Autoionization of low-lying 5dng states in barium

Robert van Leeuwen, Wim Ubachs and Wim Hogervorst
Laser Centre Vrije Universiteit Amsterdam, Department of Physics and Astronomy, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Received 4 May 1994

Abstract. The autoionizing 5dng J = 1-5 states in barium for n = 5-8 were investigated in a two-step pulsed laser atomic beam experiment. The wavefunctions of the 5dng configuration can be well described in a \((j \ell)K\)-coupled basis. Each 5d_n K fine structure state autoionizes into a single 6s\ell_1 continuum channel. Autoionization rates, deduced from observed linewidths, are found to be symmetrically lower than values calculated using a single configuration approximation. The fine structure dependence of the autoionization rates, however, can be reproduced in these calculations.

1. Introduction

In recent years rapid progress has been made in the understanding and quantitative modelling of autoionization processes in two-electron systems. Experimentally multi-step laser excitation of the heavier earth-alkaline atoms resulted in a wealth of data on doubly-excited configurations, particularly for the barium atom (Dai et al 1989, Pruvost et al 1990, De Graaff et al 1992, Wang and Cooke 1993). Multi-channel quantum defect theory (MQDT) in combination with eigenchannel R-matrix calculations (Greene and Kim 1987, Aymar 1990, Greene and Aymar 1991) is quite successful in describing autoionizing spectra of these atoms even in cases involving large numbers of continuum channels (Luc-Koenig et al 1994, Lecomte et al 1994). In such a semi ab initio approach model potentials are used that are adjusted to the ionic spectrum for each value of the orbital angular momentum I.

Nikitin and Ostrovsky (1980) developed an analytical framework to calculate autoionization rates in two-electron systems using single configuration wavefunctions. Its applicability is limited to doubly-excited states where the outer electron has a large orbital angular momentum \((l \geq 3)\). Poirier (1988) included core polarization effects in the model of Nikitin and Ostrovsky and introduced numerical calculation of radial matrix elements. Recently the model was tested in the 6pnf manifold of barium for \(J = 1-5\) total angular momentum Rydberg series (Abutaleb et al 1991). Experimentally the autoionization rates of the 6p_nf J states were found to be up to a factor of two larger than calculated values. Accounting for 6p_{3/2}nf–6p_{1/2}e\ell fine structure autoionization resulted in only minor changes of the order of 10–20% in the rates of autoionization. Poirier (1988) compared his calculation of autoionization rates of 6p_{3/2}ng J = 5 levels with experimental linewidths measured by Jaffe et al (1985). For the \(K = \frac{9}{2}\) level good agreement was found but for the \(K = \frac{11}{2}\) level the calculated autoionization rate was found to be three times lower than the experimental value.
In the present work the Nikitin-Ostrovsky and Poirier model for autoionization is applied to an example that is simple in many respects. The outer electron in the 5dng states of barium is in a non-penetrating orbit. Also there is no overlap with the inner 5d valence electron. Therefore exchange effects in the autoionization process may be ignored and the autoionization rate is determined solely by the long range (direct) electrostatic interaction. 5dng states below the 5d_{3/2} ionization limit, which only decay into 6s_el continua, were studied. As autoionization rates of the 5dng series are low the present investigation was limited to low-n configurations in order to avoid laser linewidth effects on the observed transitions. Only the n = 5–8 configurations were excited as well as several components of n = 10 (K = 1/2, 3/2). The 5dng configuration is found to be purely (jl)K-coupled. No contribution to the fine structure due to the spin of the outer 5g electron is found to occur. Each 5dng [K] state can only couple to a single 6s_el continuum, thereby drastically simplifying the problem. In the present work observed autoionization rates, as determined from linewidth measurements, are compared with calculations. Notwithstanding the fact that the model should be applicable straightforwardly for the 5dng configuration experimental rates of autoionization are a factor of five lower than calculated values.

The present investigation of 5dng states in barium is stimulated by the possibility to use these states as intermediates for the excitation of higher lying doubly-excited states where both electrons have a large orbital angular momentum (Jones et al 1991). Here we analyse seven out of ten possible components of the 5dng [K] multiplet. A comparison is made with results of Bente and Hogervorst (1989a) for 5dng series for high values of n.

2. Experimental method

The low lying autoionizing 5dng states of barium were excited in a two-step pulsed laser experimental. The excitation scheme, with relevant energy levels, is given in figure 1. A first dye laser in the wavelength region 650 nm–730 nm using DCM or LDS dyes, was pumped by the second harmonic output (532 nm) of a Nd:YAG laser with a repetition rate of 10 Hz. Its frequency ν1, with bandwidth Δν1 = 0.3 cm⁻¹, was tuned to the selected 6s5d–5d6p transitions. The second dye laser was pumped by either the second or the third harmonic output (355 nm) of the same Nd:YAG laser depending on the dye required to excite the 5dng states. The dye laser frequency ν2, with bandwidth Δν2 = 0.02 cm⁻¹, was scanned in steps of about 0.02 cm⁻¹ over the 5d6p–5dng transitions. The two counterpropagating laser beams were spatially overlapped in the interaction region perpendicularly intersecting an atomic beam between two closely spaced (1 cm) capacitor plates at zero potential. After a time delay of 0.5 μs a voltage pulse of −200 V was applied to one of the plates. The produced ions were collected and directed through a grid towards an electron multiplier. The ion signal was processed via a boxcar integrator and stored on a computer. At each wavelength setting the signal of 10 laser shots was summed. The atomic beam was produced by heating a sample of natural barium in a small tantalum oven using a tungsten heating wire. To populate the metastable 6s5d 1D2, D1,23 levels a low voltage discharge (<10 V, 800 mA) was maintained between oven and heating wire. The population of 6s5d metastable states is estimated to be 1%.

The goal of the experiment was to determine autoionization rates of the $5d\text{ng}$ states from linewidth measurements, so great care was taken to avoid additional line broadening effects. The pulse of the second dye laser arrived about 7 ns after the first laser pulse, while pulse durations were about 4–5 ns. Thus coherent two-photon excitation was avoided and the linewidth was determined by the (narrow) bandwidth of the second dye laser only. The laser power of the first dye laser was reduced to about 50 μJ per pulse such that multiphoton ionization with the first dye laser alone did not occur. Furthermore the laser power of the second dye laser was reduced until power broadening effects were clearly absent. Energy positions of the $5d\text{ng}$ resonances were determined using a home-built echelle-grating wavelength meter yielding an accuracy of about 0.10 cm$^{-1}$. With an additional uncertainty of 0.05 cm$^{-1}$ in the level energies of the intermediate $5d6p$ configuration (Vergès 1984), a small uncertainty resulting from the procedure used to fit the (Voigt or Fano) line shapes and non-linearities in the laser scan the total uncertainty in the $5d\text{ng}$ level energies is estimated to be 0.15 cm$^{-1}$.

3. Theoretical framework

The calculation of autoionization rates and fine structure of the $5d\text{ng}$ configuration is based on a simple model of an atom with two valence electrons in a doubly-excited state. This model assumes that the outer valence electron (1) on the average is much further away from the 2^+ core than the inner valence electron (2). The Hamiltonian
can then be written in the form:

\[H = H_0 + H_{so} + V \] \hspace{1cm} (1a)

with

\[H_0 = \frac{p_i^2 + p_{l_i}^2}{2} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) \] \hspace{1cm} (1b)

and

\[V = \frac{1}{r_{12}} - \frac{1}{r_1} \] \hspace{1cm} (1c)

where \(r_i \) and \(p_i \) are the radial position and momentum of electron \(i \). \(H_{so} \) represents the spin–orbit interaction of both valence electrons. The Coulomb repulsion, \(1/r_{12} \), between the two valence electrons is responsible for autoionization as well as for fine structure splitting.

An atom in a doubly-excited \(n_2l_2n_1l_1 \) state interacting with \(n_0l_0s \) continuum states of the same parity and the same value of the total angular momentum \(J \) will autoionize. This results in an ion in a \(n_0l_0 \) state and an ejected electron with energy \(e \), determined by energy conservation, and angular momentum \(l \). The autoionization rate \(\Gamma \) is given by:

\[\Gamma = 2\pi \left| \langle n_0l_0sJ | V | n_2l_2n_1l_1J \rangle \right|^2. \] \hspace{1cm} (2)

Similarly the fine structure splitting within a configuration due to the electrostatic repulsion is given by a matrix element involving the same operator:

\[W_{ES}^{\text{rep}} = \langle n_2l_2n_1l_1J | V | n_2l_2n_1l_1J \rangle. \] \hspace{1cm} (3)

To evaluate these matrix elements the Coulomb repulsion term in the perturbation \(V \) can be expanded in multipoles:

\[\frac{1}{r_{12}} = \sum_{k=0}^{\infty} \frac{r_{<}^k}{r_{>}^{k+1}} C_1^{(k)} C_2^{(k)} \] \hspace{1cm} (4)

where \(C_1^{(k)} \) and \(C_2^{(k)} \) are spherical harmonic vector operators and \(r_{>}(r_{<}) \) is the larger (smaller) of the radial positions \((r_1, r_2) \). In the 5dng as well as in the continuum configurations the inner electron at \(r_2 \) may be assumed to always be closer to the core than the outer electron at \(r_1 \), thus simplifying the evaluation of equation (4). The zero-order term in equation (4) is cancelled by the \(1/r_1 \) term in equation (1c).

If configuration interaction is ignored single configuration wavefunctions can be used. Antisymmetrization of the wavefunctions results in a direct and an exchange contribution to the matrix elements. The exchange parts can be neglected when the outer electron is in a high-\(l \) state \((l \geq 3)\), because of the small overlap of its wavefunction with the inner valence electron. Since the wavefunctions are, for high-\(l \) states, best described in a \((jl)K\)-coupling scheme and the electrostatic interaction between the valence electrons is diagonal with respect to \(K \), it is convenient to calculate the matrix elements for the direct autoionization rate and the fine structure splittings for \((jl)K\)-coupled states.
3.1. Fine structure

The first order contribution to the fine structure splitting of a \((j\ell)K\)-coupled configuration is caused by the spin–orbit interaction of the inner electron. For the 5d\(ng\) configuration the 5d\(_{3/2}ng\) and 5d\(_{5/2}ng\) levels are separated by 801.0 cm\(^{-1}\). The second order contribution, \(W_{ES}^{\text{split}}\), further splits the 5d\(_{ng}\) levels into \(K\)-components and may be written as (Cowan 1981):

\[
W_{ES}^{\text{split}} = \sum_k f_k F^{(k)} \quad k = 2, 4
\]

(5)

where \(f_k\) represents angular coefficients and \(F^{(k)}\) are the so-called direct radial Slater integrals which can, using the assumptions made above, be written:

\[
F^{(k)} = \langle 5d| r^k |5d\rangle \langle ng|1/r^{k+1}|ng\rangle.
\]

(6)

The one-electron radial integrals may be evaluated using well-known analytical expressions for the expectation values of \(r^k\) (Cowan 1981). The 5d electron is assumed to move in the field of a \(Z=2\) core. Core penetration is accounted for by replacing the principal quantum number \(n\) by an effective quantum number \(n^* = n - \delta\), where \(\delta\) is the quantum defect of the 5d electron in the Ba\(^+\) ion (\(\delta=2.59\)). For the \(ng\) electron hydrogen wavefunctions are taken. The calculated Slater integrals \(F^{(2)}\) and \(F^{(4)}\) are given in Table 1. The angular coefficients \(f_2\) and \(f_4\) are evaluated in a \((j\ell)K\) coupling scheme. The fine structure of the 5d\(ng\) configuration then follows through equation (5).

Table 1. Slater–Condon parameters as obtained from a least squares analysis including 7 out of 10 5d\(ng\) \(K\) levels for \(n=5-8\). Calculated values for the second and fourth order direct radial integrals are included as well. All values in cm\(^{-1}\).

<table>
<thead>
<tr>
<th>(E_{ex})</th>
<th>(F^2)</th>
<th>(F^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exp.</td>
<td>calc.</td>
</tr>
<tr>
<td>5d5g</td>
<td>42 969.9 (4)</td>
<td>155 (3)</td>
</tr>
<tr>
<td>5d6g</td>
<td>44 321.0 (5)</td>
<td>81 (3)</td>
</tr>
<tr>
<td>5d7g</td>
<td>45 136.7 (3)</td>
<td>50 (3)</td>
</tr>
<tr>
<td>5d8g</td>
<td>45 665.0 (2)</td>
<td>28 (2)</td>
</tr>
</tbody>
</table>

3.2. Autoionization

With the assumptions made earlier the autoionization rate for an atom in a \((j\ell)K\)-coupled doubly-excited \(n_2l_2n_1l_1\) state ionizing into a \(n_0l_0\) \(s\) continuum can be expressed as follows:

\[
\Gamma_K = 2\pi \Gamma \sum_{k \geq 1} \left\{ \begin{array}{ccc}
0 & 0 & 0 \\
l_0 & k & l_2 \\
0 & 0 & 0
\end{array} \right\} \left\{ \begin{array}{ccc}
0 & 0 & 0 \\
l_0 & s & j_0 \\
0 & 0 & 0
\end{array} \right\} \left\{ \begin{array}{ccc}
l_0 & l & K \\
l_2 & k & j_0 \\
l_2 & l_1 & j_2
\end{array} \right\} \times \langle n_0l_0| r^k |n_2l_2\rangle^2 \langle s\ell | r^{-k-1} | n_1l_1 \rangle^2
\]

(7)

\([l_2, l_1, \ldots]\) stands for \((2l_2 + 1) (2l_1 + 1)\) etc. The autoionization rate is independent of the value of \(J\). To calculate the matrix element \(\langle s\ell | r^{-k-1} | n_1l_1 \rangle\) the outer Rydberg
electron is represented by a hydrogen wavefunction. For the continuum wavefunction of the ejected electron a regular Coulomb wavefunction is used:

\[R_{el}(r) = c_{pl}(2pr)^l e^{-\nu r} \frac{\Gamma(l+1+i/p)}{\Gamma(2l+2)} \frac{1}{r} F_1(l+1+i/p; 2l+2; 2ipr) \]

(8a)

where

\[c_{pl} = \sqrt{\frac{2p}{\pi}} \frac{|\Gamma(l+1-i/p)|}{\Gamma(2l+2)} e^{\nu/2p}. \]

(8b)

\(F_1 \) is the confluent hypergeometric function, \(\Gamma \) the Gamma function and \(p \) the momentum of the ejected electron, \(p = (2\epsilon)^{1/2} \). For circular states \(n_1 = l_1 + 1 \) an analytic expression for the radial matrix element can be derived (Nikitin and Ostrovsky 1980):

\[\langle \epsilon l | r^{-k-l} | n_1 l_1 \rangle = c_{pl}(2p)^{l+3/2} \sqrt{\Gamma(2l+3)} \frac{(2p)^l \Gamma(l+l_1-2)(p_1+ip)^{-l-k-2}}{\Gamma(2l+3)} \times _2 F_1(l+1+i/p, l+l_1-k+2; 2l+2; 2ip/(p_1+ip)) \]

(9)

where \(_2 F_1 \) stands for the hypergeometrical function and \(p = 1/n_1 \) is the momentum of the \(n_1 l_1 \) electron.

The 5d,ng states of barium investigated in this work all lie below the 5d_{3/2} ionization limit and therefore only autoionize into 6s_{1/2}el continua. Autoionization entirely occurs via quadrupolar coupling between 5dng and 6sel states since only the second order term \((k = 2) \) in equation (7) is non-zero. The values of the angular momentum of the ejected electron are restricted to \(l = 2, 4 \) or 6. From angular momentum selection rules it follows that the 5d_{5/2} \(K = \frac{5}{2} \) and \(\frac{3}{2} \) levels couple to 6s_{1/2}el continua, 5d_{5/2} \(K = \frac{3}{2} \) and \(\frac{1}{2} \) to 6s_{1/2}eg continua and \(K = \frac{1}{2} \) and \(\frac{3}{2} \) couple to 6s_{1/2}ei continua while \(K \) is conserved. So each initial 5dng state can autoionize only into a single continuum. This greatly simplifies the calculation of autoionization rates. For the specific case of autoionization of 5d,ng states into 6s_{1/2}ei continua equation (7) reduces to:

\[\Gamma_{5d,ng \rightarrow 6s_{1/2}ei} = \frac{18}{5} \pi (2l+1)(2j_2+1) \left(\begin{array}{ccc} l & 2 & 4 \\ 0 & 0 & 0 \end{array} \right)^2 \left(\begin{array}{ccc} \frac{1}{2} & l & K^2 \\ 4 & j_2 & 2 \end{array} \right) \langle 6s | r^2 | 5d \rangle^2 \langle \epsilon l | r^{-3} | ng \rangle^2 \]

(10)

where \(K = l \pm \frac{1}{2} \) and \(l = 2, 4, 6 \). Since the 5d,ng states are \((Jl)K \) coupled equation (10) can be directly applied to calculate the autoionization rates of the various \(K \) levels. The quadrupole matrix element is taken from Poirier (1993), who recently calculated \(\langle 6s | r^2 | 5d \rangle \) to be 14.01 a_{0}^{2} by numerical integration of the one-electron Schrödinger equation. He followed a Numerov procedure and accounted for core-polarization effects.

For the 5d_{5/2} configuration the radial matrix element \(\langle \epsilon l | r^{-3} | 5g \rangle \) can be calculated from equation (9) since the outer electron is in a circular state \((n_1 = l_1 + 1) \). The 5d_{3/2}5g levels produce electrons with less energy \((p = 0.066 \text{ au}) \) than the 5d_{5/2}5g levels \((p = 0.107 \text{ au}) \). As the production of slow electrons is favoured the autoionization width of
the 5d_{3/2}ng levels is larger by about 5%. In figure 2 the radial matrix element involving a 5d_{3/2}5g state is given as a function of the angular momentum l.

The radial matrix element $\langle s| r^{-3} | ng \rangle$ for $n > 5$ cannot be obtained by simple n^{-3} scaling of the matrix element. The autoionization rate Γ strongly depends on the overlap of the electron wavefunctions at small r. For $n \gg l$ the classical inner turning point of the outer electron r_i is independent of n, $r_i \approx \frac{1}{2} (l+1)$ and Γ is therefore proportional to the number of roundtrips per unit time of the electron ($n^3 \Gamma = \text{constant}$). For low n, however, r_i increases with decreasing n, which results in a lower value of the scaled autoionization rate $n^3 \Gamma$. Instead the radial integrals have to be calculated by numerical integration. In figure 3 calculated scaled autoionization widths of 5d_{3/2}ng $K=\frac{3}{2}$ levels are plotted versus n. It shows that the n^{-3} scaling of the autoionization rate is not valid for low n (<10). The calculated value of the scaled autoionization rate for large n is in agreement with the value, transferred from LS- to jl-coupling, calculated by Poirier (1988) for 5d24g $L=4$.

4. Results and interpretation

4.1. Observed spectra

Low-lying 5dng configurations ($n = 5–8$) of barium above the first (6s) ionization limit at 42 034.90 cm$^{-1}$, but still below the 5d_{3/2} ionization limit at 46 908.75 cm$^{-1}$, were studied. The 5dng $J=1–5$ states, excited via 5d6p 3D_2, $^1^3F_3$, 3F_4 intermediate states (see figure 1) appeared as closely spaced narrow resonances, have a small quantum defect and lie between broad 5dns and 5dnd resonances. Figure 4(a) shows an example of a recorded 5d_{3/2}5g spectrum excited from the 5d6p 3F_4 level at 23 757.03 (5) cm$^{-1}$. Only three resonances were observed, identified in a $(jl)K$-coupling scheme as $K=\frac{5}{2}$, $K=\frac{3}{2}$ and $K=\frac{1}{2}$ levels. The $K=\frac{1}{2}$ $J=5$ level was not observed. In the spectrum of figure 4(b)
5d\textsubscript{5/2} 5g states, excited from the 5d6p 3D\textsubscript{2} level at 24 531.49 (5) cm-1, are shown. Splittings of K-components in two J-components (J = K ± \frac{1}{2}) were not observed. Many spectra of various fine structure components of the 5dng (n = 5–8) configurations were recorded. The observed 5dng resonances vary in lineshape, linestrength and linewidth.
Symmetric Voigt profiles as well as asymmetric Fano profiles are observed. The appearance of Fano profiles may result from interaction of 5dng states with broad 5dnl \((l=0, 2)\) autoionizing resonances or with 6s\(l\) continua with equal value of the total angular momentum \(J\). The 5dns and 5dnd resonances can be excited directly from the 5d6p configuration, while excitation of 6s\(l\) results from an admixture of odd-parity 6snl character in 5d6p.

4.2. Fine structure analysis

The analysis of the multiplet structure of the 5dng configurations is based on a Slater-Condon type of analysis incorporating the accurately measured level energies of 5dng resonances. Observed line intensities are used to find the correct \(J\)-assignment of the \(K\)-levels in the spectra. As 5dng states cannot be excited from a pure 5d6p configuration for a fine structure analysis two assumptions have to be made that will be proven valid \textit{a posteriori}. First configuration interaction of 5d6p and 5d4f is assumed to be responsible for the excitation of 5dng resonances. Secondly the 5dng configuration is considered to be \((j\ell)K\) coupled.

Line intensities in the 5d6p–5dng multiplet were calculated based on the assumption of 5d6p–5d4f configuration mixing. The intermediate 5d6p configuration is described well in a \(LS\)-coupling scheme (Grundelvik et al 1982). Since the Coulomb interaction is diagonal in \(LS\)-coupling and because the energy separation between the 5d6p and 5d4f configurations is much larger (about 15 000 cm\(^{-1}\)) than the internal splittings in the \((jj\)-coupled\) 5d4f configuration, the 5d4f fraction in the 5d6p wavefunction can also be treated as \(LS\)-coupled. Relative transition probabilities from \(LS\)-coupled 5d4f levels to \(j\ell\)-coupled 5dng levels were calculated and are listed in table 2.

<table>
<thead>
<tr>
<th>(J_{5a})</th>
<th>(K)</th>
<th>(J)</th>
<th>(3F_{4})</th>
<th>(3F_{3})</th>
<th>(1F_{3})</th>
<th>(3D_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>11/2</td>
<td>5</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>9/2</td>
<td>5</td>
<td>0.2801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>9/2</td>
<td>4</td>
<td>0.0064</td>
<td>0.0955</td>
<td>0.1273</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>7/2</td>
<td>4</td>
<td>0.0331</td>
<td>0.3175</td>
<td>0.2001</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>7/2</td>
<td>3</td>
<td>0.0009</td>
<td>0.0000</td>
<td>0.0446</td>
<td>0.1020</td>
</tr>
<tr>
<td>3/2</td>
<td>5/2</td>
<td>3</td>
<td>0.0010</td>
<td>0.0365</td>
<td>0.0248</td>
<td>0.1837</td>
</tr>
<tr>
<td>3/2</td>
<td>5/2</td>
<td>2</td>
<td>0.0006</td>
<td>0.0032</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>11/2</td>
<td>5</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>9/2</td>
<td>5</td>
<td>0.7202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>9/2</td>
<td>4</td>
<td>0.0164</td>
<td>0.2455</td>
<td>0.3274</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>7/2</td>
<td>4</td>
<td>0.2046</td>
<td>0.1228</td>
<td>0.1637</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>7/2</td>
<td>3</td>
<td>0.0058</td>
<td>0.1137</td>
<td>0.0546</td>
<td>0.1247</td>
</tr>
<tr>
<td>5/2</td>
<td>5/2</td>
<td>3</td>
<td>0.0172</td>
<td>0.0478</td>
<td>0.0496</td>
<td>0.1372</td>
</tr>
<tr>
<td>5/2</td>
<td>5/2</td>
<td>2</td>
<td>0.0160</td>
<td>0.0016</td>
<td>0.0992</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>3/2</td>
<td>2</td>
<td>0.0042</td>
<td>0.0032</td>
<td>0.0496</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>3/2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.0179</td>
</tr>
</tbody>
</table>
Table 3. Results of the fine structure analysis of the 5d5g multiplet. Average energy positions (with an uncertainty of 0.1 cm\(^{-1}\)) of the 5d5g \(K\) levels are determined from transitions from several intermediate 5d6p states. Exchange and spin–orbit interaction of the outer electron are neglected. The spin–orbit parameter of the inner electron is taken from the ion, \(\xi_{5d} = 390.39\) cm\(^{-1}\). All values in cm\(^{-1}\).

<table>
<thead>
<tr>
<th>(j_{5d})</th>
<th>(K)</th>
<th>(J)</th>
<th>Exp. energy</th>
<th>Fit</th>
<th>(\Delta\ (\text{Exp.} - \text{Fit}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>5/2</td>
<td>2, 3</td>
<td>42 509.92</td>
<td>42 511.17</td>
<td>-1.25</td>
</tr>
<tr>
<td>3/2</td>
<td>7/2</td>
<td>3, 4</td>
<td>42 480.06</td>
<td>42 480.29</td>
<td>-0.23</td>
</tr>
<tr>
<td>3/2</td>
<td>9/2</td>
<td>4, 5</td>
<td>42 470.83</td>
<td>42 469.54</td>
<td>+1.29</td>
</tr>
<tr>
<td>3/2</td>
<td>11/2</td>
<td>5, 6</td>
<td>42 500.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>3/2</td>
<td>1, 2</td>
<td>43 323.43</td>
<td>43 322.52</td>
<td>+0.91</td>
</tr>
<tr>
<td>5/2</td>
<td>5/2</td>
<td>2, 3</td>
<td>43 302.95</td>
<td>43 302.56</td>
<td>+0.39</td>
</tr>
<tr>
<td>5/2</td>
<td>7/2</td>
<td>3, 4</td>
<td>43 283.10</td>
<td>43 283.47</td>
<td>-0.37</td>
</tr>
<tr>
<td>5/2</td>
<td>9/2</td>
<td>4, 5</td>
<td>43 271.02</td>
<td>43 271.76</td>
<td>-0.74</td>
</tr>
<tr>
<td>5/2</td>
<td>11/2</td>
<td>5, 6</td>
<td>43 274.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>13/2</td>
<td>6, 7</td>
<td>43 306.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The observed 5d5g resonances were assigned on the basis of predicted fine structure splittings and calculated line intensities. Experimental level energies of the 5d5g configuration are collected in table 3. The energies of 5d5g \([K]\) levels determined from transitions from various intermediate 5d6p states were averaged. The energies of 5d5g \(J = K - \frac{1}{2}\) and \(J = K + \frac{1}{2}\) levels were also averaged as no effect of the spin of the outer electron was observed. In none of the recorded spectra could splittings of \(K\)-components in separate \(J\)-components be observed. The transition probability to the \(J = K - \frac{1}{2}\) level is usually much smaller than to the \(J = K + \frac{1}{2}\) level as can be deduced from table 2, e.g. the transition probability to the \(J = 4\) component of the \(K = \frac{9}{2}\) state in figure 4(a) is about 2 orders of magnitude smaller than that to the \(J = 5\) component, but it is still of the same order as the transition probability to the \(K = \frac{3}{2}, J = 3\) level which could be observed. The \(K = \frac{9}{2}\) peak in figure 4(a) can be assigned to have \(J = 5\). The \(K = \frac{3}{2}, J = 4\) levels were excited separately from a 5d6p \(J = 3\) state. The energy positions of both \(K = \frac{9}{2}\) levels, excited through different excitation schemes, coincide within the experimental error.

Experimental values for the Slater parameters were determined in a least-squares minimization routine, including 7 out of the possible 10 5d5g \(K\)-levels. The average energy of the multiplet and the values of the Slater parameters \(F^{(3)}\) and \(F^{(4)}\) of the 5d5g \(n = 5–8\) configurations resulting from this procedure are collected in table 1. The spin–orbit parameter of the inner electron was taken from the Ba\(^+\) ion, \(\xi_{5d} = 320.39\) cm\(^{-1}\). The \(F^{(3)}\) parameters obtained from the fit scale as \(n^{-3}\) and differ not more than 30% with the calculated values. Calculated level energies of the 5d5g configuration and differences with observed values are included in table 3. Exclusion of the 5d3/25g \(K = \frac{5}{2}\) and \(K = \frac{7}{2}\) levels had a drastic effect on the value of the \(\chi^2\), reducing it from 10 to 0.2. The \(K = \frac{3}{2}\) and \(K = \frac{5}{2}\) levels appear to be slightly perturbed and shifted by about 2 cm\(^{-1}\).

From this Slater–Condon multiplet analysis also the composition of the wavefunctions is obtained, and they are found to be over 99.6% pure on a \((ij)K\) basis. If the oscillator strengths are integrated over the line profiles the observed relative line intensities are in reasonable agreement with the calculated values from table 2. This confirms the assumption that 5d6p–5d5g transitions are allowed due to configuration mixing of
5d₆p and 5d_{4f} states. The present results are consistent with observations of Camus et al. (1983) for 5d_{ng} J = 1, 2 (n = 5–27) and of Bente and Hogervorst (1989a) for 5d_{ng} J = 2–4 (n ≥ 9). In figure 5 quantum defects of observed 5d_{ng} states, calculated with respect to the 5d_{3/2} limit, are plotted against the effective principal quantum number relative to the 5d_{3/2} limit. The 5d_{ng} states with n ≥ 9 are taken from Bente and Hogervorst, the quantum defects are small (<0.03) and almost independent of energy. Interaction between 5d_{3/2}ng and 5d_{5/2}ng series is absent.

4.3. Experimental autoionization rates

The observed 5d_{ng} resonances display either a Lorentzian or a Fano line profile. Autoionization rates were determined from observed linewidths by deconvoluting a Gaussian laser profile (bandwidth 0.07 cm⁻¹). Only those recordings were considered where only a single J component of the 5d_{ng} [K] level contributes to the line intensity. In cases where two J levels could be excited even the smallest splitting of the K levels (for which no conclusive evidence was found) may contribute to the observed linewidths. In the example of 5d_{5/2}ng K = 5/2 both J = 2 and J = 3 substates can be excited with almost equal strength from the 5d_{6p} 3D₂ level (see table 2). When the narrow K = 5/2 resonance (0.10 cm⁻¹) in figure 4(b) is fitted with a doublet of a Lorentz and a Fano profile, both of laser linewidth, instead of with a single Fano profile, a significant improvement results. The Fano profile may arise from interaction with a broad 5d_{nl} (l = 0, 2) J = 2 resonance which is also excited. Since the observed linewidths of the K = 5/2 and K = 1/2 levels are close to laser linewidth, only an upper limit for the autoionization rates can be given.

The linewidths of the 5d₅g [K] levels are found to be independent of the value of J. For example the observed linewidth of the 5d_{3/2}5g K = 5/2 J = 5 level excited from the 5d_{6p} 3F₄ state (0.44 cm⁻¹) equals, within error bars, the linewidth of the 5d_{5/2}5g K = 1/2 J = 4 level excited from the 5d_{6p} 3F₃ state (0.42 cm⁻¹) and from the 5d_{6p} 4F₃ state.
Table 4. Observed and calculated autoionization rates for 5d5s g [K] states in cm$^{-1}$. In the last column the ratio of theoretical and experimental values is given.

<table>
<thead>
<tr>
<th>5d5s state</th>
<th>Decay channel</th>
<th>Theory</th>
<th>Experiment</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>jsa K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2 3/2</td>
<td>6s6d</td>
<td>0.012</td>
<td></td>
<td><0.04</td>
</tr>
<tr>
<td>3/2 5/2</td>
<td>6s6d</td>
<td>0.0074</td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>5/2 5/2</td>
<td>6s6d</td>
<td>0.0041</td>
<td></td>
<td><0.03</td>
</tr>
<tr>
<td>3/2 7/2</td>
<td>6s6g</td>
<td>1.96</td>
<td>0.34 (3)</td>
<td>5.8</td>
</tr>
<tr>
<td>5/2 7/2</td>
<td>6s6g</td>
<td>1.43</td>
<td>0.29 (3)</td>
<td>4.9</td>
</tr>
<tr>
<td>3/2 9/2</td>
<td>6s6g</td>
<td>1.00</td>
<td>0.18 (2)</td>
<td>5.6</td>
</tr>
<tr>
<td>5/2 9/2</td>
<td>6s6g</td>
<td>2.29</td>
<td>0.43 (4)</td>
<td>5.3</td>
</tr>
<tr>
<td>3/2 11/2</td>
<td>6s6e</td>
<td>2.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2 11/2</td>
<td>6s6e</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2 13/2</td>
<td>6s6e</td>
<td>2.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0.44 cm$^{-1}$). For the other levels this agreement is also found. Therefore the autoionization rates of 5d5s g K states are averaged over the J states. Values for each (j/ll)K-coupled level are given in table 4. The error is estimated to be 10% of the observed linewidth.

The strong dependence of the radial matrix element on l (see figure 2) explains the difference between the observed linewidth of the narrow K=3/2 and K=5/2 levels, autoionizing in the 6s6d continuum (l=2), and the much broader K=7/2 and K=9/2 levels autoionizing in the 6s6g continuum (l=4). The calculated values for the autoionization rates of 5d5s g [K] states are given in table 4.

In figure 3 also the experimental values for the n=5–8 autoionization rates are plotted as well as a value for n=10 deduced from a dedicated measurement on the K=9/2 component. The values obtained for the K=9/2 levels (and also for K=7/2), are a factor five lower than calculated. The relative autoionization rates within the 5dng configurations are in agreement with calculations. The calculated autoionization rates of the K=3/2 and K=5/2 level are low (<0.01 cm$^{-1}$). Experimentally the width of these components is determined by the bandwidth of the laser.

5. Discussion

The experimental autoionization rates are significantly lower than calculated values. In the theoretical model several assumptions are made. First of all exchange effects are neglected. It is easy to show that for 5dng states the exchange induced contribution to autoionization corresponds to a higher order process (k=4) and consequently is orders of magnitude smaller than the contribution of the direct electrostatic interaction. The assumption that the inner electron is always closer to the core than the outer electron is justified since the classical inner turning point of the hydrogenic ng electron is 10 a$_0$ for large n and even larger for low n, while the classical outer turning point of a 5d electron (n*=2.4) moving in the field of a 2$^+$ core is 3 a$_0$. Good agreement is found for the relative autoionization rates of the K=7/2 and 9/2 levels autoionizing in the
6sεg continuum. Unfortunately the 5dng K = \frac{11}{2}, J = 5 levels autoionizing in the 6sεi continuum could not be excited from the 5d6p \(^5\)F\(_4\) state because the wavefunction of the initial state written in a (j\^l)K-coupled basis only contains 5d4f \(^K=\frac{5}{2}\) components. Since a ΔK = 2 transition is forbidden this results in zero transition probability (see table 2). The low autoionization rates of the 5dng K = \frac{3}{2} and K = \frac{5}{2} levels interacting with 6sεd continua result in observed linewidths close to laser linewidth. The fact that \(K=\frac{3}{2}\) and \(\frac{5}{2}\) levels are much longer lived than \(K=\frac{1}{2}\) and \(\frac{3}{2}\) levels indicates that the dependence on fine structure is correctly reproduced in the calculations.

The ratio of calculated and experimental linewidths is about 5, independent of \(n\) (\(n = 5\), 8, 10). This might hint at a problem in the computation of radial matrix elements in equation (7). An experimental value for the bound quadrupole matrix element may be deduced from the lifetime of the metastable 5d\(_{3/2}\) ion, \(\tau = 34.5 \pm 3.5\) s (Sankey and Madej 1989), giving \(\langle 6s|r^2|5d\rangle = 14.8 \pm 0.8\) \(a_0^2\). This is in agreement with the theoretical value (14.01 \(a_0^2\)) used in the calculations. For the computation of Rydberg matrix elements hydrogen wavefunctions are used for the ng electron and regular Coulomb wavefunctions to describe the slow electrons (\(ε = 50-500\) meV) rather than plane waves as in the case of fast ejected electrons. The non-zero values of the quantum defects of the 5dng states (\(δ < 0.03\)) only have a minor influence on the value of the Rydberg matrix element.

The use of single configuration wavefunctions may not be justified as configuration interaction between narrow 5dng states and much broader 5dns and 5ndn states may affect the width of 5dng resonances. In the present work perturbations of the 5dng states do not follow from the quantum defect plots but the occurrence of Fano profiles in the recorded spectra indicates possible mixing with 5dns and 5ndn. However, such an interaction would probably lead to an increase in autoionization rates. Interference effects, that may induce line narrowing in autoionization processes, are known to occur only for specific \(n\)-values in a Rydberg series, such as in 5d\(_{3/2}\) \(J = 0\) (Neukammer et al 1985). In the present case of 5dng this is not the case. Moreover in a multichannel quantum defect study on 5d\(_{3/2}\) \(J = 4\) states it was concluded that 5d\(_{3/2}\)-5dng mixing is negligible (Aymar 1985).

The discrepancy between observed and calculated autoionization rates in the 5dng configuration of barium for \(n = 5\) makes a comparison with similar configurations in other alkali-earth of interest. Measurements of 4d5g \(J = 1\), 2 states in Sr (Jimoyiannis et al 1992) and 3d5g \(J = 1\), 2 states in Ca (Bolovinos et al 1992) both show laser linewidth (0.3-0.4 cm\(^{-1}\)). These states lie much higher above the first ionization limit and produce faster electrons (\(p = 0.31\) au, 0.29 au, respectively) than in barium thereby decreasing autoionization rates. When taking calculated values of 12.5 \(a_0^2\) for Sr and 8.6 \(a_0^2\) for Ca for the quadrupole matrix element \(\langle dl^2|s\rangle\) (Poirier 1993) linewidths of 0.57 cm\(^{-1}\) and 0.31 cm\(^{-1}\) are expected for the nd\(_{3/2}\)5g \(K = \frac{9}{2}, J = 4\), 5 states in Sr (\(n = 4\)) and Ca (\(n = 3\)). From the cited experiments no conclusions can be drawn but it would be of interest to investigate these states and those with higher \(J\) values with a narrow band laser.

Odd parity 5d\(_{3/2}\)n\(_h\) \(J = 5\) series (\(n \geq 20\)) of barium were investigated by Bente and Hogervorst (1989b) with a narrow-band cw laser. Examination of linewidths resulted in a scaled autoionization rate \(n^2\Gamma\) of 800 GHz. Calculation of scaled autoionization rates within the present theoretical framework results in values of 4000 GHz for the 5d\(_{3/2}\)n\(_h\) \(K = \frac{11}{2}\) component and 2800 GHz for the \(K = \frac{9}{2}\) component. Absence of exchange effects due to non-overlapping orbitals also holds for the 5d\(_{3/2}\) configuration. Fine structure autoionization of 5d\(_{3/2}\)n\(_h\) levels into 5d\(_{3/2}\)el continua contributes only 2-3% to the rate of autoionization and can be neglected. Similar to the case of 5dng again a factor of 4-5 discrepancy between theory and experiment exists.
6. Conclusions

From recent work, including the present results, it may be concluded that the model for autoionization in a two electron system, based on the single configuration approximation, applies better in the case of dipolar autoionization than in the case of quadrupolar autoionization. For e.g. $6p\sigma f$ and $6p\pi g$ states of barium, where many autoionization channels are open, calculations match observed rates satisfactorily. In the much better defined examples of $5d\nu g$ and $5d\nu h$ configurations of barium, where only a single continuum plays a role, large discrepancies exist. For the various $5d\nu g$ [K] states investigated here relative autoionization rates are in good agreement. At present no explanation for the resulting disagreement between theory and experiment has been found. All assumptions made in the theoretical model appear to be justified in $5d\nu g$ and $5d\nu h$ configurations. Possibly interactions with other $5d\nu l$ states are responsible for the low autoionization rates. Future refined experiments on low-lying doubly-excited states in the alkaline-earth atoms, combined with calculations based on realistic interactions between various Rydberg series may clarify this issue.

References

Vergès J 1984 Private communication