvesting are nonnegative if
Z(nxH) ‡ 0, because Z is decreasing and X £ nxH.

2.

pC>pD
1 :

In order to have an interesting game, being punished should not be uniformly
more profitable than cooperation. Several choices are open regarding the
number of punishments needed to make cooperation more profitable than
defection. For simplicity, we assume that being punished once is already
worse than being cooperative.

3.

pD
1 > pE

1 implies pE
1 >pD

2 >pE
2 :

pE
1 > pD

1 implies pD
1 >pE

2 >pD
2 :

Therefore, if being punished once is better than punishing once, then being
punished twice is worse than punishing twice, and vice versa. Hence, in the
former case, being a defector is not too advantageous.

We get analytical results for the set of parameter values that satisfy these
assumptions, but the simulations suggest that the results we obtain analyti-
cally also hold for a much broader class of parameter values.
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Since the imitation rule that we employ is based on comparison of average
payoffs by agents, an additional distinction can be made. A defector punished
once is doing better than an enforcer punishing once, with a non-punishing
enforcer in his neighborhood, or this ranking is the other way around. To
illustrate the intuition, consider the following complete string EEEDD, where
the second defector is next to the first enforcer. The first and the third
enforcers, both located next to a defector that is punished once, change to
defection when the sanction rate is sufficiently low. However, with what we
will call a moderately low sanction rate they stay enforcers.

From the above discussion and assumptions, we get the following profits
orderings as stated in Definition 1.

Definition 1.

(i) The sanction rate is relatively low if:
p0
D>p C = p0

E>p1
D>p1

E>p2
D>p2

E.
(ii) The sanction rate is relatively very low if:

p 0
D>p C = p 0

E > p 1
D > p 1

E > p 2
D > p 2

E and pD
1 >

1
2ðpE

0 þ pE
1 Þ.

(iii) The sanction rate is relatively moderately low if:
p0
D>p C = p 0

E > p 1
D> p 1

E> p2
D>p 2

E and pD
1 <

1
2ðpE

0 þ pE
1 Þ.

(iv) The sanction rate is relatively high if:
p 0

D>p C = p0
E>p 1

E>p 1
D> p 2

E>p 2
D. So, the sanction rate is

relatively low if p k
D>p k

E for k = 1,2. It is relatively high if p k
D<p k

E

for k = 1,2. It should be noted that the wording, including
’relatively,’ is chosen on purpose. For example, the sanction rate
could be called absolutely low if p 2

D>p 1
E, or even p 2

D>p 0
E. We will

consider such cases later on in this paper when performing simula-
tions. Below we derive a set of sufficient conditions for each of the two
rankings to hold, thereby showing that the definitions are not void.

Lemma 1.

(i) Suppose c > d and (xH)xL)Z(nxL)<2d)c. Then the sanction rate is
relatively low.

(ii) Suppose c > d, and d� 1
2c<ðxH � xLÞZðnxHÞ<ðxH � xLÞZðnxLÞ

<2d� c. Then the sanction rate is relatively very low.
(iii) Suppose c > d and ðxH � xLÞZðnxLÞ<d� 1

2c. Then the sanction rate is
relatively moderately low.

(iv) Suppose (xH)xL)Z(nxL)< d)c and (xH)xL)Z(nxH)> d)2c. Then the
sanction rate is relatively high.

Proof. The proof of the lemma is given in the appendix.

The proof of the lemma is rather technical, but the idea behind it is easily
explained. Consider, for example, statement (i). If the cost of sanctioning c is
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higher than the sanction d, then a defector being punished k times is better off
than an enforcer punishing k times for all k, because profits from harvesting
are higher for a defector, and the defector incurs a lower sanction than the
cost the enforcer has to make to punish. Moreover, if
(xH)xL)Z(nxL)<2d)c, then xHZ(X))2d< xLZ(X))c < 0 for all X £ nxH
and hence p 1

E>p2
D. All the other proofs follow the same approach.

A further distinction suggests itself: a relatively very high versus a moder-
ately high sanction rate, according to 1

2 ðpD
0 þ pD

1 Þ being smaller or larger than
p1
E, respectively. However, this distinction is not meaningful, as can be seen as

follows. The inequality 1
2 ðpD

0 þ pD
1 Þ<pE

1 requires ðxH � xLÞZðXÞ< 1
2 d� c for

allX £ nxH, so that it is necessary that 1
2 d� c>0: But the inequality p 1

D> p 2
E

requires ðxH � xLÞZðXÞ>d� 2c ¼ 2ð12 d� cÞ: This is a contradiction. Also,
note that the relatively high sanction rate implicitly assumes that d> c, since
(xH)xL)Z(nxL)>0.

Next we establish several propositions regarding the existence and the
characteristics of equilibria and blinkers, assuming that the profit ranking
satisfies one of the definitions given above. States with only cooperators
(‘allC’), only defectors (‘allD’), only enforcers (‘allE’), and only cooperators
and enforcers (‘CE’), are always an equilibrium. A state with only defectors
and cooperators (‘CD’) cannot be an equilibrium, because a cooperator next
to a defector will change to defection. Therefore, we concentrate on the DE
and CDE equilibria. A cluster in an equilibrium is a string of adjacent agents
playing identical strategies. To start with we prove a lemma that turns out to
be rather helpful.

Lemma 2. Suppose n ‡ 3.

(i) A string composed as CED cannot occur in an equilibrium.
(ii) A string composed as CD cannot occur in an equilibrium.
(iii) A string composed as DED cannot occur in an equilibrium.
(iv) A string composed as EDE cannot occur in an equilibrium.

Proof.

(i) With CED, the punishing enforcer switches to cooperation, if not to
defection.

(ii) With CD the defector switches to cooperation or the other way
around.

(iii) and (iv) Obviously, DED cannot occur under a relatively low sanction
rate, and EDE is ruled out in the case of a relatively high sanction
rate. If DED would occur in an equilibrium with a relatively high
sanction rate, the defectors surrounding the enforcer would not be
punished twice, since EDE is ruled out. But then the enforcer would
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switch to defection. To exclude EDE in the relatively low sanction
case, the same type of argument holds.

Proposition 1. Suppose the sanction rate is relatively very low.

(i) There exists neither a DE nor a CDE equilibrium.
(ii) There exists neither a DE nor a CDE blinker.

Proof.

(i) Suppose there exists an equilibrium with nE>0 and nD>0. There
must be at least one enforcer next to a defector, because the equilibrium
does not consist of defectors only, and if a defector is not punished, he
cannot be a neighbor of a cooperator, because then the cooperator
switches to defection. If a defector next to an enforcer is punished only
once the enforcer will switch to defection, because pD

1 >
1
2 ðpE

0 þ pE
1 Þ, a

contradiction. Hence every defector is punished twice, contradicting
lemma 2(iv).

(ii) Suppose there is a blinker with nE>0 and nD>0. At least one agent
switches to enforcement. This is not a cooperator. So, a defector
should switch to enforcement. He will only do so if he is punished
twice: so we have EDE. In order for the first enforcer in this string to
switch to defection, we need DEDE, because with EEDE he will stay
an enforcer. But now the first defector in the row will never switch to
enforcement. This proves statement (ii) of proposition 1.

Proposition 2. Suppose the sanction rate is relatively moderately low.

(i) For a DE-equilibrium to obtain it is necessary that n ‡ 5. If n = 5 the
equilibrium configuration is given by EEEDD. In any DE-equilibrium
enforcers occur in clusters of minimal length 3.

(ii) For a CDE-equilibrium to obtain it is necessary that n ‡ 9. If n = 9 the
equilibrium configuration is given by CEEEDDEEE. In any CDE
equilibrium any enforcer adjacent to a defector is part of a cluster of at
least 3 enforcers.

(iii) There exists neither a DE nor a CDE blinker.

Proof. The proof of the proposition is given in the appendix.

The intuition behind the proposition is straightforward. Since, by definition,
pE
1 <pD

1 < 1
2 ðpE

0 þ pE
1 Þ, punishing enforcers need to be ‘protected’ by non-

punishing enforcers. This leads to clusters of three enforcers. Protection by
cooperators does not work, because, in an equilibrium, a punishing enforcer
can never be located next to a cooperator. This also explains why a minimal
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number of players is required. Obviously, it might be the case that in a CDE-
equilibrium the majority of agents is defecting.

Proposition 3. Suppose the sanction rate is relatively high.

(i) For a DE-equilibrium to obtain it is necessary that n ‡ 5. If n = 5 the
equilibrium configuration is given by EEDDD. In any DE-equilibrium
defectors occur in clusters of minimal length 3.

(ii) For a CDE-equilibrium to obtain it is necessary that n ‡ 8. If n = 8, the
equilibrium configuration is given by CEEDDDEE. In any CDE-
equilibrium any defector adjacent to an enforcer is part of a cluster of
at least 3 defectors.

(iii) There exist no DE blinkers. There do exist CDE blinkers. A necessary
condition is n ‡ 4. If n = 4, the blinker is CDDE.

Proof.

(i) and
(ii) The proof of statements (i) and (ii) follows the lines of the proof of the

previous proposition. It will not be given here.
(iii) Non-existence of DE blinkers is obvious. Suppose n = 3 and there is

a CDE blinker. Then the cooperator remains a cooperator. Both the
enforcer and the defector turn into cooperators. Hence there is no
blinking in this case. Suppose n = 4. In a CDE blinker a cooperator
never becomes an enforcer. Hence, at least one cooperator should turn
into a defector. This can only be the case if he is next to a defector who
is not punished. In the present case we cannot have CDCE because
both cooperators will become defectors. Hence the only equilibrium
candidate is CDDE. It is easily verified that this is a blinking
equilibrium.

At this stage, we can summarize the main existence properties of the equi-
libria. We have established that the states C, D, E and CE are always part of
equilibria, while CD never is. We also have proved that DE and CDE
equilibria only occur for a moderately low sanction rate and for a sufficiently
large population. Finally, we have shown that DE blinkers only occur for a
high sanction rate and a sufficiently large population.

3.2. CYCLING

To illustrate the phenomenon of cycling in the present setting, consider the
following initial state: DDDDEE. The defectors in positions 2 and 3 will not
change strategy. The first and fourth defector change strategy if the average
payoff of the defectors in their neighborhood is smaller than the payoff of an
enforcer punishing once:
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1

2
pD
0 ðXÞ þ pD

1 ðXÞ
� �

<pE
1 ðXÞ: ð10Þ

If this inequality holds, for X = 2xL + 4xH, the enforcers stick to
enforcement since then also

pD
1 ðXÞ<pE

1 ðXÞ: ð11Þ

Therefore, if (10) holds, the new state becomes EDDEEE. The enforcers at
positions 1 and 6 in the new state switch to defection if

1

2
pE
0 ðXÞ þ pE

1 ðXÞ
� �

<pD
1 ðXÞ ð12Þ

for X = 4xL + 2xH. When this condition holds, the defectors stay defectors.
Now set xL = 100, xH = 120, F(X) = 13.25X1/2, w = 0.5, c = 0.1,
d = 0.525. Then all conditions are satisfied. Therefore cycling between the
two states indicated above, occurs with a period of one. It may be noticed
that the range of the sanction d, given the other parameter values, is rather
small. This small range is also found in various other numerical examples
with different parameter values for xL, xH and the parameters of F. It sug-
gests that cycling does not occur for a wide range of parameter values.
Obviously, this does not matter, since the aim was just to provide an
example. Moreover, it would be relatively easy to induce cycling if we allow
profits from harvesting to be negative: Z(X)<0. In this case the incentive of
defectors to change strategy is much larger for defectors, because they earn
less from harvesting than enforcers (they incur greater losses). In our example
we took care that profits, even including sanctions and the cost of sanc-
tioning, are positive. The importance of the example is that it shows that the
system is not only steered through local interaction, but that global inter-
action through aggregate efforts plays a role too.
Comparing the results in this section with those obtained by Sethi and
Somanathan, we observe that we not only have more types of limit states
(cycling, blinking and equilibria), but within the class of equilibria, we have
equilibria with cooperation surviving next to defection, which is a novel
finding as well. This phenomenon occurs for sanction levels that can be
deemed realistic. So, it turns out that the spatial structure of the game is
pivotal in the characterization of potential equilibria.

4. Stability

In the previous section we have established the existence of equilibria where
cooperators survive in groups with many defectors. This result is due to the
spatial structure of our model. It would be less interesting if the occurrence of
these equilibria would merely be a coincidence, namely for very specific
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spatial constellations, or if the equilibria would easily be disrupted by players
making mistakes in choosing their strategies. In the present section we
investigate this issue. We first make use of an approach common in appli-
cations of evolutionary game theory. Then we discuss and explore an alter-
native route, relying on numerical simulations with stochastic features.

In evolutionary game theory stability of equilibria is tied to mutations,
meaning that players may make mistakes in deciding on their strategy. This
then leads to the notion of stochastic stability. Before dealing with stochastic
stability in detail we illustrate the concept by means of an example. Suppose
we start with a configuration of only cooperators. This configuration will
persist if all players strictly follow the imitation rule. However, suppose that
each player has a given small probability of making a mistake. At some
instant of time this probability materializes and a player becomes a defector.
Then defection will infect a large part of the population within finite time:
many cooperators will be eradicated. And it is highly unlikely that the sto-
chastic process of mutation will restore the ‘allC’ equilibrium. This is
essentially why this equilibrium is not stochastically stable.

One way to assess the stochastic stability or instability of equilibria is
outlined in Young (1998) and in Eshel et al. (1998). We briefly sketch the
procedure, merely to illustrate the difficulties encountered in its application.
As was stated before, at any instant of time s the state of the system is
characterized by the number of agents of each type, nC(s), nD(s) and nE(s),
summing up to the given number of agents n, and by the location of each
agent on the circle. Such a representation may be misleading, however. If two
states are identical up to rotation or taking the mirror image, they should be
considered as identical states. For example: the state CCDDEEE is essen-
tially the same as CDDEEEC (each player is moved one position) and as
EEEDDCC (we ‘read’ the circle in the opposite direction). So, in the sequel,
we restrict ourselves to unique states. The state space is the finite set of all
possible states. The matrix P of transition probabilities pij from state i to state
j, is completely determined by the imitation dynamics. To keep things simple,
we assume that a situation where a player has two equivalent strategies to
choose from does not occur. Then the transition matrix consists of zeros and
ones only. Next, we introduce mutation. After the transition to a new state a
player has a probability 1

2 a of not adopting the strategy that is optimal
according to the imitation rule, but, instead, going to pursue either of the two
alternative strategies. So, a player who just became a cooperator, according
to the imitation rule, will actually act as a defector or an enforcer, each with
probability 1

2 a. This yields another matrix of probabilities denoted by Q with
a typical element qij denoting the probability of transition from state i to state
j, as a consequence of the mutations that happen to take place in state i. The
overall transition matrix is then c with cij =

P
kpikqkj. Let l be the solution
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of the following system l c = l, where l is on the unit simplex: l ‡ 0 andP
il i = 1. The vector l is the unique stationary distribution of the process

for a given mutation rate. Element li indicates that as time gets large, state i
will occur during a proportion li of time. Finally, one considers the limit of l
for the mutation rate approaching zero.

It is clear from the exposition given above that in the case at hand it is
almost unsurmountable to derive general results on the stochastic stability
of CDE equilibria in our model. Already for the minimal number of
agents in the low sanction case the set of possible states amounts to
hundreds. Eshel et al. (1998) were able to derive results on stochastic
stability, thanks to the fact that their analysis only involves two strategies.
Moreover, Sethi and Somanathan (1996) do not inquire into stochastic
stability, arguing that: ‘‘Given the time scales relevant for this paper, the
introduction of stochastic perturbations is therefore unlikely to affect our
main inferences.’’ Like in the case of Sethi and Somanathan, one might
consider our model as applying to fisheries. The time scales can be
interpreted as referring to seasons, while updating occurs once per season.
If an equilibrium would not persist after, say, 1000 seasons, then this
should not be considered as a sign of instability because it concerns an
extremely long time horizon for the system considered. In other words, if
it takes thousands of seasons and thus years before a certain type of
equilibrium (e.g., CDE) has completely vanished, then from a practical
perspective this should not be regarded as a serious case of instability.
Indeed, many other, directed factors will then have ample time to exercise
their influence on the system and its stability, negating the relevance of the
stochastic factors.

In view of the previous argument we investigate stability of the different
equilibria, and in particular of CDE-equilibria, using numerical simulations.
We employ the harvest function given by F(N,X) = N1/2X1/2 and consider a
population of n = 100 agents. The other parameter values are

w ¼ 5; N0 ¼ 106; ð13Þ

xH ¼ 120; xL ¼ 100; ð14Þ

d ¼ 280; c ¼ 300: ð15Þ

These parameters are chosen such that nxL = XP, implying that when all
agents harvest low the social optimum is reached. Further, we have Z(nxH) >
0, so that in the absence of sanctioning all players enjoy positive profits.
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In a first step, we illustrate the above statement of Sethi and Somanathan
(1996) by studying the time scales on which cooperative equilibria cease to
occur. We start from a fixed spatial configuration, namely a CDE initial state
with nC = 25, nD = 25 and nE = 50. The agents are positioned in the fol-
lowing order: 25 cooperators, 25 enforcers, 25 defectors and 25 enforcers. In
the absence of mutation and with d = 280, this initial state is a CDE equi-
librium. How does the frequency of CDE equilibria evolve when we intro-
duce mutations? We assume that in every round each agent has a probability
of making a mistake of a = 5/1000, meaning that, at the beginning of every
round, the agent has a chance of a to deviate from the decision rule. We
record the population configuration at the end of every round. We conduct
100 simulation runs for different time horizons and compute the average time
spent in each possible population configuration. The results are reported in
Table I.

After 10,000 rounds, the system spent on average 24% of the time in a
CDE-configuration. As expected, as the time horizon increases, i.e., as the
number of mutations rises, the frequency of CDE-equilibria decreases.
Eventually, as s fi ¥, the frequency will tend to zero. Nevertheless, this
frequency decreases by only 1% per additional 10,000 rounds. After 30,000
rounds, the system spends still 22% of the time in a CDE-equilibrium. This
suggests that the time scales over which CDE disappears may be very long
and irrelevant for applications with seasonal updating. Note also that the
mutation rate is kept constant in this experiment, whereas it should converge
to zero in a proper test for stochastic stability.

Our approach with spatial interaction lends itself to examine stability of
equilibria in an alternative manner, namely to look at the emergence of
equilibria and the frequency of the different types of equilibria when we
randomize over the initial shares of strategies as well as their distribution
over the circle. For a given sanction rate d, we vary:

1. the initial shares of each strategy in the population. To reduce the
number of runs necessary to cover all the possible combinations of initial
shares, only strategy shares that are multiples of 0.05 are considered. The
set of initial coordinates Z = ((1;0;0),(0.95;0.05;0)... (0;0;1)) is composed

Table I. Percentage of time spent in each equilibrium in the presence of mutations

s D-equil. DE-equil. CE-equil. CDE-equil.

100 0.00 0.01 0.00 0.99

500 0.13 0.27 0.00 0.60

10,000 0.58 0.18 0.00 0.24

20,000 0.59 0.18 0.00 0.23

30,000 0.56 0.22 0.00 0.22
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of coordinates z0 = (nC/n,nD/n,nE/n). Further, we eliminate initial
strategy shares composed of only cooperators and defectors, and of
only cooperators and enforcers, as the outcomes can be easily predicted
in these cases.2 This leaves us with 190 potential initial shares,

2. the initial spatial distribution of strategies. For every z0, we perform 100
so-called runs of 200 time-steps.3 Each run starts with a draw from a
uniform random spatial distribution, such that the probability of a
position on the circle being occupied by a player of type j equals nj/n
(j = C,D,E). This means that for each z0, we consider 100 random
spatial arrangements and register the resulting equilibrium. We find that
on average 32% of the runs (out of 19,000) converge to a
D-equilibrium, 4% converge to a CE-equilibrium, 33% to a
DE-equibrium and 29% to a CDE-equilibrium. Cycling occurred in
the CDE-configuration in 2% of the cases. We found no occurrence of
blinker states. This is in line with our theoretical results since the
sanction level d = 280 corresponds to a relatively moderately low
sanction rate. What can we conclude from the fact that in almost 30%
of the cases convergence to a CDE-equilibrium occurs? Formally, it
does not prove the stochastic stability of this type of equilibrium. But
the procedure followed strongly suggests that CDE-equilibria are not a
mere coincidence. In an environment that is stochastic with respect to
initial shares and initial locations, cooperation will survive in a large
number of cases.

Additionally, these simulations provide two other types of insights on
how the system works. First, we gain insights on how the initial distri-
bution affects equilibria. Figure 1 shows the frequency of convergence to
each equilibrium for the different initial shares combinations. In each
graph, each z0 is represented by a dot. The grey-black scale indicates the
result of simulations with 100 random spatial distributions after 200 time
steps. A black colored coordinate indicates that, starting with the
respective z0, all runs converge to the given type of equilibrium.4 As
expected, D-equilibria are more easily achieved for initial populations with
few enforcers and, inversely, CE-equilibria are more likely to be reached
for initial populations composed of many enforcers. CDE-equilibria are
most frequently achieved for middle-range initial shares with a slight
majority of enforcers.

Second, we gain insights on the effects of the initial location of strategies
over space. Figure 2 shows the evolution of strategy shares over time starting
from three identical share vectors z0 = (0.30;0.30;0.40) but with different
initial spatial arrangements. The evolution of strategy shares is governed by
two forces. First, enforcers who punish a lot imitate defectors in their
neighborhood. In some sense, enforcers are then being eliminated by defec-
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Figure 1. Frequency of equilibria for different initial shares multiple of 0.05, d = 280.
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tors. Second, enforcers who punish at least one defector switch to coopera-
tion when cooperators are located in their neighborhood. So, we see that
enforcers have a hard life. On the other hand, they eliminate defectors if they
punish hard enough. In all of the approach paths we see the number of
enforcers decrease; the number of defectors increases in the final steps.

Finally, to complete our analysis of stability and to confirm further that
the occurrence of CDE-equilibria is not a mere coincidence, we run simula-
tions for various sanction levels. Given our parameter values, the definition
of a relatively very low sanction is satisfied for 200< d < 232. The sanction
rate is relatively moderately low if 232 < d < 341. It is relatively high if
400 < d < 680. We also performed simulations for sanction rates outside
the ranges that imply an unambiguous ordering of profits. For each sanction
level, we performed 19,000 simulation runs and computed the average fre-
quence of occurrence of each equilibrium. The results are displayed in
Figure 3. The exact frequencies for each type of equilibrium can be found in
Table B.1 in Appendix B.

As expected, the frequency of D-equilibria decreases as the sanction rises.
Inversely, the frequency of CE-equilibria increases with the sanction level.
The largest frequency of CDE-equilibria is found for d = 700. Beyond
d = 800, the frequency of CE-equilibria rises sharply and it becomes almost
impossible for defectors to survive in the population, as shown by the fall in
the frequency of CDE- and D-equilibria. As expected from proposition 3, we
also find blinkers in the range of relatively high sanction rates, even if the

Figure 2. Evolution of strategy shares over time, for z0 = (0.30;0.30;0.40), d = 280.
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occurrence of this phenomenon is relatively rare (see Table B.1 in Appendix).
Recall that for a CDE blinker to occur, the sanction level should be high and
a single enforcer should be located between a cooperator and a defector. In
large populations this is unlikely to happen. We also find that the occurrence
of cycling CDE-equilibria is quite rare. The main conclusion we can draw
from these exercises is that equilibria with cooperation have a high proba-
bility of survival.

5. Resource dynamics

The role of resource dynamics on harvesting behavior is often neglected in
the literature on common-pool issues. Experiments and games developed by
Ostrom et al. (1994) do not pay any attention to resource dynamics. In real-
world situations, however, harvesters are likely to reconsider and actually
modify their strategies on the basis of observed changes in the resource stock.
Feedback effects are present from harvesting activities to the natural resource
and vice versa. Resource dynamics raises the issue of the dynamic develop-
ment of the resource itself and the impact of varying resource stock level on
harvest. In addition, a new dynamic issue is relevant in the present context,
namely how resource dynamics affects the occurrence of cooperation. We
start the analysis by postulating a logistic natural growth function:

GðNÞ ¼ qN 1�N

K

� �
ð16Þ

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

14
0

18
0

22
0

23
0

24
0

25
0

27
0

29
0

31
0

35
0

37
0

70
0

80
0

sanction level

av
er

ag
e

fr
eq

ue
nc

y
of

oc
cu

rr
en

ce

allD CDE CE

Figure 3. Average frequency of D-, CE-, and CDE-equilibria for different sanction
levels.
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with q the intrinsic growth rate and K the carrying capacity. Harvest is
oftentimes represented by the Shaefer function where the harvest rate is effort
multiplied by the resource stock. Alternatively, we assume that

FðX;NÞ ¼ XbN1�b ð17Þ

with 0 < b < 1. Updating of the resource stock after each round follows
the usual pattern:

Ntþ1 ¼ Nt þ GðNtÞ � FðXt;NtÞ: ð18Þ

The steady state of the system is then the solution of

qN 1�N

K

� �
¼ XbN1�b: ð19Þ

We follow Sethi and Somanathan (1996) and assume that individual effort is
proportional to the existing resource stock in the following manner:

xH ¼ aHN ð20Þ

xL ¼ aLN: ð21Þ

What is the effect of the introduction of resource dynamics on the limit states?
It is to be expected that the qualitative nature of the limit states will not change:
blinkers, cycling and equilibria can still occur. In Section 3.2 we saw that
cycling resulted from the fact that payoffs are affected by aggregate harvest.
Similarly, resource dynamics will influence payoffs, increasing the number of
situations under which profit reversal and thus cycling will occur. In other
words, given that an additional global interaction mechanism is operative,
cycling is likely to becomemore frequent.We further expect that the likelihood
of the occurrence of CDE-equilibria will not decrease. Overharvesting as a
consequence of higher effort levels by defectors does not only reduce har-
vesting profits per unit of effort but also through the resulting smaller resource
stock itself. Therefore, with a given effort rate of defectors, being a defector
becomes relatively less rewarding when there are many defectors.

In the case of resource dynamics we can write:

pC ¼ aLN
1

nDðaH � aLÞ þ naL

� �b

�w
" #

; ð22Þ
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pD
k ¼ aHN

1

nDðaH � aLÞ þ naL

� �b

�w
" #

� kd; ð23Þ

pE
m ¼ aLN

1

nDðaH � aLÞ þ naL

� �b

�w
" #

�mc: ð24Þ

Consider p k
D. We see that if nD increases, two things happen. First, aggre-

gate profits from harvesting given by the term in square brackets in (22)
decrease. This is similar to the no resource dynamics case: it is a consequence
of higher efforts, given the stock. Second, the stock decreases (after some
time). This also leads to smaller profits as an additional effect. The stock
effect can be assessed by realizing that the steady state with nD enforcers
equals:

NðnDÞ ¼ K 1� ðn
DðaH � aLÞ þ naLÞb

q

 !
: ð25Þ

So, the stock effect comes in addition to the effort effect.
We run simulations with aH and aL fixed so that we can compare the average
frequency of occurrence of equilibria with the case without resource
dynamics. We fix aL = 0.0001 and take d = 300, K = 2* 106 and q = 0.2.
For the rest we employ the same parameters as before. This yields a steady
state stock of 106 if all players were cooperators or enforcers. The parameter
value aL = 0.0001 corresponds with xL = 100 while aH = 0.0002 corre-
sponds with xH = 200 in the case without resource dynamics. We calculate
the frequency of equilibria for these parameter values with resource dynamics
as well as without resource dynamics. In both cases D-equilibria occur with
probability one. Similarly we performed the simulations for higher values of
aH. The results are given in Table II. We find that for identical xH, resource
dynamics leads to increasing occurrence of CDE-equilibria, as expected.5

Finally, we can show that in the case of fixed effort rates, the same type of
results is to be expected. With fixed effort rates xL and xH we get

pC ¼ xL
N

nDðxH � xLÞ þ nxL

� �b

�w
" #
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pD
k ¼ xH

N

nDðxH � xLÞ þ nxL

� �b

�w
" #

� kd

pE
m ¼ xL

N

nDðxH � xLÞ þ nxL

� �b

�w
" #

�mc

Now the steady state stock is a bit less straightforward to calculate. It satisfies

qN 1�N

K

� �
¼ NbðnDðxH � xLÞ þ nxLÞb:

It is not clear beforehand that this N is increasing in nD. In fact it is
increasing if and only if N

K<
1
3. For this reason the case at hand is slightly

more complicated. But, under this condition, essentially we see the same
mechanism at work. Higher nD decreases aggregate profits directly through
the effort effect, and, in addition, decreases aggregate profits through its effect
on the stock. All this implies that the difference p k

D)p m
E decreases when nD

increases, and more than in the absence of resource dynamics.

6. Conclusions

This paper has studied the emergence of cooperation in a particular spatial
CPR game, namely with space modeled as a circle. The combination of
evolution, space and resource dynamics can lead to a complex model system
that easily defies analytical solutions. Here we proposed a model that allowed

Table II. Average frequency of convergence with and without resource dynamics, d = 300

With resource dynamics

xH = aHN D-equil. DE-equil. CDE-equil.

200 1.00 0.00 0.00

300 0.77 0.19 0.03

350 0.60 0.34 0.07

400 0.51 0.40 0.09

No resource dynamics

200 1.00 0.00 0.00

300 1.00 0.00 0.00

350 0.65 0.32 0.03

400 0.55 0.39 0.07
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derivation of various analytical results, while additional conjectures were
supported by a large number of numerical simulations.

The major contribution of the present paper is that in the CPR game a
cooperative strategy can survive, even when the majority of agents is defect-
ing. This result runs counter to Sethi and Somanathan (1996). Our finding is
due to the assumption that agents base their actions on the observed profit-
ability of strategies employed by neigboring agents. In such a setting coop-
erators and enforcers can in some sense protect each other. By means of
several types of simulations we were able to establish support for the view that
cooperative equilibria are likely to persist, even in stochastically changing
environments. Introducing resource dynamics reinforces our results.

From a conceptual perspective, the approach adopted here can be under-
stood as combining local and global interactions. Virtually all related, analyt-
ical work in the literature has focused solely on local interactions, which
evidently renders much simpler models. The global interactions in this case are
due to two factors. First, profits are affected by aggregate harvest, to which all
agents contribute. Second, profits depend on the resource stock, which changes
due to the composition of harvesting strategies in the population of agents. The
presence of global feedback means that profit rankings of strategies are not
necessarily fixed over time. Indeed, due to changes in the composition of the
population of strategies the aggregate harvest and resource stock change, which
in turn may alter the conditions under which the agents interact. The important
implication is that resource dynamics combined with spatial evolution increases
the frequency of stable equilibria in which resource use is sustainable.

The analytical results apply mainly to the case without global interactions.
The alternative case was illustrated by a combination of analytical results,
illustrative examples and systematic numerical simulations. Evidently, future
work might concentrate on extending the boundary of analytical findings.

Future research may be devoted to examining alternative redistribution
schemes of the fines collected, at least if this is the interpretation given to the
sanctions rather than damages incurred. It has been assumed thusfar that
redistribution in lump sum. An alternative assumption would be that enforcers
get some kind of compensation. Another item worth investigating in more
detail is the distinction between a cooperator and a non-punishing enforcer. In
the present approach the distinction cannot be made on the basis of actual
behavior or payoffs. But for the analysis it does make a difference whether an
agent is a cooperator or an enforcer. Therefore, this line of research would
investigate the issue of signaling characteristics.
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Notes

1. One could be more specific by assuming for example that XP = nxL<XC £ nxH £ X0.
2. When there are no enforcers in the population, defectors always earn more than

cooperators and will spread quickly through the population. When there are no defectors

in the population, cooperators and enforcers earn the same payoffs and stick to their
strategies so that there is no further evolution of strategies.

3. Convergence to equilibria always occurred within 200 time steps.

4. For illustration purposes, we add the frequencies in all the extreme cases in which the initial
population is composed of two strategies only.

5. With the given parameters, CE-equilibria do not occur.
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Appendix A. Proofs

Proof Lemma 1

(i) Since Z(nxH)>0, it follows that c > d implies xHZ(X))d>xLZ(X))c for all X £ nxH.
Hence p1

D>p 1
E and, a forteriori, p 2

D>p 2
E. If (xH)xL)Z(nxL)<2d)c then

xHZ(X))2d<xLZ(X))c < 0 for all X £ nxH and hence p 1
E>p 2

D. If c > d and

(xH)xL)Z(nxL)<2d)c then xHZ(X))d<xLZ(X) for all X £ nxH and hence p 0
E> p 1

D.
(ii) If ðxH � xLÞZðnxLÞ>d� 1

2 c then xHZðXÞ � d>xLZðXÞ � 1
2 c<0 for all X £ nxH

implying pD
1 >

1
2 ðpE

0 þ pE
1 Þ. Moreover, the sanction rate is relatively low.

(iii) If ðxH � xLÞZðnxLÞ<d� 1
2 c then xHZðXÞ � d<xLZðXÞ � 1

2 c<0 for all X £ nxH
implying pD

1 <
1
2 ðpE

0 þ pE
1 Þ. A forteriori (xH)xL)Z(X)<2d)c for all X £ nxH, so that the

sanction rate is relatively low.
(iv) If (xH)xL)Z(nxL)< d)c then xHZ(X))d<xLZ(X))c for all X £ nxH, implying p 1

E> p

1
D. Then also p 2

E>p 2
D because d> c. If d)2c < (xH)xL)Z(nxH) then

0<xHZ(X))d>xLZ(X))2c for all X £ nxH, implying p 1
D> p 2

E

Proof Proposition 2

(i) Number the positions on the circle clockwise. Put an enforcer on position 1 and, without loss of

generality, a defector on position 2. Suppose n = 2.This is not an equilibriumbecause p 1
D>p

1
E. Suppose n = 3. This case is ruled out by lemma 3(iii) or lemma 3(iv). Suppose n = 4. At
number 3 there is a defector in view of lemma 3(iv). At number 4 there is an enforcer in view of

lemma 3(iii). But this cannot be an equilibriumbecause p1
D>p 1

E. Suppose n = 5.At number 3
there is a defector in view of lemma 3(iv). At number 4 there is an enforcer in view of lemma
3(iii). At number 5 there is an enforcer because of lemma 3(iv). So the equilibrium candidate

looks like: EDDEE. This is indeed an equilibrium. The defectors will remain defectors since p

1
D>p 1

E and the enforcers will remain enforcers since pD
1 <

1
2 ðpE

0 þ pE
1 Þ. Next we show that the

minimal lengthof anE-cluster is equal to three. Suppose there exists aDEequilibrium (with n ‡
5) with only two adjacent enforcers, surrounded by defectors: DEED. Then, because of lemma

3 we must also have DEEDD. This cannot be (part of) an equilibrium because p 1
D>p 1

E.
(ii) Consider a CDE configuration. Put the cooperator closest to a defector on position 1.

Suppose the first defector is at number 2. This contradicts lemma 3(ii). Suppose the first

defector is at number 3. There is an enforcer at number 2 by construction. This cannot be
an equilibrium in view of lemma 3(i). Suppose the first defector is at number 4. There are
enforcers at numbers 2 and 3 by construction. This cannot be an equilibrium because the

enforcer at number 2 will turn into a cooperator since pC> 1
2 ðpE

0 þ pE
1 Þ. Suppose the first

defector is at number 5. At numbers 2, 3 and 4 there are enforcers by construction. There
cannot be an enforcer at number 6 because of lemma 3(iv). There cannot be a cooperator

at number 6 by construction. Hence is a defector at number 6. Because of symmetry there
are enforcers at numbers 7, 8, and 9. It is easily verified that this is an equilibrium.
Therefore the minimal number of players necessary for a CDE equilibrium is 9. Suppose
there is a CDE equilibrium with a string ED. We cannot have CED in view of lemma 3(i),

nor DED (lemma 3(iii)). So, we have a string EED. We cannot have DEED by the
following reasoning. If the further extension could be written as DEEDD then this cannot
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be an equilibrium because p 1
D>p 1

E, implying that the second enforcer in the row turns

into a defector. Lemma 3(ii) rules out the further extension DEEDC. And the extension
DEEDE is not allowed in view of lemma 3(iv). Therefore, DEED cannot be part of an
equilibrium. Consider, therefore, CEED. Again the further extension cannot be CEEDD,

CEEDC or CEEDE. Hence we should have EEED. Therefore, the minimal string of
enforcers is 3 if an enforcer is adjacent to a defector.

(iii) In a blinker an enforcer will never switch to defection, for the following reason. An
enforcer next to a defector will switch to defection only if it punishes twice: with CED

the enforcer switches to cooperation, and with EED the (second) enforcer stays an
enforcer since pD

2 <pD
1 <

1
2 ðpE

0 þ pE
1 Þ. Therefore, we must have DED. But the first

defector will not switch to enforcement since p 2
D>p 2

E. It follows that DE blinkers do

not exist. In a CDE blinker a cooperator will never switch to enforcement. Therefore,
there should be a defector switching to enforcement. A necessary condition is that we
have EDE. But the first enforcer will not switch to defection.

Appendix B. Average frequencies of equilibria for different sanction levels

Table B.1 Average frequency of convergence for different sanction levels

sanction D-equil. DE-equil. CE-equil. CDE-equil. CDE-equil.

(blinking)

CDE-equil.

(cycling)

E- equil.

140 1.00 0.00 0.00 0.00 0.00 0.00 0.00

160 1.00 0.00 0.00 0.00 0.00 0.00 0.00

180 1.00 0.00 0.00 0.00 0.00 0.00 0.00

200 0.99 0.00 0.01 0.00 0.00 0.00 0.00

220 0.99 0.00 0.01 0.00 0.00 0.00 0.00

225 0.99 0.00 0.01 0.00 0.00 0.00 0.00

230 0.99 0.00 0.01 0.00 0.00 0.00 0.00

235 0.60 0.34 0.01 0.05 0.00 0.00 0.00

240 0.40 0.39 0.01 0.20 0.00 0.00 0.00

245 0.34 0.36 0.01 0.29 0.00 0.01 0.00

250 0.32 0.34 0.03 0.28 0.00 0.03 0.00

260 0.32 0.34 0.03 0.28 0.00 0.03 0.00

270 0.32 0.35 0.03 0.28 0.00 0.03 0.00

280 0.32 0.33 0.04 0.29 0.00 0.02 0.01

290 0.32 0.33 0.04 0.29 0.00 0.02 0.01

300 0.32 0.33 0.04 0.29 0.00 0.02 0.01

310 0.31 0.33 0.04 0.29 0.00 0.02 0.01

320 0.32 0.33 0.04 0.29 0.00 0.02 0.01

350 0.30 0.34 0.04 0.29 0.00 0.02 0.01

360 0.30 0.33 0.04 0.30 0.00 0.02 0.01

370 0.30 0.34 0.04 0.30 0.00 0.02 0.01

500 0.12 0.34 0.06 0.45 0.01 0.01 0.01

700 0.10 0.44 0.07 0.33 0.02 0.01 0.02

750 0.09 0.45 0.07 0.33 0.03 0.01 0.02

800 0.00 0.01 0.78 0.00 0.01 0.00 0.20

900 0.00 0.00 0.78 0.00 0.01 0.00 0.21
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