Symptoms of depression in people with Impaired Glucose Metabolism or Type 2 Diabetes Mellitus: The Hoorn Study.

published in
Diabetic Medicine
2008

DOI (link to publisher)
10.1111/j.1464-5491.2008.02464.x

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
Original Article: Psychological Care

Symptoms of depression in people with impaired glucose metabolism or Type 2 diabetes mellitus: The Hoorn Study

M. C. Adriaanse, J. M. Dekker*, R. J. Heine* †, F. J. Snoek* ‡, A. J. Beekman* §, C. D. Stehouwer¶, L. M. Bouter*, G. Nijpels* and F. Pouwer* ‡

Institute of Health Sciences, Faculty of Earth and Life Sciences, VU University Amsterdam, *EMGO Institute, †Department of Endocrinology, ‡Department of Medical Psychology, §Department of Psychiatry, VU University Medical Center, Amsterdam and ¶Department of Internal Medicine, Academic Hospital Maastricht, Maastricht, the Netherlands

Accepted 15 April 2008

Abstract

Objective To study the prevalence and risk factors of depressive symptoms, comparing subjects with normal glucose metabolism (NGM), impaired glucose metabolism (IGM) or Type 2 diabetes mellitus (DM2).

Research design and methods Cross-sectional data from a population-based cohort study conducted among 550 residents (276 men and 274 women) of the Hoorn region, the Netherlands. Levels of depressive symptoms were measured using the Centre for Epidemiologic Studies Depression Scale (CES-D score ≥ 16). Glucose metabolism status was determined by means of fasting and post-load glucose levels.

Results The prevalence of depressive symptoms in men with NGM, IGM and DM2 was 7.7, 7.0 and 15.0% (P = 0.19) and for women 7.7, 23.1 and 19.7% (P < 0.01), respectively. Depression was significantly more common in women with IGM [odds ratio (OR) = 3.60, 95% confidence interval (CI) = 1.57 to 8.28] and women with DM2 (OR = 3.18, 95% CI = 1.31 to 7.74). In men, depression was not associated with IGM (OR = 0.90, 95% CI = 0.32 to 2.57) and non-significantly more common in DM2 (OR = 2.04, 95% CI = 0.75 to 5.49). Adjustment for cardiovascular risk factors, cardiovascular disease and diabetes symptoms reduced the strength of these associations.

Conclusions Depressive symptoms are more common in women with IGM, but not men. Adjustment for cardiovascular risk factors, cardiovascular disease and diabetes symptoms partially attenuated these associations, suggesting that these variables could be intermediate factors.

Keywords depression, epidemiology, prevalence, risk factors, Type 2 diabetes

Abbreviations CES-D, Centre for Epidemiologic Studies Depression Scale; DM2, Type 2 diabetes mellitus; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; IGM, impaired glucose metabolism; IMT, intima-media thickness; NGM, normal glucose metabolism; OGTT, oral glucose tolerance test; WHO, World Health Organization

Introduction

Diabetes and depression are both common diseases. There are currently more than 171 million people with diabetes, mostly Type 2 diabetes mellitus (DM2), worldwide [2]. It is estimated that this number will rise to 366 million in 2030 [1,2]. An estimated 121 million people currently suffer from depression and about 6% of men and 10% of women will experience a depressive episode in any given year [3]. Evidence from the past decades strongly suggests that diabetes and depression are associated. Approximately 10–15% of patients with diabetes mellitus meet criteria for co-morbid major depression [4,5]. Interestingly, depression is also a risk factor for development of diabetes mellitus [6,7]. Knol et al. concluded that non-diabetic adults with depression have a 30% increased risk for DM2 [8]. Moreover, depression also contributes to poor self-care and adherence to medical treatment, higher symptom burden [9], higher glycated haemoglobin (HbA1c) [10], more diabetes complications [11,12] and increased healthcare use and costs in patients with diabetes [13,14].

In concert with the increasing number of people with diabetes, the number of people with impaired glucose metabolism...
Diabetic Medicine

Symptoms of depression in people with IGM or DM2 • M. C. Adriaanse et al.

(pre-diabetes) is also rising rapidly [15]. Given the close association of depression with DM2 and the rising numbers of both DM2 and people with impaired glucose metabolism, it is logical to study whether this association also exists in persons with pre-diabetes. This could shed light on the underlying mechanisms explaining the observed association between depression and metabolic abnormalities. Until recently, the prevalence of depression among different groups of glucose metabolism was not known.

Knol et al. were the first to study the prevalence of depression in people with impaired fasting glucose [16]. They found that impaired fasting glucose was not associated with depressive symptoms, while diagnosed DM2 was associated with an increased prevalence of depressive symptoms. The authors stated important limitations such as the use of self-report to define diagnosis of DM2 and the possible lack of generalizability because of the relatively young age (mean age 39.4 years) of the study population. Knol et al. did not report the association between groups of different glucose metabolism and depression for men and women separately. There is evidence that this association is stronger for women with DM2 compared with men and it is hypothesized that this may be because of differences in oestrogen levels [17].

The actual prevalence and risk factors of depressive symptoms in normal glucose metabolism subjects, impaired glucose metabolism (pre-diabetes) subjects and patients with DM2 for both men and women separately, is currently unknown. Such knowledge is relevant from a clinical perspective as pre-diabetes is increasingly common. Moreover, depression is an established risk factor for cardiovascular disease.

We therefore analysed cross-sectional data from the Hoorn Study, a population-based cohort study, to investigate the prevalence and risk factors of depression in a group of elderly adults, comparing subjects with normal glucose metabolism with subjects with impaired glucose metabolism (pre-diabetes) and patients with DM2 and analysing men and women separately.

Research design and methods

Subjects

The Hoorn Study is a population-based cohort study on DM2 in the general Dutch population that started in 1989 and has been described in detail previously [18]. In summary, it consisted of 2484 men and women aged 50–75 years at baseline, selected from the population register of the middle-sized Dutch town of Hoorn. In 2000–2001, a third examination was performed of surviving participants who gave their permission to be re-contacted. We invited all participants who had diabetes, as determined by a 75-g oral glucose tolerance test (OGTT) or by diabetes treatment (n = 176) at the second examination of the entire cohort in 1996–1998 [19]. We also invited random samples of participants who had normal glucose metabolism (n = 705) or impaired glucose metabolism (n = 193) in 1996–1998. Of 1074 individuals invited, 648 persons (60.3%) participated. The main reasons for not participating in the 2000–2001 follow-up examination are described elsewhere [20]. For the present study, cross-sectional data of the 2000–2001 follow-up examination were analysed. Of the 648 participants, 84 individuals were excluded because of missing symptoms of depression data. Another 14 individuals were excluded because glucose metabolism data were incomplete. Therefore, our final study cohort consisted of 550 subjects; 276 men and 274 women (Fig. 1). The study protocol was approved by the Ethical Review Committee of the VU University Medical Center and all participants gave written informed consent.

Depressive symptoms

Levels of depressive symptoms were measured using the 20-item Centre for Epidemiologic Studies Depression Scale (CES-D).
Demographic and cardiovascular variables

Data were collected during the medical examination that was carried out at the Diabetes Research Centre in Hoorn. Information about age, sex, smoking and education level (low vs. middle and high level) was assessed by means of a questionnaire. Participants were not aware of their metabolic status prior to completing either the CES-D or the Type 2 Diabetes Symptom Checklist. Waist circumference was measured at the level midway between the lowest rib margin and the iliac crest. Fasting and 2-h post-load plasma glucose were measured with the hexokinase method (Roche Diagnostics, Mannheim, Germany). Glucose metabolism status was defined according to the World Health Organization (WHO) 1999 criteria, i.e. fasting plasma glucose ≥ 7.0 mmol/l on two separate occasions or a plasma glucose level ≥ 11.1 mmol/l 2 h after the glucose load [23]. HbA₁c was determined by ion-exchange high-performance liquid chromatography with Modular Diabetes Monitoring System (Bio-Rad, Veendael, the Netherlands). Serum total cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides were measured by enzymatic techniques (Boeringer-Mannheim, Mannheim, Germany).

Systolic and diastolic blood pressure were determined at the right upper arm, after 5 min rest in seated participants, with a random-zero sphygmomanometer (Hawksley-Gelma, Lancing, UK). Blood pressure was calculated as the mean of two measurements. Individuals were considered to be hypertensive if they had a diastolic blood pressure ≥ 90 mmHg and/or a systolic blood pressure ≥ 140 mmHg and/or they were taking anti-hypertensive medication. Carotid intima-media thickness (IMT) was determined by ultrasonography, using previously described techniques [24]. Subjects were classified as having albuminuria if they had an albumin : creatinine ratio > 2.0 mg/mmol. Ischaemic techniques [24]. Subjects were classified as having albuminuria if they had an albumin : creatinine ratio > 2.0 mg/mmol. Ischaemic heart disease was defined as the presence of Minnesota codes ≥ 1c [22]. The overlap between depression and symptoms of physical illness appeared to be minimal in several studies. The CES-D measures the frequency of symptoms of depression over the past 7 days. The CES-D total score can range from 0 to 60. The generally used cut-off score of 16 and above was used to identify respondents with clinically significant levels of depression [22].

Statistical analysis

All analyses were performed separately for men and women because of the statistically significant effect modification by sex of the relations under condition. Descriptive data (means, standard deviation and percentage) of subjects with normal glucose metabolism, impaired glucose metabolism and DM2 are presented for men and women separately. Differences in study sample characteristics for the three groups of glucose metabolism status by sex were examined using analyses of variance for continuous variables and χ²-tests for categorical variables. Next, analyses were carried out to contrast the data on depressive symptoms (CES-D score ≥ 16), comparing subjects with impaired glucose metabolism or detected DM2 with normal glucose metabolism subjects. In analyses pertaining to depressive symptoms, crude and adjusted odds ratios with 95% confidence intervals were calculated. Logistic regression analyses were used to study whether depression symptom severity was significantly associated with demographic variables (age and low education). Moreover, we were interested in the potential intermediating effects of cardiovascular diseases, cardiovascular risk factors and diabetes symptoms on the relationship between glucose status and depression. Therefore, we tested whether adjustment for cardiovascular risk factors (triglycerides, HDL cholesterol, total cholesterol, waist circumference, hypertension and smoking), cardiovascular disease (carotid IMT, myocardial infarction and ischaemic heart disease) and diabetes symptoms (hypoglycaemic, cardiovascular, neuropathic pain, sensibility and ophthalmological) changed the association between glucose status and depression. In these analyses, we excluded three of the eight diabetes symptoms dimensions (hypoglycaemic, psychological fatigue and cognitive distress) from the model (Model 4) because these scales contain depressive/anxiety/irritability symptoms that are also used in the depression outcome parameter. For all statistical testing, we used two-sided hypothesis testing with an α level of < 0.05. Statistical analyses were performed using the SPSS 11.5 software package for Windows (SPSS Inc., Chicago, IL, USA).

Results

Participants

Descriptive data (means, standard deviation and percentage) of the demographic and clinical variables of the subjects with normal glucose metabolism (NGM), impaired glucose

Original article

© 2008 The Authors. Journal compilation © 2008 Diabetes UK. Diabetic Medicine, 25, 843–849

score ≥ 16) [21]. The Dutch translation of this instrument has good psychometric properties and satisfactory criterion validity [22]. The overlap between depression and symptoms of physical illness appeared to be minimal in several studies. The CES-D measures the frequency of symptoms of depression over the past 7 days. The CES-D total score can range from 0 to 60. The generally used cut-off score of 16 and above was used to identify respondents with clinically significant levels of depression [22].
Prevalence (%) and odds ratios for elevated levels of depressive symptoms (CES-D score ≥ 16) by sex with impaired glucose metabolism or Type 2 diabetes subjects compared with normal glucose metabolism subjects

<table>
<thead>
<tr>
<th></th>
<th>NGM</th>
<th>IGM</th>
<th>DM2</th>
<th>P</th>
<th>NGM</th>
<th>IGM</th>
<th>DM2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>130</td>
<td>86</td>
<td>60</td>
<td>—</td>
<td>130</td>
<td>78</td>
<td>66</td>
<td>—</td>
</tr>
<tr>
<td>Age (years)</td>
<td>69.1 ± 5.9</td>
<td>69.1 ± 6.1</td>
<td>70.9 ± 6.4</td>
<td>0.131</td>
<td>68.0 ± 6.0</td>
<td>70.4 ± 5.9</td>
<td>72.1 ± 7.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Low education (%)</td>
<td>42.3</td>
<td>40.7</td>
<td>32.2</td>
<td>0.408</td>
<td>45.4</td>
<td>57.3</td>
<td>61.3</td>
<td>0.072</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/l)</td>
<td>5.5 ± 0.4</td>
<td>6.1 ± 0.5</td>
<td>8.0 ± 1.9</td>
<td>< 0.001</td>
<td>5.4 ± 0.4</td>
<td>6.1 ± 0.5</td>
<td>7.9 ± 2.2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>5.7 ± 0.4</td>
<td>5.8 ± 0.4</td>
<td>6.8 ± 1.0</td>
<td>< 0.001</td>
<td>5.7 ± 0.4</td>
<td>5.9 ± 0.3</td>
<td>6.8 ± 0.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.3 ± 0.6</td>
<td>1.3 ± 0.7</td>
<td>1.9 ± 1.0</td>
<td>< 0.001</td>
<td>1.2 ± 0.6</td>
<td>1.6 ± 0.8</td>
<td>1.9 ± 0.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.3 ± 0.4</td>
<td>1.3 ± 0.3</td>
<td>1.1 ± 0.3</td>
<td>< 0.001</td>
<td>1.7 ± 0.4</td>
<td>1.5 ± 0.4</td>
<td>1.4 ± 0.4</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.4 ± 1.0</td>
<td>5.5 ± 1.0</td>
<td>5.2 ± 1.0</td>
<td>0.089</td>
<td>6.1 ± 0.9</td>
<td>6.1 ± 1.1</td>
<td>5.9 ± 1.0</td>
<td>0.343</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>96 ± 9</td>
<td>100 ± 10</td>
<td>102 ± 10</td>
<td>< 0.001</td>
<td>86 ± 10</td>
<td>95 ± 11</td>
<td>98 ± 12</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>59.2</td>
<td>65.1</td>
<td>88.3</td>
<td>< 0.001</td>
<td>54.6</td>
<td>79.5</td>
<td>92.3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Carotid IMT (mm)</td>
<td>22.3</td>
<td>29.1</td>
<td>10.0</td>
<td>0.022</td>
<td>12.3</td>
<td>15.4</td>
<td>10.8</td>
<td>0.693</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>0.86 ± 0.19</td>
<td>0.89 ± 0.18</td>
<td>0.93 ± 0.19</td>
<td>0.092</td>
<td>0.80 ± 0.15</td>
<td>0.87 ± 0.15</td>
<td>0.91 ± 0.15</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Myocardial infarction (%)</td>
<td>10.1</td>
<td>7.1</td>
<td>9.1</td>
<td>0.749</td>
<td>3.1</td>
<td>6.4</td>
<td>6.7</td>
<td>0.422</td>
</tr>
<tr>
<td>Ischaemic heart disease (%)</td>
<td>31.8</td>
<td>12.9</td>
<td>38.2</td>
<td>0.696</td>
<td>31.1</td>
<td>39.7</td>
<td>50.0</td>
<td>0.082</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>130</td>
<td>78</td>
<td>66</td>
<td>—</td>
<td>130</td>
<td>78</td>
<td>66</td>
<td>—</td>
</tr>
<tr>
<td>Age (years)</td>
<td>69.1 ± 5.9</td>
<td>69.1 ± 6.1</td>
<td>70.9 ± 6.4</td>
<td>0.131</td>
<td>68.0 ± 6.0</td>
<td>70.4 ± 5.9</td>
<td>72.1 ± 7.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Low education (%)</td>
<td>42.3</td>
<td>40.7</td>
<td>32.2</td>
<td>0.408</td>
<td>45.4</td>
<td>57.3</td>
<td>61.3</td>
<td>0.072</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/l)</td>
<td>5.5 ± 0.4</td>
<td>6.1 ± 0.5</td>
<td>8.0 ± 1.9</td>
<td>< 0.001</td>
<td>5.4 ± 0.4</td>
<td>6.1 ± 0.5</td>
<td>7.9 ± 2.2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>5.7 ± 0.4</td>
<td>5.8 ± 0.4</td>
<td>6.8 ± 1.0</td>
<td>< 0.001</td>
<td>5.7 ± 0.4</td>
<td>5.9 ± 0.3</td>
<td>6.8 ± 0.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.3 ± 0.6</td>
<td>1.3 ± 0.7</td>
<td>1.9 ± 1.0</td>
<td>< 0.001</td>
<td>1.2 ± 0.6</td>
<td>1.6 ± 0.8</td>
<td>1.9 ± 0.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.3 ± 0.4</td>
<td>1.3 ± 0.3</td>
<td>1.1 ± 0.3</td>
<td>< 0.001</td>
<td>1.7 ± 0.4</td>
<td>1.5 ± 0.4</td>
<td>1.4 ± 0.4</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.4 ± 1.0</td>
<td>5.5 ± 1.0</td>
<td>5.2 ± 1.0</td>
<td>0.089</td>
<td>6.1 ± 0.9</td>
<td>6.1 ± 1.1</td>
<td>5.9 ± 1.0</td>
<td>0.343</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>96 ± 9</td>
<td>100 ± 10</td>
<td>102 ± 10</td>
<td>< 0.001</td>
<td>86 ± 10</td>
<td>95 ± 11</td>
<td>98 ± 12</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>59.2</td>
<td>65.1</td>
<td>88.3</td>
<td>< 0.001</td>
<td>54.6</td>
<td>79.5</td>
<td>92.3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Carotid IMT (mm)</td>
<td>22.3</td>
<td>29.1</td>
<td>10.0</td>
<td>0.022</td>
<td>12.3</td>
<td>15.4</td>
<td>10.8</td>
<td>0.693</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>0.86 ± 0.19</td>
<td>0.89 ± 0.18</td>
<td>0.93 ± 0.19</td>
<td>0.092</td>
<td>0.80 ± 0.15</td>
<td>0.87 ± 0.15</td>
<td>0.91 ± 0.15</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Myocardial infarction (%)</td>
<td>10.1</td>
<td>7.1</td>
<td>9.1</td>
<td>0.749</td>
<td>3.1</td>
<td>6.4</td>
<td>6.7</td>
<td>0.422</td>
</tr>
<tr>
<td>Ischaemic heart disease (%)</td>
<td>31.8</td>
<td>12.9</td>
<td>38.2</td>
<td>0.696</td>
<td>31.1</td>
<td>39.7</td>
<td>50.0</td>
<td>0.082</td>
</tr>
</tbody>
</table>

Data are %, means ± SD. Of those, 309 subjects, 276 men (50.2%) and 274 women, aged 69.5 ± 6.3 years (mean ± sd). Of those, 309 subjects were between 60 and 69 years of age (36.2%), 196 subjects were between 70 to 79 years of age (35.6%) and 45 subjects were between 80 and 87 years of age (8.2%). Fasting plasma glucose, HbA₁c, triglycerides, HDL cholesterol, waist circumference and hypertension in both sexes were significantly associated with deteriorating glucose metabolism when tested for a linear trend. Likewise, smoking in men and age and carotid IMT in women were positively associated with impaired glucose metabolism status.

Prevalence of depressive symptoms

The prevalence of depressive symptoms in the whole group was 12% [men 9.1% (n = 25) and women 15.0% (n = 41)]. The prevalence of depressive symptoms in men with NGM, IGM and DM2 was 7.7, 7.0 and 15.0% (P = 0.19) and for women was 7.7, 23.1 and 19.7% (P < 0.01), respectively (Table 2).
Risk factors

In the unadjusted logistic regression analysis, the odds for higher levels of depressive symptoms was three-fold in women with IGM (OR = 3.60, 95% CI = 1.57 to 8.28) or DM2 (OR = 3.18, 95% CI = 1.31 to 7.74) (Table 2). In contrast, in men depression was not associated with IGM (OR = 0.90, 95% CI = 0.32 to 2.57), whereas men with DM2 had a doubled risk for depression (OR = 2.04, 95% CI = 0.75 to 5.49), although this was not statistically significant.

In men, the association between DM2 and depressive symptoms did not substantially change when adjusting for age and low education (only 4% lower). However, in men with DM2, the odds ratio dropped considerably after adjusting for cardiovascular risk factors (Model 2: 48% reduction) and to a lesser degree after adjustment for diabetes symptoms (Model 4: 25% reduction). However, this data should be interpreted with caution because none of the presented odds ratios for men reached statistical significance.

In women, when adjusting for age and low education (Model 1), the odds ratios for IGM and DM2 were only slightly attenuated and remained significant. The odds ratio for the association between IGM or DM2 and depression dropped after adjustment for cardiovascular risk factors (Model 2: 29% reduction in IGM, 21% reduction in DM2), cardiovascular disease (Model 3: 3% reduction in IGM, 11% reduction DM2) or diabetes symptoms (Model 4: 39% reduction in IGM, 13% reduction DM2).

Discussion

To our knowledge, this is the first population-based study that determined the prevalence and risks for depressive symptoms in different groups of glucose metabolism for men and women separately, using diagnostic criteria for diabetes (i.e. OGTT). We observed that the prevalence of depressive symptoms was higher in women with IGM and DM2 compared with NMG. In men, depressive symptoms were not associated with IGM, whereas men with DM2 had a doubled risk for depression, although this was not statistically significant. Interestingly, adjustment for cardiovascular risk factors, cardiovascular diseases and diabetes symptoms lowered these odds ratios considerably, suggesting that these variables could be intermediate factors.

The observation that IGM was not associated with increased depression in men, in contrast to women with IGM, was unexpected and is difficult to explain. It is conceivable that the results are as a result of selection bias, for example, because male participants with depression were less willing to participate in the study. Our finding that the prevalence of depressive symptoms is not higher in men with IGM and diabetes is consistent with the finding of the Caerphilly prospective cohort study, which showed that insulin resistance was not associated with depression in middle-aged men [28]. The results in the men are also consistent with recent results of Knol et al., who found that an increased level of depressive symptoms was not more common in men and women with impaired fasting glucose [16]. In another study, we found only weak associations between depressive symptoms and insulin resistance, which did not differ among different glucose metabolism subgroups or between men and women [29]. The fact that HbA1c was similar in subgroups with NGT and IGT speaks against the possibility that hyperglycaemia is responsible for the association between depressive symptoms and different states of glucose tolerance. Thus, it could be speculated (while ruling out insulin resistance and hyperglycaemia) that cardiovascular risk factors (or factors of the metabolic syndrome) combined with readiness to report symptoms may be more important for high depressive symptoms than diabetes status alone in the population.

Cardiovascular disease is one of the most common complications of diabetes. The review de Groot et al. concluded that cardiovascular disease is associated with an increased risk for depression [11]. Furthermore, in an earlier study using data of the Longitudinal Aging Study Amsterdam, we have found that the prevalence of increased depressive symptoms was not increased in patients with diabetes only, while it was increased in diabetes patients who had co-morbid disease, in particular those with cardiovascular disease [30]. We found only partial attenuation of the association between glucose metabolism and depression by cardiovascular disease (or its risk factors) and diabetes symptoms. We therefore believe that the prevalence of depression in women with IGM could be related to other, unmeasured confounders, such as being widowed or the burden of having other co-morbid disease(s).

The results of the present study, demonstrating partial attenuation of the association between glucose metabolism and depression by cardiovascular disease (or its risk factors) and diabetes symptoms suggest that other mechanisms, in addition to the burden of disease, might also play a role. Some plausible alternative mechanisms include, for example, dysregulation of the hypothalamic–pituitary–adrenal axis and the sympathetic nervous system [31–33], sex steroid hormone levels [34], the role of polyunsaturated fatty acids [35], low-grade inflammation [36,37] or vitamin D deficiency [38–40]. More research is needed with regard to factors underlying these biological mechanisms.

Several strengths of our study should be emphasized. First, we used gold-standard assessment to determine glucose metabolism status by means of fasting glucose and post-load glucose levels, based on the OGTT and using the WHO 1999 diagnostic criteria. Second, the precise assessment of the cardiovascular variables, especially carotid IMT was determined with ultrasoundography, and myocardial infarction and ischaemic heart disease defined by using electrocardiogram recording.

Third, the Hoorn Study is conducted in a population-based cohort. Finally, the outcomes are presented separately for men and women because of the effect modification by sex.

Our study also has several limitations. First, our results should be interpreted with caution because of the relative
Symptoms of depression in people with IGM or DM2 • M. C. Adriaanse et al.

small numbers with elevated levels of depression per glucose group. Second, our depression assessment was based on self-report, using the CES-D rather than a gold-standard diagnostic psychiatric interview. However, the CES-D is a widely used, well-validated measure for depressive symptoms, particularly suited for large-scale epidemiological studies, both in the general population and in diabetes patients [41]. Third, the present study has a cross-sectional design, thus we cannot infer causality between depression and either prediabetes or diabetes. Finally, the present study was limited to a Dutch Caucasian elderly population. It is not clear whether the relationship between depression, glucose metabolism and cardiovascular risk factors is consistent across different racial, ethnic and age groups.

In conclusion, our study suggests that depressive symptoms are more common in women with IGM and DM2. In men, depression was not associated with IGM but non-significantly increased in DM2. Adjustment for cardiovascular risk factors, cardiovascular diseases and diabetes symptoms attenuated these associations, suggesting that these factors could play an intermediate role in the aetiology of depression in diabetes, or even explain why depressed people are at increased risk for DM2. Type 2 diabetes, IGM and depression are increasingly common conditions [1,2,15]. A high level of depressive symptoms is not only associated with increased risk for diabetes and cardiovascular disease, but also with increased mortality [42–44].

Our findings need to be replicated. Moreover, further well-designed prospective research is needed: (i) to test whether depression in IGM is associated with an increased risk for developing DM2 and cardiovascular disease in women; (ii) to disentangle the complex causal relationships between (the onset of) depressive symptoms, glucose metabolism status and cardiovascular disease; and (iii) to clarify its mechanisms.

Competing interests
None to declare.

Acknowledgements
This study is supported by grants from the European Federation for the Study of Diabetes (EFSID) and the Dutch Organization for Scientific Research (NWO).

References

