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AIRPORT AND AIRLINE COMPETITION IN A MULTIPLE
AIRPORT REGION: AN ANALYSIS BASED ON

THE NESTED LOGIT MODEL.

Eric Pels?, Peter Nijkamp, Piet Rietveld
Free University Amsterdam, Department of Regional Economics,
Boelelaan 1105, 1081 HV Amsterdam, Netherlands.

ABSTRACT

In a multiple airport region airlines compete with both other airlines operating
from the same airport and airlines operating from alternative airports. In this paper
symmetric equilibrium airfares and frequencies are derived for airlines operating from
the same airports and for airlines operating from different airports. These equilibria
are shown to be unique. Next, airport authorities are introduced as independent agents
and equilibrium airport taxes, airfares and frequencies are derived and shown to be
unique. Some simplifying assumptions are necessary to be able to derive these
equilibria. We comment on the possibilities of relaxing these assumptions.

INTRODUCTION

In this paper we use a logit demand system to derive equilibrium airfares,
frequencies and airport taxes in a multiple airport region, In a previous paper (Pels et
al,, 1998,1), it was argued, based on a deterministic model, that an equilibrium
between airports and airlines may not exist; the airport's reaction curve may not exist
over a specific airfare interval, Moreover, only a price equilibrium was considered. In
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this paper we include frequencies and investigate whether local airline equilibria
(between airlines operating from the same airports), global airline equilibria (between
all airlines in the region) and global equilibria (between all airlines and airports) are
unique. To be able to derive the desired equilibria some simplifying assumptions are
needed. We also comment on the effect of a relaxation of these assumptions. The
main purpose of the paper is to derive competitive symmetric equilibrium airfares,
frequencies and airport taxes and to show the uniqueness of the equilibrium. The
paper has the following structure. In Section 2 a concise review of the literature on
discrete choice models and their use in the analysis of passenger preferences
concerning airports and airlines will be given. In Section 3 a competition model is
developed and the equilibria are derived. Section 4 offers some conclusions.

LITERATURE REVIEW

Disaggregate Choice Models

Passengers traveling by air need to make a number of decisions; which airport
to use (when there are alternative airports available), which airline to use etcetera. In
the literature, such decisions are usually modeled using the multinomial logit model
(MNL); see e.g Bondzio (1996) for an analysis of airport choice in Germany, Brooke
et al. (1994) and Caves et al, (1991) for an analysis of airport choice in the UK and
Harvey (1987) for an analysis of airport choice in the San Francisco Bay Area. In all
studies, access time to the airport was found to be an important determinant of airport
choice. Brooke et al. (1994) and Caves et al. (1991) also find the airfare to be of
influence, while both Bondzio (1996) and Harvey (1987) omit the airfare; Harvey
argues that there appeared to be more variation among fare classes on a given flight to
a particular destination than among different flights to that destination or airport,
Moreover, information on the airfare actually paid by passengers is scarce. Frequency
of service was found to be a significant determinant of airport choice by all above
mentioned authors. Hansen (1990) employed a MNL to estimate market shares of
airlines in origin-destination markets, The estimated market share was then used as
input for an airline competition model. For direct services, the explanatory variables
were the airfare and the (log of) frequency of service. Ndoh et al. (1990) found that a
nested multinomial logit model (NMNL) is statistically to be preferred to a MNL.
Moreover, based on a likelihood ratio test Ndoh et al. (1990) conclude the MNL
structure violates the ITA assumption. Pels et al. (1998,2) also use a NMNL for an
analysis of airport choice in the San Francisco Bay Area.

Multi-Product Firms

Anderson et al. (1996) use a nested logit demand model to describe
multiproduct firms. In their study, consumers have to select both firms and products,
and firms have to decide i) whether to enter the market, ii) how many products
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(alternatives) to produce and iii) the level of prices. Anderson et al. show a unique
symmetric price equilibrium exists. When there are several airlines competing on a
particular route, passengers have to decide which airline to use (given the choice of
departure airport). In other words, from the departure airport there are several
products (flights) available to a particular destination. These flights however, are
delivered by independent airlines. So rather than having a single firm making all three
decisions mentioned above, these decisions are made by a number of independent
agents. Concluding, a NMNL, which, in the case of airport choice, Ndoh et al. (1990)
found to be superior to the MNL, can be used to describe airport and airline
competition in a multiple airport region. The choice of nest (airport), will depend on
airport characteristics (access time, tax) and the expected utility of using the
-alternatives (flights or airlines) available from each nest. The choice of flight (route,
airline) can be modeled using a specification like in e.g. Hansen (1990). This model
will be developed in the next Section.

THEORETICAL CONSIDERATIONS

In this Section the discrete choice model for airport choice in a multiple
airport region is formulated and some theoretical considerations on competition
between airports are presented. Subsection 3.1 deals with the discrete choice model,
Subsection 3.2 deals with the airport's maximization problem (and competition
between airlines operating from the same airport). Finally, Subsection 3.3 deals with
the airport's maximization problem and competition between both airports and
airlines.

The Passenger Discrete Choice Model

Suppose a traveler  has decided to travel by air to a particular destination. The
traveler then has to make two choices; one for the origin airport (nest) and one for the
airline. These choices are based on the (maximum) (in)direct utility the passenger
derives from using a particular (combination of) departure airport d and airline /. The
choices can be made sequentially or simultaneously. In what follows we assume the
choices are made sequentially; we will comment on the implications of a
simultaneous choice.

Assume a passenger first chooses an airport and then an airline. Airline /
offers f; flights to a particular destination. Each particular flight j results in a utility

— 1
Vi The average utility over all flights to a particular destination is V, =?ZV/. ;e
1

Then, if the utilities of all elemental flights j are IID (which implies V, =V, ; for all j),

it can be shown that the distribution of the aggregate alternative / approaches the
Gumbel distribution and -as a result the total utility derived from airline / can be
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written as U, =V, + B ln( f,)+s, (see Ben-Akiva and Lerman, 1987). The utility of
using an airline / is therefore determined by the average airfare (p;) and the log of the
frequency of service (f;). The utility of using airport d depends on the airport tax faxg,
the access time to the airport #; and the maximum expected utility V, of the
alternatives in the choice set (of airlines) available from each departure airport 4.
Then the probability that a combination (departure airport d, airline /) is chosen can be
expressed as’:

P(,d) = P(lld)P(d) o
exp(al —0,py+0, 1n(f);)
i,
P(lld) = )
) Zexp(a' —0,Ppg T O ln(f/ud))
T i
exp(ﬁd _ﬂ!ta‘xd +lBa In(td)+‘7d)
Pd) = B, — Btax /:tlf-ﬁ In(t,)+V ©)
ZCXp( a Pl ¥ P 00 ) T Vi
@ H
with
4)
- Oy =0Q,p,+ 0 ln(f,_d) ¢
V,=u,l
d :u’l n(;[ /1—2

The parameters o, oy, f; and B, are assumed to be greater than zero. The
parameter U represents the degree of heterogeneity of airlines (flights) within (from)
an airport. The closer 1, is to 0, the higher the degree of substitutability between
airlines. ; is a measure of heterogeneity between airports. It is necessary that i, >
(see e.g. Ben-Akiva and Lerman, 1987 and Anderson et al., 1996). This means that
airlines (flights) operating (originating) from the same departure airports are closer

% We assume the random utility component derived from using the combination (1,d)
is (independent and identically) Gumbel distributed with scale parameter Wp. The
random utility derived from using departure airport 4 is distributed so that max U, is

Gumbel distributed with scale i, where Uy is the total utility of using the
combination (/,d).



64 AIRPORT FACILITIES

substitutes than airlines (flights) operating (originating) from different departure
airports.

In the next Subsections the nested logit model, as specified in equations 1,2,3
and 4, will be used to model airport and airline competition in a multiple airport
region.

The Airline’s Maximization Problem

An airline will operate a route to a particular destination from departure
airport 4, if it can generate non-negative profits, The demand for services from the
combination (/,d) can be expressed as

Qs = P(,d)N 5)

where N is the total number of passengers in the system and P(l,d) is defined in
equation (1). The airline’s profits obtained from operations (out) of airport d on a
certain route are:

Ty = (p, -G )Ql.d -k Jf, - K, (©)

where p; is the price (airfare on that route), ¢ is the (constant) marginal cost per
passenger, f; is frequency on that route, k; is the constant marginal cost per flight and
K; is the fixed cost. The airline has to determine both the optimal fare and the
frequency.

Maximizing  profits  with  respect to the  airfare  yields

( ) apP(l,d)( P(lld)(P(d)-1) . P(lld)- 1)}:

Ip, I Ha
or 0,
== Oy +(Pl “"l)"""lﬁ"=0m
i P )
_ v i,
pp—c =

o, (1B (1 )(1 - P(Q) + 1, (1 P(112)))

where —- =0 is the airline's best airfare response function.
!

Maximizing profits with respect to the frequency of service yields:
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o 1w _
7, =(Pmal g =k

_ ,0(p, ~¢) (P(1a){1- P(d)) + p, (1- P(11))
hi= k Hyly

®)

Equation 8 gives an expression for the optimum frequency at any given airfare; there
is a whole range of airfares for which optimal frequencies can be determined.
However, these airfares are not necessarily optimal. Substituting for the optimal
airfare yields:

_% P(d)P(ild) N

o, k

i ®
Equations 7 and 9 give the optimal airfare and frequency for an airline /, At any other
combination (f;, p;) the optimum will not be reached (i.e. only for one particular value
of p the solution to the airline's best response frequency function (equation 8)
maximizes profits).

Let there be L airlines operating from airport d, with ¢;=c¢p and k;=kp. Then it
is possible to find a symmetric equilibrium at which all airlines operating out of
airport d have the same frequency of service and airfare, which is shown in
Proposition 1.

Proposition 1

Given L airlines, with identical marginal cost per passenger ¢ and identical
marginal cost per flight k, operating out of airport d, and a frequency elasticity of
(local) demand which is smaller than 1, there exists a unique symmetric equilibrium.
The equilibrium price is given by:

Pl =cH Ly,
4 a, (1, (L-1)+ 1, (1-P(a))) (10)

and the equilibrium frequency is given by:

. _ 12 PN
‘Lo, & an
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For a proof we refer to Appendix 1. Only the equilibrium airfare is directly dependent
on the heterogeneity between both airlines operating from the same airport and
airlines operating from different airports. As the heterogeneity increases so does the
airfare. Furthermore, as the marginal probability P(d) increases, so does the
equilibrium airfare, Finally, the equilibrium airfare is decreasing in L. Caves et al.
(1991), using the daily frequency as an explanatory variable in a MNL found
frequency elasticities between 0.048 and 0.738, depending on the passenger type
(leisure, business, resident or foreign) and airport (Heathrow, Stansted or Gatwick).

The equilibrium expressions for p;” and f;* only show how they are
determined at airport d, given P(d). As P(d) changes (e.g. due to a change in py or fy,
p4 and f;" change accordingly. What is important, is that all airlines operating from
airport d will still have equal prices and frequencies. This allows for a simplification
of V, to g, In(L)-e,p; +0t, In(£, ). For airport(s) d’ similar expressions for p*y,
faand V. can be derived. Then, using Proposition 1, it is possible to find a system
wide symmetric equilibrium as is shown in Proposition 2.

Proposition 2

Let there be D airports, each of which accommodates L airlines with identical
marginal cost per passenger ¢ and identical marginal cost per flight k. Then there
exists a unique symmetric price-frequency equilibrium. The equilibrium price is given
by:

p=c+ LDp,p,
@, (i, D(L-1)+ 1, (D - 1)) (2
and the equilibrium frequency is given by:
N/
fi=53 2 (13)

Only the airfare is dependent on the heterogeneity between airlines operating from
both the same airport and different airports. Both the equilibrium airfare and
frequency are decreasing in D (and L). This is an equilibrium between all the airlines
in the system, taking the airport authorities' behavior as given. Note that although
airlines charge the same prices and offer the same frequencies, airports do not
necessarily have the same airport taxes and access times. As is shown in Appendix A,
for the symmetric equilibrium to exist it is necessary that

=-p, (taxd. —taxd)—ﬂa (ln(tdl)—ln(t,, )):0. This relationship may be satisfied for

taxy # taxg and In(ty) # In(zz). Hence an airport with excellent accessibility may
charge higher airport taxes than an airport with lesser accessibility, The relation A=0
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says nothing about whether the airport taxes are optimal from the airports point of
view. Therefore, in the next Subsection airports will be introduced as independent
agents.

The Airport's Maximization Problem

In this Subsection we will describe how airports in a multiple airport system
can compete for passengers. Airport d has a market share P(d), defined as in
Subsection 3.1. Clearly, this probability also depends on the airline's optimal fares and
frequencies.

Passenger demand for flights out of an airport 4 is given by P(d). Let the
airport's optimization problem be (see also Oum et al., 1996):

max _[P(d)dtax +(tax, —me, )NP(d) - rK, - 8('Nz—(d‘)‘) (14)

taxy

s.t. T, = (tax, —me, )NP(d)-rK, 20

the airport maximizes social welfare with respect to the airport tax fax, under a cost
recovery constraint. We assume the marginal costs per passenger mc, are constant.
rK, is the capital cost of airport d (where K, is the airport's capital stock) and g(..) is a

) 9
congestion cost function; agTd) > 0. The first order conditions are:

{3

d

dtax,
All, =0,I1, 20,42 0.

—ﬁ,axP(d)(l—P(d))M;gH;j-

d

(taxd —-mc,,)— =0 (15)

ﬁm/\‘
Hy

orl
where Loz (d)—(tax,,—mcd) P(d)(1-P(d)). Then, if the cost recovery

otax,
constraint is binding (A>0):

o, = me, 4+~
ax, =mc, NP(d) (16)
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NP(d)
K, 2 K
if 1\;P(ii) > é‘ta::d . Hence, if the capital costs exceed the marginal congestion

costs, the airport sets its tax at average cost level, The tax curve is decreasing in P(d).
Let L=2, Kaps = Kapy, mcy = mcy and ty = . Then we can derive a
symmetric equilibrium, which is shown in proposition 3.

Proposition 3

Given the conditions necessary for Propositions 1 and 2 and that the airport's
profit function is non-decreasing in the airport tax, the following symmetric
equilibrium is unique:

. _ rK,D
axd = mc,, + N (17)
. Dy,
P=ere @D (18)
f. __I-gi_.].v.
“Da, k (19)

See Appendix A for a proof. The equilibrium airport tax is increasing in the number
of airports; as the number of airports increases the market share of a particular airport
will decrease (as by assumption all airports all equal in all aspects). Hence, to break
even the airport will have to increase its tax as the capital cost has not changed. The
properties of the equilibrivm airfares and frequencies as those of the airfares and
frequencies derived in Propositions 1 and 2, The equilibrium derived in Proposition 3
is rather limited as it is necessary that airports are equal in all aspects. If e.g. s # t4,
the symmetric equilibrium derived in Proposition 3 is no longer valid. In Subsection
3.4 we comment on more general equilibria.

Extensions

In Proposition 1 a symmetric lacal airline equilibrium was derived. Although
this only is a special case, for our purposes (analysis of airport behavior) it is
convenient to maintain the assumption that airlines are equal in all aspects. The
condition that the frequency elasticity of demand has to be smaller than 1 has to be
validated empirically. In Proposition 2 a global airline equilibrium was derived. At
this equilibrium it is possible that different airports have charge different taxes,
depending on the accessibility of the airport. In Proposition 3 a unique global
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symmetric equilibrium including optimal airport taxes was derived. Asymmetric
equilibria, althongh more likely to occur in reality, do not exist if airports (and
airlines) are equal in all aspects, the airports' profit functions are non-decreasing in the
output price and the frequency elasticity of demand is smaller than 1. The latter two
conditions have to be validated empirically, the condition that airports (and airlines)
are equal in all aspects is an assumption. If we were to relax this condition, the
analytical solutions are very difficult to interpret. We could still look at the general
solution as given in the proof of Proposition 1 to analyze how an airport reacts to a
dtax, dtax, HZ,

o, oz, o,
However, as Z, will be difficult to interpret, such an expression is most likely still
very complicated and is, apart from the sign, still difficult to interpret. For a real
world problem, a numerical solution for the optimal fares, frequencies and airport
taxes could prove to be more fruitful. The restrictions of symmetric airlines and
symmetric airports can then be relaxed. Using data for the San Francisco Bay Area,
Pels et al. (1998,2) estimates for most of the necessary parameters and exogenous
variables can be derived. These estimates will be used to find (asymmetric)
equilibrium frequencies; data on the airfares is not available.

change in the characteristics of an alternate airport; e.g.

CONCLUSION

Using a nested logit demand model, in this paper we have derived equilibrium
airfares and frequencies. These were shown to be unique. First, a local symmetric
equilibrium was derived. This is an equilibrium for airlines operating from the same
airport, and provides a convenient tool for the remainder of the analysis in which
optimal airfares and frequencies for airlines operating from different airports and
optimal airport taxes were derived. In Proposition 2 it was shown that a symmetric
equilibrium between airlines operating from different airports can exist even if the
airports charge different taxes and have different accessibility’s, although taxes and
accessibility’s cannot attain every value. When the airport authority is introduced as a
player, symmetric airport taxes, airfares and frequencies exist and were shown to be
unique given certain assumptions. When these assumptions are relaxed, the analytical
solutions become very complex.

The present paper leads to the following research agenda. First, one could try
to find a numerical solution rather than an analytical solution, When estimates for the
parameters and data on the exogenous variables are available one could find optimal
airfares, frequencies and airport taxes. Furthermore, it would be possible to analyze
how these variables react to changes in the exogenous variables (e.g. construction of
new roads which would change the accessibility (access times) of an airport, airport
terminal or runway congestion etc.) and parameters. Second, the model could also be
applied to a different choice set. In this paper, a single origin-destination market was



70 AIRPORT FACILITIES

analyzed. The same model could also be used for a choice between direct-indirect
flights, and this could be combined with e.g. an analysis of optimal airline networks.
Analysis of airport access modes can also be included (by introducing a third level in
the discrete choice madel). Finally, the airline and ‘airport cost functions were kept
very simple, and these will have to be verified.
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APPENDIX
This Appendix provides proofs for Propositions 1,2 and 3.

Proof of Proposition 1.

Let there be L airlines operating out of airport d, of which L-1 airlines
(charging p; 4 and (each) offering a frequency f; ) are in equilibrium. Hence we need
to find an equilibrium between the L-1 airlines already in equilibrium and the
remaining airline /. P(/ld) can be rewritten as:

Oy =0, Py + 0 In(f,,)
o ) ) (Al)
ex p(% _aﬂpl.du':af I“wa)) +H{L-1) exp(% "appr.zllzaf ln(f,,d))

Then, if k=k; and c=cj=c for all j=1,...,L, j#l, the following symmetric equilibrium is
found:

Plld)=

, Ly,
=c+
Pa=t o, (1, (L-1) + p, (1~ P(a))) (A2)
.10, Pd)N
‘“Lo, & (A3

Hence at the local equilibrium all L airlines have the same frequency and airfare. p,;”
9!;;__ #1#2(/’1‘1 "/lz(l"P(d)))

_ 5 is negative as U;>[;; see

AL g (1(L-1)+m1-P(d))
Subsection 3.1. It is clear that f;" is decreasing in L.

is decreasing in L:

To show that the (local) equilibrium airfare is unique, we have to show that
airline I's best response airfare function is a contraction; it should satisfy

L lop’ P(lld)P(d)-1} P{lld}-1
ZJ <1, where pf’al+a,,(p,—c,)[ (1d)P(d) )+ (1) ] . For
il OPr Hy H

simplicity we check the condition for L=2. Using the implicit function theorem and
treating P(d) as exogenous yields:
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H H,

aﬂ(P(lld)(P(d)‘ 1) + P(”d)f 1)+ a,(p,-c) %

ap(i1d) ap(lid)
——(Pld)-1) ——*
aﬂ(p!"cr) P m + ii’
- ®(1d) (Pd)-1) apcgnd)

H

1}

(Ad)

>0 and y; > iy (see Subsection

< 0. Hence the price:

dlld)( Pd)-1 1
(P: “'Cl) ( )( +—
- P \ WM <1
Plild (1~ P{d 1-Plld APlld d)—
[( X ())+ ( ))_'_(p’_c) ( )(P()l_l__l_)
1 Hy ap, B
s the numerator is positive ap(lld) 3P(llcl)
a € I M = -
&71' &7!
3.1). The denominator is also positive; the first term in brackets is positive as both
: oPlild
P(d) and P(lld) >0. The second term is positive as ép )
!

equilibrium is stable. Likewise, we have to show that Z

the optimal prices in equation 10 results in f” =

implicit function theorem, we find:

IP(ild)
&
HF(id) Pid)

G fi

i/ -
“uf P(ld)(1~ P(d))

o
#—}— P(ild)(1-P(d)}~-

241

p(ia)| <!

by

a, P(d)P(1d)

ap fl

L J "%br

' I

———{ < 1. Substituting for

N -k =0. Using the

(A3)
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. H, , TN " H,
f o, <—=——, as in equilibr =fr4. The condition ¢, < ————=
if o, 1-p{id) as in equilibrium f; 4=f 4 condition ¢, = p(1d)

that the frequency elasticity of the (local) demand is smaller than 1;

p(iid) _ BL(P@_‘Q) = ﬁf_(l - p(l|d)) <1.QED.

fra P} ln( fl.d ) T
Proof of Proposition 2.

ensures

Suppose there are D airports, each of which accommodates L airlines. Furthermore,
define A=-B(tax, - taxs)- Ba(ln(ts) - In(ty), where the subscript d' is used for all
alternate airports; i.e. all airports other than d have equal covariates. Of the D airports
in the system, let there be D-I already in equilibrium. Then

Q)= exp(Vd )
exp(V, ) +(D - Dexp(V,

(as specified in equation (3)). Then, if L; = Ly ,s0lving the system of equations (9)
and (11) for both airport d and the alternate airports d', we find a general solution:

) , where V; is the utility derived from using airport d

o g mes oy L, N

N o (o kexp(Zo (D - 1)+ 1, (2, - )N)

., 0N
fa = afpk _CXP(Za) (A6)

fo= exp(ZD)
where Z; is a root of exp(Q)4;

, 1 1
o, exp(Z)k(—i ‘I’(/.t, -0, ) +A |+of >

Q= 1 D
5\P+—5t~]- i A [Neya,

a;.unuzzNz

YN +
(D-1Dexp(Z)ky} - (A7)

where Y =-2Z-2In(k) + 2In(exp(Z)0;k(1-D) + o) - 2In(ey,). Solving y = 0 results in

* For convenience we give here the expression for L=1, When L>1, €|, would be far
more complicated. However, Z, will attain the same value, It is crucial that Ls=L.
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a,N
Z,=In o Dk (A8)
P

Substituting equation (A8) for Z and ¥ = 0 in Q yields Q2 = 0 if A =0. Substituting for
Zpin the general solution results in equations (12) and (13).

To see whether this equilibrium is stable we again check whether the best

D br
response functions are contractions, For D=2, the condition Z 11 is:
d'd'ed 3pl,d'
oPllld) oPUld
(7 ,c)_<__>__<___) _
7 91’141' D_‘_z
1 op(lid) P(ud)|
P — + - O S
OlpP(l.d) 91’:.4 (P;,d C) Hy (A9)
ar(1\d) ap(ild)
(Pm “')_"—”—“
i, P <1
1 op(id) aP(lld)
! —""'*'(Pu "C)
ayP(l’d) P i
Likewise, we have
ap(1d)
o Fe |
P(ild)  P(lid)
@CM f L4
_ P(na)(1-P(d)) (Al0)
» [‘Ll f Id < 1
o P(lid)
—L_p(nd)(1-p(d))- ——~
M £ (nd)i-7(a) Ji

if o, < 1_‘;( R Note that oy<fl; as og<fl ; (this follows from the proof of

proposition 1) and pa<ity (see Subsection 3.1), QED.
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Proof of Proposition 3.

Let the cost recovery condition be binding (i.e. A>0). Then the airport's
optimal tax is given by equation 18 and the airport's best response function is the
airport's profit function, Furthermore, let Kap,~=Kap, and T = t;~t;. For Lg=Ly=2, the
general solution to the system of equations 12, 13 and 18 is

. a,Kap,
X, = e ———
T a,N-a,kz,(A-1)
o Kap,
f d
tax, =———
Ha a,kZ,
, =a;ckZ‘,(A—1)+afN/.L,
! 03kZ,(A~1) (A11)
a,cla, N -, kZ,)-a, Ny,
Pe=-
’ a,(a,N -0, kz,)
P =~—a,N+akao(A—1)
d a,k
=2y

where Z is a root of exp(£2);

_ ((wz,b, +(2u, + B,7)exp(Z)alcr, )k + ,B,aerap,,)D+
|~ (v + (s + B ) exp(@cier, i - B rkap,
((W’z +(p, + ﬂn‘t')exp(Z)a oc’)k2 + B, ol rRap, exp(Z))D2 +
(v, + (1 +8, 'r)exp(Z)a, 2Je - Bot, 002 rKap, exp(Z)
(v, + 2B elexp(2))' Je* + e, K, (exp()) J? -
(2w + 3 olexo(2))' Je* + cien B k2 rkap, (expl@)) )+
(

(22 +apﬁr exp Z)) )k O!,N Hy

2

(A12)
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where =-2Z-2In(k) + 2in(exp(Z) 0,k (1-D)+0tN)~2In{ o),
=0, o exp(Z)(ar ),

$o=-h01,” oy{exp(Z)) (o p1a) and

Ps=405,"(exp(2)) (ogr4hr)-

] a N
Solving y=0 yields Z, = ln(— ! ) Substituting 0 for v in Q2 and solving Q =0

2 a,Dk

1 o,N
yields Z, = ln(—- L } if 7 =0, Finally, substituting for Z in the general solution

2a,Dk
yields equations 17, 18 and 19. To show that the symmetric equilibrium is unique we
again look at the best response functions; we show this for D=2. From propositions 1
and 2 it follows that the airlines' equilibrium airfares and frequencies are unique;
hence we only look at the airports' best response functions:

oI, [tax, | _
" oMl oax, |

(125, -mc,)g'—p(d)(l ~P(d)) (A13)

<1

P(d) - (tax, - mc, )5—’P(d)(l - P(d))

if (taxp-mey)B<2u;. This condition implies that the airport's profit function is non-
decreasing in the airport tax. The argument runs along similar lines if we look at the
airport's best response to changes in airfare or frequency. Hence the equilibrium as
given by equations 17, 18 and 19 is unique. QED.



