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Exact functional derivative of the nonadditive kinetic-energy bifunctional
in the long-distance limit

Christoph R. Jacob,a� S. Maya Beyhan,b� and Lucas Visscherc�

Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam,
De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

�Received 15 March 2007; accepted 30 April 2007; published online 21 June 2007�

We have investigated the functional derivative of the nonadditive kinetic-energy bifunctional, which
appears in the embedding potential that is used in the frozen-density embedding formalism, in the
limit that the separation of the subsystems is large. We have derived an exact expression for this
kinetic-energy component of the embedding potential and have applied this expression to deduce its
exact form in this limit. Comparing to the approximations currently in use, we find that while these
approximations are correct at the nonfrozen subsystem, they fail completely at the frozen subsystem.
Using test calculations on two model systems, a H2O¯Li+ complex and a cluster of
aminocoumarin C151 surrounded by 30 water molecules, we show that this failure leads to a wrong
description of unoccupied orbitals, which can lead to convergence problems caused by too low-lying
unoccupied orbitals and which can further have serious consequences for the calculation of response
properties. Based on our results, a simple correction is proposed, and we show that this correction
is able to fix the observed problems for the model systems studied. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2743013�

I. INTRODUCTION

The frozen-density embedding �FDE� formalism within
density functional theory1,2 �DFT� offers an efficient scheme
for the quantum chemical description of large systems by
splitting the total system into an active subsystem and a fro-
zen environment. In particular, for the description of solvent
effects, this DFT-in-DFT embedding scheme has been shown
to be both an accurate and an efficient method for the calcu-
lation of absorption spectra,3–5 electron spin resonance
parameters,6 and nuclear magnetic resonance chemical
shifts.7 It has further been successfully applied to model
more complex environments, e.g., for describing induced cir-
cular dichroism in host-guest systems8 or for free-energy cal-
culations in protein environments.9,10 Recently, Neugebauer
has extended the FDE formalism to describe couplings be-
tween electronic transitions in different subsystems.11 In ad-
dition, it has been extended by Carter and co-workers to
embed a system of interest, which is described using wave
function based ab initio methods, in an environment de-
scribed by DFT.12–16

The FDE scheme is based on a partitioning of the elec-
tron density of the total system �tot into the electron densities
�I and �II of two appropriately chosen subsystems. These
electron densities of the subsystems are each calculated sepa-
rately, with the effect of the other subsystem represented by
an effective embedding potential which only depends on its
charge density. This embedding potential contains a compo-
nent �T that is given by the functional derivative of the non-
additive kinetic-energy bifunctional,

�T��I,�II��r� =
�Ts

nadd��I,�II�
��I

= ��Ts���
��

�
�=�tot�r�

− ��Ts���
��

�
�=�I�r�

, �1�

where the nonadditive kinetic energy Ts
nadd is defined as

Ts
nadd��I,�II� = Ts��I + �II� − Ts��I� − Ts��II� . �2�

In the above expressions, Ts��� is the kinetic energy of the
noninteracting reference system, as it is defined within
Kohn-Sham �KS� DFT, which is usually calculated using the
KS orbitals.

However, with the given partitioning into subsystems,
the KS orbitals are only available for the subsystems and not
for the full system, and Ts��I+�II� can therefore not be cal-
culated directly. For this reason, in practical applications ap-
proximations have to be introduced in the construction of the
kinetic-energy component �T��I ,�II� of the embedding poten-
tial. Up to now, only approximations of the form

�̃T��I,�II��r� = � �T̃s���
��

�
�=�tot�r�

− � �T̃s���
��

�
�=�I�r�

�3�

have been applied, where the tilde is used to label approxi-

mate quantities and T̃s��� refers to some approximate kinetic-
energy functional. The simplest approximation for the
kinetic-energy functional, corresponding to the local-density
approximation �LDA�, is the well-known Thomas-Fermi
functional, and a large number of more advanced approxi-
mate kinetic-energy functionals are available �for an over-
view see, e.g., Refs. 17 and 18�.

For their application in calculations using the FDE
scheme, different generalized-gradient approximation �GGA�
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kinetic-energy functionals have been tested and compared
for a number of weakly interacting systems.19–21 Based on
these results, a large number of studies employing the FDE
scheme have been conducted using the PW91k kinetic-
energy functional, which is a GGA functional using the same
analytic form of the enhancement factor as the exchange
functional of Perdew and Wang,22 but that has been reparam-
etrized for the kinetic energy by Lembarki and Chermette.23

The approximation of �T��I ,�II� using Eq. �3� in combi-
nation with the PW91k kinetic-energy functional has been
shown to yield reliable results in FDE calculations in a num-
ber of studies. In particular, it has been found to be accurate
in studies of weakly interacting complexes24–27 and of sol-
vent effects on different molecular properties.3–5,7 However,
the applicability of the currently available kinetic-energy
functional is limited to systems where the interaction be-
tween the two subsystems is not too strong. While accurate
results can be obtained for van der Waals complexes as well
as for hydrogen-bound systems, a description of stronger in-
teractions such as chemical bonds is not possible. It thus
remains a challenge to develop approximations to �T��I ,�II�
that are applicable also in the case of stronger interactions.

Also, in the case of weaker interactions the currently
available kinetic-energy functionals need improvements for
certain applications. Iannuzzi et al. have made use of FDE
for molecular dynamics simulations in the condensed
phase,28 but have found that with the available LDA and
GGA kinetic-energy functionals, they were not able to de-
scribe water at ambient conditions correctly. The pair distri-
bution functions they obtained showed only an unstructured
second solvation shell, and they attributed this wrong de-
scription to shortcomings of the approximate kinetic-energy
functional.

Furthermore, for weakly interacting complexes an
“electron-leak” problem in FDE calculations has been dis-
cussed. Near the nuclei in the frozen subsystem, the attrac-
tive nuclear potential is very large and, when using LDA or
GGA kinetic-energy functionals, the kinetic-energy compo-
nent of the embedding potential is not able to completely
compensate this attraction. This might lead to electrons of
the nonfrozen system leaking to the nuclei of the frozen sub-
system, causing an artificial charge transfer between the sub-
systems. This problem has first been discussed for a complex
of a fluorine anion and a water molecule at short distances by
Stefanovich and Truong,29 who proposed the use of a
pseudopotential representing the core orbitals to overcome
this problem. However, Dulak and Wesolowski reinvesti-
gated this electron-leak problem for F−

¯H2O and
Li+¯OH2 and found that at short distances it is of no im-
portance for the calculation of the ground-state density and
interaction energies.30 On the other hand, in calculations on
CO2¯X �XvHe, Ne, Ar, Kr, Xe, and Hg� van der Waals
complexes, it was found that for the complexes containing
the heavier rare gases or mercury the dipole moment is over-
estimated if basis functions on the frozen system are in-
cluded. This has also been attributed to the fact that close to
the nuclei the PW91k kinetic-energy functional is not able to
compensate the large nuclear attraction.26

In order to devise more accurate approximations of the
kinetic-energy component �T of the embedding potential, we
will in this work investigate �T in the limit of large separation
of the two subsystems. In the quest for more accurate ap-
proximate functionals, both for the exchange-correlation en-
ergy as well as for the kinetic energy, it is a widely followed
and successfully applied strategy to use exact physical
boundary conditions and/or the known behavior in simple
limiting cases. These can be used as guidance in the con-
struction of approximate functionals by requiring that the
approximations obey these physical limits.

Following this strategy, several approximate exchange-
correlation functionals have been constructed, e.g., the GGA
functional PBE �Ref. 31� and the meta-GGA functional
TPSS.32 Furthermore, exchange-correlation potentials have
been constructed that have the correct asymptotic behavior
far from the nuclei, which is particularly important for de-
scribing response properties.33,34 Also, for the construction of
approximate kinetic-energy functionals, this strategy has
been applied. One example is a class of functionals by Carter
and co-workers that are constructed to yield exact results for
the linear response of the uniform electron gas.35–37

Instead of looking at the kinetic-energy functional itself,
in this work we will focus on the quantity of interest directly,
which is, in the case of the FDE scheme, the kinetic-energy
component �T of the embedding potential. As we will show,
in the limit of large separation of the two subsystems, the
two terms on the right-hand side of Eq. �1� do behave very
differently in regions where either �I or �II are large, which
can be used to deduce the exact �T in this limit. It turns out
that for regions where �II is large, the available LDA or GGA
kinetic-energy functionals do not obey this limit.

This work is organized as follows. After a brief review
of FDE in Sec. II, we derive an expression for the exact
nonadditive kinetic-energy potential in Sec. III. This is then
used in Sec. IV to investigate the exact embedding potential
at large separation of the two subsystems. After giving the
computational details in Sec. V, we show in Sec. VI for
model systems that the approximations currently in use for
the kinetic-energy potential are not able to describe this long-
distance limit correctly and investigate the consequences of
this failure. In Sec. VII, a correction is proposed that en-
forces the correct embedding potential in the considered
limit, before we summarize and conclude in Sec. VIII.

II. FROZEN-DENSITY EMBEDDING

In the FDE formalism1,2 the total electron density �tot�r�
is represented as the sum of two components �I�r� and �II�r�.
Usually, �I�r� and �II�r� are chosen to be either the electron
densities of two interacting fragments of the considered sys-
tem or as the electron densities of a system under investiga-
tion and an environment. In the latter case, the electron den-
sity of the environment is usually obtained using some
approximate procedure, for instance, by using a sum of the
electron densities of molecular fragments.3,5

Given this partitioning of the electron density, the DFT
total energy can be expressed as a bifunctional of �I and �II,
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E��I,�II� =� ��I�r� + �II�r����I
nuc�r� + �II

nuc�r��dr

+
1

2
� ��I�r� + �II�r����I�r�� + �II�r���

�r − r��
drdr�

+ Exc��I + �II� + Ts��I� + Ts��II� + Ts
nadd��I,�II� ,

�4�

where �I
nuc and �II

nuc are the electrostatic potentials of the nu-
clei in subsystems I and II, respectively, Exc is the exchange-
correlation functional, Ts��� is the kinetic energy of the non-
interacting reference system, and Ts

nadd��I ,�II� is the
nonadditive kinetic-energy bifunctional.

For a given frozen electron density �II�r� in one of the
subsystems �fragment II�, one can derive1 one-electron equa-
tions for the calculation of the electron density �I�r� in the
other subsystem �fragment I� from the requirement that the
total density �tot�r�=�I�r�+�II�r� of the system is obtained, in
an optimization process in which the electron density �II�r�
of fragment II is kept frozen. On the assumption that the
complementary �I�r� is positive definite and is noninteracting
�s-representable,38 one obtains the Kohn-Sham equations
with constrained electron density �KSCED�,

�−
�2

2
+ �eff

KSCED��I,�II��r�	�i�r� = �i�i�r�,

i = 1, . . . ,
NI

2
, �5�

from which the KS orbitals and the associated electron den-
sity of fragment I can be obtained.

The KSCED effective potential is given by

�eff
KSCED��I,�II��r� = �eff

KS��I��r� + �eff
emb��I,�II��r� , �6�

where �eff
KS��I��r� is the KS effective potential of the isolated

subsystem I containing the usual terms of the nuclear poten-
tial, the Coulomb potential of the electrons, and the
exchange-correlation potential,

�eff
KS��I��r� = �I

nuc�r� +� �I�r��
�r − r��

dr� + ��Exc���
��

�
�=�I�r�

.

�7�

The effective embedding potential �eff
emb��I ,�II��r� describes

the interaction of the subsystem I with the frozen density of
subsystem II and reads

�eff
emb��I,�II��r� = �II

nuc�r� +� �II�r��
�r − r��

dr�

+ ��Exc���
��

�
�=�tot�r�

− ��Exc���
��

�
�=�I�r�

+ �T��I,�II��r� , �8�

where the kinetic-energy part �T��I ,�II� of the KSCED effec-
tive potential is given as the functional derivative of the non-
additive kinetic-energy bifunctional,

�T��I,�II��r� =
�Ts

nadd��I,�II�
��I

= ��Ts���
��

�
�=�tot�r�

− ��Ts���
��

�
�=�I�r�

. �9�

Since the KSCED effective potential �eff
KSCED��I ,�II��r� in

Eq. �5� depends on both the density of the nonfrozen sub-
system I and the density of the frozen subsystem, the
KSCED equations have to be solved self-consistently. It
should be noted that in contrast to the bifunctional of the
nonadditive kinetic energy of Eq. �2�, �T is not symmetric
with respect to the exchange of the two electron densities,
i.e., �T��I ,�II���T��II ,�I�. Since the kinetic energy Ts does
not depend on the electron density directly but on the KS
orbitals �which, in turn, depend on the electron density�, the
evaluation of the functional derivative �Ts��� /�� is not pos-
sible in a straightforward way.

III. THE EXACT NONADDITIVE KINETIC-ENERGY
POTENTIAL

The calculation of the kinetic-energy component
�T��I ,�II��r� of the KSCED effective potential requires the
evaluation of the functional derivative �Ts��� /�� for two dif-
ferent electron densities—for the density of the nonfrozen
subsystem I and for the total electron density. In this section
we will first describe a general procedure for the evaluation
of �Ts��� /�� for an arbitrary �s-representable electron den-
sity.

The functional derivative of the nonadditive kinetic-
energy bifunctional with respect to the electron density can-
not be evaluated directly since the noninteracting kinetic en-
ergy does not depend directly on the density, but it requires
the knowledge of the KS orbitals. The KS orbitals are an
implicit functional of the electron density because the elec-
tron density uniquely defines a corresponding KS potential
�s���, which, in turn, determines the KS orbitals. The usual
method for the evaluation of the functional derivative of
orbital-dependent functionals is the optimized effective po-
tential �OEP� method.39

However, in the case of the kinetic energy an alternative
route is possible for the evaluation of �Ts��� /��. For an ar-
bitrary �s-representable electron density ��r� there exists the
corresponding KS potential �s����r�, i.e., the potential that
will yield the density ��r�. The existence of this one-to-one
mapping between the electron density and the KS potential is
given by the first Hohenberg-Kohn theorem.38,40 Throughout
this paper, we use �s��� to refer to this KS potential, yielding
the density ��r�. This is to be distinguished from the KS
effective potential �eff

KS��� that can be calculated from the
electron density � according to Eq. �7�. Only for the ground-
state electron density �0�r�, which can be obtained from the
self-consistent solution of the KS equations, �s��0� and
�eff

KS��0� are identical. For the practical evaluation of �s���
from a given density ��r�, there are different numerical
schemes available.33,41,42

To evaluate the functional derivative �Ts��� /��, we will
consider this KS potential �s

��r� as fixed by the given input
density; i.e., the functional dependence on ��r� is replaced by
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a parametrical dependence. For this fixed potential �s
��r�, the

electron density ��r� is the density which minimizes the
total-energy functional

E�s
���� = Ts��� +� �s

��r���r�dr �10�

of a system of noninteracting electrons with �s
��r� as the ex-

ternal potential under the constraint that the electron density
integrates to the correct number of electrons. Therefore, the
electron density ��r� is the solution of the Lagrange minimi-
zation problem38

�
E�s
���� − ���� ��r�dr − N�
 = 0, �11�

which is equivalent to the Euler-Lagrange equation

�� =
�E�s

����

���r�
=

�Ts���
���r�

+ �s
��r� , �12�

where �� is a constant that depends on the input electron
density and that can be identified to equal the orbital energy
of the highest occupied molecular orbital �HOMO� in the
exact functional limit.43

This Euler-Lagrange equation with the potential �s
��r�

holds for the given electron density ��r�, and it can be em-
ployed to evaluate the functional derivative of the noninter-
acting kinetic energy �Ts��� /�� from

�Ts���
���r�

= − �s
��r� + ��. �13�

When solving the KSCED equations, the above func-
tional derivative is needed for two different electron densi-
ties, for the electron density of the nonfrozen subsystem
�I�r�, and for the total electron density �tot�r�. Using the ob-
tained expression for �Ts��� /��, the kinetic-energy compo-
nent of the KSCED effective potential �Eq. �1�� can be writ-
ten as

�T��I,�II��r� =
�Ts

nadd��I,�II�
��I

= �s��I��r� − �s��tot��r� + �� . �14�

In this expression ��=��I −��tot is a constant shift of the
potential that leads to a constant shift in the orbital energies
but that will effect neither the obtained orbitals nor the or-
bital energy differences. Therefore, the shift �� can be ig-
nored in the following.

The above expression for �T��I ,�II� can be employed for
arbitrary pairs of �s-representable electron densities �I and
�tot and can, in principle, be used to evaluate the exact con-
tribution of the nonadditive kinetic energy to the effective
embedding potential during the solution of the KSCED equa-
tions. However, it requires the knowledge of the KS poten-
tials corresponding to �I and to �tot, respectively. Those are,
in general, not easy to obtain in practical calculations. The
application of Eq. �14� for the calculation of the exact em-
bedding potential will be the subject of our future work. In

the present work, we will employ it to investigate �T��I ,�II�
in the long-distance limit without actually reconstructing KS
potentials from the electron density.

IV. EXACT EFFECTIVE EMBEDDING POTENTIAL
IN THE LONG-DISTANCE LIMIT

In the following, the effective embedding potential will
be investigated in the limit of a large separation of the two
subsystems. This limit will be referred to as the “long-
distance limit.” In this considered limit, the overlap of the
electron densities of the two subsystems will be very small,
and at every point in space r,

�tot�r� � �I�r� ∨ �tot�r� � �II�r� . �15�

This implies that also the corresponding KS potentials do not
“overlap;” that is, at every point in space r,

�s��tot��r� � �s��I��r� ∨ �s��tot��r� � �s��II��r� , �16�

where we assumed that both �s��I��r� and �s��II��r�, and
therefore also �s��tot��r�, have been chosen such that they go
to 0 at infinity, i.e., where the corresponding density ap-
proaches 0.

In addition, we will assume that the electron density �II

of the frozen subsystem in the environment is close to the
correct total density, i.e., that the chosen partitioning of the
electron density is such that the subsystem densities are
equal to the ground-state densities of the separated sub-
systems. This restriction rules out the case where there is a
charge transfer between the subsystems. Even though this is
a quite severe restriction, this is the most common use of the
FDE scheme. In most practical applications, an approximate
�II�r� is used, which is chosen such that it can be considered
a good approximation to the correct electron density in the
environment.

It should be noted that in the following “exact” effective
embedding potential refers to the embedding potential that is
constructed using the exact kinetic-energy component �T.
This does not require that also the exact exchange-
correlation potential is used, but approximate exchange-
correlation potentials can be employed. However, when us-
ing the exact embedding potential, the results of a fully
variational FDE calculation �in which the electron density of
both subsystems is updated in freeze-and-thaw cycles� will
be equal to the electron density calculated from a supermo-
lecular KS-DFT calculation using the same approximate
exchange-correlation potential. In the following, we will re-
strict ourselves to approximate exchange-correlation poten-
tials that only depend on the electron density locally, i.e., to
LDA and GGA functionals.

Under these assumptions, the KS potential that yields the
correct total electron density can, in the long-distance limit,
be decomposed as

�s��tot��r� � �s��I��r� + �s��II��r�; �17�

i.e., it can be written as the sum of the KS potentials that
correspond to the individual electron densities of the sub-
systems. It should be pointed out that this decomposition is
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only exact if approximate exchange-correlation potentials
that only depend locally on the electron-density are em-
ployed. It is not valid if the exact KS potentials are consid-
ered.

A. Embedding potential at the nonfrozen subsystem

In the region of the nonfrozen subsystem I, where �II is
negligibly small ��II�r��0�, the total density equals the den-
sity of the nonfrozen subsystem I, i.e., �I�r���tot�r�. This
implies, under the assumptions made above, that

�s��tot��r� � �s��I��r� , �18�

and it follows from Eq. �14� that

�T��I,�II��r� � 0 for �II�r� � 0; �19�

i.e., the kinetic-energy component of the effective embed-
ding potential disappears.

If a local approximation �LDA or GGA� to the
exchange-correlation potential is used, also the exchange-
correlation component of the effective embedding potential
in Eq. �8� cancels, and the effective embedding potential re-
duces to the purely electrostatic embedding potential,

�eff
emb��I,�II��r� = �II

nuc�r� +� �II�r��
�r − r��

dr� for �II�r� � 0.

�20�

B. Embedding potential at the frozen subsystem

In the region of the frozen subsystem II, where �I is
negligibly small ��I�r��0�, the total density equals the den-
sity of the frozen subsystem II, i.e., �II�r���tot�r�. This im-
plies, under the assumptions made above, that

�s��tot��r� � �s��II��r� �21�

and

�s��I��r� � 0, �22�

and it follows from Eq. �14� that

�T��I,�II��r� � − �s��II��r� for �I�r� � 0. �23�

As the frozen density �II�r� has usually been obtained from
the self-consistent solution of the KS equations in an earlier
step, the corresponding KS potential �s��II��r� is known and
is given by the effective potential that was used to obtain
�II�r�. In the simplest case, �II has been obtained from an
isolated KS-DFT calculation. In this case, the KS potential
corresponding to �II�r� is given by

�s��II��r� = �eff
KS��II��r�

= �II
nuc�r� +� �II�r��

�r − r��
dr� + ��Exc���

��
�

�=�II�r�
,

�24�

and, therefore,

�T��I,�II��r� � − �II
nuc�r� −� �II�r��

�r − r��
dr� − ��Exc���

��
�

�=�II�r�

for �I�r� � 0. �25�

The nuclear potential and the electrostatic potential of the
electrons exactly cancel the corresponding terms in the ef-
fective embedding potential �Eq. �8��, and in the case of a
local approximation �LDA or GGA� for the exchange-
correlation potential, the exchange-correlation component
cancels, too. Therefore, the kinetic-energy component can-
cels all the other terms of �eff

emb, and one obtains

�eff
emb��I,�II��r� = 0 for �I�r� � 0. �26�

If the frozen density �II has not been obtained from an
isolated molecule calculation, but from a FDE calculation
itself, as it is done when performing freeze-and-thaw cycles,
the KS potential corresponding to �II�r� also contains the
effective embedding potential, i.e.,

�s��II��r� = �eff
KS��II��r� + �eff

emb��II,�I��r� , �27�

where �eff
emb��II ,�I��r� is the embedding potential that appears

when �II is calculated in a FDE calculation in the presence of
the �frozen� �I density, i.e., when the roles of �I and �II are
interchanged in a freeze-and-thaw calculation.

Since the distance between the two subsystems is large,
the effective embedding potential in the calculation of �II is,
as described above in Sec. IV A, in the regions of interest
given by the electrostatic potential only. Therefore,

�T��I,�II��r� � − �eff
KS��II��r� − �I

nuc�r� −� �I�r��
�r − r��

dr�

for �I�r� � 0. �28�

The effective embedding potential at the frozen system is
then given by

�eff
emb��I,�II��r� = − �I

nuc�r� −� �I�r��
�r − r��

dr�

for �I�r� � 0. �29�

This effective embedding potential cancels the corresponding
terms in the KS effective potential of the embedded sub-
system �eff

KS��I�, so that the total effective potential used in the
calculation of the embedded subsystem is zero at the frozen
subsystem,

�eff
KSCED��I��r� � 0 for �I�r� � 0. �30�

V. COMPUTATIONAL DETAILS

All density functional calculations have been performed
using the Amsterdam density functional �ADF� package.44,45

The FDE scheme of Wesolowski and Warshel1 has been
implemented in the most recent version of ADF using an ef-
ficient numerical integration scheme.4 The PW91 exchange-
correlation functional,22,46 in combination with the TZ2P ba-
sis set from the ADF basis set library,44 has been employed in
all calculations. If not stated otherwise, in the FDE calcula-
tions the PW91k kinetic-energy functional23 has been used to
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approximate the kinetic-energy component of the embedding
potential according to Eq. �3�. The calculations on
H2O¯Li+ presented below have been independently veri-
fied using the implementation of the FDE scheme in the
deMon2k program package.47

In the FDE calculations, there are two possibilities for
the choice of the basis functions which are used to expand
the density of the nonfrozen subsystems.20,26 The most obvi-
ous choice is to use only basis functions that are centered on
the atoms in the considered subsystem to expand the corre-
sponding density. Calculations using this monomolecular ba-
sis set expansion will be labeled as FDE�m�. However, in
this case an inconsistency with respect to the supermolecular
calculation is introduced since the products of basis func-
tions of different subsystems cannot be used for expanding
the electron density. Therefore, it is more accurate to include
all basis functions, also those of the frozen subsystem, in the
FDE calculation. Calculations using this supermolecular ba-
sis set expansion will be labeled as FDE�s�.

VI. THE FAILURE OF THE AVAILABLE APPROXIMATE
KINETIC-ENERGY POTENTIALS IN THE LONG-
DISTANCE LIMIT

The currently available approximations to the kinetic-
energy component �T of the embedding potential, which are
of the form

�̃T��I,�II��r� = � �T̃s���
��

�
�=�tot�r�

− � �T̃s���
��

�
�=�I�r�

, �31�

only partly satisfy the exact long-distance limit that was de-
rived in the previous section. At the nonfrozen subsystem,
�I�r���tot�r� and, therefore, the two terms in Eq. �31� will
cancel, such that the correct long-distance limit given by Eq.
�19� is obtained.

In contrast, at the frozen subsystem Eq. �31� reduces to

�̃T��I,�II��r� = � �T̃s���
��

�
�=�II�r�

for �I�r� � 0, �32�

and it is not evident that the available kinetic-energy func-
tionals fulfill the exact limit given by Eq. �23�, i.e., that the
kinetic-energy component cancels the electrostatic and
exchange-correlation components of the effective embedding
potential.

This wrong description of the long-distance limit can be
considered a serious shortcoming of the approximate kinetic-
energy functionals that are currently in use in practical ap-
plications of the FDE scheme. At the frozen system, the
available approximate kinetic-energy functionals, used in Eq.
�3� to approximate the kinetic-energy component �T of the
effective embedding potential, are in general not able to
compensate the electrostatic parts of the embedding poten-
tial, as they should in the exact long-distance limit. We will
investigate the consequences of this wrong description in the
following.

To illustrate the behavior of the embedding potential in
the different regions, we investigated a H2O¯Li+ complex
as a simple model system. This complex has already been

used in earlier studies of the possible charge-leak problem in
FDE calculations.29,30 The structure of this complex, as it
was used in the calculations, is shown in Fig. 1. As a starting
point, we use the optimized geometry of H2O¯Li+, which
assumes a planar structure with C2v symmetry and d�O–H�
=0.97 Å, ��H–O–H�=105.1° and d�O–Li�=1.8 Å. To in-
vestigate the limit of large separations of the two subsystems,
the O–Li distance is varied.

In the FDE calculations, the positively charged Li+ ion is
used as the frozen subsystem ��II�. The electron density of
the Li+ subsystem is calculated for the isolated ion in the gas
phase. The H2O molecule constitutes the nonfrozen sub-
system ��I�, and its electron density is calculated in a FDE
calculation in the presence of the frozen Li+ electron density.
At large separations, the effect of the H2O subsystem on the
Li+ ion can be expected to be very small; i.e., the frozen Li+

density will be very close to the correct total density, so that
the assumptions made in Sec. IV are fulfilled. On the other
hand, the effect of the frozen Li+ subsystem can be expected
to be significant even when the overlap of the electron den-
sities is negligible since its positive charge gives rise to a
long-range electrostatic interaction.

As a reference, we first performed supermolecular KS-
DFT calculations. The orbital energies obtained in this super-
molecular calculation as a function of the O–Li distance are
shown in Fig. 2, and pictures of the relevant orbitals are

FIG. 1. �Color online� Structure of the employed model system H2O¯Li+.
In the calculations the O–Li distance is varied; the picture is for d�O–Li�
=5.8 Å. An isosurface plot of the electron density is also shown to illustrate
the partitioning into subsystems. Graphics: ADF-VIEW �Ref. 54�.

FIG. 2. Orbital energies calculated in a supermolecular KS-DFT calculation
as a function of the O–Li distance. See text for details.
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shown in Fig. 3.
The HOMO in the supermolecular calculation is a lone-

pair p orbital on the water molecule. When the distance be-
tween the two fragments is increased, its orbital energy in-
creases. This is due to the Coulomb potential of the charged
Li+ ion that is felt at the water molecule. The lowest unoc-
cupied molecular orbital �LUMO� is the rather diffuse 2s
orbital on the Li+ ion �labeled LUMO-Li�. Its orbital energy
is almost constant with increasing distance between the frag-
ments since at larger distances there is no interaction of this
orbital with the H2O molecule. Only close to the equilibrium
distance there is some overlap of the LUMO-Li with H2O
orbitals. In addition, the figures also include the lowest un-
occupied H2O orbital, labeled LUMO-H2O, i.e., the lowest
unoccupied orbital that is mainly located at the H2O mol-
ecule. This is a diffuse s-like orbital. As it is localized at the
water molecule, its orbital energy shows the same Coulom-
bic behavior as that of the HOMO when the distance be-
tween the fragments is increased.

The orbital energies of the HOMO and the LUMO in
FDE calculations on the H2O subsystem in the presence of
the frozen Li+ density, using both the monomolecular and the
supermolecular expansion, are shown in Fig. 4. Pictures of
the orbitals obtained with FDE�m� are shown in Fig. 5, and
the orbitals calculated in the FDE�s� calculations are shown
in Fig. 6.

Both in the FDE�m� and in the FDE�s� calculations the
HOMO of the H2O subsystem is the same orbital as the
HOMO in the supermolecular calculation, and the orbital
energy is identical to the orbital energy calculated in the
supermolecular calculation. Since this orbital is localized at
the H2O subsystem, at larger separations of the two sub-

systems it is exposed to the embedding potential at the non-
frozen system only. As shown above, in these regions the
embedding potential should reduce to the purely electrostatic
embedding potential. With the approximate kinetic-energy
functionals in use this limit is reproduced correctly.

In the FDE�m� calculation the LUMO of the H2O sub-
system is at larger separations of the two subsystems similar
to the LUMO-H2O in the supermolecular calculation. It is a
diffuse s-like orbital localized at the water subsystem. There-
fore, it does not correspond to the LUMO of the supermol-
ecule, but to the lowest unoccupied orbital of the subsystem
in question. The orbital energy of the LUMO equals at larger
distances the orbital energy of the LUMO-H2O in the super-
molecular calculation.

FIG. 3. �Color online� Isosurface plots of the orbitals calculated in a super-
molecular KS-DFT calculation for d�O–Li�=5.8 Å. Shown are �a� the low-
est unoccupied H2O orbital �LUMO-H2O�, �b� the lowest unoccupied Li+

orbital �LUMO-Li�, and �c� the highest occupied H2O orbital �HOMO-
H2O�. See text for details. Graphics: ADF-VIEW �Ref. 54�.

FIG. 4. Orbital energies calculated in FDE calculations on the H2O sub-
system in the presence of the frozen Li+ subsystem as a function of the O–Li
distance. Both results using the supermolecular basis set expansion
�FDE�s�� and the monomolecular basis set expansion �FDE�m�� are shown.
For comparison, also the corresponding supermolecular orbitals are
included.

FIG. 5. �Color online� Isosurface plots of the H2O orbitals calculated in a
FDE�m� calculation in the presence of the frozen Li+ subsystem for
d�O–Li�=5.8 Å. Only basis functions of the H2O subsystem are included
�monomolecular expansion�. Shown are �a� the lowest unoccupied molecu-
lar orbital and �b� the highest occupied molecular orbital. See text for de-
tails. Graphics: ADF-VIEW �Ref. 54�.
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In the FDE�s� calculation, where the basis functions cen-
tered at the Li subsystem are included, a completely different
orbital is found as the LUMO. In contrast to the FDE�m�
calculation, where the LUMO was localized at the H2O sub-
system, a rather diffuse, nodeless s orbital localized at the
Li+ ion is obtained. The orbital energy of this orbital is at
larger distances −8.6 eV, which is approximately 2.0 eV
lower than the orbital energy of the LUMO-Li obtained in
the supermolecular calculation. Since the orbital is localized
at the Li+ subsystem, its orbital energy is almost constant
when the distance between the subsystems is increased. At
O–Li distances larger than approximately 12 Å, the energy
of the HOMO becomes larger than the orbital energy of the
LUMO. In these cases the calculation has to be forced to
converge to a nonaufbau solution.

The fact that a bound unoccupied orbital appears at the
frozen subsystem is a consequence of the wrong limit of the
kinetic-energy component of the embedding potential for the
approximate kinetic-energy functional PW91k applied here.
If the kinetic-energy component of the embedding potential
shows the correct long-distance limit derived in Sec. IV B at
the frozen system, the �repulsive� kinetic-energy component
should cancel the attractive electrostatic potential. In this
case, there should not be any bound orbitals localized at the
frozen subsystem. The low-lying unoccupied orbital local-
ized at the Li+ subsystem is thus an artifact introduced by the
use of an approximate kinetic-energy functional. The PW91k
kinetic-energy functional is not able to compensate the at-
tractive electrostatic parts of the embedding potential, which
leads to an artificially too low-lying virtual orbital localized
at the frozen subsystem. This wrong description is similar to
the problems that arise if purely electrostatic models �e.g.,
point charges� are used to describe an environment, where
additional measures, such as the introduction of pseudopo-

tentials or a damping factor for the nuclear attraction, have to
be taken to avoid the localization of charge on the
environment.48

It should be noted that the limiting case for the embed-
ding potential is quite different from the behavior that ap-
pears if a pseudopotential approach is used for representing
the frozen subsystem, like it is, for instance, done in the
effective group potential method.49,50 In this case, only the
occupied orbitals of the frozen subsystem are projected out
of the variational space used for the nonfrozen system, so
that all virtual orbitals present in the supermolecular calcu-
lation, including those localized at the frozen subsystem, will
appear in the calculation on the nonfrozen subsystem. The
partitioning of the electron density into the electron densities
of subsystems that is the starting point for the FDE scheme
leads to a partitioning not only of the occupied orbitals, but
also implies a partitioning of the virtual orbital space. This is
a consequence of the use of a local embedding potential that
does not contain any projection operators, unlike in pseudo-
potential approaches.

To investigate the influence of the approximate kinetic-
energy functional, we also performed calculations using the
Thomas-Fermi �TF� functional to approximate the kinetic-
energy component of the embedding potential. In this case,
the general picture is identical to that obtained using PW91k,
only that in the FDE�s� calculation the LUMO, which is also
localized at the Li subsystem, has an even lower orbital en-
ergy. At larger distances, its orbital energy is approximately
−8.7 eV, i.e., 2.1 eV lower than that of the LUMO-Li in the
supermolecular calculation. Therefore, also when using the
TF functional, the orbital energy of the artificially too low-
lying LUMO is below the orbital energy of the HOMO, and
a nonaufbau solution is obtained.

We did not investigate approximate GGA kinetic-energy
functionals other than PW91k since only the TF functional
and PW91k have been widely applied in practical applica-
tions of FDE. However, none of them ensures the correct
long-distance limit. It can therefore be expected that any
GGA kinetic-energy functional will behave similar to
PW91k and show this shortcoming if applied for approxi-
mating the kinetic-energy component of the embedding po-
tential.

Even though the failure of the kinetic-energy component
of the embedding potential in the long-distance limit leads to
artificially too low-lying unoccupied orbitals, it does not
change the occupied orbitals since in the region of the non-
frozen subsystem the embedding potential is correct. There-
fore, the calculated electron density will not be affected, as
long as no orbital localized at the frozen subsystem is occu-
pied and as long as there is no electron density leaking into
the regions of the frozen system. However, the artificially too
low-lying virtual orbitals will lead to a number of problems
in practical applications of FDE.

First, as it was shown here in the case of H2O¯Li, their
orbital energies can be of similar size as the orbital energy of
the HOMO of the nonfrozen system, or even drop below the
orbital energy of the HOMO. This will lead to serious con-
vergence problems since the self-consistent field procedure
has to be forced to converge to a nonaufbau solution. Sec-

FIG. 6. �Color online� Isosurface plots of the H2O orbitals calculated in a
FDE�s� calculation in the presence of the frozen Li+ subsystem for
d�O–Li�=5.8 Å. Basis functions of both subsystems are used in the FDE
calculation �supermolecular expansion�. Shown are �a� the lowest unoccu-
pied molecular orbital and �b� the highest occupied molecular orbital. See
text for details. Graphics: ADF-VIEW �Ref. 54�.
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ond, the accurate description of virtual orbitals is crucial for
the correct description of response properties such as excita-
tion energies, which is a very important application of the
FDE scheme.3,4,8 In the calculation of response properties,
the artificially too low-lying virtual orbitals will introduce
spurious excitations to these orbitals. Even though they will,
in general, have a low oscillator strength, they might mix
with other excitations and thus influence the calculated ab-
sorption spectra.

In the FDE�m� calculations, the problem of artificially
too low-lying virtual orbitals does not occur because there
are no basis functions present that probe the regions of the
frozen system, where the embedding potential is wrong. This
might be a practical way of avoiding the problems discussed
above. However, it does not solve them. Since FDE should
be exact in the exact functional limit, it should also be ap-
plicable when larger basis sets are used. In many cases, it
might be necessary to include basis functions on the frozen
system, at least for a few atoms involved in �hydrogen�
bonds with the nonfrozen subsystem because these basis
functions are important to model the charge density in the
bonding region.20,51 Furthermore, the calculation of response
properties of the nonfrozen subsystem often requires the use
of basis sets containing very diffuse functions.5 In calcula-
tions on weakly interacting systems such as van der Waals
complexes the inclusion of diffuse functions is in many cases
required.26 These diffuse basis functions on the nonfrozen
system will also probe the embedding potential at the frozen
subsystem, thus possibly leading to artificially too low-lying
virtual orbitals, even in FDE�m� calculations. In the ex-
amples presented here, the use of basis functions of the fro-
zen subsystem would normally not be necessary, but they
have been included to identify problems that will appear with
sufficiently diffuse basis sets more clearly.

To demonstrate that the wrong long-distance limit of the
kinetic-energy component �T of the embedding potential
does not only have consequences in rather artificial model
systems, but also in cases that are of importance in practical
applications, we have also investigated the system studied in
Ref. 4, where solvent effects on the absorption spectrum of
the organic dye aminocoumarin C151 have been studied. For
our test calculations, we employed a cluster consisting of the
aminocoumarin C151 molecule and the 30 closest solvent
water molecules, using the coordinates of one arbitrary snap-
shot from the molecular dynamics simulation performed in
Ref. 4. The structure of this cluster is shown in Fig. 7.

In the FDE calculations, the frozen subsystem is formed
by the solvent environment, and a sum of the electron den-
sities calculated for the isolated water molecules is used to
approximate the frozen density �II. For studying solvent ef-
fects it has been shown3 that this is usually a good approxi-
mation to the true electron density of the solvent. It can,
therefore, be assumed that this approximated density in the
regions of the frozen density—at least in the regions where
the overlap with the density of the nonfrozen subsystem is
small—is close to the exact total density and that in these
regions the assumptions made in Sec. IV are fulfilled.

The orbital energies of the four highest occupied MOs
and of the unoccupied orbitals with orbital energies lower

than −0.3 eV calculated for this test system are shown in Fig.
8. As a starting point, the orbitals calculated for the isolated
aminocoumarin C151 are given. In this case, the virtual or-
bitals �59a–62a� are antibonding orbitals of the aminocou-
marin C151. In the FDE�m� calculation, the orbital energies
change significantly with respect to the isolated molecule
calculation, which is due to the influence of the solvent en-
vironment. However, for both the occupied and the unoccu-
pied orbitals in the energy range of interest, the main char-
acter of the orbitals does not change.

In the FDE�s� calculations, the orbital energies of the
orbitals 55a–61a are all slightly lower than in the FDE�m�
calculation but do not change significantly. This can be at-
tributed to the larger basis set available in the FDE�s� calcu-
lation. However, additional virtual orbitals �62a–65a� show
up in the energy range of interest that were not present in the
FDE�m� calculation. Isosurface plots of these unoccupied or-
bitals are shown in Fig. 7.

It can be seen that all four of these unoccupied orbitals
are mainly localized at the water environment. As discussed
above, these orbitals should not be present in the calculation
of the aminocoumarin C151 subsystem. They are thus artifi-
cially too low-lying orbitals introduced by the wrong long-
distance limit of the approximations used for the kinetic-
energy component of the embedding potential. This shows
that this wrong limit does also have consequences in realistic
systems that have been studied using the FDE scheme if
basis functions that can probe the regions of the frozen sub-
system are present.

The artificially too low-lying virtual orbitals also show
up in the calculation of the absorption spectrum by introduc-
ing spurious excitations. In the spectrum calculated using
time dependent DFT �TDDFT�, the seventh excitation has a
contribution of 28.1% of an excitation from orbital 58a to
orbital 63a, i.e., of an excitation to one of the spurious virtual

FIG. 7. �Color online� Structure of an aminocoumarin surrounded by 30
water solvent molecules and isosurface plots �contour value: 0.03� of the
spurious unoccupied orbitals obtained in the FDE�s� calculation. See text for
details. Graphics: VMD �Ref. 55�.
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orbitals, and the eighth excitation has a contribution of
69.4% of such an excitation. The excitation energies of both
of these excitations appear in the energy range of interest and
show a significant oscillator strength. In the FDE�m� calcu-
lation, no similar excitations are found.

VII. A LONG-DISTANCE CORRECTED
APPROXIMATION TO �T

To compensate for the wrong long-distance limit of the
kinetic-energy component of the embedding potential, we
can improve the currently available approximations, which
employ Eq. �3� in combination with an approximate LDA or
GGA kinetic-energy functional, by enforcing the correct
long-distance limit. The strategy followed is similar to that
applied in Refs. 52 and 53 to enforce the correct description
of charge-transfer excitations in TDDFT.

To achieve the correct long-distance limit, we augment
the approximate kinetic-energy component �̃T of the embed-
ding potential with a correction term �T

corr, i.e.,

�̃T��I,�II��r� = � �T̃s���
��

�
�=�tot�r�

− � �T̃s���
��

�
�=�I�r�

+ �T
corr��I,�II��r� . �33�

This correction term should enforce the correct long-distance
limit at the frozen system. In all other cases, it should leave
the approximate �̃T unchanged because it is expected to be a
rather good approximation in those cases, and currently there
are no better approximations available.

For this correction term, we therefore chose the form

�T
corr��I,�II��r�

= − exp�− � �I�r�
��II�r�

�2	��nuc
II �r� +� �II�r��

�r − r��
dr�

+ � �Exc���

��
�

�=�tot�r�
− � �Exc���

��
�

�=�I�r�

+ � �T̃s���
��

�
�=�tot�r�

− � �T̃s���
��

�
�=�I�r�

� . �34�

In this expression, the first factor serves as a switching func-
tion that turns on the correction when needed, but that is zero
otherwise. When the correction is switched on, i.e., the ex-
ponential in the above expression equals 1, the term in pa-
rentheses, which equals the approximate effective embed-
ding potential, is subtracted, thus leading to the total
effective embedding potential being zero and enforcing the
correct long-distance limit at the frozen subsystem. To decide
when this correction is switched on, we used the ratio of
�I�r� and �II�r� in the switching function; i.e., when �II�r� is
sufficiently large compared to �I�r�, the correction is
switched on. Based on numerical tests, we chose a value of
0.1 for the parameter �, which means that the correction is
applied when �II�r� is ten times as large as �I�r�.

It should be noted that this proposed correction can only
be applied if the initial assumptions given in Sec. IV are
fulfilled, i.e., if the partitioning of the total electron density is
such that the electron densities of the subsystems equal the
ground-state densities of the separated subsystems. This is
not the case if there is charge transfer between the sub-
systems. In such cases, the correction given above will en-
force a long-distance limit that is not correct.

FIG. 8. Orbital energies �in eV� of the relevant orbitals calculated for aminocoumarin C151 surrounded by 30 water molecules. Only orbitals with energies
lower than −0.3 eV have been included. As reference, the orbital energies calculated for the isolated aminocoumarin C151 are shown first, together with those
calculated both using FDE�m� and FDE�s�. Finally, the orbital energies calculated in a FDE�s� calculation using the long-distance corrected approximation to
�T are given �labeled FDE�s�-corr�. See text for details.
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The orbital energies calculated using this long-distance
correction in combination with the PW91k kinetic-energy
functional for the H2O¯Li complex studied above are
shown in Fig. 9. It can be seen that while the orbital energy
of the HOMO still agrees with the supermolecular HOMO,
the spurious LUMO-Li found in the FDE�s� calculation does
not appear anymore. Instead, the LUMO is given by an or-
bital localized at the H2O subsystem, and its orbital energy
agrees with the orbital energy of the LUMO-H2O found in
the supermolecular calculation.

Finally, we applied the correction in the calculation of
aminocoumarin C151 surrounded by water. The orbital ener-
gies calculated in the FDE�s� calculation using the long-
distance correction are included in Fig. 8. It can be seen that
while the orbital energies of the other orbitals do not change
significantly, the spurious virtual orbitals 62a–65a found in
the uncorrected FDE�s� calculation, which were mainly lo-
calized at the water environment, do not appear anymore.
Instead, there is only one virtual orbital 62a that was not
present in the FDE�m� calculation.

An isosurface plot of this orbital is shown in Fig. 10.
This virtual orbital is not localized at the water environment,
but it is a N–H antibonding orbital of the amino group. A
similar orbital is also present in the isolated molecule calcu-
lation �also shown in Fig. 10 for comparison�. A closer in-
spection of the orbitals in the FDE�s� calculation shows that,
actually, the virtual orbitals 62a, 64a, and 65a do also have a
contribution from such a N–H antibonding orbital. The long-
distance correction is thus able to remove the spurious con-
tributions localized at the environment while keeping the
contributions corresponding to virtual orbitals localized at
the nonfrozen subsystem.

However, in the FDE�m� calculation such a N–H anti-
bonding orbital appears only with a positive orbital energy.
The long-distance correction compensates not only the at-
tractive potential in the environment, but also the repulsive
parts of the embedding potential. As the 62a orbital reaches
out into regions of the environment where the embedding
potential is mainly repulsive, this leads to a lowering of its
orbital energy. If the long-distance correction is also applied
in the FDE�m� calculation, a virtual orbital 62a similar to

that in the FDE�s� calculation is found at an orbital energy of
−0.26 eV, which is still significantly higher than in the
FDE�s� calculation. This remaining difference is due to the
larger flexibility of the basis set in the FDE�s� calculation.

VIII. CONCLUSIONS

We have derived an exact expression for the kinetic-
energy component �T of the embedding potential that is used
in the FDE scheme. By relating the functional derivative of
the noninteracting kinetic-energy Ts��� to the KS potential
�s��� corresponding to this density, we obtain a way of cal-
culating �T exactly for an arbitrary pair of �s-representable
densities. In future work, this could be applied for perform-
ing FDE calculations using the exact kinetic-energy potential
that could serve as a reference for developing improved ap-
proximations to �T.

In this paper, we have applied the obtained expression to
investigate �T in the long-distance limit. We have shown
that—under the assumption that the frozen electron density
is close to the exact total electron density at the frozen
subsystem—for large separations of the two subsystems the
embedding potential at the nonfrozen subsystem should re-
duce to the purely electrostatic embedding potential, while at
the frozen subsystem it should be zero.

One consequence of this exact limit is that for well-
separated subsystems, not only the electron density and thus
the occupied orbitals, but also the virtual orbitals are divided
between the two subsystems; i.e., in the FDE calculation on
one of the subsystems no virtual orbitals of the other sub-
systems should appear. This is a fundamental difference to
pseudopotential approaches, in which only the occupied or-
bitals are projected out.

FIG. 9. Orbital energies calculated in FDE calculations on the H2O sub-
system in the presence of the frozen Li+ subsystem using the PW91k
kinetic-energy functional in combination with the long-distance correction
as a function of the O–Li distance. As reference, the results of the supermo-
lecular DFT calculation are also shown. See text for details.

FIG. 10. �Color online� Isosurface plots �contour value: 0.05� of the unoc-
cupied orbital 62a calculated for �a� aminocoumarin C151 surrounded by 30
water molecules using the long-distance corrected approximation to �T in a
FDE�s� calculation and �b� the isolated aminocoumarin C151. See text for
details. Graphics: VMD. �Ref. 55�.
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We have shown that while in the long-distance limit the
approximations currently in use for �T are correct at the non-
frozen subsystem, they fail at the frozen system, where the
available GGA kinetic-energy functionals are not able to can-
cel the electrostatic and exchange-correlation components of
the embedding potential. As our calculations on model sys-
tems have shown, this, in general, does not influence the
calculated electron density and the calculated occupied orbit-
als, but it leads to artificially too low-lying virtual orbitals.
These are problematic in two respects. First, as shown for
H2O¯Li, their orbital energy can drop below that of the
HOMO, leading to nonaufbau solutions. Second, these spu-
rious virtual orbitals will influence the calculation of re-
sponse properties, for which a good description of virtual
orbitals is crucial.

While it is in many cases possible to avoid these prob-
lems by not including basis functions on the frozen sub-
system in the calculation of the nonfrozen subsystem
�FDE�m��, these basis functions might be necessary to accu-
rately describe hydrogen bonds between the subsystems, or
diffuse basis functions on the nonfrozen subsystem might be
able to probe the regions in which the embedding potential is
wrong. In these cases, we recommend the use of the long-
distance correction proposed in this work.

However, while the proposed long-distance correction is
able to remove the spurious virtual orbitals in the model
systems studied here, its applicability is rather limited. First,
it can only be used if the partitioning is such that the sub-
system densities are close to the ground-state densities of the
well-separated subsystems, and it will, therefore, not work if
there is a �partial� charge transfer from the nonfrozen to the
frozen subsystem. It might be possible to devise more ad-
vanced corrections that detect such cases, e.g., by monitoring
the orbital energies of both subsystems. Second, the pro-
posed correction does only work in combination with ap-
proximate kinetic-energy functionals that are wrong in the
long-distance limit. If it is used with the exact kinetic-energy
functional, the correction of Eq. �34� will still give nonzero
contributions. And third, the kinetic-energy component of the
embedding potential obtained with this correction cannot be
expressed as the functional derivative of an energy func-
tional. For these reasons, this correction can only viewed as
a first step toward more advanced approximations that ensure
the correct long-distance limit.

Furthermore, the fact that the available approximations
to �T fail completely at the frozen subsystem makes it very
likely that they can be considerably improved in the regions
where the densities of the two subsystems overlap. The cor-
rection proposed in this work can be seen as a first step
towards a new generation of approximations, which do not
employ Eq. �3�, i.e., which make use of an approximate
kinetic-energy functional but that approximate �T directly
and which are constructed such that they obey the exact lim-
its derived here. This might possibly be a promising route on
the way to approximations that will also be applicable in the
case of stronger interactions and thus remove some of the
limitations the FDE scheme currently still has.
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