Absence of an acute insulin response predicts onset of type 2 diabetes in a Caucasian population with impaired glucose tolerance
Nijpels, G.; Boorsma, W.; Dekker, J.M.; Hoeksema, F.; Kostense, P.J.; Bouter, L.M.; Heine, R.J.

published in
Journal of Clinical Endocrinology and Metabolism
2008

DOI (link to publisher)
10.1210/jc.2007-2837

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 12. Apr. 2022
Absence of an Acute Insulin Response Predicts Onset of Type 2 Diabetes in a Caucasian Population with Impaired Glucose Tolerance


EMGO Institute (G.N., W.B., J.M.D., F.H., P.J.K., L.M.B., R.J.H.) and Departments of General Practice (G.N.), Clinical Epidemiology and Biostatistics (P.J.K.), and Endocrinology/Diabetes Center (R.J.H.), Vrije Universiteit Medical Center, 1081 BT Amsterdam, the Netherlands

Context: In persons with impaired glucose tolerance (IGT), both impaired insulin secretion and insulin resistance contribute to the conversion to type 2 diabetes mellitus (T2DM). However, few studies have used criterion standard measures to assess the predictive value of impaired insulin secretion and insulin resistance for the conversion to T2DM in a Caucasian IGT population.

Objectives: The objective of the study was to determine the predictive value of measures of insulin secretion and insulin resistance derived from a hyperglycemic clamp, including the disposition index, for the development of T2DM in a Caucasian IGT population.

Design, Setting, and Participants: The population-based Hoorn IGT study consisted of 101 Dutch IGT subjects (aged < 75 yr), with mean 2-h plasma glucose values, of two separate oral glucose tolerance tests, between 8.6 and 11.1 mmol/liter. A hyperglycemic clamp at baseline was performed to assess first-phase and second-phase insulin secretion and insulin sensitivity. During follow-up, conversion to T2DM was assessed by means of 6-monthly fasting glucose levels and yearly oral glucose tolerance tests.

Results: The cumulative incidence of T2DM was 34.7%. Hazard ratio for T2DM development adjusted for age, sex, and body mass index was 5.74 [95% confidence interval (CI) 2.60–12.67] for absence of first insulin peak, 1.58 (95% CI 0.60–4.17) for lowest vs. highest tertile of insulin sensitivity, and 1.78 (95% CI 0.65–4.88) for lowest vs. highest tertile of the disposition index.

Conclusions: In these Caucasian persons with IGT, the absence of the first insulin peak was the strongest predictor of T2DM. (J Clin Endocrinol Metab 93: 2633–2638, 2008)
tolerance tests or clamp tests been used (6, 7, 13, 14). In these studies, the first insulin secretion phase was the strongest predictor for developing T2DM (3). However, insulin resistance and β-cell function have a close interrelationship, and this has not been taken into account in most of these studies. In general, insulin resistance is compensated for by an increase in insulin secretion (15). Thus, high insulin production may be regarded as good β-cell function, whereas in reality the insulin production may already be impaired (16, 17). This compensatory insulin secretion in the presence of insulin resistance is taken into account in the disposition index, the product of insulin sensitivity, and insulin secretion. In this study, we analyzed the predictive value of measures, derived from a hyperglycemic clamp, of insulin resistance and insulin secretion, including the disposition index, for the development of T2DM in a Caucasian IGT population.

Subjects and Methods

Study population

The participants in our analysis came from two existing studies. The population-based cohort Hoorn Study, conducted in 1989–1991, analyzed the glucose metabolism of 2484 men and women of the municipality of Hoorn (18). During the 1996–1998 follow-up, we identified 55 patients with IGT, all of whom were under 75 yr of age and had mean fasting plasma glucose levels of 6–7 mmol/liter and mean 2-h postload plasma glucose levels of 7.8–11.1 mmol/liter. For the Dutch Acarbose Intervention Study in IGT Persons (DAISI) study, conducted in 1994–1993, a random sample of 12,093 persons together with the 55 IGT persons from the Hoorn study (n = 19). From that sample, 6651 participants underwent two OGTTs within 2 wk. Of those, we included the 108 participants who were under 70 yr of age and had mean fasting plasma glucose levels of 5.5–7.8 and mean 2-h postload plasma glucose levels of 8.6–11.1 mmol/liter. The coefficient of variation was 6.5% for fasting plasma glucose levels under 70 yr of age and had mean fasting plasma glucose levels of 5.5–7.8 and mean 2-h postload plasma glucose levels of 8.6–11.1 mmol/liter. The first insulin secretion phase was assessed in the Clamp using the trapezoidal rule. The second insulin secretion phase (160–180 min) was calculated by the mean insulin level (mU/l) of that period (ins160–180).

Measurements

OGTT

Blood samples were taken from all patients in a fasting state and 2 h after a 75-g oral glucose load. We used a glucose hexokinase-method (Roche Diagnostics GmbH, Mannheim, Germany) to determine fasting and 2-h postload plasma glucose levels. We determined insulin levels using a two-site immunoradiometric test (Medgenix Diagnostics, Fleurus, Belgium). This insulin-specific test does not show crossreactivity with proinsulin and split products. Intact proinsulin was determined by an immunoradiometric method based on antibodies (Dako, Cambridgehire, UK).

Hyperglycemic clamp

Participants underwent a hyperglycemic clamp after at least 12 h of fasting. Lying supine, patients received a priming infusion of saline (0.9%) and glucose (20%) in one arm. To sample blood, we cannulated a vein on the back of the hand of the opposite arm. The hand was placed in a thermo-regulated box at 45 C to arterialize the venous blood. After infusing the patients with a bolus of glucose (150 mg/kg), we took immediate blood glucose measurements every 2.5 min with a glucose analyzer (Yellow Springs Instrument, Inc., Yellow Springs, OH); we maintained blood glucose levels at a hyperglycemic level of 10 mmol/liter for 180 min. We obtained insulin samples every 2.5 min during the first 10 min and at 5- to 10-min intervals for the remaining 170 min.

Clamp-derived estimates of insulin sensitivity

Under stable conditions of constant hyperglycemia, the amount of glucose infused (milligrams per kilogram per minute) equals the amount of metabolized glucose. The amount of glucose infused was calculated by the area under the curve of the glucose infusion rate during the last 20 min of the clamp using the trapezoidal rule. The M value divided by the average plasma insulin concentration during the same interval, the M/I ratio, provides a measurement of tissue sensitivity to insulin (milligrams per kilogram per minute per milliunit per liter).

Clamp-derived estimates of β-cell function

Several measures of β-cell function were obtained from the hyperglycemic clamp (20). The first insulin secretion phase was assessed in the first 15 min of the clamp. For the definition of the presence of a first insulin peak, we used the following procedure. By visual inspection, we selected 23 flat insulin curves. For each separate curve, we calculated the SD of the insulin values. Next, from these 23 SDs, we calculated the pooled estimate of the typical SD of these flat curves. We considered an insulin peak present if the difference between two subsequent insulin levels exceeded 1.96√2: pooled estimate (Fig. 1).

Another measure for the first insulin secretion phase was the area under the curve (AUCins0–10) of the insulin levels of the first 10 min of the clamp, which were calculated using the trapezoidal rule. The second insulin secretion phase (160–180 min) was calculated by the mean insulin level of that period (ins160–180).

Other measurements

During the baseline medical examination, we measured weight, height, and waist and hip circumferences and calculated body mass index (BMI) and waist to hip ratio. We measured blood pressure twice on the right arm with a random-zero sphygmomanometer (Hawksley-Gelman Ltd., Lancing, UK) and used the mean in our analyses.

Disposition index

The disposition index was calculated as the product of M/I ratio (micrograms per kilogram per minute per milliunits per liter) and the AUCins0–10 (milliunits per liter).
Conversion to diabetes

When the study started, the World Health Organization (WHO) had in 1985 defined T2DM as a fasting plasma glucose value of 7.8 mmol/liter or greater and/or a 2-h plasma glucose value of 11.1 mmol/liter or greater (21). In 1999, during the study, the WHO lowered the fasting plasma glucose value criterion to 7.0 or greater (the 2-h plasma glucose value remained ≥ 11.1 mmol/liter) (22). We used both sets of WHO criteria in separate analyses (not all WHO 1985 analyses are shown). For the analysis with the WHO 1999 criteria, participants with a fasting plasma glucose of 7.0 mmol/liter or greater at the start of the study were excluded.

In the participants of the DAISI study, fasting plasma glucose levels were measured every 3 months for 3 yr and once a year thereafter. In the participants of the Hoorn Study, fasting plasma glucose was measured yearly. Participants underwent an OGTT if the fasting plasma glucose value criterion to 7.0 or greater (the 2-h plasma glucose during the last 20 min of the clamp was 9.9 (SD 0.6), the coefficient of variation 6.6%.

Figure 2 shows Kaplan-Meier survival curves for the presence or absence of the first insulin peak and tertiles of the M/I ratio, disposition index, and first insulin secretion phase. The absence of the first insulin peak was the strongest predictor for the development of T2DM.

Table 2 shows the results of Cox proportional hazards analyses of OGTT and clamp-derived measures for the incidence of T2DM for both the 1985 and 1999 WHO criteria, adjusted for age, sex, and BMI. The highest hazard ratio was observed for the absence of the first insulin peak. The other variables were not as predictive of T2DM development (1999 WHO criteria). First-phase insulin secretion, insulin resistance, second-phase insulin secretion, and the disposition index were not significantly associated with the risk of developing T2DM. When we applied the WHO 1985 criteria, however, the first insulin secretion phase and the disposition index were both predictive of T2DM conversion.

TABLE 1. Baseline characteristics of participants developing and not developing diabetes

<table>
<thead>
<tr>
<th></th>
<th>No diabetes</th>
<th>Diabetes</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>66</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>62.7 (8.9)</td>
<td>61.3 (9.1)</td>
<td>0.45</td>
</tr>
<tr>
<td>Sex (percent men)</td>
<td>50%</td>
<td>40%</td>
<td>0.23</td>
</tr>
<tr>
<td>Hemoglobin A1c</td>
<td>5.5 (0.5)</td>
<td>5.7 (0.6)</td>
<td>0.10</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.3 (3.7)</td>
<td>29.0 (4.4)</td>
<td>0.04</td>
</tr>
<tr>
<td>Waist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>92.2 (84.3–97.6)</td>
<td>98.0 (88.6–102.3)</td>
<td>0.14</td>
</tr>
<tr>
<td>Men</td>
<td>95.4 (92.0–99.0)</td>
<td>99.4 (95.7–106.3)</td>
<td>0.06</td>
</tr>
<tr>
<td>Waist to hip ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>0.88 (0.80–0.95)</td>
<td>0.90 (0.80–0.92)</td>
<td>0.19</td>
</tr>
<tr>
<td>Men</td>
<td>0.94 (0.80–1.00)</td>
<td>0.90 (0.90–0.95)</td>
<td>0.43</td>
</tr>
<tr>
<td>OGTT measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/liter)</td>
<td>5.9 (0.7)</td>
<td>6.5 (0.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Two-hour postload plasma glucose (mmol/liter)</td>
<td>7.8 (2.0)</td>
<td>9.3 (1.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Fasting specific insulin (mU/liter)</td>
<td>9.0 (7.2–12.3)</td>
<td>11.4 (8.5–15.8)</td>
<td>0.04</td>
</tr>
<tr>
<td>Fasting proinsulin (mU/liter)</td>
<td>2.3 (1.8–3.0)</td>
<td>2.8 (2.1–3.5)</td>
<td>0.06</td>
</tr>
<tr>
<td>Hyperglycemic clamp measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak (percent present)</td>
<td>80%</td>
<td>52%</td>
<td>0.004</td>
</tr>
<tr>
<td>AUC, 0–10 min (mU/liter min⁻¹)</td>
<td>24.6 (16.7–34.1)</td>
<td>21.9 (15.4–39.4)</td>
<td>0.95</td>
</tr>
<tr>
<td>Mean insulin, 160–180 min (mU/liter min⁻¹)</td>
<td>48.1 (36.1–78.8)</td>
<td>47.9 (33.4–103.6)</td>
<td>0.75</td>
</tr>
<tr>
<td>MI ratio (mg/kg/min per mU/l)</td>
<td>11.2 (6.3–15.2)</td>
<td>9.8 (4.4–16.2)</td>
<td>0.29</td>
</tr>
<tr>
<td>Disposition index</td>
<td>226.4 (147.5–349.9)</td>
<td>176.8 (137.4–307.6)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Values are means (SD) or medians (interquartile ranges) for skewed variables.
Additional analyses in the eight persons with T2DM according to the WHO 1999 criteria, thus excluded at baseline, demonstrated that their fasting and 2-h plasma glucose values were higher at baseline than in those who developed T2DM at the follow-up (Table 3). They were younger and the percentage of women was higher among these eight persons than in the group of new T2DM. They also had a higher percentage of absence of first-insulin peak and a lower mean disposition index.

Discussion

The incidence of T2DM in this confirmed IGT population was almost 35%, with a relatively short mean follow-up period of 4 yr. The absence of the first insulin peak was the strongest predictor of the development of T2DM. The second insulin secretion phase, insulin resistance, and the disposition index did not independently predict T2DM.

The participants were selected according to the 1985 WHO criteria, but during the study the WHO criteria for T2DM changed. For the 1999 WHO analyses, therefore, we excluded participants with a fasting plasma glucose greater than 7.0 mmol/liter. The true criterion standard measurement for insulin sensitivity is the M-value of the hyperinsulinemic euglycemic clamp (22, 23). Because, the M-value of the hyperinsulinemic clamp and the M/I value of the hyperglycemic clamp are highly correlated (11, 12), a hyperglycemic clamp was the most efficient way to analyze both insulin resistance and β-cell function. We observed that AUC_{ins0–10} as a measure of first-phase insulin secretion did not predict the conversion to T2DM. Probably this can be explained by the close relationship between the AUC_{ins0–10}, the measure of insulin sensitivity. In our data AUC_{ins0–10} was strongly correlated with the M/I ratio derived from the hyperglycemic clamp (data not shown). Perhaps unexpected, insulin resistance did not emerge as a significant independent predictor of diabetes. This is likely to be due to the fact all participants had
IGT, itself an insulin-resistant state. Also, previous studies have demonstrated that insulin resistance is a predictor of conversion only in persons with normal glucose tolerance at baseline (3, 4).

In persons with an adequate beta-cell function, the AUC0–10 will be higher in insulin-resistant persons, compared with persons with a normal insulin sensitivity. The resulting disposition index and glucose tolerance will remain the same. In contrast, those who are not able to increase the (first) phase insulin secretion in response to insulin resistance, thus those with an absent first phase, will develop hyperglycemia. Insulin resistance itself stimulates insulin secretion, an adaptation of the beta-cell for prevailing insulin resistance (26, 27). The disposition index, reflects the interrelationship between insulin secretion and insulin resistance. Alterations in the disposition index has been demonstrated to be predictive of changes in glucose tolerance status as reported by others (7, 19, 26–27). This study is one of the few prospective studies with measurements of the first insulin secretion phase in confirmed IGT persons and the first to report prospective analyses with the disposition index in a Caucasian IGT population (8). Impaired first insulin secretion phase as an independent predictor for the development of T2DM, independent of obesity and insulin resistance, has also been described in a population in Sweden, in Pima Indians (29–34), and in Mexican-Americans (3). We found that the incidence of T2DM was predicted best by the absence of the peak of the first insulin secretion phase. In the prospective study in Pima Indians, the findings were very similar, although their estimate of beta-cell function was acquired with an iv glucose tolerance test (38).

The disposition index, as an expression of the compensatory mechanism of insulin secretion on decreasing insulin sensitivity, appeared to be an independent predictor of the incidence of T2DM but only when we used the old WHO 1985 criteria. This is line with the notion that elevated fasting glucose (7.0–7.8 mmol/liter) clearly indicates defective insulin secretion and that fasting glucose levels less than 7.0 mmol/liter indicates sufficient compensatory insulin secretion (22).

TABLE 3. Comparison of the excluded T2DM (WHO, 1999) at baseline with the new T2DM at the follow-up

<table>
<thead>
<tr>
<th>Variables</th>
<th>T2DM excluded</th>
<th>T2DM follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Age</td>
<td>57.8 (6.9)</td>
<td>63.0 (8.8)</td>
</tr>
<tr>
<td>Sex (percent male)</td>
<td>37.0</td>
<td>45.0</td>
</tr>
<tr>
<td>BMI</td>
<td>30.7 (3.2)</td>
<td>28.6 (4.5)</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/liter)</td>
<td>7.3 (0.2)</td>
<td>6.5 (0.6)</td>
</tr>
<tr>
<td>Two-hour postload plasma glucose (mmol/liter)</td>
<td>9.7 (0.6)</td>
<td>9.3 (1.1)</td>
</tr>
<tr>
<td>Peak (percent present)</td>
<td>37.5</td>
<td>52.0</td>
</tr>
<tr>
<td>Disposition index</td>
<td>128.4 (66.3–259.4)</td>
<td>176.8 (137.4–307.6)</td>
</tr>
<tr>
<td>M/I ratio</td>
<td>8.1 (2.5–18.1)</td>
<td>7.1 (3.8–10.0)</td>
</tr>
</tbody>
</table>

Values are means (SD) or medians (interquartile ranges) for skewed variables.

Cox regression models, all adjusted for age, sex, and BMI (model 1) and age, sex, BMI, and insulin sensitivity (model 2). CI, Confidence interval; Ins160–180, mean insulin level between 160 and 180 min of the hyperglycemic clamp; DI, disposition index.

$^a P < 0.001$.

$^b P < 0.01$. 
absence of the first insulin peak, as an expression of an impaired acute insulin response to glucose, was the strongest predictor of incident T2DM.

Acknowledgments

Address all correspondence and requests for reprints to: Prof. G. Nijpels, Department of General Practice, Vrije Universiteit Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam. E-mail: g.nijpels@vumc.nl.

The Hoorn IGT-study was supported by Bayer Healthcare AG, Wuppertal, Germany and the Dutch Diabetes Foundation.

Disclosure Summary: The authors have nothing to declare.

References

3. Haffner SM, Nietmussen H, Gaskill SP, Stern MP 1995 Decreased insulin secretion and increased insulin resistance are independently related to the 7-year risk of NIDDM in Mexican-Americans. Diabetes 44:1386–1391