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ABSTRACT
Despite their large sizes, modern Knowledge Graphs (KGs) are

still highly incomplete. Statistical relational learning methods can

detect missing links by “embedding” the nodes and relations into

latent feature tensors. Unfortunately, these methods are unable to

learn good embeddings if the nodes are not well-connected. Our

proposal is to learn embeddings for correlations between subgraphs

and add a post-prediction phase to counter the lack of training data.

�is technique, applied on top of methods like TransE or HolE, can

signi�cantly increase the predictions on realistic KGs.

1 INTRODUCTION
Motivation. Currently, large amounts of semi-structured knowl-

edge have been released on the Web in the form of Knowledge

Graphs (KGs). Knowledge graphs are playing a prominent role in

the transition from keyword-based to entity-based Web search. Sev-

eral industrial organizations have been constructing KGs as part of

their core business (e.g., Google’s Knowledge Vault [3], Microso�’s

Satori, etc.) and many not-for-pro�t projects have released large

KGs on the Web as open linked data (e.g. YAGO [8]).

Problem. Despite modern KGs are fairly large, it is well known

that they are still highly incomplete [3]. To solve this problem, we

can apply Statistical Relational Learning (SRL) methods for predict-

ing potential links between existing entities, and hence complete

the graph. �ese methods learn numerical models and perform

the predictions by means of algebraic operations. Many of such

SRL methods have been proposed in literature ([1, 10, 11, 13] or

see the survey at [9]) and the results are encouraging. For in-

stance, TransE [1], one of the most popular method that “embeds”

entities and relations into vectors of numerical latent features, is

able to predict valid links for given entity/predicate queries (e.g.,

livesIn(Bob, ?)) on subsets of Freebase and Wordnet in respectively

75% and 94% of the cases
1
. �is level of accuracy is impressive;

unfortunately, SRL methods are unable to return good predictions

if the graph is not su�ciently dense [4]. For instance, we applied

TransE on a sample of YAGO (which is a graph signi�cantly more

∗
Work done as master student at the Vrije Universiteit Amsterdam.

1
�ese numbers refer to the �ltered top-10 hit-ratio. See Tab. 2 in [10].
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sparse than the previous ones) and the same experiment returned

a disappointing 22%.

In a sparse graph, the entities are not well connected, and con-

sequently the embeddings are not su�ciently updated due to the

lack of evidence. Modern KGs contain many of such low-connected

entities, because typically their node degree distribution follow a

power-law behavior. �erefore, it is important to study how we

can improve the quality of prediction when the evidence is scarce.

Contribution. So far, existing latent-feature methods improve

the quality of the predictions either by enhancing the learning

or embeddings’ structure (e.g. HolE [10] or variants of TransE like

TransH [16] and TransR [7]) or by including external evidence in the

process – like word embeddings [15], entities or taxonomies [6, 17]

or rules [2, 12, 14]. In this paper, we propose a new type of opti-

mization which consists of enriching the graph with new, special

nodes that capture correlations between set of entities. Our inten-

tion is to embed such correlations into latent feature tensors, and

exploit their semantics during the link prediction phase to boost

the rankings of less-connected entities.

�e special nodes are meant to represent star-shaped subgraphs

of low-connected entities; thus they should inherit some of the

links of the members of the subgraph. However, adding too many

links would be counter productive because they will disrupt the

original structure of the graph. To avoid this problem, we propose

a procedure which judiciously add a minimal number of links that

capture an interesting correlation.

Overall, our proposal has two main bene�ts: First, by adding

nodes that represent subgraphs we enable a more e�cient learning

of correlations between entities that are not directly connected.

We observed that in some cases this operation alone results in an

improvement of the predictions. Second, by boosting the ranking

of the subgraph nodes we give a chance to the less-connected

entities to emerge as potential answers. �is further improves

the performance. We evaluated our contribution in combination

with both TransE and HolE, which are two popular and state-of-

the-art techniques. We report on signi�cant improvements the

performance on real-world datasets like Freebase or YAGO.

2 SRL AND SCARCITY OF EVIDENCE
Knowledge graphs consist of labeled directed multigraphs where

the vertices represent entities and the labeled arcs establish se-

mantic relations, e.g. livesIn(Bob,London). Let G = (V ,A,R) be a

generic knowledge graph where V is the set of entities, A the set

of arcs and R the set of labels for the arcs. We can represent the

content of G with a set of binary relations r (h, t ) where h, t ∈ V

and there is an arc

−−−→
(h, t ) ∈ A labeled with r ∈ R.
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Given G as input, SRL methods are used to predict the likelihood

that there is a labeled relation between two entities in G. �ere are

several types of SRL methods: Here we will focus on SRL methods

which learn latent feature models and use them to make predictions.

In general, these methods proceed by assigning one numerical

vector v ∈ Rd to each entity v ∈ V and one vector r ∈ Rd to each

entity r ∈ R where d is a hyperparameter that indicates the size of

the vectors. �ese vectors are supposed to contain values for latent

features and these are learned by minimizing a loss function using

gradient-descent. For instance, TransE minimizes the margin-based

loss function:

L =
∑

r (h,t )∈G

∑
r (h′,t ′)<S ′r (h,t )

[γ +dist (h+r, t)−dist (h′+r, t′)]+ (1)

where [.]+ denotes the positive part of ., γ > 0 is the margin,

dist is either the L1 or L2 norm, and S ′ is a set of negative samples

constructed by replacing one term of a given tuple r (h, t ) with a

random term [1]. HolE proposes a more sophisticated approach

which uses circular correlation between the entity embeddings as

dist . More speci�cally, dist (h + r, t) is replaced by σ (r> (h ? t))
where σ is the logistic function, and a ? b = F −1 (F (a) � F (b))
with F being the fast Fourier Transform and � the Hadamard

product.

A�er the model is trained, graph completion can be performed

by identifying all entities that might be linked to a given entity

and relation label. In other words, the goal is to �nd all answers

to the query r (h, ?) (or r (?, t )) which are not explicit in the KG.

�is task is performed by calculating a likelihood score for any

entity in the graph, and picking the entities with the best score. For

instance, TransE determines the likelihood that r (h, t ) exists with

the function

score (r ,h, t ) := −dist (h + r, t) (2)

If the query is r (h, ?), then Eq. 2 is applied with all t ∈ V and

only the t ’s with the highest scores are candidates for new links.

�e case with r (?, t ) is entirely analogous.

�e problem arises when the answers are nodes with low degree.

We call these nodes “low-connected”. In this case, the prediction will

be harder because the training algorithm will have less evidence for

these entities and thus it has less chances update their embeddings.

In the case of TransE, this problem is accentuated because updates

are triggered by violations (i.e., when [.]+ > 0) and these occur

only when the distance between the arc’s ends di�ers from the

distance with other random nodes for less than the given margin.

�is further reduces the chances of updates.

We give a more intuitive explanation of this problem with the

�ctional graph of Fig. 1a. Here, “California” and “Berkeley” are well-

connected nodes while the students and courses aren’t. Since Eq. 1

iterates over the edges, the embeddings for the �rst two nodes will

have more chances to be updated than the other ones. Also, there

is a clear correlation between living in California and studying at

Berkeley in the sense that it is likely that Berkeley’s students live

in California. It is desirable that the model learns this correlation

so that when we ask for all students that live in California, then

California

livesIn

livesIn

livesIn

Student1

Student2

StudentN

takesCourse

takesCourse

takesCourse

Berkeley

Course1

Course2

CourseN

California

Student1

Student2

StudentN

GivenAtBerkeley

givenAt

givenAt

givenAt
takesCourse

takesCourse

takesCourselivesIn

livesIn

livesIn

(a) (b)

….
….

Figure 1: Example of Knowledge Graph (a) and with the ad-
dition of subgraph node (b).

the model can rank highly also the students for which we do not

know the living location but we know they a�end Berkeley.

Unfortunately, in this example learning such correlation is dif-

�cult because changes in one well-connected embedding can be

“propagated” to the embeddings on other side of the graph only

through the links between low-connected entities, which are con-

sidered at training time less times and whose update might not be

large enough to trigger a violation. Our approach aims at overcom-

ing this problem so that correlations like the one between studying

at Berkeley and living in California can also be learned.

3 ADDING SUBGRAPH NODES
Our solution is conceptually simple: In order to strengthening the

learning and prediction of low-connected entities, we add to the KG

an additional set of special nodes which represent sets of entities.

�ese sets contain entities which point to a common neighbor in the

KG; therefore they form a star-shaped subgraph centered around

the common neighbor. We call such special nodes subgraph nodes.
In order to learn correlations, we add links between the neighbours

of the subgraphs’ members and the subgraph nodes. In this way,

we are connecting the common neighbour of the subgraph to the

nodes which are two links away. �e following example illustrates

the intuition behind this method.

Example 1. Let us consider the graph in Fig. 1a. In this case, we
can represent the subgraph of all courses given at Berkeley with a
new node called GivenAtBerkeley, and add links from all students
that follow courses at Berkeley to this node. �e result can be seen in
Fig. 1b: �e node “GivenAtBerkeley” acts as a sort of “bridge” which
encodes the correlation between the group of students that a�end
Berkeley and the courses given at Berkeley.

�e procedure for adding such special nodes is not straighfor-

ward as it seems. First, the subgraphs need to be su�ciently large

in order to cluster together a su�cient number of entities. Second,

we need to be careful because if we add too many links, then the

resulting graph will be structurally too di�erent and this will impact

negatively the embeddings. In fact, every time we add a link the

training algorithm will bring “closer” the embeddings of the two

nodes incidents to the link and their neighbours. With too many

links, the embeddings will become too close to each other and the

ranking will be compromised.

In our proposal, we address the �rst problem by considering

only subgraphs which are su�ciently large. Let S (r,t ) be a set of all

nodes in the KG which have an outgoing arc to t which is labeled

Short Paper CIKM’17, November 6-10, 2017, Singapore

2248



V

r

r
r

r

(a)

V

r

r
r

r

(b)

Figure 2: Example on the most appropriate subgraph for a
entity v and a relation r by the second and third criteria.

with r . We add to the KG a node only if |S (r,t ) | > τ , where τ is a

hyperparameter (we used 10 in our experiments).

We address the second problem with a special procedure that

adds only targeted links. �is procedure visits each entity v in the

original graph and consider all subgraphs which containv . For each

relation label r used by the links of v , we rank the subgraph nodes

by a ranking function (θ , described below) and pick the subgraph

node with the highest score. �en, we create a “r”-link from the

neighbors of v only to that subgraph node.

Example 2. Let us assume that the node Course1 is part of two
di�erent subgraphs, GivenAtBerkeley and AboutML, and that this
node is connected with the links 〈Student1, takesCourse,Course1〉

and 〈Teacher1, teaches,Course1〉. In this case, our procedure would
consider the labels takesCourse and teaches and for each of them it
will select one of the two subgraphs according to the ranking functionθ .
For example, the ranking function could select GivenAtBerkeley for
takesCourse and AboutML for teaches . Consequently our procedure
would add two links 〈Student1, takesCourse,GivenAtBerkeley〉 and
〈Teacher1, teaches,AboutML〉.

θ function. Now, we discuss how the subgraph nodes are selected.

�e function θ receives in input an entity v , one relation label r ,

and a non-empty set of subgraphs for whichv is a member. It select

one subgraph using three criteria:

First criterion: �e function gives priority to the subgraphs S (r ′,t )
where r ′ , r to avoid re-stating with a new link information that

is already contained in the graph.

Second criterion: �e subgraphs are further ranked depending on

how many members of the subgraph under exam are neighbors of

the entities that are linked to v by r . We illustrate this operation in

Fig. 2(a). Here, the neighbors ofv are colored in dark grey while the

members of the subgraph are within the light-grey area. �e mem-

bers of the subgraph that are directly connected to the neighbors

of v are colored in black. �e black nodes give an indication on

how related the subgraph is to the neighbors ofv . �e function will

choose the subgraph where the number of black nodes is maximal

to reduce the risk that we are bridging unrelated entities.

�ird criterion: If there are subgraphs with an equal number of

“black” members, see e.g. Figs 2(a) and (b), then the function chooses

the smallest subgraph. �is case occurs when, for instance, one

subgraph is more speci�c than another one (e.g. (type, Student ) and

(type, Person)). If, a�er this step, there are still multiple elements

to choose from, then the choice becomes arbitrary.

Post-prediction.�e subgraph nodes become useful a�er we ranked

the predictions with Eq. 2 because they give hints on what the real

FB15K LUBM YAGO
no. of. Subgraphs Detected 6,254 1,152 6,760

no. of. Additional Links 118,354 28,620 62,015

Processing Time (sec) 2,002 135 2,735

Table 1: Details about the special nodes to the KGs.

answers might be. To illustrate this point, consider again Fig. 1 and

assume that we would like to �nd all possible answers for the query

takesCourse (Student2, ?). If the model returns the correlation node

S (дivenAt,Berkeley ) among the top answers, then we can interpret

this result as a hint that the correct answer should be one course

from Berkeley and consequently increase the score of the members

of this subgraph.

To exploit such hints, we apply the following procedure to the

ranked list of answers produced with Eq. 2:

• We select the top-k3 ranked subgraph nodes;

• From the top-k3 ones, we pick the ones whose sets contain at

least a given percentage of known answers of the query;

• We increase the score of the entities of the picked subgraphs.

If an entity is part of multiple subgraphs, then it its score is

increased multiple times;

• We increase the scores of the top k4 entities in the original

ranked list using a su�ciently high value to ensure that their

positions remain unchanged.

�is procedure requires three input parameters k3,k4,B. Ideal

values for these parameters can be found as usual using grid search.

4 EVALUATION
We present a preliminary evaluation of our method in combination

with TransE and HolE. We chose TransE because it is simple and

widely used, and HolE because it is one of the most recent state-of-

art KG completion models. Supplementary material is available at

https://github.com/karmaresearch/statlearning. We used

three benchmark datasets: i) FB15K, a subset of Freebase used in

almost all related publications. It contains 14,951 entities, 1345

relation types and 592,213 relations. ii) LUBM, which is an arti�cial

KG that is widely used to evaluate reasoning [5]. �is dataset

contains 17,277 entities, 23 relation types and 70,226 relations. iii)

YAGO, which is a sample of YAGO3 [8] with 266,640 entities, 37

relation types and 562,817 relations. We selected YAGO and LUBM

because they are both popular KGs which are much more sparse

than Freebase. �e experiments were ran on a machine with a Intel

Xeon 32-core and 256GB RAM.

We proceeded as follows: First, we launched both TransE and

HolE with optimized parameters on FB15K, LUBM and YAGO using

the standard training/valid/test division. �ese will be our baselines.

�en, we launched our procedure to extend the three KGs with the

special nodes (see Tab. 1 for details) and re-trained new models.

�en, we tested the quality of the predictions on the enriched KGs

with and without the procedure to boost the rankings. As metrics,

we chose, as usual, MRR (mean reciprocal rank), the mean ranks

and the ratio of correct entries in the �rst 10 results, denoted as

Hits@10. In the following, we report the “�ltered” results, which

exclude from the ranked list all the answers that are already in the

KG. �e un�ltered results follow the same behavior.
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Figure 3: Comparison vs the baseline on various metrics. �e results with the correlation nodes but no post-prediction proce-
dure are marked with “-EX”. �e results with the post-prediction procedures are marked with “-SG”.

�e results are reported in Fig. 3. First, we compare the results

between the baselines and our enriched graph but without any

post-prediction processing. In this case, we observe mixed results.

In some cases, we obtained a general improvement, like with YAGO

and on the mean rank with HolE on LUBM and FB15K (the last two

improvements – of 41% and 15%, are not visible in the graph). In

other cases, the performance was unchanged or slightly worse.

However, if we look at the performance where the post-prediction

procedure was executed (the “-SG” column in Fig. 3), then we ob-

serve a general and consistent improvement of the performance.

�e MRR increases in all three datasets with both TransE and HolE

(Fig. 3a). �e largest improvement occurs with LUBM where the

MRR improves of 28% with TransE and of 46% with HolE. On YAGO,

the improvement is of 23% (TransE) and 7% (HolE). On FB15K, the

MRR is only marginally improved (2.5% with TransE and 5% with

HolE) since this graph is dense and the baselines are already per-

forming well. From Fig. 3b, we notice that the mean rank is sig-

ni�cantly higher on YAGO. �is is because YAGO has many more

entities (266K) than the other two and the predictions are worse. In

general, the mean rank improved of 12% (TransE) and 37% (HolE)

on LUBM, of 6% (both TransE and HolE) on YAGO, and 4% (TransE)

and 15% (HolE) on FB15K. Finally, we notice that also the Hit@10

bene�ts from our method (Fig. 3c). �e improvement is of 20%

(TransE) and of 29% (HolE) on LUBM and of 6.5% (both) on YAGO.

We observe also a small improvement on FB15K, which has already

a high hit-rate (1.8% with TransE, 1.5% with HolE).

5 OUTLOOK
�e main research stream in statistical knowledge graph completion

has so far either focused on optimizing of the learning algorithm

or on more complex data structures for the embeddings to capture

the structure of the KG in the high-dimensional feature space. In

this paper, we propose a new type of optimization that consists

of enriching the KG with a new set of subgraph nodes in order to

facilitate the learning of features that are di�cult to capture due

to the scarcity of evidence. Our preliminary evaluation showed

that our proposal led to an improvement of the link prediction on

all datasets and with all metrics. �e fact that the improvement

occurred with multiple o�-the-shelf learning algorithms is remark-

able. Nevertheless, future work is necessary, e.g., for avoiding the

cases where accuracy decreased without the post-prediction phase.

Two main conclusions can be drawn from this work: First, en-

riching the KG with embeddings of more complex graph structures

than single nodes is a viable and complementary research direction

to enhance the quality of link prediction. Second, it is useful to

apply some post-processing on the ranked results to see whether

some answers should be included. Our experiments show that this

results in a signi�cant increase of the quality of the predictions.
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