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Globally, TB accounts for the greatest number of deaths from 
a single pathogen, with an estimated 1.5 million deaths 
and 10 million incident cases in 20181. The World Health 

Organization’s End TB Strategy ambitiously aims for a 95% reduc-
tion in TB mortality and a 90% reduction in TB incidence by 20352. 
As part of this strategy, the priority for low transmission settings 
is to achieve pre-elimination (annual incidence of <1 per 100,000) 
by 20352. Preventative antimicrobial treatment for LTBI is con-
sidered critical for achieving this objective2,3. In the absence of an 
assay to detect viable M. tuberculosis bacteria, LTBI is currently 
clinically defined as evidence of T cell memory to M. tuberculosis, 
in the absence of concurrent disease and any previous treatment4,5. 
Individuals with LTBI are generally considered to have a lifetime 
TB risk ranging from 5% to 10%4, which is reduced by 65–80% with 
preventative treatment6.

The positive predictive value (PPV) for TB using the current 
definition of LTBI is less than 5% over a 2-year period among risk 
groups, such as adult TB contacts7–9. This might lead to a large bur-
den of unnecessary preventative treatment, with associated risks 
of drug toxicity to patients and excess economic costs to health 
services. The low PPV might also undermine the cascade of care, 

including uptake of preventative treatment among individuals in 
target groups, who perceive their individual risk of developing TB 
to be low10,11. In fact, the risk of TB among individuals with LTBI 
is highly variable between study populations, with incidence rates 
ranging from 0.3 to 84.5 per 1,000 person-years of follow-up7,12. 
Thus, quoting the 5–10% lifetime estimate is likely to be inaccurate 
for many people. Improved risk stratification is, therefore, essential 
to enable precise delivery of preventative treatment to those most 
likely to benefit5,13. Multiple studies have shown that the magnitude 
of the T cell response to M. tuberculosis is associated with incident 
TB risk, raising hope that quantitative tuberculin skin test (TST) or 
interferon gamma release assay (IGRA) results might improve pre-
dictive ability14,15. However, implementing higher diagnostic thresh-
olds alone does not improve prediction on a population level owing 
to a marked loss of sensitivity with this approach16.

In this study, we first sought to characterize the population 
risk of TB among people tested for LTBI using an individual par-
ticipant data meta-analysis (IPD-MA). To study progression from 
LTBI to TB disease more accurately, we focused on settings with 
low transmission (defined as annual incidence ≤20 per 100,000 per-
sons), where there is a minimal risk of reinfection during follow-up. 
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We confirmed highly variable estimates of risk, necessitating an 
individual-level approach to risk estimation. Finally, we developed 
and validated a directly data-driven personalized risk predictor for 
incident TB (PERISKOPE-TB) that combines a quantitative T cell 
response measure with key clinical covariates.

Results
Systematic review. Our systematic review identified 26 studies 
that aimed to assess the risk of progression to TB disease among 
individuals tested for LTBI in low TB transmission settings; cor-
responding authors of these studies were invited to contribute 
individual-level data (Extended Data Fig. 1). Of these, we received 
18 individual-level data sets, including participants recruited in 

20 countries. The pooled data set included a total of 82,360 indi-
vidual records; of these individuals, 51,697 had evidence of LTBI, 
and 826 were diagnosed with TB. Of the received data, 80,468 par-
ticipants (including 803 TB cases) had sufficient data for inclusion 
in the primary analysis (Extended Data Fig. 2). The characteris-
tics of the included study data sets are summarized in Table 1 and 
Supplementary Table 1. Characteristics of the eight eligible studies 
for which IPD were not obtained were similar to those included in 
the analysis (Supplementary Table 2). Eight studies recruited adults 
only; the remainder recruited both adults and children. The target 
population was recent TB contacts in nine studies17–25, people living 
with HIV in two studies26,27, mixed immunocompromised groups 
in two studies28,29, transplant recipients in one study30, mixed popu-

Table 1 | Characteristics of contributing studies included in individual participant data meta-analysis

Authors Publication 
Year

Country n 
(total)

Adults / 
children

Population Follow-up 
years 
(median 
(IQR))

TB 
cases

Loss to 
follow-up

Included in 
prediction 
modeling

NOSa

Abubakar 
et al.9

2018 UK 10,045 Adults contacts & migrants 4.7 
(3.7–5.5)

147 10 (0.1%) Yes 7/7

Aichelburg 
et al.26

2009 Austria 830 Adults People with HIV 1.2 
(0.7–1.4)

11 25 (3%) Yes 7/7

Altet et al.17 2015 Spain 1,339 Adults & 
children

contacts 4 (4–4) 95 0 (0%) Yes 7/7

Diel et al.18 2011 Germany 1,414 Adults & 
children

contacts 3.5 
(2.5–4.2)

19 381 (26.9%) Yes 7/7

Dobler & 
marks19

2013 Australia 12,212 Adults & 
children

contacts 4.2 (2–6.9) 94 351 (2.9%) Nob 7/7

Doyle et al.27 2014 Australia 919 Adults People with HIV 2.9 
(1.7–3.6)

2 47 (5.1%) Yes 7/7

erkens 
et al.32

2016 Netherlands 14,241 Adults & 
children

mixed population 
screening

5.5 (3–7.4) 134 NA Nob 6/6

Geis et al.20 2013 Germany 1,283 Adults & 
children

contacts 0.8 
(0.4–1.1)

33 62 (4.8%) Yes 6/6

Gupta 
et al.25

2020 UK 623 Adults contacts 1.9 
(1.6–2.2)

13 0 (0%) Yes 7/7

Haldar 
et al.21

2013 UK 1,411 Adults & 
children

contacts 1.9 
(1.3–2.4)

37 30 (2.1%) Yes 7/7

Lange et al.28 2012 Germany 456 Adults Immunocompromised 2.8 (2–3.1) 1 42 (9.2%) Yes 7/7

munoz 
et al.30

2015 Spain 76 Adults Transplant recipients 4.3 
(3.6–4.8)

2 0 (0%) Yes 7/7

roth et al.31 2017 canada 22,949 Adults & 
children

mixed population 
screening

3 (1.8–4.3) 58 NA Subsetb 6/6

Sester 
et al.29

2014 multiple 
european 
countries

1,464 Adults Immunocompromised 2.7 
(1.5–3.5)

11 7 (0.5%) Yes 7/7

Sloot et al.22 2014 Netherlands 5,895 Adults & 
children

contacts 5.9 
(3.6–7.7)

81 NA Yes 7/7

Yoshiyama 
et al.23

2015 Japan 625 Adults & 
children

contacts 1.8 (1.4–2) 12 0 (0%) Yes 6/7

Zellweger 
et al.24

2015 multiple 
european 
countries

5,237 Adults & 
children

contacts 2.6 
(1.9–3.5)

55 1339 (25.6%) Yes 7/7

Zenner 
et al.33

2017 UK 1,341 Adults migrants 3.7 (3–4.8) 21 NA Nob 7/7

Total 82,360 3.7 (2.1–5.3) 826 2294 (2.8%)
amodified version of the Newcastle–Ottawa Scale for cohort studies. bNot included in prediction modeling owing to lack of data on proximity or infectiousness of index cases19 or absent quantitative 
LTbI test data32,33. A subset of the data set was included in the prediction model for the roth et al. study31; contacts and migrants were excluded owing to no data being available on country of birth or 
infectiousness of index cases, respectively. Additional study characteristics are shown in Supplementary Table 1.
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lation screening in two studies31,32, recent migrants in one study33 
and a combination of recent contacts and migrants in one study9. 
Median follow-up of all participants was 3.7 years (interquartile 
range (IQR), 2.1–5.3 years). All contributing studies reported base-
line assessments for prevalent TB through routine clinical evalua-
tions, and all included culture-confirmed and clinically diagnosed 
TB cases in their case definitions. Four studies had a proportion 
of participants lost to follow-up of more than 5%18,24,27,28; baseline 
characteristics of those lost to follow-up were similar to those 
followed-up in each of these studies (Supplementary Table 3). All 
contributing studies achieved quality assessment scores of 6/6, 6/7 
or 7/7 (Supplementary Table 4).

Population-level analysis. In the pooled data set, the 2-year cumu-
lative risk of incident TB was estimated as 4.0% (95% CI, 2.6–6.3%) 
among people with LTBI who did not receive preventative therapy, 
0.7% (0.4–1.3%) in people with LTBI who commenced preventative 
therapy and 0.2% (0.1–0.4%) in people without LTBI (Fig. 1 and 
Supplementary Table 5). The corresponding 5-year risk of incident 
TB among these groups was 5.4% (3.5–8.5%), 1.1% (0.6–2.0) and 
0.3% (0.2–0.5%), respectively.

Among untreated people with LTBI, 2-year risk of incident TB 
was 14.6% (95% CI, 7.5–27.4) among recent child (<15 years) con-
tacts, 3.7% (2.3–6) among adult contacts, 4.1% (1.3–12) among 
migrants and 2.4% (0.8–6.8) among people screened owing to 
immunocompromise (without an index exposure). Corresponding 
5-year risk was 15.6% (8.0–29.2) among recent child contacts, 4.8% 
(3.0–7.7) among adult contacts, 5.0% (1.6–14.5) among migrants 
and 4.8% (1.5–14.3) among people screened owing to immunocom-
promise. Among recent child contacts, risk was markedly higher 
among those younger than 5 years old compared to those aged 5–14 
years (2-year risk, 26.0% (9.4–60.1) versus 12.4% (5.7–25.6); Fig. 1).

Among child contacts, 85.4% and 93.7% of cumulative risk was 
accrued in the first 1 and 2 years of follow-up, respectively. Among 
adult contacts and migrants, the annual risk also declined mark-
edly with time. Of the cumulative 5-year risk, 58.2% and 77.6% were 
accrued in the first 1 and 2 years of follow-up for adult contacts, 
with corresponding values among migrants of 66.4% and 81.6%, 
respectively. There was a more even distribution of risk during 
follow-up in the immunocompromised group.

TB incidence rates in years 0–2 and 2–5 of follow-up, strati-
fied by LTBI result, commencement of preventative treatment and 
indication for screening, are shown in Extended Data Figs. 4 and 5.  
Within each of the risk groups assessed, incidence rates among 
untreated people with LTBI were markedly higher in the 0–2-year 
interval, compared to the 2–5-year interval, but were highly hetero-
geneous across studies (I2 statistics, representing the proportion of 
variance that is considered owing to between-study heterogeneity, 
ranged from 54% to 91% for incidence rates during the 0–2-year 
interval among untreated people with LTBI, when stratified by indi-
cation for screening; forest plots are shown in Extended Data Fig. 5). 
These findings suggest highly variable TB risk among people with 
LTBI, even within risk groups.

Prediction model development. The observed heterogeneity in TB 
incidence rates across studies, even after stratification by binary LTBI 
result, commencement of preventative treatment and indication for 
screening, suggests that an individual-level approach to risk stratifi-
cation is required. We, therefore, developed a personalized risk pre-
diction model using a subset of the received data (where sufficient 
individual-level variables were available), including 528 patients 
with TB among 31,721 participants from 15 studies (Extended 
Data Fig. 2). All of these data sets were used for model develop-
ment and validation, using the internal–external cross-validation 
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Fig. 1 | Population-level cumulative risk of incident TB during follow-up. risk is stratified by binary latent Tb test result, provision of preventative 
treatment (PT) and indication for screening among participants with untreated latent infection (total n = 80,468 participants). cumulative risk is 
estimated using flexible parametric survival models with random effects intercepts by source study, separately fitted to each risk group. Prevalent Tb cases 
(diagnosed within 42 d of recruitment) are excluded. each plot is presented as point estimates (solid line) and 95% cIs (shaded area). child contacts are 
shown stratified by age (<5 years and 5–14 years). PT = preventative treatment. Numbers of participants, Tb cases and numeric cumulative risk estimates 
for each plot are presented in Supplementary Table 5. cumulative Tb risk, including prevalent Tb cases, is presented in extended Data Fig. 3.
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(IECV) framework34 described below. Characteristics of the stud-
ies included in prediction model development and validation were 
similar to those that were not (Table 1). Our modeling approach 
used a flexible parametric survival model with two degrees of free-
dom on a proportional hazards scale, because this showed the best 
fit in each imputed data set. From our list of a priori variables of 
interest, we evaluated nine candidate predictors, of which only pre-
vious Bacille Calmette–Guérin (BCG) vaccination and gender were 
omitted from the final model. The final prediction model included 
age, a composite ‘TB exposure’ variable (modeled with time-varying 
covariates to account for non-proportional hazards), time since 
migration for migrants from countries with high TB incidence, HIV 
status, solid organ or hematological transplant receipt, normalized 
LTBI test result and preventative treatment commencement. The 
final model coefficients and standard errors, pooled across multiply 
imputed data sets, are summarized in Supplementary Table 6, with 
visual representations of associations between each variable and 
incident TB risk shown in Fig. 2.

IECV. Next, we used the IECV framework, iteratively discarding 
one study data set from the model training set and using this for 
external validation, to concurrently validate the prediction model, 
explore between-study heterogeneity and examine generalizabil-
ity34. Model discrimination and calibration parameters for 2-year 
risk of incident TB from the primary validation studies are shown 
in Fig. 3. We assessed discrimination using the C-statistic, which 
ranged from 0.78 (95% CI, 0.47–1.0) in a study of immunocom-
promised participants with a small number of incident TB cases29 
to 0.97 (0.94–0.99) in a study of TB contacts18. The random effects 
meta-analysis estimate of the C-statistic was 0.88 (0.82–0.93).

Calibration assesses agreement between predicted and observed 
risk. We assessed calibration visually using grouped calibration 
plots, supplemented by the calibration-in-the-large (CITL) and 
slope statistics (Fig. 3). Visual calibration plots suggested reasonable 
calibration in most studies (Extended Data Fig. 6). Because inci-
dent TB is an infrequent outcome, predictions were appropriately 
low, with average predicted risk less than 10% in all quintiles of risk. 
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Fig. 2 | Visual representations of associations between predictors and incident TB. Illustrative estimates are shown for a 33-year-old migrant from a 
high Tb-burden setting. The example ‘base case’ patient does not commence preventative treatment, is not living with HIV, has not received a previous 
transplant and has an ‘average’ positive latent Tb test. We vary one of these predictors in each plot ((a) age; (b) normalized latent Tb test result; (c) 
years since migration; (d) exposure to M. tuberculosis; (e) HIV status; (f) transplant receipt; and (g) preventative treatment). each plot is presented as 
point estimates (solid line) and 95% cIs (shaded area). The model was trained on a pooled data set (n = 31,090 participants). model parameters are 
provided in Supplementary Table 6. ‘Household smear + contact’ = household contact of sputum smear-positive index case; ‘Other contact’ = contact of 
non-household or smear-negative index case; ‘migrant’ = migrant from high Tb incidence country, without recent contact.
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CITL and calibration slopes of 0 and 1 indicate perfect calibration, 
respectively. The pooled random effects meta-analysis CITL esti-
mate was 0.14 (95% CI, −0.24 to 0.53), with evidence of systematic 
under-estimation of risk in one study (CITL, 1.02 (0.61–1.43)) and 
over-estimation in one study (CITL, −0.64 (−1.09 to 0.19)). The 
pooled random effects meta-analysis calibration slope estimate was 
1.11 (0.83–1.38). Slopes appeared heterogeneous, although visual 
assessment of calibration plots suggested that these were prone to 
being extreme owing to the skewed distribution of predicted and 
observed risk, likely reflecting the relatively rare occurrence of inci-
dent TB events.

Distribution of predicted risk and individual predictions. Figure 4  
shows the distributions of predicted TB risk among participants 
who did not commence preventative treatment from the pooled 
IECV validation sets, stratified by 1) binary LTBI test result and 2)  
indication for screening (among those with a positive test). The 
median predicted 2-year TB risk was 2.0% (IQR, 0.8–3.7%) and 
0.2% (IQR, 0.1–0.3%) among participants with positive and nega-
tive binary LTBI test results, respectively. We then examined inci-
dent TB risk in four quartiles of predicted risk among untreated 
participants with positive LTBI tests from the pooled validation sets. 
Kaplan–Meier plots of the four quartiles showed clear separation 
of observed risk among these four groups (Fig. 4c), with illustra-
tive predicted survival curves for one randomly sampled individual 
patient per quartile shown in Fig. 4d.

Decision curve analysis. Net benefit quantifies the tradeoff between 
correctly identifying true-positive patients (progressing to incident 
TB) and incorrectly detecting false positives, with weighting of each 
by the threshold probability35,36. The threshold probability corre-
sponds to a measure of both the perceived risk:benefit ratio of ini-
tiating preventative treatment and the threshold of predicted risk 
above which treatment is recommended. How patients and clinicians 
weigh the relative costs of drug-related adverse events (as a result of 
inappropriate treatment) against the benefits of preventing a case of 
TB can be subjective. Among untreated participants with LTBI from 
the pooled validation sets in IECV, net benefit for the prediction 
model was greater than either treating all LTBI patients or treating 
none, throughout a range of threshold probabilities from 0% to 20% 
(reflecting a range of clinician and patient preferences) (Fig. 5).

Sensitivity analyses. We re-examined population-level TB risk 
without any exclusion of prevalent TB (cases diagnosed <42 d from 
testing), resulting in markedly higher cumulative risk for each risk 
group (Extended Data Fig. 3). Recalculation of model predictor 
parameters revealed similar directions and magnitudes of effect 
to the primary model when using shorter and longer definitions 
of prevalent TB (baseline risk was expectedly higher with shorter 
definitions) and when excluding participants who received preven-
tative treatment (Supplementary Table 7). Model parameters were 
noted to be more extreme when using a complete case approach 
(for variables other than HIV, which was assumed negative when 
missing). The pooled random effects meta-analysis C-statistic from 
IECV when limiting to participants who did not receive preven-
tative treatment was 0.89 (95% CI, 0.82–0.93), similar to the pri-
mary analysis (Extended Data Fig. 7a). The pooled random effects 
meta-analysis C-statistic, including only participants with a positive 
binary LTBI test, was 0.77 (0.70–0.83). This finding indicates good 
discrimination even among participants with a conventional diag-
nosis of LTBI, albeit lower than discrimination when also includ-
ing participants with a negative binary LTBI test, likely owing to 
the high negative predictive value of LTBI tests when using stan-
dard cutoffs (Extended Data Fig. 7b). Finally, to assess model per-
formance in situations where the quantitative test results are not 
available, we imputed an average quantitative positive or negative 
LTBI test result (based on the medians among the study popula-
tion), according to the binary result in the validation sets. This 
analysis provided a pooled random effects meta-analysis C-statistic 
of 0.86 (0.76–0.93; Extended Data Fig. 7c), and net benefit appeared 
higher when using this model than the strategies of treating either 
all patients with evidence of LTBI or no patients, across the range 
of threshold probabilities. However, the model using a binary test 
result had a lower C-statistic and slightly lower net benefit across 
most threshold probabilities compared to the full model using 
quantitative test results (Extended Data Fig. 7d).

Discussion
In this study, we examined population-level incident TB risk in a 
pooled data set of more than 80,000 individuals tested for LTBI in 
20 countries with low M. tuberculosis transmission (annual inci-
dence ≤20 per 100,000 persons). We found cumulative 5-year risk 
of incident TB among people with untreated LTBI approaching 16% 
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Fig. 3 | Forest plots showing model discrimination and calibration metrics for predicting 2-year risk of incident TB. Discrimination is presented as 
the c-statistic; calibration is presented as cITL and the calibration slope. Data from nine primary validation studies are shown, from IecV of the model 
(developed among n = 31,090 participants; validated among 25,504 participants in this analysis). ‘Tb’ column indicates number of incident Tb cases 
within 2 years of study entry, and ‘n’ indicates total participants per study included in analysis. each forest plot shows point estimates (squares) and 95% 
cIs (error bars). Pooled estimates are shown as diamonds. calibration slopes greater than 1 suggest under-fitting (predictions are not varied enough), 
whereas slopes less than 1 indicate over-fitting (predictions are too extreme). cITL indicates whether predictions are systematically too low (cITL > 0) or 
too high (cITL < 0). Dashed lines indicate line of no discrimination (c-statistic) and perfect calibration (cITL and slope), respectively.
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among child contacts and approximately 5% among recent adult 
contacts, migrants from high TB-burden settings and immuno-
compromized individuals. Most cumulative 5-year risk was accrued 
during the first year among risk groups with an index exposure, 
supporting previous data suggesting that risk of progressive TB 
declines markedly with increasing time since infection13. However, 
we noted substantial variation in incidence rates even within these 
risk groups, suggesting that an individual-level approach to risk 
stratification is required. Therefore, we developed the first directly 
data-driven model, to our knowledge, to incorporate the magnitude 
of the T cell response to M. tuberculosis with readily available clini-
cal metadata to capture heterogeneity within risk groups and gener-
ate personalized risk predictions for incident TB in settings aiming 
for pre-elimination. Clinical covariates in the final model included 
age, recent contact (including proximity and infectiousness of the 
index case), migration from high TB-burden countries (and time 
since arrival), HIV status, solid organ or hematological transplant 
receipt and commencement of preventative treatment. The model 
was externally validated by quantifying the meta-analysis C-statistic 
for predicting incident disease over 2 years and by evaluating its 

calibration, using recommended methods37. Most importantly, the 
model showed clear clinical utility for informing the decision to ini-
tiate preventative treatment compared to treating all or no patients 
with LTBI.

The personalized predictions from our model will enable more 
precise delivery of preventative treatment to those at highest risk of 
TB disease while concurrently reducing toxicity and costs related 
to treatment of people at lower risk. Moreover, the model will allow 
clinicians and patients to make more informed and individualized 
choices when considering initiation of preventative treatment. The 
model also challenges the fundamental notion of an arbitrary binary 
test threshold for diagnosis of LTBI. By incorporating a quantitative 
measure of immunosensitization to M. tuberculosis, we facilitate a 
shift from the conventional paradigm of LTBI as a binary diagno-
sis toward personalized risk stratification for progressive TB. This 
approach takes advantage of stronger T cell responses being a cor-
relate of risk while guarding against a loss of sensitivity by arbitrarily 
introducing higher test thresholds programmatically16.

The results of our analyses are consistent with and extend exist-
ing evidence. Recent analyses report similar population-level TB 
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(a) binary latent Tb test result and (b) indication for screening among untreated people with positive LTbI tests. c, Kaplan–meier plots for quartile risk 
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d, randomly sampled individual patients from each risk quartile. Patient 1 is a 22-year-old with no Tb exposure and a normalized latent Tb test result on 
the 68th percentile; Patient 2 is a 41-year-old migrant from a high Tb-burden country (3.8 years since migration) with normalized latent Tb test result 
on the 80th percentile; Patient 3 is a 51-year-old household contact of a smear-positive index Tb case with a normalized latent Tb test result on the 79th 
percentile; and Patient 4 is a 33-year-old household contact of a smear-positive index Tb case with a normalized latent Tb test result on the 94th percentile. 
All four example patients are HIV negative and are not transplant recipients. equivalent values of normalized percentile test results for QuantiFerON, 
T-SPOT.Tb and TST are shown in Supplementary Table 10. Plots (c, d) are presented as point estimates (solid line) and 95% cIs (shaded area).
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incidence rates among adult contacts12, with markedly higher risk 
among young children38. Moreover, these recent meta-analyses con-
firm highly heterogeneous population-level estimates, thus justi-
fying an individual-level approach to risk estimation12,38. Previous 
models developed and validated in Peru, a high transmission set-
ting, have generated individual or household-level TB risk estimates 
for TB contacts39–41. Another model, parameterized using aggregate 
data estimates from multiple sources, seeks to estimate TB risk after  
LTBI testing in all settings42. However, there are currently no pub-
licly available validation data to support its use, and the model omits  
key predictor variables identified in the current study (including  
the magnitude of the T cell response and infectiousness of  
index cases)42.

Strengths of the current study include the size of the data set, 
curated through comprehensive systematic review in accordance 
with Preferred Reporting Items for a Systematic Review and 
Meta-analysis of Individual Participant Data standards43 and with 
IPD obtained for 18 of 26 (69%) eligible studies. This allowed us 
to examine progression from LTBI to TB disease using the largest 
adult and pediatric data set available to date, to our knowledge. We 
conducted population-level analyses using both one- and two-stage 
IPD-MA approaches to present both cumulative TB risk and 
time-stratified incidence rates, respectively, with consistent results 
from both. We adhered to Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)44 
standards, using the recommended approach of IECV37, leading to 
a fully data-driven and validated model for personalized risk esti-
mates after LTBI testing. The coefficients presented in the model are 
clinically plausible and have been made publicly available to facili-
tate further independent external validation. Moreover, the con-
tributing data sets included heterogeneous populations of adults, 
children, recent TB contacts, migrants from high TB-burden coun-
tries and immunocompromised groups from 20 countries across 
Europe, North America, Asia and Oceania, thus making our results 
generalizable to settings aiming for pre-elimination globally.

We also used a comprehensive approach to addressing missing 
data by using multi-level multiple imputation in the primary analy-
sis, assuming missingness at random and in keeping with recent 
guidance34,45. This approach facilitated imputation of variables that 
were systematically missing from some included studies. Previous 
BCG vaccination and HIV status were noted to be missing from 
a large proportion of participants. This missingness might have 
reduced our power to detect an association between these variables 
and incident TB, and BCG vaccination was notably not included 
in the final prognostic model. Although increasing data support a 
role for BCG vaccination in reducing sensitization to M. tuberculo-
sis46,47, additional data are required to further assess the association 
between BCG vaccination and incident TB risk after adjustment for 
other covariates, including quantitative T cell responses. We sup-
ported our primary multiple imputation approach using a complete 
case sensitivity analysis (for variables other than HIV, which was 
assumed to be negative when missing). This sensitivity analysis 
revealed similar findings to the primary analyses, although effect 
estimates were noted to be more extreme in the complete case 
approach, likely owing to a degree of bias in the latter, because com-
plete cases analysis assumes no association between the pattern of 
missingness and the outcome (that is, incident TB) after adjust-
ing for all other covariates48. Given that TB incidence and predic-
tor missingness both varied according to contributing study, this 
assumption is unlikely to be valid in the current context.

We also used a range of arbitrary definitions of prevalent TB in 
the primary and sensitivity analyses, because the aim of our prog-
nostic model was to assess the risk of incident TB, after prevalent 
TB has been clinically ruled out, to inform risk:benefit decisions 
regarding preventative treatment initiation. With increasing rec-
ognition of the continuum of M. tuberculosis infection using novel 
diagnostics (including incipient and/or subclinical phases)49, the 
distinction between prevalent and incident disease is becoming 
increasingly blurred. Future studies could consider integration of 
our prognostic model with next-generation biomarkers, such as 
blood transcriptional signatures for incipient TB50,51.

A limitation of this study is that its generalizability is restricted 
to low transmission settings (annual incidence ≤20 per 100,000  
persons). The rationale for limiting to such settings was, first, to 
examine progression from LTBI to TB disease more accurately by 
reducing risk of re-infection with M. tuberculosis during follow-up. 
Second, most of the population in high transmission settings are likely 
to have a positive LTBI test result, further undermining test specific-
ity for progression to TB disease52. Because the quantitative LTBI test 
result is a strong predictor in our model, a different prediction model 
might, therefore, be required in such settings. For example, a recent 
study developing a prediction model for TB among close contacts in 
Peru found that the TST result added no value to the model39. Future 
studies could test our model for use in high transmission settings, 
updating the parameters as necessary, to extend its application to 
these settings. A second limitation of the current study is that model 
calibration was observed to be imperfect during external valida-
tion. However, conventional metrics (such as the calibration slope)  
might not be entirely appropriate in this context, which has a highly 
skewed distribution of predicted and observed risk, reflecting the 

0.00

0.01

0.02

0.03

0.00 0.05 0.10 0.15 0.20 0.25

Threshold (risk:benefit ratio)

N
et

 b
en

ef
it

PERISKOPE�TB model Treat all Treat none

Fig. 5 | Decision curve analysis. Shown as net benefit of the prediction 
model among untreated participants from the pooled validation sets with 
positive binary latent Tb tests (n = 6,418 participants) compared to ‘treat 
all’ and ‘treat none’ strategies across a range of threshold probabilities 
(x axis). Net benefit quantifies the tradeoff between correctly identifying 
true-positive progressors to incident Tb and incorrectly detecting false 
positives, with weighting of each by the threshold probability35. The 
threshold probability corresponds to a measure of both the perceived 
risk:benefit ratio of initiating preventative treatment and the percentage 
cutoff for the prediction model, above which treatment is recommended. 
Net benefit appeared higher than either the strategies of treating all 
patients with evidence of LTbI or no patients, throughout the range of 
threshold probabilities, suggesting clinical utility. For illustration, a patient 
who is very concerned about developing Tb disease but not concerned 
regarding side effects of preventative treatment might have a low threshold 
probability (for example, 1%, which is equivalent to a risk:benefit ratio of 
1:99—that is, the outcome of developing Tb is considered to be 99 times 
worse than taking unnecessary preventative treatment). In contrast, a 
patient who is less concerned about developing Tb but is very concerned 
about side effects of preventative treatment might have a higher threshold 
probability (for example, 10%, which is equivalent to a risk:benefit ratio  
of 1:9). The unit of net benefit is ‘true positives’35. For instance, a net benefit 
of 0.01 would be equivalent to a strategy where one patient per 100 tested 
was appropriately given preventative treatment, as they would otherwise 
have progressed to incident Tb if left untreated.
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rare occurrence of incident TB events. Reassuringly, in decision curve 
analysis, which accounts for both discrimination and cali bration  
performance in quantifying net benefit, the model showed clinical 
utility35. Future studies might evaluate the full health economic effect 
of programmatic implementation of the model.

A further limitation is that, owing to a lack of data from contribut-
ing studies, other potential predictors that might be associated with 
incident TB risk (including diabetes, malnutrition, fibrotic chest 
x-ray lesions and other immunosuppression)4 were not evaluated. 
These unmeasured covariates might have contributed to imperfect 
discrimination and calibration, along with residual heterogeneity 
in model performance between data sets. As additional studies are 
published, the prognostic model can be prospectively evaluated and 
updated as required. We also note that offer and acceptance of pre-
ventative treatment might be more likely among people at higher 
risk of TB. We, therefore, accounted for preventative treatment pro-
vision in the model by including it as a covariate along with our 
other predictors of interest, as widely recommended53. However, 
residual confounding by indication cannot be excluded in obser-
vational studies. In addition, the present model is not applicable 
for patients commencing biologic agents, because no data sets were 
identified that examined the natural history of LTBI in the context 
of biologic therapy, in the absence of preventative treatment for TB. 
A ‘hybrid’ modeling approach, with mathematical parameteriza-
tion of relative risk for any given biologic agent, might be required 
to extend its application to these therapies. Because the quantita-
tive LTBI test result is a strong predictor in our model, predictions 
might also be attenuated in the context of advanced immunosup-
pression7. Reassuringly, performance appeared adequate in a data 
set of immunocompromised individuals during validation29.

In summary, we present a freely available and directly data-driven 
personalized risk predictor for incident TB (PERISKOPE-TB; peris-
kope.org). This tool will allow a programmatic paradigm shift for 
TB prevention services in settings aiming for pre-elimination glob-
ally by facilitating shared decision-making between clinicians and 
patients for preventative treatment initiation.
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Methods
Systematic review and pooling of individual participant data. We conducted a 
systematic review and IPD-MA, in accordance with Preferred Reporting Items for 
a Systematic Review and Meta-analysis of Individual Participant Data standards43, 
to investigate the risk of progression to TB disease among people tested for 
LTBI in low transmission settings. The study is registered with PROSPERO 
(CRD42018115357). We searched Medline and Embase for studies published 
from January 1, 2002, to December 31, 2018, using comprehensive MeSH and 
keyword terms for ‘TB’, ‘IGRA’, ‘TST’, ‘latent TB’ and ‘predictive value’, without 
language restrictions. Longitudinal studies that primarily aimed to assess the risk 
of progression to TB disease among individuals tested for LTBI and that were 
conducted in a low TB transmission setting (defined as annual incidence ≤20 
per 100,000 persons at the midpoint of the study) were eligible for inclusion. The 
full search strategy and eligibility criteria are provided in Supplementary Tables 8 
and 9. Titles and abstracts underwent a first screen; relevant articles were selected 
for the second screen, which included full text review. Both first and second 
screens were performed by two independent reviewers, with disagreements 
resolved through discussion and arbitration by a third reviewer when required. 
Corresponding authors of eligible studies were invited to contribute IPD. Received 
data were mapped to a master variables list, and the integrity of the IPD was 
examined by comparing original reported results with re-analyzed results using 
contributed data. Quality assessment was performed using a modified version of 
the Newcastle–Ottawa Scale for cohort studies54.

Definitions. Participants entered the cohort on the day of LTBI screening 
or diagnosis and exited on the earliest of censor date (last date of follow-up), 
active TB diagnosis date, date of death or date of loss to follow-up (where 
available). LTBI was defined as any positive LTBI test (TST or commercial 
IGRA), using TST thresholds as defined by the contributing study (a 10-mm 
cutoff was used for studies that assessed multiple thresholds). Quantitative IGRA 
thresholds were calculated according to standard manufacturer guidelines. 
IGRAs included three generations of QuantiFERON TB assays (QuantiFERON 
Gold-In-Tube, QuantiFERON Gold and QuantiFERON-TB Gold Plus; Qiagen), 
which were assumed to be equivalent25, and T-SPOT.TB (Oxford Immunotec). 
Microbiologically confirmed and/or clinically diagnosed TB cases were included, 
as per contributing study definitions. In the absence of a widely accepted temporal 
distinction between prevalent and incident disease, prevalent TB at the time of 
screening was arbitrarily defined as a TB diagnosis within 42 d of enrolment;  
these cases were omitted from the primary analysis. Alternative shorter and  
longer temporal definitions were tested as sensitivity analyses. Participants with 
missing outcomes or durations of follow-up were considered lost to follow-up. 
‘Preventative treatment’ was defined as any LTBI treatment regimen recommended 
by the World Health Organization52. All contributing studies included regimens 
consistent with this guidance; the effectiveness of each regimen was assumed  
to be equivalent55.

Population-level analysis. Survival analysis. In a one-stage IPD-MA approach, we 
used flexible parametric survival models, with a random effect intercept by source 
study to account for between-study heterogeneity, to examine population-level 
risk of incident TB, stratified by LTBI screening result (positive versus negative) 
and provision of LTBI treatment (commenced versus not commenced). We further 
examined progression risk among untreated participants with LTBI, stratified by 
indication for screening (recent child contacts (<15 years) versus adult contacts 
versus migrants versus immunocompromised), by separately fitting random effect 
flexible parametric survival models to each risk group. Child contacts were further 
stratified by age (<5 years versus 5–14 years).

Incidence rates. We also calculated TB incidence rates (per 1,000 person-years) in a 
two-stage IPD-MA approach stratified by LTBI screening result, provision of LTBI 
treatment and indication for screening. Rates were calculated separately for the 
0–2-year and 2–5-year follow-up intervals. Pooled incidence rate estimates for each 
risk group and follow-up interval were derived using random intercept Poisson 
regression models, without continuity correction for studies with zero events, in 
the meta package in R56.

Prediction model analysis. Variables of interest. We then developed and validated 
a personalized prediction model for incident TB, in accordance with TRIPOD 
guidance44. For this analysis, we included studies that reported quantitative LTBI 
test results, proximity and infectiousness (based on sputum smear status) of index 
cases for contacts and country of birth and time since entry for migrants, because 
we considered these variables fundamental a priori. Using this subset of the data, 
we examined the availability of a range of variables of interest, specified a priori, 
in the contributing data sets to determine eligibility for inclusion as candidate 
predictors in the model. We determined that the following predictors were 
available from a sufficient number of data sets for further evaluation: age, gender, 
quantitative LTBI test result, previous BCG vaccination, recent contact (including 
proximity and infectiousness of index case), migration from a high TB incidence 
setting, time since migration, solid organ or hematological transplant receipt, HIV 
status and TB preventative treatment commencement.

Variable transformations. Previous data showed that quantitative TST, 
QuantiFERON Gold-in-Tube and T-SPOT.TB results are associated with risk 
of incident TB16. However, each LTBI test was reported using different scales, 
and it has hitherto been unclear whether quantitative values of each test are 
equivalent with respect to incident TB risk. To assess this further, we examined 
a subpopulation of the entire cohort where all three tests were performed among 
the same participants in head-to-head studies. We normalized quantitative 
results for the TST, QuantiFERON Gold-in-Tube and T-SPOT.TB to a percentile 
scale using this head-to-head population and examined the association between 
normalized result and risk of incident TB using Cox proportional hazards models 
with restricted cubic splines. Because TST cutoffs are frequently stratified by 
BCG vaccination and HIV status57,58, we also examined whether these variables 
modified the association between quantitative TST measurement and incident 
TB risk in the head-to-head subpopulation. Because there was no evidence that 
including interaction terms for either BCG or HIV improved model fit (based on 
Akaike Information Criteria (AIC)), we used unadjusted TST measurements. This 
analysis revealed that the normalized percentile results for each test (unadjusted 
TST, QuantiFERON Gold-in-Tube and T-SPOT.TB) appeared to be associated with 
similar risk of incident TB (Extended Data Fig. 8). The LTBI tests implemented 
differed between contributing studies. From this point, all LTBI test results 
were, therefore, normalized to this percentile scale to enable data harmonization 
across studies, by transforming raw quantitative results to the relevant percentile 
using look-up tables derived from the head-to-head population (Supplementary 
Table 10). Because most people evaluated for LTBI under routine programmatic 
conditions have a single test performed, we included only one test result per 
participant in the prediction model. We preferentially included tests where 
quantitative results were available. Where quantitative results were available for 
more than one test, we preferentially included the QuantiFERON result (because 
this was the most commonly used test in the data set), followed by T-SPOT.TB and 
then the TST.

Recent contacts were categorized as either ‘smear positive and household’ 
or ‘other’ contacts, because there was no evidence of separation of risk among 
additional subgroups of the ‘other’ contacts stratum during exploratory univariable 
analyses (Extended Data Fig. 8). Because we considered migration from a high 
TB-burden country (defined as annual TB incidence ≥100 per 100,000 persons at 
the year of migration) to be a proxy for previous TB exposure, we included this in 
a composite ‘TB exposure’ variable, which included four mutually exclusive levels: 
household contact of smear-positive index case; ‘other’ contact; migrant from 
country with high TB incidence, without recent contact; and no exposure. There 
was no evidence of separation of incident TB risk when stratified by TB incidence 
in country of birth above the binary country of birth threshold (TB incidence ≥100 
per 100,000 persons) among migrants or when stratified by country of birth among 
recent contacts (Extended Data Fig. 8).

Age and normalized test result variables were modeled using restricted cubic 
splines (using a default of five knots placed at recommended intervals59) to account 
for their nonlinear associations with incident TB.

Multiple imputation. A data dictionary and a summary of missingness of candidate 
predictor variables are provided in Supplementary Table 11. We performed 
multi-level multiple imputation to account for sporadically and systematically 
missing data (assuming missingness at random48) while respecting clustering by 
source study, in accordance with recent guidance45, using the micemd package 
in R60. We used predictive mean matching for continuous variables owing to 
their skewed distributions. We included all variables (including transformations) 
assessed in the downstream prediction model in the imputation model, along 
with auxiliary variables, to ensure congeniality. Multi-level imputation was 
done separately for contacts and non-contacts owing to expected heterogeneity 
between these groups. We generated ten multiply imputed data sets, with 25 
between-imputation iterations. Model convergence was assessed by visually 
examining plots of imputed parameters against iteration number. All downstream 
analyses were done in each of the ten imputed data sets; model coefficients and 
standard errors were combined using Rubin’s rules61. No imputation was done 
for participants missing binary LTBI test results or for those lost to follow-up; 
these individuals were excluded. For recent TB contacts or people screened owing 
to HIV infection with missing data on transplant status, this was assumed to be 
negative owing to the very low prevalence of transplant receipt when observed 
among these risk groups (<0.5%).

Variable selection and final model development. We performed backward selection 
of the nine candidate predictors in each of the pooled imputed data sets using 
AIC. Variables that were selected in more than 50% of the imputed data sets were 
included in the final model. T cell responses to M. tuberculosis might be impaired 
in the context of immunosuppression (including among people with HIV or 
transplant recipients)7. We, therefore, also tested whether there was a significant 
interaction between HIV or transplant and the normalized percentile test result 
variable, to assess whether the association between the quantitative test result and 
incident TB risk varied according to HIV or transplant status. This analysis showed 
no evidence of effect modification, based on AIC; thus, these interaction terms 
were not included in the final model.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


We used flexible parametric survival models to facilitate estimation of baseline 
risk throughout the duration of follow-up62 using the rstpm2 package63. We 
examined a range of degrees of freedom for the baseline hazard, using proportional 
hazards and odds scales, and selected the final model parameters based on the 
lowest AIC across the imputed data sets. Visual inspection of survival curves 
suggested non-proportional hazards for the composite exposure category; we, 
therefore, assessed whether including this variable as a time-varying covariate (by 
including an interaction between the composite exposure covariate of interest and 
time) improved model fit64. Because the AIC for the time-varying covariate model 
was lower across all imputed data sets, this time-varying covariate approach was 
used for the final model.

IECV. After development of the final model, we used the IECV framework for 
model validation, allowing concurrent assessment of between-study heterogeneity 
and generalizability34. In this process, one entire contributing study data set is 
iteratively discarded from the model training set and used for external validation. 
This process is repeated until each data set has been used once for validation. The 
primary outcome for validation was 2-year risk of incident TB. We included data 
sets with a minimum of five incident TB cases, and where participants had been 
included regardless of LTBI test result, as the primary validation sets. We assessed 
model discrimination using the C-statistic for 2-year TB risk. Model calibration 
was assessed by visually examining calibration plots of predicted risk versus 
Kaplan–Meier-estimated observed 2-year risk in quintiles and using the calibration 
slope and CITL statistics65. Calibration slopes greater than 1 suggest under-fitting 
(predictions are not varied enough), whereas slopes less than 1 indicate over-fitting 
(predictions are too extreme). Slopes were calculated by fitting survival models 
with the model linear predictor as the sole predictor; the calculated coefficient 
for the linear predictor provides the calibration slope. CITL indicates whether 
predictions are systematically too low (CITL > 0) or too high (CITL < 0). We 
calculated CITL for each validation set by fixing all model coefficients from model 
development (including the baseline hazard terms) and re-estimating the intercept. 
The difference between the development model and recalculated validation model 
intercepts provided the CITL statistic66.

Pooling of IECV parameters and random effects meta-analysis. IECV was performed 
on each imputed data set. Validation set C-statistics, calibration slopes and CITL 
metrics were pooled for each study across imputations using Rubin’s rules61. We 
then meta-analyzed these metrics across validation studies with random effects, 
using logit-transformed C-statistics as previously recommended67, to derive pooled 
discrimination and calibration estimates. The IECV validation sets were also 
pooled, with averaging of the predicted 2-year risk of TB for each individual in 
the validation sets across imputations, for downstream decision curve analyses as 
described below.

Decision curve analysis. Decision curve analysis complements model validation 
parameters by assessing the potential clinical utility of a prediction model35,36. 
Net benefit quantifies the proportion of true-positive cases detected minus the 
proportion of false positives, with weighting of each by the ‘threshold probability’35. 
The ‘threshold probability’ reflects both the risk:benefit ratio of initiating 
preventative treatment and the percentage cut-point for the prediction model, 
above which treatment is recommended. We calculated net benefit across a range 
of clinically relevant threshold probabilities (to account for a range of clinician 
and patient preferences) in comparison to the default strategies of treating either 
all or no patients with a positive LTBI test. We analyzed net benefit using the stdca 
command from the ddsjoberg/dca package in R68, using the stacked validation 
sets of untreated participants with positive LTBI tests from IECV (to ensure that 
each individual for whom a prediction was generated had not been included in the 
model training set used to derive that prediction).

Sensitivity analyses. First, we re-examined population-level TB risk without 
exclusion of prevalent TB cases. Second, we recalculated prediction model 
parameters using alternative definitions of prevalent TB (ranging from diagnosis 
within 0–180 d of recruitment); a complete case approach (for all variables except 
for HIV status, which was assumed to be negative where this was missing); and 
exclusion of participants who received preventative treatment. Parameters for each 
of these models were compared with the primary model (without time-varying 
covariates to facilitate interpretation).

We also examined IECV discrimination parameters for validation data sets 
when 1) restricted to participants with positive binary LTBI tests; 2) excluding 
those who received preventative treatment; and 3) imputing an average quantitative 
positive or negative LTBI test result (based on the medians among the study 
population), according to the binary result. The latter analysis was done to  
assess model performance in situations where the quantitative test result  
was not available.

Ethics. This study involved analyses of fully de-personalized data from previously 
published cohort studies, with data pooling via a safe haven. Ethical approvals for 
sharing of data were sought and obtained by contributors of individual participant 
data, where required.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The individual participant data pooled for this analysis are subject to data sharing 
agreements with the original study authors. The data might be shared with 
interested parties by the corresponding authors of the original studies, subject to 
data sharing agreements.

Code availability
The final prognostic model developed in this study has been made freely available 
to enable immediate implementation in clinical practice and independent external 
validation in new data sets (periskope.org). The code underlying the prediction 
tool is available at github.com/rishi-k-gupta/PERISKOPE-TB.
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