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Abstract We present a numerical method for the in-

vestigation of quasiperiodic oscillations in applications

modeled by systems of ordinary differential equations.

We focus on systems with parts that have a significant

rotational speed. An important element of our approach

is that it allows us to verify whether one can neglect

gravitational forces after a change of coordinates into a

corotating frame. Specifically, we show that this leads

to a dramatic reduction of computational effort. As a

practical example, we study a turbocharger model for

which we give a thorough comparison of results for a
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model with and without the inclusion of gravitational

forces.
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1 Introduction

Rotordynamics is a discipline of mechanics that is con-

cerned with the study of the dynamics of systems con-

taining parts that rotate with a significant angular mo-

mentum [3]. Rotating mechanical systems are ubiqui-

tous and examples range from the dynamics of plan-

ets, satellites, and spinning tops to machines such as

turbines, compressors, pumps, helicopters, gyroscopic

wheels, and computer hard drives. There has been a

keen interest in rotordynamics since the first steam en-

gines and there is an extensive literature, especially in

engineering; for overviews we refer to [2, 5, 24, 27].

We present a numerical method for computing a

specific type of response of nonlinear systems aris-

ing in rotordynamics and elsewhere, namely, quasiperi-

odic oscillations with two independent frequencies.

Our method is based on computing invariant tori on

which quasiperiodic oscillations take place. It is ap-

plicable to any model given in the form of a nonlin-

ear ordinary differential equation (ODE). We demon-

strate it here for a system with fast rotating parts, where

we investigate the influence of the gravitational force
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Fig. 1 The rotor of a turbocharger (a) and the simple beam model (b) with two disks at nodes 1 and 4 and oil-lubricated journal bearings
at nodes 2 and 3

on the dynamics. The example under consideration is

a finite-element model with oil-film forces of a sym-

metric rotor of a turbocharger, which is used in many

modern internal combustion engines of passenger cars

and heavy trucks to reduce fuel consumption and to

raise the engine’s power; see Fig. 1a. The turbocharger

consists of a rotor shaft with a disk on either side: a

turbine and an impeller. The turbine is driven by the

exhaust gases. Their energy is transmitted via the rotor

shaft to the impeller wheel, which compresses the inlet

air into the engine cylinders for more efficient combus-

tion. The rotor is supported by fluid film bearings and is

contained inside a casing attached to the engine block.

Several mechanical eigenmodes may be excited in

a turbocharger. Unavoidable manufacturing tolerances

always lead to some unbalance of the rotor, which im-

poses a harmonic forcing of the rotor with the rotation

frequency. This forcing typically leads to resonances

with the first bending mode of the rotor. Furthermore,

the oil-lubricated journal bearings lead to self-excited

oscillations of the rotor. This instability of a rigid coni-

cal mode of the rotor is known as oil whirl [13] and has

been investigated since the 1920s [19, 27]. We estimate

that these modes as well as the rigid parallel modes, all

of which may appear as forward and backward whirling

modes, have natural frequencies in the target frequency

range up to 1500 Hz; see also [10, 25]. Mathematically,

the nonlinear coupling of the harmonically forced rotor

and the bearings leads to complicated bifurcation be-

havior. For example, we find torus (Neimark–Sacker)

bifurcations with subsequent quasiperiodic behavior

and phase locking (entrainment); see also [1, 9, 26].

In our investigation we consider a relatively simple,

but still suitable model from a hierarchy of models with

an increasing number of finite elements as shown in

Fig. 1b. The rotor is modeled with three Rayleigh beam

elements and two rigid disks that are attached at the

end nodes [18, 27]. The two inner nodes are located

at the oil lubricated journal bearings and the boundary

conditions are defined at these nodes by oil film forces;

see Section 3 for more details. Although our model is

simple it has all the essential features to capture the

experimentally observed phenomena.

In some situations, it may be possible to simplify a

system with fast rotating parts by neglecting the influ-

ence of the gravitational force. To this end, we intro-

duce a corotating frame and obtain an ODE with a small

time-dependent forcing term representing gravity. Due

to the dominance of unbalance and oil-film forces over

gravity, it seems reasonable to ignore this small forc-

ing term for sufficiently high rotational speeds, which

results in an autonomous ODE. This means that a

quasiperiodic response could be approximated by a

simple superposition of a periodic response of an au-

tonomous ODE with a rotation on a circle. We demon-

strate how our method may be used a posteriori to

verify such a reduction, and to determine where the

conditions for this reduction are not met, for example,

when the rotational speed is too low.

2 Experiments and data analysis

Several experiments were carried out at Toyota Central

R&D Laboratories for a turbocharger used in vehicle

engines. The turbocharger was driven by pressurized

air and operated at different rotational speeds from

7500 rpm to 101,000 rpm. The z-axis was aligned with

the shaft at rest, and the horizontal (x) and vertical

(y) deflections of the shaft were measured by eddy
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Fig. 2 Power spectrum of vibrations measured in an experiment for ramping up the driving frequency of the rotor from 130 to 1700 Hz;
panel (a) shows a waterfall diagram and panel (b) a logarithmic intensity plot
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Fig. 3 Orbits of turbine
dynamics (gray) overlaid
with their Poincaré sections
(black) measured for
different rotational speeds
(note the different scale for
ω = 131 Hz)

current sensors at both ends and in the middle of the

rotor (in between the two simple journal bearings; see

Fig. 1). The experimental results are shown in the fre-

quency diagrams in Fig. 2 in two different ways. One

can clearly observe the two principal vibration modes

as peaks in the waterfall diagram (a) and as darker lines

in the intensity plot in panel (b), which are due to unbal-

ance and oil whirl. The harmonic part has a resonance

peak at about 1000 Hz and the subharmonic part sets in

at a threshold forcing frequency of about 400 Hz. The

frequency of the latter vibration is slightly less than half

the forcing frequency and deviates further for higher ro-

tational speeds. The amplitude of the subharmonic part

decreases in the resonance region of the harmonic part.

Figure 3 shows the increasingly complex behavior

of the orbits measured at the turbine end of the shaft.

For small rotational speeds (250 Hz), the orbit is peri-

odic with a small amplitude. As the driving frequency

rises above 400 Hz, a second frequency appears, which

results in quasiperiodic dynamics on a torus. Such be-

havior is best analyzed by stroboscopic or Poincaré

maps: We mark the position of the turbine every time

the impeller crosses the x-axis from positive to negative

values. The periodic orbit of the turbine end of the shaft

that we observe for low rotational speeds corresponds

to a fixed point of the stroboscopic map; see Fig. 3a. For

increasing rotational speeds, the Poincaré map shows

invariant circles indicating the existence of invariant

tori; see Figs. 3b and c. For even higher speeds, the

invariant circles show phase locking; see Figs. 3d–f.

Figure 4 shows the two mode shapes that were

identified as being responsible for the two kinds of
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Fig. 4 The two main
vibration modes at 998 Hz;
bending mode (a) and
conical mode (b)

vibrations observed in the experiments. The harmonic

part is mainly due to a bending vibration (a), whereas

the subharmonic part has a conical mode shape (b).

The occurrence of the subharmonic has been observed

a long time ago [19, 27]. This self-excited vibration is

an oil whirl that is caused by the nonlinearity of the sup-

porting oil film, which is included in our model. In a se-

ries of papers [13–15], Muszynska clarified the occur-

rence and the stability of this unwanted phenomenon.

In the resonance region of the first bending mode of the

shaft, the amplitude of the self-excited oil whirl drops;

see Fig. 2. While several modes could become excited

in principle, we found in the experiment that only the

forward whirling rigid conical mode (of 464 Hz) and

the forward whirling first bending mode (of 999 Hz)

are actually excited.

3 Finite-element rotor model with oil-film forces

Following [27], we derived a finite beam-element

model for the rotor. For the beam elements, we con-

sider rotating Rayleigh beams that take into account

bending, rotary inertia due to bending, and gyroscopic

effects, but neglect shear deformation and torsion. The

rotor is split into three parts of constant diameter; see

Fig. 1b. The z-axis is the horizontal axis and each ele-

ment wi (z) = [ui (z), vi (z)] is described by lateral dis-

placements ui and vi in the x- and y-directions and

the inclinations φx,i = ∂ui/∂z and φy,i = ∂vi/∂z at its

end-nodes. We collect all displacements and inclina-

tions in the vector qi = (ui , vi , φx,i , φy,i ) and use stan-

dard cubic C1 element functions as shape functions;

see, for example, [18].

Two rigid disk elements representing the turbine and

compressor wheels are attached to the shaft in nodes 1

and 4 and their motion is completely described by the

coordinates of these nodes. Using standard variational

techniques [12, 18] and setting x = (q1, q2, q3, q4), we

obtain the equation of motion

L̂x := Mẍ + (C + ωG)ẋ + K x

= Fb(x, ẋ) + Fg + ω2 A(ωt)Funb (1)

for the shaft. Here, L̂ is a second-order differential oper-

ator with symmetric mass, damping, and stiffness ma-

trices M , C , and K , respectively, and skew-symmetric

gyroscopic matrix G. Furthermore, ω is the angular

velocity of the rotor and Fg is the gravitational force.

Nodes 2 and 3 are placed at the locations of the two

oil-lubricated journal bearings and can move freely.

The forces Fb exerted by the bearings are computed

by integrating the pressure distribution in the bearings

over the journal surface. To keep the model simple,

we use the well-known short bearing approximation

of Reynolds’ equation with Gümbel boundary condi-

tions for the pressure distribution [2, 24]. The oscillat-

ing forces due to unbalance are modeled by the term

ω2 A(ωt)Funb, where Funb is a constant vector and A(ωt)
is a 16 × 16 block-diagonal rotation matrix with eight

2 × 2 diagonal blocks of the form

B(ωt) =
(

cos ωt − sin ωt

sin ωt cos ωt

)
.

Note that A(ωt)−1 = A(ωt)T and ‖A(ωt)‖2 = 1.

A drawback of system (1) is that the absolute value

of the time-dependent unbalance forces ω2 A(ωt)Funb is

large since this term grows quadratically with the driv-

ing frequency. As an important part of our approach,

we transform Equation (1) into a corotating frame; see

also textbooks such as [2, 5, 18, 24, 27]. For the model

coordinates qi = (ui , vi , φx,i , φy,i ) in the fixed frame
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as defined earlier, let pi be the corresponding coordi-

nates in a frame that is rotating about the z-axis with

rotational speed ω. That is, we apply the transformation

qi =
(

B(ωt) 0

0 B(ωt)

)
pi ,

which leads to the equation of motion

L̃ y = F̃b(y, ẏ) + A(ωt)T Fg + ω2 Funb, (2)

where y = (p1, p2, p3, p4) is the collection of coordi-

nates in the corotating frame. The time-dependent term

A(ωt)T Fg is a 2π/ω-periodic forcing due to gravity.

Both Equations (1) and (2) are 16-dimensional second-

order ODEs with right-hand sides that explicitly de-

pend on time. For computational purposes, we trans-

form these equations into equivalent 32-dimensional

first-order ODEs.

The advantage of Equation (2) over Equation (1)

is that for higher rotational speeds the gravitational

force is small compared with the bearing and unbal-

ance forces. This raises the question whether or not

the influence of gravity can be neglected under cer-

tain circumstances. If we omit the gravitational forcing

term, then Equation (2) no longer depends explicitly on

time. This greatly simplifies the numerical treatment of

quasiperiodic vibrations of the turbocharger model, be-

cause the dynamics on the underlying torus can then be

decomposed into two independent oscillations. One os-

cillation is just the forcing ωt taken modulo 2π , and

the other is a periodic solution with frequency ω2 of the

now autonomous Equation (2). The computation of pe-

riodic solutions is a matter of seconds to minutes, but

the computation of tori requires minutes to hours, or

even days. The main reason for this increase in compu-

tation time is that a torus is a two-dimensional surface,

whereas a periodic solution is a one-dimensional curve.

While the computation time depends only little on the

dimension of the system, it increases dramatically with

the dimension of the object of interest.

4 Computation of quasiperiodic oscillations

A popular approach for the numerical investigation of

response solutions is simulation, that is, solving a se-

quence of initial value problems for an ODE model

over a range of parameters of interest. In combination

with tools for classifying solutions, one can compute

so-called brute-force bifurcation diagrams. This tech-

nique is usually very time consuming, even though one

can easily distribute the workload by subdividing the

parameter ranges.

An alternative is to use numerical continuation and

bifurcation methods. These techniques not only provide

efficient means of computing certain types of solutions,

but also allow one to detect and classify bifurcations;

see, for example, [8, 11, 16, 17, 23] for background

information on bifurcation theory. For the computation

of equilibria and periodic solutions, one can use well-

established software packages, for example, AUTO [4]

that provide methods for detecting pitchfork, trans-

critical, period-doubling, and Neimark–Sacker bifur-

cations. Furthermore, loci of such bifurcations can be

computed in a two-parameter plane.

The computation of invariant tori is currently an

active area of research; we refer to the introduction

of [20] for a recent overview. We apply below a re-

cently developed method for the numerical continua-

tion of quasiperiodic tori.

4.1 Numerical method

A vibration with two or more (but finitely many) in-

commensurate frequencies is a quasiperiodic solution

of an ODE. A quasiperiodic solution never repeats and

densely covers an invariant torus in phase space; see

the experimental data in Figs. 3b and c. In [21], we

presented a method, which we also apply here, for the

computation of quasiperiodic solutions with two in-

commensurate frequencies; see also [6, 22]. The basic

idea of this method is to compute an invariant circle

of the period-2π/ω1 stroboscopic map, which is the

intersection of the torus with the plane t = 0. Here,

ω1 = ω is the forcing frequency and we interpret time

as an angular variable modulo the forcing period. By

construction, the invariant circle has rotation number

� = ω2/ω1, where ω2 is the additional response fre-

quency of the occurring vibration. An invariant circle

with rotation number � is a solution of the so-called

invariance equation

u(θ + 2π�) = g(u(θ )), (3)

where u is a 2π -periodic function and g is the period-

2π/ω1 stroboscopic map of (2). We approximate the
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Fig. 5 Illustration of the invariance equation (3). The solution
curve starting at the point x(t0) crosses the invariant circle again
in the point x(t0 + T1) after one period (a). In angular coordinates

on the invariant circle, we have x(t0 + T1) = u(θ0 + 2π�). If we
identify the circles at both ends of the tube, we obtain a torus (b)

invariant circle u with a Fourier polynomial of the form

uN (θ ) = c1 +
N∑

k=1

c2k sin kθ + c2k+1 cos kθ (4)

and compute the real coefficient vectors c1, . . . , c2N+1

by collocation. The stroboscopic map g is computed

with the second-order fully implicit midpoint rule as

the solution of a two-point boundary value problem;

see [21] and Fig. 5 for more details.

We construct seed solutions for our subsequent con-

tinuations of tori with the method of homotopy. To this

end, we introduce an artificial parameter λ ∈ [0, 1] as

an amplitude of the gravitational forcing:

L̃ y = F̃b(y, ẏ) + λA(ωt)T Fg + ω2 Funb. (5)

We refer to the case λ = 0 as the zero-gravity sys-
tem and the case λ = 1 as the Earth-gravity system.

The principle of homotopy is to compute a torus for

λ = 0 and try to follow this torus as λ is slowly in-

creased up to λ = 1. For λ = 0, Equation (5) becomes

autonomous and we can construct an invariant torus

directly from a Fourier approximation of the form

(4) of a periodic solution with frequency ω2. This

can be seen from the definition of the period-2π/ω1

stroboscopic map of the T2 = 2π/ω2-periodic solu-

tion x(t) = uN (ω2t) = uN (θ ), where uN is our Fourier

polynomial of order N with the scaling ω2t = θ . Then,

x(t + T1) = g(x(t)) = g(uN (θ )) by definition, and we

also have

x(t + T1) = x

(
θ

ω2

+ 2π

ω1

)
= x

(
1

ω2

[
θ + 2π

ω2

ω1

])
= uN (θ + 2π�) .

Finally, a solution segment connecting a starting point

x(t0) = uN (θ0) with its endpoint x(t0 + T1) is given by

uN (θ ), where (θ − θ0) ∈ [0, 2π�]; see Fig. 5.

For the system under consideration it turns out that

the zero-gravity tori are such accurate approximations

to the Earth-gravity tori that the latter can be computed

in just one homotopy step; compare panels (b) and (c) of

Fig. 6 where we computed a series of tori for varying

radial bearing clearance cr and driving frequency ω.

The fact that the zero-gravity tori are almost identical to

the Earth-gravity tori is a first indication that neglecting

gravity is a valid and powerful simplification of the

model equation.

Recall that the reason for performing such a simpli-

fication whenever feasible is the fact that the numerical

analysis of invariant tori (for λ = 1) is a much harder

problem than the analysis of periodic solutions (for

λ = 0). Furthermore, the dependence of periodic solu-

tions on system parameters can be studied by changing

the parameters individually. This is no longer true for

quasiperiodic tori, because a quasiperiodic vibration

with two incommensurate frequencies can be changed

into a phase-locked state by arbitrarily small changes

in any parameter [7, 11, 23]. Therefore, one simul-

taneously needs to adjust a second free parameter to

“follow” solutions with a fixed frequency ratio. Thus,

loci of quasiperiodic tori are curves in a two-parameter

plane: for example, note the slight shift in some of the

positions of Earth-gravity tori in Fig. 6a with respect

to the seed solutions. The union of these curves cov-

ers a set of large measure [7, 11, 23]. In other words,

there is a non-zero probability to observe quasiperiodic

behavior in physical systems.

We emphasize at this point that, according to the

above construction, the computation of periodic solu-

tions for λ = 0 is equivalent to a computation of in-

variant tori for λ = 0. Our claim is that these tori are
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Fig. 6 Positions of the seed solutions (label ×) and correspond-
ing earth-gravity tori (label ◦) in the (cr , ω) plane (a). The invari-
ant circles for Earth gravity (b) and the corresponding periodic

solutions for zero gravity (c) for the starting positions along the
row near ω ≈ 894 Hz. The tori at the labeled positions are shown
in Fig. 7

good approximations of the tori for λ = 1 for certain

parameters. Our method allows one to identify such

parameter regions where neglecting gravity is a sound

assumption. In these regions, one can obtain the re-

sponse behavior of the turbocharger model by studying

the periodic solutions of the autonomous ODE (5) with

λ = 0.

4.2 Computational results

We focus here on computations that demonstrate the

performance of our numerical technique, and how it

can be used for testing the validity of the zero-gravity

assumption. We sweep the two-parameter plane of ra-

dial bearing clearance cr and forcing frequency ω with

a large number of curves of Earth-gravity tori with

fixed rotation number to obtain a picture as complete

as possible. We then compare these results with the

respective computations of periodic solutions for the

zero-gravity approximation. Toward the end of this sec-

tion, we give a physical interpretation of the results.

All our computations were performed on Equation (5)

in corotating coordinates. Note that, due to the shift

in frequencies, the rotation numbers � f in the fixed

frame and �r in the corotating frame systems are re-

lated via � f = |�r − 1|. In the results shown later, we

find �r ≤ 1, thus � f = 1 − �r .

First, we compute a Fourier approximation of

the periodic solution of the zero-gravity system for

ω = 1000 Hz and cr = 0.02 mm. This is done by sim-

ulation and a subsequent Fourier transformation with

N = 15 Fourier modes in Equation (4). We then per-

form a continuation of the periodic solution with

respect to the forcing frequency and select the so-

lutions that are shown as the column of crosses for

cr = 0.02 in Fig. 6a in the frequency window ω ∈
[700 Hz, 1200 Hz], which is a principal range of oper-

ation for the turbocharger. In a second run, we compute

the start solutions marked by the three rows of crosses

for frequencies ω = 797 Hz, 894 Hz, and 1037 Hz in

the range cr ∈ [0.01 mm, 0.08 mm], which represents

the design margin of the device.

As explained in the previous section, we construct

initial approximations of tori in the Earth-gravity sys-

tem from these periodic solutions. We computed these

tori with N = 15 Fourier modes and M = 100 Gauß

collocation points and keep this mesh size fixed for

all subsequent computations. In the homotopy step, we

keep the radial bearing clearance cr fixed and take the

forcing frequency ω as a secondary free parameter. The

obtained starting positions of tori are marked with cir-

cles in Fig. 6a. The idea is that, with this distribution

of starting solutions, the loci of tori with fixed rotation

numbers cover the (cr , ω)-plane densely enough to al-

low meaningful conclusions. Note that the starting po-

sitions virtually coincide with the seed positions. The

differences in the forcing frequencies mean that tori

with a certain rotation number are observed for slightly

different rotational speeds in the two systems. In other

words, the response frequencies differ somewhat.

A first comparison of the two types of solutions

is given in panels (b) and (c) of Fig. 6. Both graphs

illustrate the change of the invariant circle in the stro-

boscopic map as the bearing clearance is increased

and the forcing frequency is kept (approximately) con-

stant. The two sets of circles are clearly very similar.

The full tori for the starting positions labeled 1–4 are

shown in Fig. 7 together with a plot of the displace-

ments at node 1. Even though our finite beam-element

model with oil-film forces is quite coarse, the numerical
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Fig. 7 The left-hand
column of (a)–(d) shows
starting tori with labels 1, 2,
3 and 4, respectively, along
the row ω = 894 Hz in
Fig. 6a. The corresponding
x- and y-displacements at
the first FEM-node are
shown in the right-hand
column. The dark closed
curve is the invariant circle
of the period-2π/ω1

stroboscopic map

results resemble the qualitative features of the mea-

sured orbits; compare Fig. 7b with Fig. 3c. Note that

the Poincaré sections are defined differently in these

figures.

A comparison of the two sets of resulting two-

parameter curves is shown in Fig. 8 with loci of tori with

fixed rotation number in panel (a) and loci of periodic

solutions with fixed frequency ratio in panel (b). The

color bar indicates the rotation numbers (shifted back to

fixed-frame frequencies) that are associated with these

curves. The second response frequency ω2 is the prod-

uct of this shifted rotation number with the driving fre-

quency shown on the vertical axis. These curves match

very well: Only in a band around 900 Hz, there are some
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Fig. 8 Curves of
quasiperiodic tori with fixed
rotation number of the
Earth-gravity system (a) and
curves of periodic solutions
with fixed frequency ratio of
the zero-gravity system (b).
The diagram gives an
overview of the second
response frequency as a
function of the bearing
clearance and the forcing
frequency. The color bar
indicates the rotation
number or frequency ratio
associated with each curve,
which was shifted back to
fixed-frame frequencies for
easier interpretation. The
dashed curve in panel (a) is
the locus of
Neimark–Sacker
bifurcations, and the dashed
curve in panel (b) is the
locus of Hopf bifurcations.
The second frequency is
suppressed to the left of
these curves, that is, there
are no tori for bearing
clearances smaller than
≈0.01 mm

visible differences, but they are small. At a first glance,

we observe that in the region covered ω2 is approxi-

mately half the driving frequency, in accordance with

the experimental data; see Fig. 2. If we keep the bearing

clearance fixed at 0.02 mm, as used in the current design

of the turbocharger, and increase the driving frequency,

then the rotation number decreases initially, stays al-

most constant for ω ∈ [830 Hz, 970 Hz], and then starts

to increase. This behavior occurs in the same region as

the “bending” of the oil-whirl response frequency away

from the straight line ω2 = 0.5ω in Fig. 2.

Figure 8 also shows two bifurcation curves (dashed),

namely, a locus of Neimark–Sacker bifurcations (a)

and the corresponding locus of Hopf bifurcations (b).

Again, these curves match very well. For small bearing

clearance, to the left of the Neimark-Sacker curve, the

response is periodic and has the same frequency as

the forcing; this corresponds to an equilibrium solu-

tion for the zero-gravity system. If we cross this curve

from left to right the quasiperiodic response consid-

ered earlier is born and its amplitude grows rapidly

as the bearing clearance is further increased; see Figs.

6b and 7. This behavior is also accurately captured in

the zero-gravity system as is illustrated with panels (b)

and (c) of Fig. 6, where periodic solutions are compared

with invariant circles of tori along the line ω = 894 Hz.

These results indicate that for the range of forcing fre-

quencies considered here, a reduction of the bearing
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clearance could dramatically reduce the amplitude of

the quasiperiodic vibration or even suppress the second

frequency completely.

Figure 8a shows a total of 51 curves of tori and

along each curve we computed 200 tori (this is the

reason why some curves end in the middle of the fig-

ure). The computation of the tori took approximately

4 weeks on an Intel Xeon CPU 2.66 GHz, that is, the

average time to compute one torus is about 4 min. The

computation of the corresponding curves of periodic

solutions in panel (b) with the same number of solu-

tions along each curve was completed within 24 h, that

is, the computation of one periodic solution takes about

9 s. Hence, the transition to the zero-gravity system re-

sults in a large gain in performance, possibly at the

expense of some accuracy. However, as our computa-

tions show, the qualitative behavior of the two systems

virtually coincides for the investigated parameters, and

one might ask whether the introduced approximation

error is at all significant. Our results clearly suggest that

one could perform an analysis of periodic solutions of

the zero-gravity system and look at the Earth-gravity

system only for reference and verification.

5 Conclusions

In this paper, we demonstrated the efficient computa-

tion of invariant tori for a simple finite beam-element

turbocharger model with oil-film forces. In our study,

the bearing clearance and the driving frequency were

the main parameters. From a physical point of view, a

large bearing clearance leads to the undamping of the

conical mode via oil-film forces. Our investigation ver-

ified that one can neglect gravitational forces for higher

rotational speeds. We showed that this leads to a dra-

matic reduction of computational effort if the model is

formulated in corotating coordinates. The reason is that

invariant tori of the Earth-gravity system are then well

approximated by tori constructed from periodic solu-

tions of the zero-gravity system. The computation of

periodic solutions is a much simpler task and there are

well-established and highly efficient methods at hand

that could be applied to substantially more detailed

models of a turbocharger, or other machinery with fast

rotating parts.

If gravity or other static loads cannot be considered

to be small perturbations, then one must compute in-

variant tori in the Earth-gravity system. Such a com-

putation is far more challenging and there are only few

methods available. The recently developed method [21]

used here works well for moderately large systems and

shows a typical tradeoff: the computation of tori re-

quires more memory than long-term simulation, since

all mesh points and a large sparse matrix need to be

stored simultaneously. On the other hand, it is faster,

more accurate, and provides more detailed information

about the dynamics. Furthermore, it allows to compute

unstable tori and, thus, the direct analysis of hysteresis

effects.

The techniques used here for the turbocharger model

are also applicable more widely. In particular, for other

systems with fast rotating parts it may be possible to

neglect the influence of gravity and obtain the power-

ful reduction as discussed in this paper. The value of

invariant torus computations is that they allow one to

verify the validity of this type of model reduction. In

this case, a bifurcation diagram showing the qualitative

behavior of the response solutions can be obtained with

the computation of periodic solutions alone.
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