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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game. A

(single-valued) solution for TU-games assigns a payoff distribution to every TU-game. A

well-known solution is the nucleolus.

A cooperative game with a permission structure describes a situation in which players

in a cooperative TU-game are hierarchically ordered in the sense that there are players that

need permission from other players before they are allowed to cooperate. The corresponding

restricted game takes account of the limited cooperation possibilities by assigning to every

coalition the worth of its largest feasible subset.

In this paper we consider the class of non-negative additive games with an acyclic

permission structure. This class generalizes the so-called peer group games being non-

negative additive games on a permission tree. We provide a polynomial time algorithm for

computing the nucleolus of every restricted game corresponding to some disjunctive non-

negative additive game with an acyclic permission structure. We discuss an application

to market situations where sellers can sell objects to buyers through a directed network of

intermediaries.

Keywords: TU-game, additive game, acyclic permission structure, disjunctive approach,

peer group game, nucleolus, algorithm, complexity.

AMS subject classification: 91A12, 5C20

JEL code: C71



1 Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set of players

and for any subset (coalition) of players a worth representing the total payoff that the

coalition can obtain by cooperating. A payoff vector is a vector which gives a payoff to

each of the players, i.e., each component corresponds to precisely one of the players. A

payoff vector is efficient if the sum of the payoffs is equal to the worth of the grand coalition

consisting of all players. A set-valued solution for TU-games assigns a set of payoff vectors

(possibly empty) to every TU-game. A single-valued solution assigns precisely one payoff

vector to every TU-game. A solution is said to be efficient if for every game any payoff

vector assigned by the solution is efficient. The most well-known efficient set-valued solution

is the Core (Gillies, 1953). The two most well-known efficient single-valued solutions are

the Shapley value (Shapley, 1953) and the nucleolus (Schmeidler, 1969).

In this paper we assume that the players in a TU-game are part of some hierarchical

structure that is represented by a directed graph such that some players need permission

from other players before they are allowed to cooperate within a coalition. In the literature

two approaches to these games with a permission structure can be found. In the conjunctive

approach, as considered in Gilles, Owen and van den Brink (1992) and van den Brink and

Gilles (1996), it is assumed that each player needs permission from all its predecessors

in the directed graph before it is allowed to cooperate. Alternatively, in the disjunctive

approach as developed in Gilles and Owen (1994) and van den Brink (1997), a player

needs permission to cooperate of at least one of its direct predecessors (if it has any). So,

according to the conjunctive approach a coalition is feasible if and only if for any player

in the coalition, all its predecessors are also in the coalition, whereas according to the

disjunctive approach a coalition is feasible if and only if for any player in the coalition at

least one of its predecessors (if it has any) is also in the coalition. Following an approach

similar to that of Myerson (1977) for games with limited communication (graph) structure,

in both the conjunctive and disjunctive approach to games with a permission structure a

restricted game is derived. In games with a permission structure the restricted game assigns

to every coalition the worth of its largest feasible subset. Applying well-known solutions

as the Shapley value, Core or nucleolus to such restricted games yields solutions for games

with a permission structure.

A special subclass of games with a permission structure arises from peer group

situations, as introduced in Brânzei, Fragnelli and Tijs (2002). A peer group situation

is a triple consisting of a set of players, a hierarchical structure represented by a rooted

(directed) tree, and for each player a non-negative real number representing its potential

individual (economic) contribution to the society of all players. This yields an associated

TU-game being the additive game in which the worth of any coalition is equal to the sum

1



of the individual potentials of its members. In a rooted directed tree there is one top node

(not having a predecessor), while any other node has precisely one predecessor. So, in

case the hierarchical structure on the player set is a rooted directed tree, the conjunctive

approach and the disjunctive approach as described above, coincide. The restricted game

of the associated TU-game with respect to such a permission structure is called a peer

group game. These peer group games have many interesting applications, see Brânzei et

al. (2002). Clearly, in a peer group game the worth of a coalition is the sum of the

individual potentials of the members of the largest feasible subset of the coalition. Since

the top player is always in this set when it belongs to the coalition, and the largest feasible

set is the empty set for any coalition not containing the unique top player, it follows that

the top player is a veto player, i.e., any coalition not containing the top player has zero

worth in the restricted game. In this paper we generalize peer group games by considering

non-negative additive games on acyclic permission structures (which are not necessarily

trees). Consequently, these games need not to contain a veto player1.

In Arin and Feltkamp (1997) an exponential time algorithm has been given for

veto-rich games, i.e., games that have at least one veto player. For the special case of

a peer group game a polynomial time algorithm is given in Brânzei, Solymosi and Tijs

(2005) and for a class of games satisfying so-called weak digraph monotonicity and weak

digraph concavity conditions with respect to acyclic, quasi-strongly connected permission

structures, a polynomial time algorithm is given in van den Brink, Katsev and van der

Laan (2008). This latter class of games is more general than the class of peer group games,

but the acyclic permission structure is still required to be quasi-strongly connected. In this

paper we provide a polynomial time algorithm to compute the nucleolus of the restricted

game induced by situations in which the associated TU-game is still additive, but in which

we allow for any acyclic permission structure, so allowing more than one top player. This

considerably widens the applications, for example we can consider situations where sellers

can sell objects to buyers through a directed network of intermediaries. Wherease quasi-

strongly connected networks only can be used for situations with one seller, weakening

this by only requiring that the network is acyclic, we can also study such situations with

more than one seller. The algorithm presented in this paper computes the nucleolus in

polynomial time through a number of iterations. In each iteration a subgame with an

acyclic, quasi-strongly connected permission structure is considered and the algorithm

developed in van den Brink et al. (2008) is used to compute the nucleolus for this subgame.

This paper is organized as follows. Section 2 is a preliminary section containing co-

operative TU-games (with special attention for the nucleolus), directed graphs and games

1A further generalization are the so-called interior operator games where the game is non-negative and

additive and the set of feasible coalitions is an antimatroid, see Bilbao et al. (2005, 2008).
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with a permission structure. In Section 3 we provide the algorithm to find the nucleolus

for disjunctive non-negative additive games with an acyclic permission structure. Section 4

shows that the algorithm indeed computes the nucleolus for this class of games. In Section

5 we discuss some properties of the algorithm, while Section 6 discusses its complexity,

showing that it indeed finds the nucleolus in polynomial time. Section 7 illustrates the

algorithm with an example of a market situation where sellers can sell objects to buyers

through a directed network of intermediaries. Finally, there is an appendix with the al-

gorithm of van den Brink et al. (2008) that is used in each iteration of the algorithm to

compute the nucleolus of a non-negative additive subgame with an acyclic, quasi-strongly

connected permission structure.

2 Preliminaries

2.1 TU-games

A situation in which a finite set of players can obtain certain payoffs by cooperating can be

described by a cooperative game with transferable utility, or simply a TU-game, being a pair

(N, v), where N ⊂ IN is a finite set of n players and v : 2N → R is a characteristic function

on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S, i.e.,

the members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate.

For simplicity, for a single player i we denote its worth v({i}) by v(i). When there is no

confusion about the player set N we often denote the game (N, v) just by its characteristic

function v. We denote the collection of all characteristic functions on N by GN and n = |N |

denotes the cardinality of N . Further, for game v ∈ GN and coalition K ⊆ N we define

the subgame vK ∈ GK by vK(S) = v(S) for all S ⊆ K.

A payoff vector for a game is a vector x ∈ IRn assigning a payoff xi to every i ∈ N .

In the sequel, for S ⊆ N we denote x(S) =
∑

i∈S xi. A payoff vector is efficient if

x(N) = v(N) and it is individually rational if xi ≥ v(i) for every i ∈ N . The imputation

set I(N, v) of game (N, v) is given by

I(N, v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v(i) for every i ∈ N},

i.e., I(N, v) is the set of all efficient and individually rational payoff vectors. A (set-valued)

solution F on GN assigns a set F (N, v) ⊂ R
n of payoff vectors to every characteristic

function v ∈ GN . The most well-known set-valued solution is the Core assigning to every

v ∈ GN the set

C(N, v) = {x ∈ I(N, v)|x(S) ≥ v(S) for all S ⊂ N},
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i.e., it is the set of all imputations that are stable in the sense that no coalition can do

better by separating from the grand coalition. The Core of (N, v) is non-empty if and only

if the game is balanced, see e.g. Bondareva (1962) or Shapley (1967).

Another (set-valued) solution is the Kernel assigning to every v ∈ GN the set

K(N, v) = {x ∈ I(N, v)| [sij(x) = sji(x)] or [sij(x) > sji(x) and xj = v(j)] for all i, j ∈ N},

i.e., the set of all imputations such that for each pair of players i and j the complaint

sij(x) = max{v(S)− x(S) | i ∈ S, j �∈ S} of i against j is at least equal to the complaint

of j against i, with equality whenever j gets more than its individual worth v(j).

A solution F is said to be single-valued if it assigns to any v ∈ GN a unique payoff

vector. One of the two most well-known single-valued solutions is the nucleolus (Schmeidler,

1969).2 To define the nucleolus, consider a given characteristic function v ∈ GN , and let

x ∈ IRn be a payoff vector. Then the excess e(S, x) of a coalition S ⊆ N is defined by

e(S, x) = v(S)− x(S).

Further, let E(x) be the (2n − 2)-component vector that is composed of the excesses of

all coalitions S ⊂ N, S �= ∅, in a non-increasing order, so E1(x) ≥ E2(x) ≥ . . . ≥

E2n−2(x). Then the nucleolus Nuc(N, v) of the game (N, v) is the unique imputation

which lexicographically minimizes the vector-valued function E(·) over the imputation set.

Formally,

Nuc(N, v) = x ∈ I(N, v) such that E(x) �L E(y) for all y ∈ I(N, v),

where �L denotes the lexicographic order of vectors. It is well-known that Nuc(N, v) ∈

K(N, v) and that Nuc(N, v) ∈ C(N, v) when C(N, v) �= ∅. So, when the game has a

nonempty Core, then the nucleolus is in the intersection of the Kernel and the Core.

In a game (N, v), a coalition S is called inessential if it has a partition {S1, . . . , Sr}

with r ≥ 2, such that v(S) ≤
∑r

j=1 v(Sj). Coalitions which are not inessential are called

essential. Notice that single player coalitions are always essential. It is straightforward to

observe that for an inessential coalition S it holds that

e(S, x) ≤
r∑

j=1

e(Sj, x), for all x ∈ IR
n.

Therefore the Core, and thus also the nucleolus, is independent of inessential coalitions, as

was noticed by Huberman (1980). In fact, in any n player game there are at most (2n− 2)

coalitions which actually determine the nucleolus, see Brune (1983) and Reijnierse and

Potters (1998). However, as noticed by Brânzei et al. (2005), identifying these coalitions

is no less laborious as computing the nucleolus itself.

2The other one is the Shapley value (Shapley, 1953).
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2.2 Directed graphs

A directed graph or digraph is a pair (N,D) where N = {1, ..., n} is a finite set of nodes

(representing the players) and D ⊆ N × N is a binary relation on N . Given (N,D) and

S ⊆ N , the graph (S,D(S)) is the subgraph on S given by D(S) = {(i, j) ∈ D|i, j ∈ S}.

In the sequel we simply refer to D for a digraph (N,D) and to D(S) for the subgraph

(S,D(S)). For i ∈ N the nodes in SD(i) := {j ∈ N | (i, j) ∈ D} are called the successors

of i, and the nodes in PD(i) := {j ∈ N | (j, i) ∈ D} are called the predecessors of i. For

a set T ⊆ N , let SD(T ) = ∪i∈T SD(i) denote the union of the sets of successors of the

players in T , respectively PD(T ) = ∪i∈T PD(i) the set of all predecessors the players in T .

Further, TD = {i ∈ N | PD(i) = ∅} denotes the set of top nodes in D, being the set of

nodes not having a predecessor.

For given D on N , a path between i and j in N is a sequence of distinct nodes

(i1, . . . , im) such that i1 = i, im = j, and {(ik, ik+1), (ik+1, ik)}∩D �= ∅ for k = 1, . . . ,m−1.

A set of nodes T ⊆ N is connected in digraph D if there is a path between any two nodes in

T that only uses arcs between nodes in T , i.e., if for every i, j ∈ T there is a path (i1, . . . , im)

between i and j such that {i1, . . . , im} ⊆ T . A component in D is a maximally connected

set T of nodes, i.e., T is connected and T ∪ {i} is not connected for every i ∈ N \ T . A

path (i1, . . . , im) from i1 to im is a directed path in D if (ik, ik+1) ∈ D for k = 1, . . . ,m− 1.

For a set of nodes T ⊂ N and i �∈ T , we call a directed path (i1, . . . , im) a path from T to

i if i1 ∈ T and im = i. For every (directed) path p = (i1, . . . im) we denote the set of nodes

on that path by H(p) = {i1, . . . , im}. A directed path (i1, . . . , im), m ≥ 1, in D is a cycle

in D if (im, i1) ∈ D. We call digraph D acyclic if it does not contain any cycle. Note that

acyclicity of a digraph D implies that D is irreflexive, i.e., (i, i) �∈ D for all i ∈ N . The

collection of all acyclic digraphs on N is denoted by DN . For any D ∈ DN the set of top

nodes TD is not empty and for every i �∈ TD there is a path from TD to i. The collection

of all paths p from TD to i �∈ TD is denoted by Pi.

A digraph is called quasi-strongly connected if there exists a node i0 ∈ N , such

that for every j �= i0 there is a directed path from i0 to j. When D is, moreover, acyclic

then TD = {i0}, i.e., i0 is the unique top node in N . A quasi-strongly connected digraph

D ∈ DN is a rooted directed tree with the root being the top node i0 if there is precisely

one path from top-node i0 to every other node.

By ŜD(i) we denote the set of nodes that can be reached from i by a directed path,

i.e., j ∈ ŜD(i) if and only if there exists a sequence of players (h1, . . . , ht) such that h1 = i,

hk+1 ∈ SD(hk) for all 1 ≤ k ≤ t − 1, and ht = j.3 The players in ŜD(i) are called the

subordinates of i, and the players in P̂D(i) := {j ∈ N | i ∈ ŜD(j)} are called the superiors

of i. For two different nodes i and j, we say that node j ∈ N is a complete subordinate

3So, ŜD(i) is the set of successors of i in the transitive closure of D.
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of node i ∈ N in D if every path from TD to j contains node i. The set of complete

subordinates of node i is denoted by SD(i), i.e.,

SD(i) = {j ∈ N \ {i} | i ∈ H(p) for every p ∈ Pj}.

Also we call the players in the set

PD(i) = {j ∈ N \ {i} | j ∈ H(p) for every p ∈ Pi}

the complete superiors of i in D.

2.3 Restricted games

In this paper we assume that the players in a TU-game are part of a hierarchical structure

that is represented by a directed graph, refered to as a permission structure, such that some

players need permission from other players before they are allowed to cooperate within a

coalition. A triple (N, v,D) with (N, v) a TU-game and (N,D) a digraph with the player

set N as the set of nodes is called a game with a permission structure. In the sequel we

assume that D ∈ DN .

Assumption 2.1 (N,D) is acyclic.

As noticed in the introduction we can distinguish between the conjunctive and disjunctive

approach. In this paper we consider the disjunctive approach as developed in Gilles and

Owen (1994) and van den Brink (1997), where a player needs permission to cooperate of

at least one of its direct predecessors (if it has any). Therefore a coalition is feasible if and

only if for any player in the coalition at least one of its predecessors (if it has any) is also in

the coalition. So, for permission structure (N,D), the set of disjunctive feasible coalitions

is given by

ΦD = {S ⊆ N |PD(i) ∩ S �= ∅ for all i ∈ S \ TD } .

For any S ⊆ N , let σ(S) = ∪{T ∈ ΦD | T ⊆ S} be the largest disjunctive feasible subset

of S in D.4 By Assumption 2.1 we have that for every S ⊆ N with σ(S) �= ∅, the subgraph

(σ(S),D(σ(S)) is acyclic.

Given the triple (N, v,D) with v ∈ GN and D ∈ DN , under the disjunctive permis-

sion structure the induced restricted game r : 2N → R is given by

r(S) = v(σ(S)) for all S ⊆ N. (2.1)

4Every coalition having a unique largest feasible subset follows from ΦD being closed under union.
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If |TD| = 1 then D is quasi-strongly connected and for the unique top player i0 it holds

that r(S) = 0 when i0 �∈ S, i.e., the restricted game is a veto-rich game with top-player

i0 as veto player.
5 If D is a rooted directed tree, then |PD(i)| = 1 for all i �= i0 and the

conjunctive and disjunctive approach coincide. In this case the triple (N, v,D) is a peer

group situation when the game (N, v) is a non-negative additive game (see Brânzei et al.

(2002)), i.e., there exist non-negative real numbers ai, i ∈ N , such that

v(S) =
∑

i∈S

ai, S ⊆ N.

Then the restricted game (N, r) as defined in (2.1) is a so-called peer group game and is

given by

r(S) = v(σ(S)) =
∑

{i∈S|P̂D(i)⊆S}

ai.

A peer group game (N, r) is a monotone veto-rich game and has a non-empty Core. In

particular the payoff vector x ∈ IRn+ given by xi0 = v(N) and xi = 0, i �= i0, belongs

to the Core. On the other hand it holds that r(S) ≤
∑

i∈S ai and thus also the payoff

vector x ∈ IRn+ given by xi = ai for all i ∈ N belongs to the Core. As noticed in Brânzei

et al. (2002), this class of games with permission structure contains several interesting

applications. Also the two games v and its restriction r are games as considered in Ni

and Wang (2007) to study polluted river games. In particular, their LR polluted river is a

non-negative additive game, and their DR polluted river game is the restriction R of this

game on the permission structure that represents the linear ordering of the players along

the river from upstream to downstream.

3 A polynomial time algorithm for the nucleolus based

on quasi-strongly connectedness

In the remaining of this paper we consider a non-negative additive game with acyclic

permission structure (N, v,D). Since σ(S) ⊆ S for any S ⊆ N , also in this case we have

that r(S) = v(σ(S)) ≤
∑

i∈S ai. Therefore the payoff vector x ∈ IR
n
+ given by xi = ai for

all i ∈ N is in the Core and thus the Core is nonempty and contains the nucleolus.

We first show that for any non-negative additive game with acyclic permission

structure (N, v,D), there exists a subset K ⊆ N with the properties that (i) the sub-

graph (K,D(K)) is an acyclic, quasi-strongly connected permission structure and (ii)

5A game (N, v) is a veto-rich game if it contains a veto player being a player i such that v(S) = 0 when

i �∈ S.
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∑
j∈K xj =

∑
j∈K aj for any payoff vector x ∈ IR

n in the Core of the restricted game

(N, r), so also for the nucleolus. These properties play an important role in an algorithm

to compute the nucleolus of the restricted game obtained from a non-negative additive

game with acyclic permission structure (N, v,D). In fact the nucleolus is obtained by

computing the nucleolus of a sequence of smaller non-negative additive games with quasi-

strongly connected permission structures. By definition the properties hold for K = N

when the graph has only one top player. So, in the sequel of this section we only consider

the case that |TD| ≥ 2. The first lemma is obvious and stated without proof.

Lemma 3.1 For every acyclic permission structure (N,D) it holds: j is a (complete)

superior of i if and only if i is a complete subordinate of j.

For a top player t ∈ TD, let the set U
t be defined by SD(t) ∪ {t}, i.e., U t contains

top player t together with all its complete subordinates. Observe that TD \U
t �= ∅, because

|TD| ≥ 2 and (TD \ {t}) ∩ U t = ∅. Further, for i ∈ SD(t), define

Ui = ∪ {H(p) | p is a directed path from t to i},

i.e., the set Ui ⊂ N is the union of all players on all directed paths from top player t to its

complete subordinate i. Then we have the next lemma.

Lemma 3.2 Let (N,D) be an acyclic permission structure, t ∈ TD a top player, and

i ∈ SD(t) a complete subordinate of t. Then Ui ⊆ U t.

Proof. By definition we have that t ∈ U t. Since t is a complete superior of i, it follows

that t is a complete superior of any h ∈ Ui \ {t}. Suppose not. Then for some h ∈ Ui \ {t},

there is a path from a top player t′ �= t to h, and so also a path from t′ to i, contradicting

that t is a complete superior of i. By Lemma 3.1 we have that any h in Ui is a complete

subordinate of t, and thus h ∈ U t. �

Since Ui ⊆ U t for all i ∈ U t = SD(t) ∪ {t} (see Lemma 3.2) it follows that

U t =

{
{t} if SD(t) = ∅,

∪{i∈SD(t)} Ui otherwise.

So, U t is the union of all sets Ui of the complete subordinates of top player t when t has

at least one complete subordinate, and U t = {t} otherwise.

The next proposition shows the existence of a subset K ⊆ N such that the subgraph

(K,D(K)) is an acyclic, quasi-strongly connected permission structure.

Proposition 3.3 Let (N,D) be an acyclic permission structure. Then for every t ∈ TD

it holds that the subgraph (U t, D(U t)) is an acyclic, quasi-strongly connected permission

structure with t its unique top node.
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Proof. First, when SD(t) = ∅, then U t = {t} and the statement is true. Otherwise, let

i be a complete subordinate of t. Obviously t is the unique top-player in the subgraph

(Ui, D(Ui)). Further, the subgraph (Ui, D(Ui)) is acyclic and quasi-strongly connected.

Acyclicity follows from the acyclicity of D and the fact that D(Ui) ⊆ D. Quasi-strongly

connectedness follows from acyclicity of D and the fact that Ui is the union of all directed

paths from t to i. Then the result follows because U t = ∪{i∈SD(t)} Ui. �

The next lemma states that when N is partitioned in two disjunctive feasible sets,

for both sets it holds that the total payoff of its players in every core payoff vector of the

restricted game is equal to their own value.

Lemma 3.4 Let A,B ∈ ΦD be two disjunctive feasible coalitions in a non-negative additive

game with acyclic permission structure (N, v,D) such that A ∩ B = ∅ and A ∪ B = N .

Then x(A) =
∑

i∈A ai and x(B) =
∑

i∈B ai for every core element x ∈ C(N, r).

Proof. By definition of the restricted game (N, r) and feasibility of A we have that

r(A) = v(σ(A)) = v(A) =
∑

i∈A ai and r(B) = v(σ(B)) = v(B) =
∑

i∈B ai. Now,

let x ∈ C(N, r). Then x(A) ≥ r(A) and x(B) ≥ r(B). Form the second inequality we

obtain that that x(A) = r(N) − x(B) ≤
∑

i∈N ai −
∑

i∈B ai =
∑

i∈A ai = r(A). Hence

x(A) = r(A) =
∑

i∈A ai. Analogous x(B) = r(B) =
∑

i∈B ai. �

We now state the final result of this section.

Proposition 3.5 Let (N,D) be an acyclic permission structure and t ∈ TD. Then x(U t) =∑
i∈Ut ai and x(N \ U t) =

∑
i∈N\Ut ai for every core element x ∈ C(N, r).

Proof. By definition we have that U t is disjunctive feasible. To show that also N \ U t is

disjunctive feasible, consider a player i ∈ N \ U t. Since i �= t and i is also not a complete

subordinate of t, there is a path from TD \{t} to i. Hence N \U t is disjunctive feasible. So,

both U t and N \ U t are disjunctive feasible and thus the proposition follows by applying

Lemma 3.4 to A = U t and B = N \ U t. �

From the Propositions 3.3 and 3.5 it follows that for any t ∈ TD it holds that

U t ⊂ N satisfies both properties that (U t, D(U t)) is an acyclic, quasi-strongly connected

permission structure and
∑

j∈Ut xj = r(U t) =
∑

j∈Ut aj for every x ∈ C(N, r), so also for

the nucleolus. This property is now used to compute the nucleolus of the restricted game

(N, r) obtained from a non-negative additive game with acyclic permission structure (that

is not necessarily quasi-strongly connected) in a finite number of steps. At each step we

compute the nucleolus of a smaller additive game with an acyclic, quasi-strongly connected

permission structure by applying the O(n4) algorithm of van den Brink et al. (2008) for
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such games. This algorithm is an adaptation of the algorithm of Arin and Feltkamp (1997),

which computes the nucleolus of veto-rich games in exponential time. Note that permission

games with an acyclic, quasi-strongly connected permission structure are indeed veto-rich

games, which is not true for the ive the algorithm, we introduce one more notation. Let

(N,D) be an acyclic permission structure, t ∈ TD be one of the top players andK = N \U t.

Then the set DK ∈ DK on the set of players K is given by

(i, j) ∈ DK if and only if (i, j) ∈ D and PD(j) ∩ U t = ∅. (3.2)

So, for two players i, j ∈ K, (i, j) is an arc in DK if and only if (i, j) is an arc in D and j

does not have a predecessor in U t. Stated differently, DK contains all arcs in D(K), except

the arcs (i, j) such that j is a successor of top player t or of one of its complete subordinates.

Finally, we assume that the players are enumerated (labeled) by the numbers 1, 2, . . . , n in

such a way that for any i, j ∈ {1, . . . , n} it holds that i < j if (i, j) ∈ D. From the theory

on acyclic directed graphs it is well-known that such a enumeration exists. Observe that

this assumption implies that node 1 ∈ TD.

Algorithm

Step 1 Set k = 1, N1 = N , D1 = D and t1 = 1. Goto Step 2.

Step 2 Consider the non-negative additive game with acyclic, quasi-strongly connected

permission structure (U tk , vk, Dk(U
tk)) with

vk(U) = v(U) for all U ⊆ U tk . (3.3)

Let rk be the restricted game of (U
tk , vk, Dk(U

tk)). Goto Step 3.

Step 3 Apply the (polynomial time) algorithm of van den Brink et al. (2008) (see

the appendix) to find the nucleolus of the restricted game (U tk , rk). Assign yi =

Nuci(U
tk , rk) to every i ∈ U tk . Goto Step 4.

Step 4 If U tk = Nk then Stop. Otherwise, goto Step 5.

Step 5 Define Nk+1 = Nk \ U tk and Dk+1 ∈ DNk+1 by Dk+1 = D
Nk+1
k (i.e., Dk+1 = DK

as defined in formula (3.2) with D = Dk and K = Nk \ U tk). Define tk+1 ∈ TDk+1

as the top player in Dk+1 with the lowest label (tk+1 ≤ h for every h ∈ TDk+1).

Consider the set U tk+1 consisting of tk+1 and all its complete subordinates in the

graph (Nk+1, Dk+1). Set k = k + 1 and return to step 2.
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4 The algorithm works

In this section we prove that the algorithm indeed finds the nucleolus of the original non-

negative additive game with acyclic permission structure (N, v,D). As a first observation,

according to Proposition 3.5 it must hold that
∑

i∈U1 Nuci(N, r) =
∑

i∈U1 ai, so the

total payoff
∑

i∈U1 ai assigned in the first iteration of the algorithm to the players in U1

is indeed equal to the total payoff that the players in U1 attain at the Nuc(N, r). Of

course, we still have to prove that the individual payoffs assigned at the first iteration are

the individual payoffs for the players in U1 in Nuc(N, r), and subsequently for the payoffs

assigned at any next iteration. This will be proved by using the Davis-Maschler reduced

game property. For a game (N, v), let T ⊂ N be a nonempty coalition and x ∈ IRn

a payoff vector. Then the Davis-Maschler reduced game on T at x is the game (T, vxT )

given by vxT (T ) = v(N) − x(N \ T ) and vxT (S) = maxQ⊆N\T (v(S ∪ Q) − x(Q)), S ⊂ T ,

S �= T . Observe that in the definition of the reduced game only the values xj of the players

j ∈ N \ T appear.

Property 4.1 Davis-Maschler reduced game property

For a game (N, v), let x be the Nucleolus of (N, v). Then for any T ⊂ N it holds that

Nuci(N, v) = Nuci(T, v
x
T ), for all i ∈ T.

In the sequel we will denote the characteristic function of the Davis-Maschler reduced

game with respect to the nucleolus x = Nuc(N, v) and coalition T ⊂ N just by v′, if there

is no confusion6. Recall that for game v ∈ GN and coalition T ⊂ N , the subgame vT ∈ GT

is given by vT (S) = v(S) for all S ⊆ T . We now have the following proposition with respect

to U t for some t ∈ TD. For notational simplicity, in the following we denote U
t = K.

Proposition 4.2 For a non-negative additive game with acyclic permission structure (N, v,D)

with |TD| ≥ 2, let t ∈ TD be a top player and K = U t. Then the Davis-Maschler reduced

game (K, r′) of the restricted game (N, r) with respect to the nucleolus x ∈ IRn and the set

K, coincides with the subgame (K, rK) of (N, r).

Proof. First, observe that K is feasible and thus rK(K) =
∑

i∈K ai. On the other

hand r′(K) = r(N) − x(N \ K) =
∑

i∈N ai −
∑

i∈N\K ai =
∑

i∈K ai, where the first

equality is by definition of the reduced game and the second equality by Proposition 3.5.

So, rK(K) = r′(K) =
∑

i∈K ai.

6In general, the Davis-Maschler reduced game property is stated for an arbitrary solution. Since we

apply it here to compute the nucleolus, we only state it in terms of this particular solution.
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Next, consider set U ⊂ K. By definition of the Davis-Maschler reduced game we

have

r′(U) = max
S⊆N\K

(r(U ∪ S)− x(S)). (4.4)

We first show that r′(U) = r′(σ(U)). Therefore it is sufficient to show that for any S ⊆

N \ K it holds that σ(U ∪ S) = σ(σ(U) ∪ S), because for any S ⊆ N \ K the value of

r(U ∪ S) in equation (4.4) is equal to the worth of σ(U ∪ S) in game v. Since σ(U) ⊆ U ,

it is evident that σ(σ(U) ∪ S) ⊆ σ(U ∪ S). Suppose that the inclusion does not hold the

other way around, i.e., there exists some player i ∈ σ(U ∪ S) \ σ(σ(U) ∪ S). For this

player there is a path p from TD to i consisting of players in σ(U ∪S) only, and there does

not exist a path from TD to i consisting of players in σ(σ(U) ∪ S) only. Consider a path

p = (p1, . . . , pm) from TD to i with H(p) ⊆ σ(U ∪ S). We distinguish the following two

cases:

(i). Suppose that p is a directed path from t to i. Since PD(j) ⊂ K for all j ∈ K, there is

a k ∈ {2, . . . ,m} such that {p1, . . . pk} ⊆ U and {pk+1, . . . pm} ⊆ S. Since (p1, . . . pk) is a

directed path in U , we have that {p1, . . . pk} ⊆ σ(U). Thus, H(p) ⊆ σ(U) ∪ S. But then

H(p) ⊆ σ(σ(U) ∪ S) since p is a directed path with p1 = t.

(ii). Suppose that p is a directed path from another top-player t′ �= t to i. Since players in

K = U t do not have predecessors in N \K, we have that U∩H(p) = ∅. Thus, H(p) ⊆ σ(S),

and so H(p) ⊆ σ(σ(U) ∪ S).

From (i) and (ii) we conclude that σ(U ∪ S) = σ(σ(U) ∪ S). Hence we have that r′(U) =

r′(σ(U)) and it remains to prove that rK(U) = r′(U) for any feasible U ⊂ K.

Observe that rK(U) =
∑

i∈U ai when U is feasible. To find r
′(U), we first show that

for finding the maximum in (4.4), it is sufficient to consider only sets S such that U ∪ S is

feasible. If U ∪ S is not feasible, then

r(U ∪ S)− x(S) = r(σ(U ∪ S))− x(S) ≤

r (U ∪ (σ (U ∪ S) \ U))− x (σ (U ∪ S) \ U)− x (S \ (σ (U ∪ S) \ U)) ≤

r (U ∪ (σ (U ∪ S) \ U))− x (σ (U ∪ S) \ U) ,

where the first inequality follows from σ(U ∪ S) \ U ⊆ S and σ(U ∪ S) \ U �= S if U ∪ S

is not feasible. So, in case that U ∪ S is not feasible, replacing set S by set σ (U ∪ S) \ U

does not decrease r(U ∪ S)− x(S) in formula (4.4), and thus this expresion is maximized

by a coalition S such that U ∪ S is feasible.

By definition of r′, it now follows that there is some S ⊆ N \K such that U ∪ S is

feasible and

r′(U) = r(U ∪ S)− x(S) =
∑

i∈U∪S

ai − x(S). (4.5)
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Further, since U ∪ S is feasible and U ⊂ K = U t, we have that also K ∪ S is feasible.

So, by the fact that x ∈ C(N, r), we have that x(K ∪ S) = x(K) + x(S) ≥
∑

i∈K∪S ai.

By Proposition 3.5 we have that x(K) = a(K) and thus x(S) ≥
∑

i∈S ai. It follows with

equation (4.5) that

r′(U) =
∑

i∈U

ai +
∑

i∈S

ai − x(S) ≤
∑

i∈U

ai = r(U). (4.6)

From (4.6) and the fact that by definition of the reduced game r′(U) ≥ r(U), we conclude

that

r′(U) = r(U) =
∑

i∈U

ai.

This proves that r′(U) = rK(U) for all U ⊂ K = U t. �

In the first iteration the algorithm finds the nucleolus of (U1, r1). Clearly, the

restricted game (U1, r1) of (U
1, v1,D1) is equal to the subgame (U

1, rU1) of (N, r), which

is equal to the Davis-Maschler reduced game according to the proposition above. So, with

the Davis-Maschler reduced game Property 4.1, the proposition above shows that in the

first iteration the algorithm indeed computes the nucleolus payoffs of the players in U1 in

game (N, r). For t ∈ TD and K = N \ U t, the next proposition shows that the Davis-

Maschler reduced game with respect to the nucleolus and the setK coincides with the game

(K, r2), where r2 is the restricted game of the non-negative game with the reduced acyclic

permission structure (K, vK , D
K) on the set of players K, where (K, vK) is the subgame

of (N, v) on K and DK is as given in formula (3.2) for t = 1, i.e., r2 is the restricted game

used in the second iteration of the algorithm.

Proposition 4.3 For a non-negative additive game with acyclic permission structure (N, v,D)

with |TD| ≥ 2, let t ∈ TD and K = N \ U t. Then the Davis-Maschler reduced game (K, r′)

of the restricted game (N, r) with respect to the nucleolus payoff vector x ∈ IRn and the

set K, coincides with the restricted game (K, r2) of the non-negative additive game with

acyclic permission structure (K, vK, D
K) with DK as defined in formula (3.2).

Proof. By definition, PDK (j) ⊆ K for all j ∈ K, so K is feasible in the reduced graph

(K,DK). Hence r2(K) =
∑

i∈K ai. On the other hand, r
′(K) = r(N) − x(N \ K) =

r(N)− x(U t) =
∑

i∈N ai −
∑

i∈Ut ai =
∑

i∈K ai, where the first equality is by definition

of the reduced game and the second equality by Proposition 3.5. So, r2(K) = r′(K).

Next, for a set S ⊂ K we consider two cases.

(i). First, suppose that PD(S)∩U t = ∅. For all U ⊆ U t it holds that σ(U∪S) = σ(U)∪σ(S),

since PD(U) ∩ S = ∅. So,

r(S ∪ U)− x(U) = v(σ(U) ∪ σ(S))− x(U) =
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v(σ(U)) + v(σ(S))− x(U) = r(S) + r(U)− x(U) ≤ r(S),

where the second equality follows from v being an additive game and the (last) inequality

follows from the nucleolus being a core element. Hence

r′(S) = max
U⊆Ut

(r(S ∪ U)− x(U)) = r(S).

On the other hand, for all i, j ∈ S we have that (i, j) ∈ DK if (i, j) ∈ D, because no player

j ∈ S has a predecessor in U t. Hence, σ(S) = σK(S), where σK(S) is the largest feasible

subset of S in (K,DK). So,

r′(S) = r(S) = v(σ(S)) = v(σK(S)) = r2(S).

(ii). Secondly we consider the case that PD(S) ∩ U t �= ∅. Now, let S ′ ⊆ S be given by

S ′ = σ(U t ∪ S) \ U t. By definition of σ, U t ∪ S ′ is the maximal feasible subset of U t ∪ S

and thus

r(U t ∪ S)− x(U t) = v(U t ∪ S′)− x(U t) =
∑

i∈Ut∪S′

ai −
∑

i∈Ut

ai =
∑

i∈S′

ai,

where the second equality follows by Proposition 3.5. Hence we have that

r′(S) = max
U⊆Ut

(r(S ∪ U)− x(U)) ≥ r(U t ∪ S)− x(U t) =
∑

i∈S′

ai. (4.7)

We now show that this holds with equality. First, recall from the proof of Proposition 4.2

that σ(U ∪ S) = σ(σ(U) ∪ S) for every U ⊂ U t and S ⊂ K. Hence

r(U ∪ S)− x(U) = r(σ(U) ∪ S)− x(U) ≤ r(σ(U) ∪ S)− x(σ(U)),

so that maxU⊆Ut (r(S ∪ U) − x(U)) will be obtained by a feasible set U . Suppose there

exists a feasible U ⊆ U t with r(U ∪ S) − x(U) >
∑

i∈S′ ai. Then, with SU ⊆ S given by

SU = σ(U ∪ S) \ U , it follows in an analogous way as for U = U t above, that σ(U ∪ S) =

U ∪ SU , and thus

r(U ∪ S)− x(U) = v(U ∪ SU)− x(U) =
∑

i∈U∪SU

ai − x(U) =

∑

i∈SU

ai +
∑

i∈U

ai − x(U) ≤
∑

i∈SU

ai ≤
∑

i∈S′

ai, (4.8)

where the first inequality follows because U is feasible and the nucleolus lies in the core,

and the second inequality because U ⊆ U t and thus SU = σ(U ∪ S) \ U ⊆ σ(U t ∪ S) \ U t.

From equations (4.7) and (4.8) it follows that

r′(S) =
∑

i∈S′

ai = v(S ′).
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It remains to prove that also r2(S) = v(S ′). By definition we have that r2(S) =

vK(σK(S)) = v(σK(S)), where σK(S) is the maximal feasible subset of S in graph (K,DK).

So, it remains to show that σK(S) = S ′.

We first show that σK(S) ⊆ S′ = σ(U t ∪ S) \ U t. Consider i ∈ σK(S). For such a

player i there is a path p from TDK to i which only contains elements of S. We consider

two cases. If p is a path from a top t′ ∈ TD, then i ∈ σ(S) ⊆ S′. For the case that p

is a path from a top t′ in TDK \ TD, then t′ is a top in (K,DK) but not in (N,D) and

thus PD(t′) ∩ U t �= ∅, implying that in (N,D) there is a path p′ from t to t′. Hence,

the path p′′ consisting of the path p′ from t to t′ and the path p from t′ to i is a path in

(N,D) from TD to i. Since H(p
′) \ {t′} ⊆ U t and H(p) ⊆ S, we have that the set of nodes

H(p′′) ⊆ U t ∪ S and thus H(p′′) ⊆ σ(U t ∪ S). So i ∈ σ(U t ∪ S) and we can conclude that

i ∈ σ(U t ∪ S) \ U t = S ′.

Next we show the reverse that S ′ ⊆ σK(S). Let i ∈ S′. Then i ∈ σ(U t ∪ S) and

thus there is path p from TD to i that consists of elements of U
t ∪ S. Again there are two

cases. If H(p) ⊆ S, then i ∈ σ(S) ⊆ σK(S). Otherwise, p consists of two subpaths p
′ in

U t and p′′ in S that are connected to each other by a link from the last node of p′ to the

first node of p′′. Let j be that last node of path p′′ that has a predecessor in U t. Then, by

construction, j is a top-node in game (K,DK) and thus the part of p′′ from j to i is a path

in (K,DK) from TDK to i. So i ∈ σK(S). �

By repeated application of the propositions above it follows that the algorithm of

Section 3 computes the nucleolus of (N, r).

Proposition 4.4 For a non-negative additive game with acyclic permission structure (N, v,D),

the algorithm described in Section 4 finds the nucleolus of (N, r) within a finite number of

iterations.

Proof. In the first iteration the algorithm finds the nucleolus of the restricted game (U1, r1)

of (U1, v1,D1), which is equal to the subgame (U
1, rU1) of (N, r). By Proposition 4.2 and

the Davis-Maschler reduced game property it follows thatNuci(U
1, r1) = Nuci(N, r) for all

i ∈ U1. If U1 = N , the algorithm ends with the nucleolus in one iteration. Otherwise, the

algorithm continues in iteration 2 with the restricted game (N \U1, r2) of (N \ U1, v,D2).

By Proposition 4.3 this restricted game is equal to the DM reduced game on N \ U1 with

respect to the nucleolus and so the nucleolus payoffs of the game (N \ U1, r2) are equal to

the nucleolus payoffs of the players in N \U1 in the game (N, r). Repeating the arguments

of the first iteration, in the second iteration the algorithm computes the nucleolus payoffs

of the game (N \ U1, r2) for the players i ∈ U t2 , which thus is equal to their nucleolus

payoffs in the game (N, r). Subsequentially in each iteration k the algorithm computes

the nucleolus payoffs of the set of players in U tk . Since the number of players is reduced
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with at least one in each iteration of the algorithm, the algorithm ends within at most n

iterations. �

5 Properties of the algorithm

In this section we first show several properties of the algorithm. From these properties we

then obtain an interesting property of the nucleolus of a non-negative additive game with

permission structure, namely that each coalition consisting of a free player and its complete

subordinates distributes its own value among themselves. A free player is a player that

does not have a complete superior.

Definition 5.1 A player i ∈ N in an acyclic permission structure (N,D) is a free player

if and only if PD(i) = ∅.

Example 5.2 Consider permission structure (N,D) with N = {1, 2, 3, 4, 5, 6} and D =

{(1, 3), (1, 4), (2, 4), (3, 5), (3, 6), (4, 6)}. This permission structure has four free players.

Two of them are the two top players 1 and 2. Besides the top players the two other free

players are 4 and 6.

In the sequel we denote the set of free players in (N,D) by FD. Notice that TD ⊆ FD.

Recall from Subsection 2.2 that for every non-top player i, the set Pi denotes the collection

of all paths from TD to i. For a path p = (i1, . . . , im−1, im) ∈ Pi (so i1 ∈ TD and im = i),

in the sequel Hi(p) denotes the set of players H(p) \ {i}, i.e., Hi(p) is the set of all players

on the path p except player i itself. We now give two lemmas. The first one is obvious and

stated without proof.

Lemma 5.3 For every acyclic permission structure (N,D), if j is a (complete) superior

of i and k is a (complete) superior of j then k is a (complete) superior of i.

The second lemma states that for any free player i ∈ FD \ TD there exist (at least)

two paths p and q in Pi such that Hi(p) ∩ Hi(q) = ∅, i.e., for any non-top free player i

there exist two disjunct paths (except for i itself) from TD to i. Recall that it is assumed

that the players are enumerated (labeled) by the numbers 1, 2, . . . , n in such a way that

for any i, j ∈ {1, . . . , n} it holds that i < j if (i, j) ∈ D.

Lemma 5.4 Let (N,D) be an acyclic permission structure and let i be a player in FD\TD.

Then there exist (at least) two paths p and q in Pi, such that Hi(p) ∩Hi(q) = ∅.
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Proof. For any two different paths ph and pk in Pi, define mhk = max{j|j ∈ Hi(p
k) ∩

Hi(p
h)} with the convention that mhk = 0 if Hi(p

k) ∩Hi(p
h) = ∅, i.e., mhk is the highest

labeled player that is on both paths. Further, define m = minh,k mhk. Suppose m ≥ 1,

i.e., there exist two paths, say p1 and p2 with Hi(p
1) ∩Hi(p

2) �= ∅, such that (i) m is the

highest labeled common node of p1 and p2 and (ii) mhk ≥ m for any two paths ph and pk

in Pi. Since i is a free player, and thus PD(i) = ∅, there is no player j �= i that is on all

paths in Pi. Therefore we must have a third path, say p3 ∈ Pi, such that m �∈ Hi(p
3).

Because of (ii) we have that m13 > m and m23 > m, so for both paths p1 and p2 it holds

that they have a node in common with p3 with a higher label than m. For j = 1, 2, define

mj = min{s > m|s ∈ Hi(p
j) ∩ Hi(p

3)}, so mj is the lowest labeled common node on the

paths pj and p3 higher than m. Thus m1 > m and m2 > m and also m1 �= m2, otherwise

m1 = m2 ∈ Hi(p
1) ∩ Hi(p

2), contradicting (i). Without loss of generality, suppose that

m1 > m2. Now, let p
4 be the path in Pi that is equal to p3 from TD to node m2 and it is

equal to p2 from m2 to i. Then m14 < m, because p4 coincides with p2 from node m2 to i

and the highest labeled common node of p1 and p2 is node m < m2, and p4 coincides with

p3 from TD to m2 and the smallest labeled common node of p
1 and p3 higher or equal to

m is node m1 > m2. However, m14 < m contradicts (ii). So it follows that m = 0, which

proves that there exists two paths in Pi that only have node i in common. �

Recall that in the first iteration player 1 is chosen to be the top and that the

nucleolus payoffs of the players in U1 are computed. In the second iteration the algorithm

continues with the non-negative additive game with permission structure (K, vK, D
K),

where K = N \U1, (K, vK) the subgame of (N, v) on K, and DK the permission structure

as obtained in formula (3.2). The next lemma states that j �= 1 is a free player in (K,DK)

if and only if it is a free player in (N,D).

Lemma 5.5 Let (N,D) be an acyclic permission structure, K = N \ U1 and DK the

permission structure as defined in formula (3.2). Then FDK = FD \ {1}.

Proof. First, observe that U1 consists of player 1 and all its complete subordinates, so by

Lemma 3.1, U1 does not contain any of the players in FD \ {1}, and thus FD \ {1} ⊆ K.

We first prove that FD \ {1} ⊆ FDK . When i ∈ TD \ {1}, then obviously i ∈ TDK . So,

consider i ∈ FD \ TD. According to Lemma 5.4, there are two different paths in (N,D)

from TD to i. Let p be such a path. We consider two cases.

1. The path p is completely in K and PD(j) ∩ U1 = ∅ for any j ∈ H(p). Then any

link (h, k) ∈ D on the path is also a link in DK and p′ = p is a path in (K,DK) from

TD \ {1} ⊆ TDK to i.

2. There is some h ∈ H(p) such that PD(h) ∩ U1 �= ∅. With A(p) the set of all

players in H(p) having a predecessor in U1, let k be the player in A(p) such that k ≥ h for
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all h ∈ A(p), i.e., k is the player in A(p) with the highest label. Then, by formula (3.2),

any link (i, k) ∈ D(K) is deleted to obtain DK , so k ∈ TDK . Let p′ be the path consisting

of the part of path p from k to i. Then p′ is a path from TDK to i in (K,D(K)). Observe

that p′ = (i) with i ∈ TDK if k = i.

It follows that every path p from TD to i in (N,D) gives a path p′ from TDK to i in

(K,D(K)). When for some p the path p′ reduces to the single player path p′ = (i) (when

k = i in case 2), then i becomes a top player in (K,D(K)) and every path from TD to i

reduces to the single element i. Otherwise, i has two different paths in (K,DK)) when i

has two different paths in (N,D), because H(p′) ⊆ H(p) for every path p from TD to i. So

i ∈ FDK when i ∈ FD \ {1}.

Second, we prove the reverse inclusion that FDK ⊆ FD \{1}. To do so we show that

a node i �= 1 which is not free in (N,D) is also not free in (K,DK). Let i �∈ FD \ {1},

so i has a complete superior in (N,D). When there is a complete superior in U1 then, by

Lemma 5.3, also 1 is a complete superior of i. Then i ∈ U1 and thus i is not in K. It

remains to consider the case that PD(i) ⊂ K. Let k be a player in PD(i). For p a path

from TD to i, let p
′ be the part of the path from k to i. Then there is no player h > k on

the path p′ that has a predecessor in U1, otherwise there is in (N,D) a path from 1 to the

predecessor of h in U1, then to h and then to i, contradicting that k is a complete superior

of i in the graph (N,D). So, when (j, l) ∈ D is a link on p′, then also (j, l) ∈ DK and thus

p′ is a path in (K,DK). Since this holds for every path p from TD to i in (N,D), it follows

that k is also a complete superior of i in (K,DK), and thus i is not free in (K,DK). �

The next lemma states that a player is chosen as top in one of the iterations of the

algorithm if and only if it is a free player in (N,D). Let AD denote the set of players that

is chosen as top in one of the iterations of the algorithm of Section 3.

Lemma 5.6 Let (N, v,D) be a non-negative additive game with acyclic permission struc-

ture. Then AD = FD.

Proof. The proof follows by repeated application of Lemma 5.5. In iteration 1, player

1 is chosen as top. So, player 1 belongs both to AD and FD. In iteration 2, player t2 is

chosen as top. This player is determined in Step 5 of the previous iteration as the top

player with the lowest label in (N2, D2) with N2 = N1 \ U1 = N \ U1 and D2 = DN2 . By

Lemma 5.5 this top belongs to FD2 = FD \{1}. From repeated application of the lemma it

follows that the top tk in iteration k is a top of FDk = FDk−1 \ {tk−1} = FD \ {t1, . . . , tk−1},

where (Nk, Dk) is the graph at iteration k. It follows that succeedingly all players of FD

are chosen as top in increasing order of their label. �

Finally we show that the set of complete subordinates of the chosen top tk in the

graph (Nk,Dk) in iteration k is equal to the set of complete subordinates of the free player
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tk in (N,D). Moreover we have that (U tk ,Dk(U
tk)) = (U tk ,D(U tk)), i.e., the subgraph on

U tk of (Nk,Dk) is equal to the subgraph of U
tk of (N,D).

Lemma 5.7 Let (N, v,D) be a non-negative additive game with acyclic permission struc-

ture and let tk be the chosen top in iteration k of the algorithm. Then SDk(tk) = SD(tk).

Moreover, (U tk ,Dk(U
tk)) = (U tk , D(U tk)).

Proof. From the proof of Lemma 5.5 it follows that when k ∈ N2 = N1 \ U1 is a

complete superior of i in (N1,D1) = (N,D), then k is also a complete superior of i in

(N2, D2). With Lemma 3.1 it follows reversely that i ∈ SD2(k) when i ∈ SD1(k). On

the other hand, when i is not a complete subordinate of k in (N1,D1), then it also not

in (N2, D2) because D2 ⊂ D1 and either PD2(i) = ∅ or there is a path from TD2 to i

in (N2, D2) without k. So, for any k ∈ N2 we have that SD2(k) = SD1(k). The first

statement of the lemma follows by repeating these arguments for all the remaining top

players at any iteration of the algorithm. To show the second statement, let k ∈ N2 be

a complete superior of a player i ∈ N2. From the last part of the proof of Lemma 5.5

it follows that any link on a path from k to i in (N1, D1) is also a link in (N2, D2). So,

(U t2 , D2(U
t2)) = (U t2, D1(U

t2)) = (U t2 , D(U t2)). The result follows from repeating this at

any next iteration of the algorithm. �

We now come to the main result of this section. In Section 4 we have seen that the

algorithm of Section 3 at any iteration k computes the nucleolus payoffs in the restricted

game (N, r) of the players in U tk , where U tk is the set of players consisting of the chosen top

tk in iteration k and all its complete subordinates in (Nk, Dk). Moreover, the total payoff

of the players in U tk is equal to the sum of their values ai, i ∈ U tk . Therefore the next

proposition follows from the lemmas above without further proof. It states that for any

free player the nucleolus distributes the total contributions of this player and its complete

subordinates among themselves.

Proposition 5.8 Let (N, v,D) be a non-negative additive game with acyclic permission

structure. Then
∑

i∈SD(k)
Nuci(N, r) =

∑
i∈SD(k)

ai for every k ∈ FD.

Finally, when the structure of the graph (N,D) is known ex ante, in particular

the set FD is known ex ante and also for each k ∈ FD its set of complete subordinates,

it follows without further proof from the lemmas above that the algorithm of Section 3

reduces to |FD| applications of the algorithm of van den Brink et al. (2008). To state this

result, for k ∈ FD, let rk be the restricted game of (SD(k), vk, D(SD(k)), where vk is the

non-negative additive game on SD(k) given by vk(S) =
∑

i∈S ai, S ⊆ SD(k). Then we

have the following proposition.
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Proposition 5.9 Let (N, v,D) be a non-negative additive game with acyclic permission

structure. Then Nuci(N, r) = Nuci(SD(k), rk), i ∈ SD(k), k ∈ FD.

From this last proposition we can conclude that for any k ∈ FD, the nucleolus values

in the game (N, r) of the players in SD(k) can be computed by applying the algorithm of

van den Brink et al. (2008) to (SD(k), vk,D(SD(k)).

6 Complexity of the algorithm

When the structure of the game is known ex ante we can apply Proposition 5.9 and apply

the algorithm of van den Brink et al. (2008) to any (SD(k), vk, D(SD(k)), k ∈ FD. Since

the complexity of this algorithm is of O(n4), the complexity reduces to O(|FD|a4), where

a = maxk∈FD |SD(k)|, because we have |FD| problems and the kth problem has complexity

O(|SD(k)|4). In particular, we have that the complexity is of O(n4) when |FD| = 1 (and

thus |SD(1)| = n) and of O(n) when |FD| = n (and thus |SD(k)| = 1 for all k). Clearly, in

the latter (extreme) case we have that (N,D) is the empty graph and (N, v,D) reduces to

the additive game, so that every player i gets its own value ai.

Typically in practice the structure is not known in advance. Also, although we

assumed in the previous sections that the players are enumerated by the numbers 1, 2, . . . , n

in such a way that for any i, j ∈ {1, . . . , n} it holds that i < j if (i, j) ∈ D, in practice

such an enumeration will not be known in advance. So, to perform the algorithm at each

iteration k first a top node tk in (Nk,Dk) has to be found and its corresponding set U
tk of

complete subordinates in (Nk, Dk). For the complexity of this search, let us consider the

first iteration. It is evident that we can find the collection TD of top nodes in at most n
2

actions, because we just have to consider each pair of players once. Then we enumerate

the top nodes from 1 to k1, where k1 = |TD| is the number of top nodes in (N,D). To find

the set U1 of all complete subordinates of top node 1 we can proceed as follows. First,

assign label 1 to every successor of node 1. Next, assign label 1 to every successor of every

node with label 1 and continu to do this. So, every player in the set ŜD(1) of subordinates

of top player 1 gets a label 1. Clearly, this requires at most O(n2) actions. Next, repeat

this procedure for every other top node, so for every player in the set ŜD(j) of top node

j, j = 1, . . . , k1. So, a node can receive multiple labels. The set U
1 consists of all nodes

that only receive label 1 and can be found in at most k1O(n2) < O(n3) actions. In fact

this procedure gives in at most O(n3) actions all top nodes j ∈ TD and their sets U
j of

complete subordinates.

We can now use the result of Proposition 5.9 to modify the algorithm, namely

instead of adapting the graph after the first iteration according to Step 5, we first apply

k1 times the algorithm of van den Brink et al. (2008), namely to subgame with permission
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structure (Uk, vk,D(U
k)) for every top player k ∈ TD. The complexity of each application

is given by O(|Uk|4).

After having eliminated all top players and their complete subordinates we now

adapt the graph on the remaining set of players N \ (∪k∈TD Uk) analogously as described

in Step 5 of the algorithm. Let M be this set, then for each player j ∈ M we consider

whether or not j has a predecessor in (N,D) belonging to ∪k∈TD Uk. If so, all edges (h, j)

in the subgraph (M,D(M)) are deleted and j becomes a top node in the remaining graph.

Observe that such a top node in the new graph is a free player in (N,D). This requires

at most O(n2) actions and yields also the set of top nodes in the remaining graph. Next,

repeating the procedure as described above for the set of new top nodes, in O(m3) actions,

where m = |M |, the sets U j of complete subordinates of the new top nodes can be found.

Then we apply again the algorithm of van den Brink et al. (2008) to each new top node j

and its set of complete subordinates U j. After that we apply the procedure of finding the

new graph and new set of top players for the remaining nodes and so on.

Summarizing, starting the algorithm the number of actions to find the set of top

nodes and their sets of complete subordinates is of O(n3). This has to be repeated at most

n−1 times to find the set of all free players (each free player is a top node at some stage) and

their sets of complete subordinates. So, the number of actions to find all free players and

their sets of complete subordinates is (at most) of O(n4). For each free player k ∈ FD the

complexity of the algorithm of van den Brink et al. is of O(|Uk|4). Since
∑s

k=1 |U
k| = n,

where s = |FD|, the total complexity of applying the algorithm s times, namely for each

free player, is of O(n4). So, both the complexity of finding all free players and their sets of

complete subordinates and the total complexity to find the nucleolus payoffs for every free

player with its set of complete subordinates, is given by O(n4). Hence the total complexity

of the algorithm of Section 3 to find all nucleolus payoffs is of O(n4), showing that the

algorithm finds the nucleolus in polynomial time.

7 An example

In this section we illustrate the computation of the nucleolus for non-negative additive

disjunctive games with a permission structure by giving an example concerning a market

situation where sellers can sell objects to buyers through a (directed) network of interme-

diaries. First, we give a simple example without intermediaries7.

Example 7.1 Consider a situation where there is one seller (player 1) and one buyer

(player 2) who can realize a non-negative surplus a > 0 from trade. The corresponding

7This is a special case of the assignment game, introduced by Shapley and Shubik (1972).
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assignment game on N = {1, 2} is given by v({1}) = v({2}) = 0 and v({1, 2}) = a. Note

that the restricted game (N, r) on the permission structure D = {(1, 2)} (or D = {(2, 1)})

is the same as (N, v). Clearly, the nucleolus of this game yields an equal division of the

surplus, i.e., Nuc(N, v) = Nuc(N, r) = (a
2
, a
2
). But as soon as there are two or more sellers

(say players 1, . . . , n − 1}, such that the buyer (player n) can realize the surplus a with

any one of the sellers and cannot generate more surplus by trading with more sellers (for

example, the sellers all own one item of a good for which they have reservation value zero,

and the buyer wants only one item of the good and is prepared to pay at most a for it) then

the characteristic function of the assignment game on N = {1, . . . n} is v(S) = a if n ∈ S

and |S| ≥ 2, and v(S) = 0 otherwise. Again the restricted game on the permission structure

D = {(i, n) | i ∈ {1, . . . n−1} (i.e., the permission structure where all sellers are predecessor

of the buyer) is the same as (N, v). Now, it is clear that Nucn(N, v) = Nucn(N, r) = a

and Nuci(N, v) = Nuci(N, r) = 0 for all i ∈ {1, . . . n − 1} since this is the unique Core

payoff vector. This also follows immediately from Proposition 5.8 by observing that r is

the restricted game of the non-negative additive game with ai = 0 for i = 1, . . . , n1 and

an = a and that player n is a free player in (N,D) and thus receives its own value. So,

similar as in a linear Bertrand price competition game, as soon as there is more than one

seller, the surplus fully goes to the buyer. (A similar story holds if there is only one seller

but more buyers.) �

Next, we consider an example of a market situation as described above, but buyers

and sellers may not be able to trade directly with each other, but need intermediaries to

connect them.

Example 7.2 Consider a market situation with two sellers (players 1 and 2) and four

buyers (players 7, 8, 9 and 10) who cannot trade directly with each other but need in-

termediaries. Consider the permission structure D on N = {1, . . . , 10} given by D =

{(1, 3), (1, 4), (2, 4), (2, 5), (2, 6), (3, 7), (4, 7), (4, 8), (5, 9), (6, 9), (6, 10)}, see Figure 1. For

every buyer-seller pair that wants to make a deal, it is sufficient to use only one of the

intermediaries they are both connected with. For example, for seller 1 and buyer 7 it is

necessary and sufficient to use either intermediary 3 or intermediary 4, while seller 1 and

buyer 8 need intermediary 4 to trade. Suppose that each seller owns at least four items of

the good and each buyer wants one item. Buyer i ∈ {7, 8, 9, 10} is prepared to pay ai > 0

for the item. The reservation value of the sellers and all intermediaries is zero. This can

be modelled as the game with permission structure (N, v,D) with N = {1, . . . , 10}, D as

given above, and v the non-negative additive game with ai = 0 for i = 1, . . . , 6 and ai > 0

for i = 7, . . . , 10, so that v(S) =
∑

i∈S ai =
∑

i∈S∩{7,8,9,10} ai for all S ⊆ N .
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Figure 1.

The nucleolus of the restricted game (N, r) can be computed using the algorithm of

Section 3 and the properties of Section 5. Notice that the players 1 and 2 are top players,

and that the set of free players is given by FD = {1, 2, 4, 7}. Using Proposition 5.9 it follows

that we can find the nucleolus of (N, r) by considering the four subgames with permission

structure given in Figure 2, namely one subgame for each of the four free players.

Figure 2
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The nucleoli for the four subgames are as follows.

1. Consider the game with permission structure (N1, v1,D1) given by N1 = {1, 3}, v1 =

v|N1 and D1 = D|N1 = {(1, 3)}. Since v1 is the null game assigning worth zero to all

coalitions in N1, it follows that Nuc1(N1, r1) = Nuc3(N1, r1) = 0.

2. For the game with permission structure (N2, v2,D2) given by N2 = {2, 5, 6, 9, 10}, v2 =

v|N2 , and D2 = D|N2 = {(2, 5), (2, 6), (5, 9), (6, 9), (6, 10)}, we have that v2(S) =∑
i∈S∩{9,10} ai for all S ⊆ N . Then the restricted game is given by

r2(S) =





a9 if S ∈ {{2, 5, 9}, {2, 6, 9}, {2, 5, 6, 9}}

a10 if S ∈ {{2, 6, 10}, {2, 5, 6, 10}}

a9 + a10 if S ∈ {{2, 6, 9, 10}, {2, 5, 6, 9, 10}}

0 otherwise.

Applying the algorithm of van den Brink et al. (2008) (see the Appendix) we find

for any pair of values a9, a10 ≥ 0 that Nuc2(N2, r2) =
a9
2
+ a10

3
, Nuc5(N2, r2) =

0, Nuc6(N2, r2) =
a10
3
, Nuc9(N2, r2) =

a9
2
and Nuc10(N2, r2) =

a10
3
.

3. For the game with permission structure (N3, v3, D3) given by N3 = {4, 8}, v3 = v|N3
and D3 = D|N3 = {(4, 8)}, we have that v3(S) =

∑
i∈S∩{8} ai for all S ⊆ N . So, the

restricted game is given by

r3(S) =

{
a8 if S = {4, 8}

0 otherwise.

We find that Nuc4(N3, r3) = Nuc8(N3, r3) =
a8
2
.

4. The game with permission structure (N4, v4, D4) is given by N4 = {7}, v4 = v|N4 and

D4 = ∅. Clearly v4(S) = r4(S) = a7 for S = {7}, and thus Nuc7(N4, r4) = a7.

By Proposition 5.9 we then have Nuc(N, r) = (0, a9
2
+ a10

3
, 0, a8

2
, 0, a10

3
, a7,

a8
2
, a9
2
, a10
3
). �

In the example above, there was only one level of intermediaries, but the algorithm

also works if there are more levels of intermediaries between buyers and sellers.

Appendix: A polynomial time algorithm to compute

the nucleolus of a non-negative additive game with an

acyclic, quasi-strongly connected permission structure

In this appendix we recall the polynomial time algorithm of van den Brink et al. (2008).

Although they use this algorithm to compute the nucleolus for a more general class of games
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(those that satisfy the so-called weak digraph monotonicity and weak digraph convexity

conditions) we only apply it to non-negative additive games with an acyclic, quasi-strongly

connected permission structure in step 3 of the algorithm to compute the nucleolus for non-

negative additive games with a (more general) acyclic permission structure. This algorithm

computes the nucleolus in O(n4) time. It is an adaptation of the algorithm of Arin and

Feltkamp (1997) which computes the nucleolus of veto-rich games in exponential time. In

the following, ΩD = ΦD \ {N} denotes the collection of all feasible coalitions not equal to

N .

Consider a given non-negative additive game with an acyclic, quasi-strongly con-

nected permission structure (N, v,D).

Algorithm

Step 1 Set k = 0, U0 = N , v0 = v, D0 = D and r0 = r. Goto Step 2.

Step 2 Find Uk+1 ⊂ Uk satisfying

τ(Uk+1, rk) = τ∗(rk) and |Uk+1| = max
{U∈ΩDk |τ(U,rk)=τ∗(rk)}

|U |,

where τ ∗(rk) = minU∈ΩDk τ (U, rk) with τ(U, rk) =
rk(Uk)−rk(U)
|Uk\U |+1

. Assign yj = τ ∗(rk) to

every player j ∈ Uk \ Uk+1. Goto Step 3.

Step 3 If Uk+1 = {1} then Goto Step 4. If Uk+1 �= {1}, let ik+1 be the unique top-player of

the subgraph (Uk\Uk+1, Dk(Uk \Uk+1) of the digraph (Uk, Dk) restricted to Uk\Uk+1.

Define game (Uk+1, vk+1) by setting for every U ⊆ Uk+1,

vk+1(U) =

{
vk(U) if PDk(ik+1) ∩ U = ∅

vk(U ∪ (Uk \ Uk+1))− τ (Uk+1, rk)|Uk \ Uk+1| else,

(7.9)

digraph (Uk+1, Dk+1) given by

(i, j) ∈ Dk+1 if

{
(i, j) ∈ Dk or

Uk+1.
(7.10)

and let rk+1 be the restricted game of (Uk+1, vk+1, Dk+1). Set k = k + 1. Goto Step

2.

Step 4 Assign y1 = v(N)−
∑

j∈N\{1} xj. Stop.

25



References

Arin, J., and Feltkamp, V. (1997), The nucleolus and kernel of veto-rich transferable

utility games, International Journal of Game Theory 26, 61-73.

Bilbao, J.M., Jiménez-Losada, A., Lebrón, E., and Chacón, C. (2005), Values for interior

operator games, Annals of Operations Research, 137, 141-160.

Bilbao, J.M., Chacón, C., Jiménez-Losada, A., and Lebrón, E. (2008), Convexity proper-

ties for interior operator games, Annals of Operations Research, 158, 117-131.

Bondareva, O. (1962), The theory of the Core in an n-person game, Vestnik Leningrad.

Univ. 13, 141-142 (in Russian).

Brânzei, R., Fragnelli, V., and Tijs, S. (2002), Tree connected line graph peer group

situations and line graph peer group games, Mathematical Methods of Operations

Research 55, 93-106.

Brânzei, R., Solymosi, T., and Tijs, S. (2005), Strongly essential coalitions and the nucle-

olus of peer group games, International Journal of Game Theory 33, 447-460.

Brink, R. van den (1997), An axiomatization of the disjunctive permission value for games

with a permission structure, International Journal of Game Theory 26, 27-43.

Brink, R. van den, and Gilles, R. P. (1996), Axiomatizations of the conjunctive permission

value for games with permission structures, Games and Economic Behavior 12, 113-

126.

Brink, R. van den, I. Katsev and G. van der Laan (2008), Computation of the nucleolus

for a class of disjunctive games with a permission structure, Discussion Paper TI

08-060/1, Tinbergen Institute, Amsterdam/Rotterdam, The Netherlands.

Brune, S. (1983), On the regions of linearity for the nucleolus and their computation,

International Journal of Game Theory 12, 47-80.

Gilles, R. P., and Owen, G. (1994), Cooperative games and disjunctive permission struc-

tures, Department of Economics, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia.

Gilles, R. P., Owen, G., and Brink, R. van den (1992), Games with permission structures:

the conjunctive approach, International Journal of Game Theory 20, 277-293.

26



Gillies, D.B. (1953), Some Theorems on n-Person Games, Princeton University Press,

Princeton, NJ.

Huberman, G. (1980), The nucleolus and essential coalitions, in: A. Bensoussan and J.

Lions (eds.) Analysis and Optimization of Systems, Lecture Notes in Control and

Information Sciences 28, Springer, Berlin, pp. 416-422.

Kohlberg, E., (1979), On the nucleolus of a characteristic function game, SIAM Journal

of Applied Mathematics 20, 62-66.

Muto, S., Potters, J., and Tijs, S. (1989), Information market games, International Jour-

nal of Game Theory 18, 209-226.

Myerson, R. B. (1977), Graphs and cooperation in games, Mathematics of Operations

Research 2, 225-229.

Ni, D., and Y. Wang (2007), Sharing a polluted river, Games and Economic Behavior ,

60, 176-186.

Reynierse, J., and Potters, J. (1998), The B-nucleolus of TU-games, Games and Economic

Behavior 24, 77-96.

Schmeidler, D. (1969), The nucleolus of a characteristic function game, SIAM Journal on

Applied Mathematics 17, 1163-1170.

Shapley, L. S. (1953), A value for N-person games, in: Contributions to the Theory of

Games, Vol II (eds. H. W. Kuhn, and A. W. Tucker), Princeton University Press,

Princeton, 307-317.

Shapley, L.S. (1967), On balanced sets and cores, Naval Research Logistics Quarterly 14,

453-460.

Shapley, L., andM. Shubik (1972), The assignment game I: the core, International Journal

of Game Theory, 1, 111-130.

27


