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We derive minimax testing errors in a distributed framework where the
data is split over multiple machines and their communication to a central ma-
chine is limited to b bits. We investigate both the d- and infinite-dimensional
signal detection problem under Gaussian white noise. We also derive dis-
tributed testing algorithms reaching the theoretical lower bounds.

Our results show that distributed testing is subject to fundamentally dif-
ferent phenomena that are not observed in distributed estimation. Among our
findings we show that testing protocols that have access to shared random-
ness can perform strictly better in some regimes than those that do not. We
also observe that consistent nonparametric distributed testing is always pos-
sible, even with as little as one bit of communication, and the corresponding
test outperforms the best local test using only the information available at
a single local machine. Furthermore, we also derive adaptive nonparametric
distributed testing strategies and the corresponding theoretical lower bounds.

1. Introduction. Distributed methods are concerned with inference in a framework
where the data resides at multiple machines. Such settings occur naturally, when data is
observed and processed locally, at multiple locations before sent to a central location where
they are aggregated to obtain a final result. By working with smaller sample sizes locally, dis-
tributed methods can substantially speed up the computation compared to centralized, classi-
cal methods. Furthermore, they reduce memory requirements and help protecting privacy by
not storing all the information at a single location. For these reasons the study of distributed
methods has attracted significant attention in recent years.

In our analysis we first consider the many normal means model, which is often used as
a platform to investigate more complex statistical problems. In the classical version of the
model, one obtains an observation X subject to the dynamics X = f +n−1/2Z, where f ∈ R

d

is an unknown signal, and Z an unobserved, d-dimensional standard normal noise vector.
This is equivalent to observing n independent copies of a Nd(f, Id) vector. Our focus is
on testing the absence or presence of the signal component f in the model. Rejecting the
null hypothesis H0 : f = 0 means declaring that there is a nonzero signal underlying the
observation X. The difficulty of distinguishing between the two hypotheses depends on signal
strength, the noise ratio n and dimension d . It is well known that the signal strength in terms
of the Euclidean norm of f needs to be at least of the order d1/4/

√
n for the hypotheses to

be distinguishable; see, for example, [6].
We study this signal detection problem in a distributed setting. In the distributed version of

the above normal-means model, the n observations are divided over m machines (assuming
without loss of generality that n is a multiple of m). Equivalently, each local machine j ∈
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{1, . . . ,m} observes

(1) Xj = f +
√

m

n
Zj ,

where f ∈ R
d and the noise vectors Zj are independent d-dimensional standard normal

random vectors. Each machine j transmits a b-bit transcript Y j to a central machine. By
aggregating these m local transcripts, the central machine computes a test for the hypothesis
H0 : f = 0. We derive, for this distributed setting, the order of the minimal signal strength
ρ for which the null hypothesis can be distinguished from the alternative H1 : ‖f ‖2 ≥ ρ. In
the distributed setting, ρ is considered as a function of the number of machines m and the
communication budget b, in addition to the dimension d and noise level n. We allow all the
parameters b, m and d to depend on n.

The transcripts generated by the machines may be either deterministic or randomized.
When randomizing the transcript, we consider two different possibilities for the source of
randomness. In the private coin setup, the machines may only use their own local (indepen-
dent) source of randomness. In the public coin setup, the machines have access to a shared
source of randomness in addition to their own independent source. This is akin to a situation
in which the machines have access to the same random seed. We show that, depending on
the size of the communication budget, having access to a public coin strictly improves the
distinguishability of the null and alternative hypotheses.

Our results indicate that, in the case where b and m are small relative to the dimension d

in an appropriate sense, the one-bit protocols have similar properties, in terms of separation
rate, as multibits protocols; that is, one can achieve the minimax optimal b-bit testing rates
with taking the majority vote of appropriately chosen local (one-bit) test outcomes. This is a
striking difference with estimation, where for small values of b, increases in the communi-
cation budget result in (sometimes exponential) improvements in convergence rate. We find
that, as m increases, the local testing problems become more difficult as the local sample size
deceases, but at a certain threshold, this effect is compensated for by the increase in total
communication budget bm. This threshold occurs when bm exceeds the dimension. At this
point we find that public coin protocols start to strictly outperform private coin protocols, in
the sense that smaller signals can be detected with the same amount of transmitted bits b. This
is also a dissimilarity with estimation, where having access to public randomness offers no
benefit, as we show it in our paper. When the communication budget b per machine exceeds
that of the dimension d of the problem, the minimax rates of the classical, nondistributed
setting can be attained.

We then extend our results for the d-dimensional Gaussian model to the nonparametric
signal in white noise setting. This latter model is of interest, as it serves as benchmark and
starting point to investigate more complicated nonparametric models. Here the local obser-
vations for j = 1, . . . ,m constitute

∫ ·
0 f (s) ds +

√
m
n
W

j· , where the Wj ’s are independent
Brownian motions and f ∈ L2[0,1] the unknown functional parameter of interest. Our re-
sults for the infinite dimensional model comes in the form of minimax rates for distributed
protocols in terms of the strength of the signal in L2-norm, the smoothness s of the signal,
the amount of bits b allowed to be communicated by each machine, the signal to noise ratio n

and the number of machines m. In contrast to nonparametric distributed estimation, we show
that consistent distributed testing is always possible, even when m and b are small. Having
a shared source of randomness results in better rates in certain regimes in the nonparametric
setting, while we show that this is never the case for distributed estimation. Finally, we con-
sider the more realistic, adaptive setting where the regularity s is considered to be unknown.
We show that, in contrast to the nondistributed setting where the cost for adaptation is a mul-
tiplicative log logn factor, in the distributed case a more severe logn penalty is necessary. We
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also propose a nonparametric distributed testing procedure, based on Bonferroni’s correction,
reaching the theoretical limits (up to a log logn factor) and observe additional, unexpected
phase transitions compared to the nonadaptive setting.

1.1. Related literature. Starting a few decades ago, earlier investigations into similar top-
ics originate in the electrical engineering community under the names “decentralized decision
theory/the CEO problem,” for example, [4, 9, 20, 31–33] or “inference under multiterminal
compression” (see [17] for an overview). Motivated by applications, such as surveillance
systems and wireless communication, the inference problems are approached from a “rate-
distortion” angle in this body of literature. However, these results typically consider fixed,
finite sample spaces and a fixed number of machines m and investigate asymptotics only in
the sample size n.

Understanding the fundamental statistical performance of distributed methods, in context
of nondiscrete, higher-dimensional sample spaces, has been considered only recently. Most
of the literature focused on estimating the parameter/signal of the model in a distributed
framework. Minimax lower and (up to a possible logarithmic factor) matching upper bounds
were derived for the minimax risk in terms of communication constraints and in context
of the many normal means and simple parametric problems; see [11–13, 16, 18, 24, 35, 37].
These results were extended to nonparametric models, including Gaussian white noise [38],
nonparametric regression [26], density estimation [7] and general, abstract settings [30]. Dis-
tributed techniques for adapting to the unknown regularity of the functional parameter of
interest were derived in [14, 26, 27].

For distributed testing much less is known. In [1] the authors consider a setting in which
each machine obtains a single observation from a distribution on a finite sample space and
derive lower bounds for testing uniformity of this distribution. Similar distributed uniformity
testing is considered in [2], where matching upper bounds are exhibited for this setting. In
[28] the authors derive matching upper and lower bounds for the distributed version of the
classical many normal means model (see (1) above) for the case that only the outcome of
local tests can be communicated (e.g., one bit of communication). In [3] less stringent com-
munication requirements are considered in the special case of the model in (1) above with
m = n. Questions regarding nonparametric models and adaptation in the setting of distributed
testing have remained completely open thus far.

To summarize the state of the art, the lower bounds derived in the literature so far are only
optimal in case of constant communication budget in the public coin setting, that is, b = O(1).
So far no lower bound results are available in the public coin setting if b can tend to infinity as
n increases. Furthermore, there is a lack of any lower bound result in the private coin setup.
The traditional methods, based on mutual information and Taylor expansion as considered
in [28] and [3], respectively, do not extend to the setting of multiple bits or private coin
protocols. In this article we fill this gap and derive the first rigorous minimax lower bounds
for distributed testing procedures in the normal means model for arbitrary communication
budget b both for private and public coin settings. In order to prove the lower bounds, we
provide a novel Bayesian testing argument based on a Brascamp–Lieb-type inequality with
distributed version of testing lower bounding techniques.

The upper bounds derived in [3] are more complete for both the private and public coin
settings and go beyond the above described restrictive setting in which the lower bounds were
derived but do not cover all possible cases. For instance, in [3] it is assumed that the separation
distance between the null and alternative hypotheses is bounded from above by one, which
does not cover the case

√
dm � n. Also, only the m = n case was considered in the preceding

paper. Therefore, in certain regimes new testing procedures and proof techniques had to be
derived for full treatment of the problem (e.g., our novel test TIII in the high-budget private
coin case, see Section 4.3).
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The literature on distributed testing has so far solely focused on finite dimensional models.
We provide the first results for distributed testing in nonparametric models. Besides deriving
lower and matching upper bounds, we also derive an adaptive testing procedure, not depend-
ing on the typically unknown regularity of the underlying functional parameter of interest.

1.2. Overview of our results and organization. For a quick overview, the main contribu-
tions of this article are:

• Sharp minimax upper and lower bounds for all values of n, m, d , b for the d-dimensional
distributed-signal-in-white-noise model, for both private and public coin settings (Sec-
tion 3), with accompanying methods achieving these rates (Theorem 3.1 and Theorem 3.2).

• We extend the d-dimensional distributed-signal-in-white-noise model to the nonparametric
setting where the signal is a Sobolev regular functional parameter of known regularity and
establish the minimax rates within this setting for all values of n, m, b for both the private
and public coin settings (Theorem 6.1).

• We consider the nonparametric setting in which the regularity of underlying signal is un-
known and derive adaptive private and public coin procedures. Furthermore, we establish
private and public coin lower bounds for the adaptive setting that are tight up to a log logn

factor for all values of n, m, b (Theorem 7.1 and Theorem 7.2).

The remainder of the paper is organized as follows. In Section 2 we describe the
distributed-signal-in-white-noise model with d-dimensional signal f ∈R

d and formalize the
distributed testing problem both for private and public coin protocols. In Section 3 we provide
the minimax lower and matching upper bounds for both testing protocols. We exhibit con-
structive algorithms that achieve matching upper bounds in Section 4. Section 5 gives a sketch
of the proof of the lower bound. We extend our results to the nonparametric distributed-signal-
in-white-noise model with Sobolev regular functional parameter in Section 6. Here we also
compare distributed testing and estimation rates and highlight the similarities and differences
between them both in the private and public coin settings. In Section 7 we consider adap-
tation to the unknown regularity level in the nonparametric setting and present theoretical
lower and matching upper bounds. In Section 8 we derive constructive algorithms achieving
these upper bounds. The detailed proof of the lower bound for the d-dimensional signal is
deferred to Section 9, and a key technical lemma is described in Section 10. Detailed proofs
for this lemma as well as some of the technical details of the other main results and various
auxilliary results have been deferred to the Supplementary Material [29] to this manuscript.
Results, equations and sections in the Supplementary Material are indexed by capital letters,
as opposed to numerals that are used in the article.

1.3. Notation. We write a ∧ b = min{a, b} and a ∨ b = max{a, b}. For two positive se-
quences an, bn, we use the notation an � bn if there exists a universal positive constant C

such that an ≤ Cbn. We write an 
 bn, which holds if an � bn and bn � an are satisfied si-
multaneously. We shall use an � bn to denote bn/an → 0. The Euclidean norm of a vector
v ∈ R

d is denoted by ‖ · ‖2. For absolutely continuous probability measures P � Q, we de-
note by DKL(P‖Q) = ∫

log dP
dQ

dP and Dχ2(P‖Q) = ∫
( dP
dQ

−1)2 dP their Kullback–Leibler
and Chi-square divergences, respectively. Throughout the whole text, for convenience we use
the abbreviations RHS and LHS for right-hand side and left-hand side, respectively, and CDF
for the cumulative distribution function.

2. Problem formulation and setting. We consider testing in the distributed-signal-in-
white-noise model. In this section we provide the formulation of the distributed setup for
data coming from the finite dimensional model. Except for obvious modifications to the sam-
ple space, the same setup is considered when the local data is from the infinite dimensional
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distributed-signal-in-white-noise model, which is formulated in Section 6. For j = 1, . . . ,m

machines, the local observations constitute Xj taking values in X ⊂ R
d , subject to dynamics

(1) under Pf . Each machine j communicates a b-bit transcript Y j to a central machine.
That is, the transcript Y j takes values in some space Yj with |Yj | ≤ 2b for b ∈ N. Let
Y = (Y 1, . . . , Ym) denote the aggregated data in the central machine. The central machine
computes a test T (Y ), where T is a map from Y := ⊗m

j=1 Yj to {0,1} that has to distin-
guish between the null hypothesis f = 0 and the alternative hypothesis. As an alternative
hypothesis, we consider whether

f ∈ Hρ := {
f ∈R

d : ‖f ‖2 ≥ ρ
}

for some appropriately chosen ρ = ρm,n,d,b.
We distinguish two mechanisms through which the local machines j = 1, . . . ,m can gen-

erate their transcripts Y j . In the first setup, machines can use only their local observation
Xj when generating Y j , possibly in combination with a local source of randomness. In the
second setup, we allow the machines to access a common source of randomness U , which is
independent of the data X := (X1, . . . ,Xm). In the latter setup, which we call the public coin
setting, the machines may use both local randomness, the observed draw of U and their local
observation Xj when generating their transcript Y j . The setup where only local randomness
is available shall be referred to as the private coin setting. A formal definition of these two
setups is as follows:

• A private coin distributed testing protocol consists of a map T : Y → {0,1} and a collec-
tion of Markov kernels Kj : 2Y

j × X j → [0,1], j = 1, . . . ,m, and the transcript satisfies
Y j |Xj ∼ Kj(·|Xj).

• A public coin distributed testing protocol consists of a map T : Y → {0,1}, a random
variable U taking values in a probability space (U,U ,PU) and a collection of Markov
kernels Kj : 2Y

j ×X j × U → [0,1], j = 1, . . . ,m such that Y j |(Xj ,U) ∼ Kj(·|Xj,U).

The choices for the kernels induce the conditional distribution of Y = (Y 1, . . . , Ym), which
we will denote K := ⊗m

j=1 Kj . For the joint distribution of X, Y and U , we shall write
Pf,K ≡ Pf , where the f subscript indicates the dynamics underlying X and the subscript
K is used to stress that the conditional distribution of Y induced by the choice of kernels.
Furthermore, we denote by P

X
f the corresponding marginal distribution of X, that is, PX

f =
Pf . Our distributed architecture in the public coin case then follows the following Markov
chain structure at each local machine j = 1, . . . ,m:

(2)

U ���
Y j .

f � Xj ���

Note that any private coin testing protocol can effectively be considered a public coin
testing protocol for which U has degenerate distribution, that is, U = u ∈ U almost surely.
In our proofs below and for the sake of compactness, we consider without loss of generality
that the private coin setting implies U has a degenerate distribution. When no confusion can
arise, we will refer to a distributed testing protocol as “distributed test,” and we will refer
to the tuple (T , {K1, . . . ,Km},PU) by T for ease of notation. We use Tpriv(b) and Tpub(b)

to denote the classes of all private and public coin distributed tests, respectively, each with
communication budget b per machine.

We define the testing risk of a distributed test T ≡ (T ,K,PU) for the alternative hypothesis
Hρ as the sum of the Type I and Type II errors, that is,

(3) R(Hρ,T ) := P0
(
T (Y ) = 1

)+ sup
f ∈Hρ

Pf

(
T (Y ) = 0

)
.
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3. Minimax upper and lower bounds in the normal means model. Our main results
come in the form of two theorems. The first establishes the lower bounds for the detection
threshold for both the public- and private coin distributed tests. We provide the proof of this
theorem in Section 9. The second theorem establishes the optimality of the lower bound,
posed in the first theorem, by providing distributed tests in both the public and private coin
cases which attain the respective rates posed by the lower bounds. These optimal distributed
testing procedures are described in Section 4. We note that our results are not asymptotic in
nature, as they hold for every combination of b, n, m and d , hence going beyond the classical
parametric framework.

THEOREM 3.1. [Distributed testing lower bound] For each α ∈ (0,1), there exists a
constant cα > 0 (depending only on α) such that if

(4) ρ2 < cα

√
d

n

(√
d

b ∧ d
∧ √

m

)
,

then in the public coin protocol case

inf
T ∈Tpub(b)

R(Hρ,T ) > α for all n,m,d, b ∈ N.

Similarly, for

(5) ρ2 < cα

√
d

n

(
d

b ∧ d
∧ √

m

)
,

we have under the private coin protocol that

inf
T ∈Tpriv(b)

R(Hρ,T ) > α for all n,m,d, b ∈ N.

The approach to proving the lower bound theorem can be summarized as follows. We start
out by lower bounding the testing risk by a type of Bayes risk, where the parameter f is
drawn from an adversarial prior distribution π . By taking π to be Gaussian, we can exploit
the conjugacy of the model in order to show that optimal transcripts are either invariant to the
prior or “Gaussian” in an appropriate sense. After this the results follow by data-processing
arguments that are geometric in nature. We defer a more elaborate sketch of the proof to
Section 5 and the detailed proof to Section 9. The techniques used in this work are novel and
drastically different than those used in [3, 28], which provide tight bounds only in the one-bit
case.

The above theorem implies that if (4) holds, no consistent public coin distributed testing
protocol with communication budget b bits per machine exists for the hypotheses H0 : f = 0
vs. the alternative H1 : ‖f ‖2 ≥ ρ. In other words, no public coin distributed test manages
to consistently distinguish all signals from 0 if the signals are smaller than the RHS of (4).
When considering only private coin distributed testing protocols, the detection threshold (5)
is more stringent than the public coin threshold (4) for certain values of d , m and b. Theo-
rem 3.2 below affirms that, in these cases, the best private coin protocol have a strictly worse
performance compared to the best public coin protocol.

THEOREM 3.2. For each α ∈ (0,1), there exists a constant Cα > 0 (depending only on
α) such that if

ρ2 ≥ Cα

√
d

n

(√
d

b ∧ d
∧ √

m

)
,
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there exists T ∈ Tpub(b) such that

R(Hρ,T ) ≤ α for all n,m,d, b ∈ N.

Similarly, for

ρ2 ≥ Cα

√
d

n

(
d

b ∧ d
∧ √

m

)

there exists T ∈ Tpriv(b) such that

R(Hρ,T ) ≤ α for all n,m,d, b ∈ N.

The achievability of arbitrarily small testing risk is shown using a constructive proof; see
Section 4. That is, we derive distributed testing protocols that distinguish the null hypothesis
from any f ∈ R

d in the alternative class.
Theorem 3.1 together with Theorem 3.2 establish the minimax distributed testing rate for

public and private coin protocols. As a sanity check, note that when m = 1, we obtain the
nondistributed minimax testing rate ρ2 = √

d/n. Furthermore, when b � d , enough infor-
mation about the coefficients can be communicated to obtain the nondistributed minimax
rate also, for both the public coin and private coin distributed protocols. When the commu-
nication budget is smaller than the dimension (b = o(d)), the class of public coin protocols
starts to exhibit strictly better performance than the private coin ones in scenarios as long as
d = o(mb). That is, as long as the total communication budget mb of the system exceeds the
dimension d of the parameter, public coin protocols achieve a strictly better rate than private
coin ones. This remarkable phenomenon disappears when the dimension is larger than the to-
tal communication budget (i.e., mb = o(d)), at which point there exists a one-bit private coin

protocol achieving the optimal rate of ρ2 

√

md
n

in both cases. Consistent distributed testing
turns out to be possible, even for small values of b and m, as long as n is large enough com-
pared to d . This stands in contrast to estimation in the d-dimensional Gaussian mean model,
where consistent estimation is not possible when mb = o(d), regardless of sample size n

(see, e.g., [12]). Furthermore, as long as mb = o(d) in the public coin case or mb2 = o(d2)

in the private coin case, an increase in communication budget does not lead to a better rate.
This stands in stark contrast to estimation, where for small budgets an increase can lead to an
exponential improvement in convergence rate.

4. Distributed testing protocols achieving the lower bound in the many normal means
model. In this section we exhibit three distributed testing procedures achieving the rates
posed by the lower bound. The first distributed testing procedure TI communicates only a
single bit per machine and can detect signals with a squared Euclidean norm of larger or

equal order than
√

dm
n

and does not need a public coin. As a second procedure, we consider a
test satisfying the public coin protocol TII that achieves the rate d

n
√

b∧d
. The third procedure

satisfies the private coin protocol and achieves the corresponding slower rate d
n(b∧d)

. Note
that, depending on the values of n, m, d and b, the existence of such distributed testing
protocols proves Theorem 3.2 and implies that the lower bounds in Theorem 3.1 are, in fact,
tight.

A common denominator in the construction of the three protocols is that the transcripts
Y j are generated as vector of p

j
f -Bernoulli random variables taking values in {0,1}b, where

p
j
f ∈ [0,1]b depends on the underlying signal f , with p

j
f = (1/2, . . . ,1/2) under the null

hypothesis (f = 0). The concentration inequality for groups of Bernoulli random variables,
given in Lemma 4.1, provides a recipe for the construction of a central test for each of the
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three regimes. The Type I error can be controlled since the distribution under the null hypoth-
esis is known. The Type II error is small whenever the vectors of probabilities p1

f , . . . , pm
f

are sufficiently separated from (1/2, . . . ,1/2) in Euclidean norm.

LEMMA 4.1. Consider for k, l ∈ N, l ≥ 2, independent random variables {Bj
i : i =

1, . . . , k, j = 1, . . . , l} with B
j
i ∼ Ber(pi). If pi = 1/2 for i = 1, . . . , k, it holds that, for

all α ∈ (0,1), there exists κα > 0 such that

T := 1

{∣∣∣∣∣ 1√
kl

k∑
i=1

(
l∑

j=1

(
B

j
i − 1

2

))2

− √
k/4

∣∣∣∣∣ ≥ κα

}

satisfies ET ≤ α/2. On the other hand, if

(6) ηp,l,k := l − 1

2
√

k

k∑
i=1

(
pi − 1

2

)2
≥ κα,

it holds that

(7) E(1 − T ) ≤ 1/2 + 16ηp,l,k/
√

k

η2
p,l,k

.

The proof of the lemma can be found in Section A.2 of the Supplementary Material where
it is restated as Lemma A.4. We also provide a version of this lemma (Lemma A.5 in the
Supplementary Material) used in the high-budget private coin protocol case.

4.1. Low communication budget: Construction of TI. The protocol presented here is sim-
ilar to the one given in [28], with some adjustment allowing the application of Lemma 4.1 for
a simpler proof.

We first compute the local test statistic S
j
I = (n/m)‖Xj‖2

2 at every machine j = 1, . . . ,m.

Under the null hypothesis, S
j
I follows a chi-square distribution with d degrees of freedom,

that is, S
j
I ∼ χ2

d . Letting Fχ2
d

denote χ2
d -CDF, the quantity Fχ2

d
(S

j
I ) can be seen as the p-

value for the local test statistic S
j
I . Based on these “local p-values,” we then generate the

randomized transcript Y
j
I for every j using Bernoulli random variables,

Y
j
I |Sj

I ∼ Ber
(
Fχ2

d

(
S

j
I
))

.

For a given α ∈ (0,1), we can construct the test

(8) TI = 1

{∣∣∣∣∣ 1

m

(
m∑

j=1

(
Y

j
I − 1/2

))2

− 1/4

∣∣∣∣∣ ≥ κα

}

at the central machine. In applications one could set, for instance, κα such that P0TI ≈ α by
considering that

∑m
j=1 Y

j
I is (m,1/2)-binomially distributed under the null. Lemma A.6

in the Supplementary Material yields that, for each α ∈ (0,1), there exist constants
κα,Cα,Mα,D0 > 0 such that, for m ≥ Mα and d ≥ D0, it holds that R(Hρ,TI) ≤ α, when-

ever ρ2 ≥ Cα

√
md
n

.
The case m ≤ Mα corresponds essentially to the nondistributed setting and is treated sep-

arately for technical reasons. In practice, one would simply use the test, given in (8), also
for m ≤ Mα . Furthermore, if one allows for a slightly larger amount of bits (e.g., log2(n)

bits), one could opt to transmit an (approximation of) the test statistics S
j
I themselves;
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see, for example, Lemma 2.3 in [27] for which it is easy to prove that the rate of
√

md
n

is
achieved without requiring any assumptions on m. For the sake of completeness, by consid-

ering ρ2 ≥ Cα

√
Mα

√
d

n
, we see that the optimal rate of

√
md
n

can be achieved in the m ≤ Mα

case by simply taking

(9) T ′
I := Y 1

I := 1
{

1√
d

(
S1

I − d
) ≥ κα

}

for an appropriately large choice of the constant κα . Similarly, the requirement that d is larger
than some constant D0 (which is independent of α) appears for technical reasons. The case
where d ≤ D0 is covered by the private coin protocol TIII in Section 4.3.

4.2. Public coin, high communication budget: Construction of TII. We now switch our
attention to exhibiting a testing procedure that is optimal when bm � d in the public coin case.
That a shared source of randomness in distributed settings can be strictly better than private
ones, in terms of communication complexity, is an idea that goes back to [36]. Essentially, the
use of shared randomness allows for the machines coordinate their efforts in “covering” each
of the d dimensions of the data, even though all communication happens in just one round;
see also, for example, Chapter 3 in [23] for an extensive treatment of this phenomenon. We
adopt ideas proposed by [3], who consider the setting where m = n with asymptotics in m.
We exhibit this testing protocol below and provide a full proof covering also the case where
m �= n. To that extend, let U be a random rotation, that is, U is drawn from the Haar measure
(see, e.g., Theorem F.13 in [5]) on the set of orthonormal matrices in R

d×d . At each machine
and for b ≤ d , we can compute the b-bit transcript Y

j
II ∈ {0,1}b conditionally on the shared

public coin draw U , where each of the 1 ≤ i ≤ b components is defined through(
Y

j
II
)
i |U,Xj = 1

{(√
n/mUXj )

i > 0
}
,

where (v)i denotes the projection onto the ith coordinate of the vector v ∈ R
d . The random

rotation fulfills a similar purpose, as the random reweighting algorithm proposed in [28], but
leads to an easier proof in the d-dimensional case because of rotational invariance of the
Gaussian distribution.

Centrally, after transmitting (Y 1, . . . , Ym), we compute the aggregated test statistics SII =∑m
j=1 Y

j
II and define the corresponding test as

(10) TII = 1

{∣∣∣∣∣ 1√
bm

b∑
i=1

(
(SII)i − m

2

)2
− √

b/4

∣∣∣∣∣ > κα

}
.

Lemma A.7 in the Supplementary Material shows that this test achieves the public coin lower
bound when mb � d and m ≥ Mα .

4.3. Private coin, high total communication budget: Constructing TIII. Finally, we con-
sider the case of not having access to a public coin but having a relatively large com-
munication budget (b2m � d2). Note that we can assume without loss of generality that
m ≥ Mαd2/b2 for a constant Mα > 0, as otherwise the optimal rate is

√
md/n, obtained by

the one-bit private coin test described by (8) (see Section 4.1). This case is the most involved
one, and we construct a test consisting two subtests optimal in different subregimes.

The most obvious approach in this case is to divide the communication budget of each
machine over the d coordinates as uniformly as possible. That is to say, to partition the coor-
dinates {1, . . . , d} into approximately d/b sets of size b (we assume without loss of generality
that b ≤ d , as we can always throw away excess budget and b = d bits suffice for achieving
the minimax rate). The machines are then equally divided over each of these partitions and
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communicate the coefficients corresponding to their partition. More formally, such a strategy
entails taking sets Ii ⊂ {1, . . . ,m} such that |Ii | = �mb

d
� and each j ∈ {1, . . . ,m} is in Ii

for b different indexes i ∈ {1, . . . , d}. For i = 1, . . . , d and j ∈ Ii , generate the transcripts
according to

(11) Y
j
i |Xj

i = 1
{
X

j
i > 0

}
.

Centrally, a natural test based on these transcripts is

(12) T 1
III := 1

{∣∣∣∣∣ 1

|I1|
√

d

d∑
i=1

(∑
j∈Ii

(
Y

j
i − 1/2

))2

− √
d/4

∣∣∣∣∣ > κα

}
.

It turns out that such a test does not cover all regimes, where m � d2/b2, because there
is a certain amount of information loss due to the nonlinearity of the quantization step (11);
that is, the test induces soft thresholding for the signal components, which is suboptimal for
(relatively) large signal components. For the exact statement on the testing error of this test,
see Lemma A.9 below.

For detecting signals, including large coordinates, we propose an adaptation of test T 1
III.

We start by assuming that b ≥ 2 log(d + 1); otherwise, we do not construct the test. Then for
i = 1, . . . , d and j = 1, . . . ,m, let us generate

B
j
li

iid∼ Ber
(
Fχ2

1

((√
n/mX

j
i

)2))
, l ∈ {

1, . . . ,Cb,d = ⌊
2b/(d + 1)

⌋}
.

Note that Cb,d ≥ 1 by assumption. Then machine j communicate the transcripts

(13) Nj =
Cb,d∑
l=1

d∑
i=1

B
j
li ∈ {0,1, . . . ,Cb,dd},

which can be done using log2(Cb,dd + 1) ≤ b bits in total. Based on these transcripts, we
compute the test

T 2
III = 1

{∣∣∣∣∣ 1

dmCb,d

(
m∑

j=1

(
Nj − Ld/2

))2

− 1

4

∣∣∣∣∣ ≥ κα

}

centrally. The testing risk bound for the above test is given in Lemma A.10 below.
Finally, we construct our test by combining the above ones. We construct both partial

tests T 1
III and T 2

III if b ≥ 2 log(d + 1) by transmitting b′ = �b/2� bits per machine for each;
otherwise, we just construct T 1

III. Then we merge them by taking

(14) TIII = T 1
III ∨ T 2

III1{b≥2 log(d+1)},

where the indicator should be understood to rule out cases in which the transcripts for T 2
III

cannot necessarily be communicated. This case, as shown below, is covered by the first test
T 1

III. Lemma A.8 in the Supplementary Material shows that TIII has sufficiently small testing
risk in all cases where m ≥ Mαd2/b2.

5. A sketch of proof for the testing lower bound (Theorem 3.1). In this section we
provide a sketch of proof of Theorem 3.1 of which the full details are given in Section 9. The
proof starts out the same way for both the private and public coin cases but bifurcates later
on. We consider for the time being a generic collection of b-bit distributed testing protocols
T (b).

As a first step, we introduce a prior distribution π on R
d and lower bound the testing risk

by a type of Bayes risk and the mass of π that resides outside of the alternative hypothesis
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Hρ , akin to, for example, [19]. Recall that Pf denotes the joint distribution of Y , U and X

where Xj follows (1) and Y ∼ E
X,U
f K(·|X,U) =: PY

f,K = P
Y
f . For π a given distribution on

R
d , define the mixture distribution P

X
π = Pπ on R

md by Pπ(A) = ∫
Pf (A)dπ(f ), where we

recall the notational convention P
X
f = Pf from Section 2.

Through the Markov chain relation f → X → Y , this defines a distribution P
Y
π = P

Y
π,K on

Y and lets us denote by E
Y
π the corresponding expectation. Lemma A.1 in the Supplementary

Material lower bounds the infimum testing risk infT ∈T R(Hρ,T ) using a version of Le Cam’s
lemma adapted to the distributed setting. The lemma yields that, for any distribution on U ,

inf
T ∈T

(
E

Y
0 T (Y ) + sup

f ∈Hρ

E
Y
f

(
1 − T (Y )

)) ≥ inf
K

sup
π

(
1 − ∥∥PY

0,K − P
Y
π,K

∥∥
TV − π

(
Hc

ρ

))
,

where the infimum on the RHS is over all kernels on Y .
Using that the measure dPY

f disintegrates as dP
Y |U=u
f dPU

f (u) and the fact that U is inde-
pendent of the prior π , we find by Jensen’s inequality that∥∥PY

0,K − P
Y
π,K

∥∥
TV ≤

∫ ∥∥PY |U=u
0,K − P

Y |U=u
π,K

∥∥
TV dPU(u).

By Pinsker’s second inequality and the fact that log(x) ≤ x − 1, we obtain that

(15) inf
T ∈T (b)

R(Hρ,T ) ≥ 1 − sup
K

inf
π

(∫ √
2Dχ2

(
P

Y |U=u
0,K ;PY |U=u

π,K

)
dPU(u) + π

(
Hc

ρ

))
,

where

(16) Dχ2
(
P

Y |U=u
0,K ;PY |U=u

π,K

) = E
Y |U=u
0,K

(
P

Y |U=u
π,K

P
Y |U=u
0,K

(Y )

)2
− 1.

From hereon, the proof can be broken down into two steps. We provide the skeleton of the
proof here and defer the full details to Section 9:

1. The first term on the RHS of (16) can be expressed in terms of a conditional expectation
of the likelihood of X,

(17) E
Y |U=u
0

(
E0

[∫ m∏
j=1

dPXj

f

dPXj

0

(
Xj )dπ(f )

∣∣∣Y,U = u

]2)
,

which we compare to the quantity

(18)
m∏

j=1

E
Y j |U=u
0

(
E0

[∫ dPXj

f

dPXj

0

(
Xj )dπ(f )

∣∣∣Y j ,U = u

]2)
,

which corresponds to the product of the first terms of the local chi-square divergences. In
particular, we compare the ratio of the expressions in the above two displays and show
that when π is taken to be centered Gaussian, this ratio is maximized when the protocol’s
kernel K : L2(Y) → L2(X ) with Hilbert space adjoint K∗ satisfies that K∗K : L2(X ) →
L2(X ) is Gaussian in an appropriate sense. This is the content of Lemma 10.1, which
forms the crux of our proof. This lemma, on which we expound in Section 10, exploits the
conjugacy between the prior and the model, which enables the use of techniques applied
in [21]. Consequently, we obtain that the first term on the RHS of (16) is bounded from
above by a multiple of

(19)
m∏

j=1

E0
[
Lπ

(
Xj )2] ∫ exp

(
f ��ug

)
d(π × π)(f, g) dPU(u),
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where

(20) �u :=
m∑

j=1

E
Y j |U=u
0 E0

[
Xj |Y j ,U = u

]
E0

[
Xj |Y j ,U = u

]�
.

2. The final step combines data-processing techniques with what is essentially a geometric
argument. The first term in (19) is handled using classical, nondistributed techniques,
that is, decoupling argument of the measure and the moment generating function of the
Gaussian chaos; see, for example, [34]. In the second term in (19), the d × d matrix �u

geometrically captures how well Y allows to “reconstruct” the compressed sample X. The
information lost by compressing a d dimensional observation Xj into a b-bit transcript Y j

is captured in a data-processing inequality for the matrix �u and its trace, which comes in
the form of Lemma A.2 and Lemma A.3. From hereon out, the proof of the private and the
public coin cases separate. Recalling the order of the supremum, infimum and expectation
with respect to the public coin in (15), we see that, in the private coin case, π can be
chosen with knowledge of �u, as U is degenerate in this case. To obtain the stricter lower
bound in the private coin case, we choose π ’s covariance in order to exploit the “weakest
directions” of the protocol Y , and the proof is finished by matrix algebra arguments.

6. Nonparametric testing with known regularity. A natural extension of the above
finite dimensional signal in Gaussian noise setting is the infinite dimensional signal in white
noise model. Here the j = 1, . . . ,m machines observe i.i.d. Xj , taking values in X ⊂ L2[0,1]
and subject to the stochastic differential equation

(21) dX
j
t = f (t) dt +

√
m

n
dW

j
t

under Pf , with W 1, . . . ,Wm i.i.d. Brownian motions and f ∈ L2[0,1]. Besides the difference
in the local observations, the distributed setup considered for this model remains exactly the
same. The results derived for the alternatives Hρ in the finite dimensional model translate to
testing in the infinite dimensional model against the alternative hypotheses

f ∈ Hs,R
ρ := {

f ∈ Hs,R[0,1] : ‖f ‖L2 ≥ ρ and ‖f ‖Hs ≤ R
}
.

Here Hs,R = Hs,R([0,1]) denotes the Sobolev ball of radius R in the space of s-smooth
Sobolev functions and ‖ · ‖Hs the Sobolev norm; see Section G for recalling the definitions.
The smoothness parameter s > 0 determines the difficulty of the classical (nondistributed,
m = 1) nonparametric testing problem, as considered in, for example, [19]. The asymptotic

minimax rate for the nondistributed case is ρ2 
 n
− 2s

2s+1/2 for the s-smooth Sobolev alterna-
tive class.

We allow for asymptotics in b and m, in the sense that they can depend on n. Consequently,
we consider the separation rate ρ in the nonparametric problem to be a sequence of positive
numbers in both n, m and the budget b. A distributed test T in the nonparametric setting is
called α-consistent for α ∈ (0,1) if R(Hs,R

ρ , T ) ≤ α for all n large enough.
The distributed setting for the nonparametric model remains unchanged in comparison

with the finite dimensional model introduced in Section 2, except, of course, for the sample
space in which the observations Xj take values. This becomes L2[0,1], instead of Rd . The
following theorem describes the minimax rate for the nonparametric distributed problem.

THEOREM 6.1 (Nonparametric signal in white noise minimax rate). Take f ∈ Hs,R for
some s,R > 0, let b ≡ bn and m ≡ mn be sequences of natural numbers and let ρ ≡ ρn,b,m,s
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be a sequence of positive numbers satisfying

(22) ρ2 


⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
− 2s

2s+1/2 if b ≥ n
1

2s+1/2 ,

(
√

bn)−
2s

2s+1 if n
1

2s+1/2 /m
2s+1

2s+1/2 ≤ b < n
1

2s+1/2 ,

(n/
√

m)
− 2s

2s+1/2 if b < n
1

2s+1/2 /m
2s+1

2s+1/2 .

In the public coin protocol case, the minimax testing rate is ρ2 given in (22); that is, for all
α ∈ (0,1), there exist constants Cα, cα > 0, depending only on α, s and R, such that for all
n large enough,

inf
T ∈Tpub(b)

R
(
Hs,R

cαρ , T
)
> 1 − α and inf

T ∈Tpub(b)
R
(
H

s,R
Cαρ, T

) ≤ α.

Similarly, in the private coin protocol case ρ ≡ ρn,b,m given below,

(23) ρ2 


⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
− 2s

2s+1/2 if b ≥ n
1

2s+1/2 ,

(bn)
− 2s

2s+3/2 if n
1

2s+1/2 /m
s+3/4
2s+1/2 ≤ b < n

1
2s+1/2 ,

(n/
√

m)
− 2s

2s+1/2 if b < n
1

2s+1/2 /m
s+3/4
2s+1/2 ,

provides the minimal testing rate; that is, for all α ∈ (0,1), there exist constants Cα, cα > 0,
depending only on α and R, such that for all n large enough,

inf
T ∈Tpriv(b)

R
(
Hs,R

cαρ , T
)
> 1 − α and inf

T ∈Tpriv(b)
R
(
H

s,R
Cαρ, T

) ≤ α.

The proof of the theorem is given in Section B. The theorem reveals the relationship be-
tween the signal-to-noise-ratio n, communication budget per machine b, the number of ma-
chines m and the smoothness of the signal s. Before providing the proof, we briefly discuss
the connection with distributed minimax estimation rates.

The distributed minimax estimation rates under private coin protocol were established in
Corollary 2.2 of [26] or Theorem 3.1 in [38]. A slight reformulation of the latter yields that

inf
(f̂ ,L(Y ))∈Epriv(b)

sup
f ∈Hs,R

E
Y
f

∥∥f̂ (Y ) − f
∥∥2
L2

(24)




⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n− 2s
2s+1 if b ≥ n

1
2s+1 ,

(bn)−
2s

2s+2 if
(
n/m2+2s) 1

2s+1 ≤ b ≤ n
1

2s+1 ,

(bm)−2s if b ≤ (
n/m2+2s) 1

2s+1 ,

where Epriv(b) is the class of all distributed estimators based on b-bit transcripts Y =
(Y 1, . . . , Ym).

A first observation is that consistent testing is possible in any regime of b ≥ 1 and m,
whereas this is not the case in estimation. Consider, for instance, the regime where m and
b are fixed. In nonparametric distributed estimation, the L2-risk does not improve once the
sample size is large enough. In fact, even when allowing for asymptotics in b and m (but

assuming that (n/m2+2s)
1

2s+1 ≥ b), one is better off performing the estimation locally using
just one of the machines with local signal-to-noise-ratio n/m, attaining the locally optimal

rate (n/m)−
2s

2s+1 .
In the case of nonparametric testing, not only can we consistently test for any fixed m and

b, the distributed testing rate is bounded from above by (n/
√

m)−2s/(2s+1/2) (regardless of
the communication budget b), which is significantly smaller (for large m) than the minimax
testing rate, based on the local signal-to-noise-ratio (n/m)−2s/(2s+1/2), which can be achieved
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by using only a single local machine. One possible explanation for this discrepancy is that,
in nonparametric estimation, the output of the inference is a high-dimensional object, which
requires a large total communication budget to be reconstructed with sufficient granularity.
In testing, the output of our inference is binary.

A perhaps less surprising difference is that a larger budget is needed for testing at the
nondistributed minimax testing rate compared to estimation. That is, in order to obtain the

nondistributed minimax rate of ρ2 
 n
− 2s

2s+1/2 , the communication budget needs to satisfy b �
n

1
2s+1/2 . On the other hand, the nondistributed minimax estimation rate n− 2s

2s+1 requires only

b � n
1

2s+1 . This follows from the fact that the L2 testing rate is faster than the estimation rate,
and hence to achieve this faster rate, one has to collect information about the signal at higher

frequency level as well (up to the O(n
1

2s+1/2 ) coefficients in the spectral decomposition).
Increasing m decreases the local signal-to-noise-ratio. When the total budget bm grows

at a similar or faster rate than the “effective dimension” of the model, the rate that can be
achieved no longer depends on m in both estimation and testing settings. In this regime this
effect is offset by the total number of bits being received by the central machine. What is
different in testing problem, however, is that having access to shared randomness strictly
improves the performance (until the local communication budget b reaches the effective di-

mension n
1

2s+1/2 as after that both method reaches the minimax nondistributed testing rate

n
− 2s

2s+1/2 ). One might wonder whether having access to a public coin improves the rate in
the estimation setting also. It turns out that this is not the case. We show in Theorem C.1
in the Supplementary Material that, under the public coin protocol, the distributed minimax
estimation rate does not improve compared to the private coin protocol.

7. Adaptation in nonparametrics. In the previous section we have derived minimax
lower and matching upper bounds for the nonparametric distributed testing problem in con-
text of the Gaussian white noise model. The proposed tests, however, depend on the regular-
ity hyperparameter s of the functional parameter of interest f . Typically, the regularity of the
function is not known in practice, and one has to use data driven methods to find the best test-
ing strategies. In this section we derive distributed tests adapting to this unknown regularity.
We derive both lower and upper bounds and observe surprising, additional phase transition
in the small budget regime, which was not present in the nonadaptive setting.

First, we note that, even in the nondistributed setting, we have to pay an additional log logn

factor as a price for adaptation (see, e.g., Theorem 2.3 in [25] or Section 7 in [19]). More
concretely, if ρs 
 n−s/(2s+1/2), it holds that, for any smin < smax,

sup
s∈[smin,smax]

R
(
H

s,R
cnMn,sρs

, T
) → 1

for all tests T , Mn,s = (log logn)
s/4

2s+1/2 and any cn = o(1) while there exists a test T , satisfy-
ing

sup
s∈[smin,smax]

R
(
H

s,R
CMn,sρs

, T
) → 0,

for large enough constant C > 0.
The distributed testing problem is more complicated, as we have to consider different

regimes based on the number of transmitted bits; see Theorem 6.1. These regimes, however,
depend on the unknown regularity hyperparameter and require different testing procedures to
achieve consistent testing. The transcripts transmitted require a larger communication budget
to attain the same performance as in Theorem 6.1. Theorems 7.1 and 7.2 below capture this
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increased difficulty in terms of lower and upper bounds on the detection rate (tight up to a
log-log factor). In the proof of the theorem, we derive such an adaptive distributed testing
method which adapts to the smoothness. These methods are, in principle, based on taking
a 1/ logn grid of the regularity interval [smin, smax], constructing optimal tests for each of
the grid points and combining them using Bonferroni’s correction. This results in loosing a
logarithmic factor in the intermediate case, as the budget has to be divided over O(logn)

tests, each capturing a different possible level of smoothness.
This additional incurred cost in the distributed setting, due to additional communication

budget required, is fundamental, as our accompanying lower bound shows. This additional
difficulty translates to a

√
log(n) and log(n) factor more observations required in the interme-

diate budget regimes for the public and private coin settings, respectively. In the small budget
regime, such a loss is incurred when the local communication budget b is of smaller order
than log(n). When b � log(n) in the small budget regime, the same rate as in Theorem 6.1
can be obtained, up to the log log(n) factor incurred by the Bonferroni correction.

The above described results are split over two theorems. The first, Theorem 7.1, concerns
the case where b � log(n). In the second, Theorem 7.2, the case where b � log(n) (both
theorems coincide when b 
 log(n)). The case where b = O(1) is of special interest, as
b = 1 means each machine’s local transcript forms a test itself and the global test can be seen
as a “meta-analysis” on the basis of these m tests. The proofs of the upper bounds in both
theorems are given in Section 8, while the proofs of the lower bound are deferred to Section D
in the Supplementary Material.

THEOREM 7.1. Let us consider some 0 < smin < smax < ∞, R > 0; let b ≡ bn such that
b � logn and m ≡ mn be sequences of natural numbers, and take a sequence of positive
numbers ρs ≡ ρn,b,m,s satisfying

(25) ρ2
s 


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
− 2s

2s+1/2 if b ≥ log(n)n
1

2s+1/2 ,( √
bn√

log(n)

)− 2s
2s+1

if log(n)

(
n

1
2s+1/2

m
2s+1

2s+1/2

∨ 1
)

≤ b < log(n)n
1

2s+1/2 ,

(
n√
m

)− 2s
2s+1/2

if log(n) ≤ b < log(n)

(
n

1
2s+1/2

m
2s+1

2s+1/2

∨ 1
)

in the public coin case, and

(26) ρ2
s 


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
− 2s

2s+1/2 if b ≥ log(n)n
1

2s+1/2 ,(
bn

log(n)

)− 2s
2s+3/2

if log(n)

(
n

1
2s+1/2

m
s+3/4
2s+1/2

∨ 1
)

≤ b < log(n)n
1

2s+1/2 ,

(
n√
m

)− 2s
2s+1/2

if log(n) ≤ b < log(n)

(
n

1
2s+1/2

m
s+3/4
2s+1/2

∨ 1
)

in the case of a private coin. Then there exits a sequence of distributed testing procedures in
the respective setups such that

sup
s∈[smin,smax]

R
(
H

s,R
Mnρs

, T
) → 0,

for arbitrary Mn � (log log(n))1/4. Similarly, for all distributed testing procedures in the
respective setups, we have that, for all α ∈ (0,1), there exists cα > 0 such that

sup
s∈[smin,smax]

R
(
Hs,R

cαρs
, T

)
> α.
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The above theorem recovers (up to log-factors) the three rates corresponding to the three
regimes also found in Theorem 6.1, the different regimes corresponding to different testing
strategies. Since the true smoothness is unknown, these different distributed testing strategies
are to be conducted simultaneously.

We note that, for m ≥ n
1

2smin+1 or m ≥ n
1

smin+3/4 in the public and private coin cases,
respectively, the small budget regime no longer occurs. The reason for this is that, even
though b could be relatively small, the total communication budget bm is large enough to
warrant the strategy for the intermediate and high budget regimes. Furthermore, whenever

b > log(n)n
1

2s+1/2 , the budget is large enough to recover the nondistributed regime rate.
For b � log(n), the separation rate is different from the nonadaptive low budget regime.

Depending on the interplay between n and m, either the minimax rate corresponding to the
intermediate case applies or an additional (log(n)/b)δ factor is present compared to the non-
adaptive low budget regime, both in the private and public coin settings. This results in an
additional phase transition at b = logn. The reason for this is that, in order to cover approxi-
mately log(n) different levels of smoothness using less than log(n) bits, each of the machines
can no longer send an adequate amount of information on all of the relevant smoothness lev-
els. Instead, an optimal strategy is to divide the different machines over each of the smooth-
ness levels, where each machines foregoes sending information regarding certain smoothness
levels all together.

THEOREM 7.2. Assume the conditions of Theorem 7.1 with b � log(n), and assume
bm � log(n). Let us consider

(27) ρ2
s 


⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( √
bn√

log(n)

)− 2s
2s+1

if m ≥ n
1

2s+1 ,

( √
bn√

m log(n)

)− 2s
2s+1/2

if m < n
1

2s+1

in the public coin case and

(28) ρ2
s 


⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
bn

log(n)

)− 2s
2s+3/2

if m ≥ n
2

2s+3/2

(
b

log(n)

) s−1/4
2s+3/2

,

(
n
√

b√
m log(n)

)− 2s
2s+1/2

if m < n
2

2s+3/2

(
b

log(n)

) s−1/4
2s+3/2

in the private coin case. Then there exits a sequence of distributed testing procedures in the
respective setups such that

sup
s∈[smin,smax]

R
(
H

s,R
Mnρs

, T
) → 0

for arbitrary Mn � (log log(n))1/4. Similarly, for all distributed testing procedures in the
respective setups, we have that, for all α ∈ (0,1), there exists cα > 0 such that

sup
s∈[smin,smax]

R
(
Hs,R

cαρs
, T

)
> α.

REMARK 7.3. Both theorems together cover all cases where mb � log(n). The cases
where mb � log(n) are excluded for technical reasons as well as the fact that, when mb �
log(n), the optimal rate in (27)–(28) (up to at most a

√
log log(n) factor) is attained by using a

standard nondistributed method using just the data of one machine (see, e.g., [25]). Similarly,
in order to contain the level of technicality, we have foregone the (log log(n))1/4 additional
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factor in the lower bound, which we esteem also to be present in the distributed setting. We
refer the reader to the argument of Theorem 2.3 in [25] for how to obtain the (log log(n))1/4

factor in the lower bound in addition to the
√

log(n) and log(n) factors in the public and
private coin cases, respectively.

8. Adaptive tests attaining the adaptation bounds in Theorems 7.1 and 7.2. Let us
consider the smooth orthonormal wavelet basis {ψli : l ∈ N0, i = 0,1, . . . ,2l − 1}; see Sec-
tion G for a brief introduction of wavelets and collection of properties used in this proof. For
L = L ∈ N, let VL = {ψli : l ≤ L, i = 0,1, . . . ,2l − 1}. For f ∈ L2[0,1], let f L denote the
projection of f onto VL, that is,

(29) f L =
L∑

l=0

2l−1∑
i=0

f̃liψli

with f̃li := ∫
f ψli . We denote the wavelet coefficients of Xj by X̃

j
li := ∫ 1

0 ψli dX
j
t . For the

coefficients at resolution level L, write X̃
j
L = (X̃

j
L0, . . . , X̃

j

L(2L−1)
) ∈ R

2L
, and let X̃

j

L′:L de-

note the concatenated coefficients from resolution level L′ < L up to resolution level L, that

is, X̃
j

L′:L = (X̃
j

L′, . . . , X̃
j
L) ∈ R

2L+1−2L′+1
. The vector X̃

j
0:L := (X̃

j
0 , X̃

j
1 , . . . , X̃

j
L) follows the

dynamics

(30) X̃
j
0:L = f̃ L +

√
m

n
Zj ,

where Zj ∼iid N(0, I2L+1−1), j = 1, . . . ,m, and ˜f L := (f̃li)l=0,...,L;i=0,...,2l−1.
Let νL = 2L+1 − 1, and let us introduce the notations Ls = �s−1 log(1/ρs)�∨ 1; for short-

hand, write Lmin = Lsmax and Lmax = Lsmin , and note that Ls ∈ C := {Lmin, . . . ,Lmax} for all
s ∈ [smin, smax]. Note that |C| ≤ logn.

For each regularity hyperparameter s, we distinguish low-budget (2Ls � mb in the public

coin, and 2
3
2 Ls � mb in the private coin setting) and high-budget (corresponding to 2Ls �mb

in the public coin, and 2
3
2 Ls �mb in the private coin setting) cases. Since m and b are known

for any given regularity s, we know which regime it falls and is sufficient to construct that
test. For notational convenience and without loss of generality, for each s we construct both
the high-budget and the low-budget optimal tests using all the m machines (and do not split
them between these two cases).

8.1. Proof of the upper bound in the low-budget regime. First, we deal with the low-
budget case (where the total budget is small compared to the effective dimension), which
coincides in both setups. For each L ∈ C, we take a subset of machines ML ⊂ {1, . . . ,m}
such that |ML| = m′ := m(log(n)∧b)

log(n)
, and each machine appears in at most b such subsets. We

note that this is possible since m′|C| ≤ mb. Then for each j ∈ ML, L ∈ C, we communicate

(31) Y
j
I (L)|Xj ∼ Ber

(
χ2

νL

(√
n/m

∥∥X̃j
0:L

∥∥2
2

))
,

and at the central machine, we can compute

SI(L) = 1√
m′

∑
j∈ML

(
2Y

j
I (L) − 1

)
.

Then we consider the following adaptive test based on Bonferroni’s correction:

T
adapt
I = 1

{
max
L∈C SI(L) ≥ 2

√
log logn

}
.
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Since for L ∈ C, it holds that L 
 log(n), the above
√

log logn blow up suffices to guarantee
that the test has asymptotically vanishing Type I error control, that is, E0T

adapt
I = o(1) by

Lemma E.1 in the Supplementary Material (as the random variables 2Y
j
I (L) − 1 are i.i.d.

Rademacher under P0).
For the Type II error, note that

Ef

(
1 − T

adapt
I

) ≤ Pf

(
SI(Ls) < 2

√
log logn

)
,

and aim to apply Lemma A.4. In view of Lemma A.6, (with ‖f ‖2 replaced by ‖f̃ Ls‖2

and d = νLs ), noting that by triangle inequality ‖f̃ Ls‖2
2 ≥ ‖f ‖2

2/2 − 2−2LssR2 (see
also Section B in the Supplementary Material), we get, for ‖f ‖2

2 ≥ C2
0
√

log log(n)ρ2
s ≥

C2
0
√

log log(n)

√
2Ls m log(n)

n
√

b∧log(n)
, that for m large enough

ηp,m′,1 �
(
m′ − 1

)(n‖f̃ Ls‖2
2

m2Ls/2 ∧ 1

2

)2
�m′

((
C̃

log logn

m′
)

∧ (1/4)

)

with C̃ = C2
0/2 − R2. By the assumption that bm � log(n), m′ can be taken larger than

arbitrary constant M0 > 0. This means that, in view of Lemma A.4 with cα,n = 4 log logn

and large enough constant C0 (depending on R), the Type II error is bounded by α.

8.2. Proof of the upper bound in the public coin, high budget regime. We use similar
arguments as before, applying a Bonferroni-type of correction. First, let us consider the public
coin setting, and take a one-to-one mapping ξL from {1, . . . , νL} to {(l, i) : l = 0, . . . ,L, i =
0,1, . . . ,2l − 1}. Let us define the test

(32)
(
Y

j
II(L)

)
i |UL = 1

{(√
n/mULX̃

j
ξL(i)

)
i > 0

}
,

where the random variable UL ∈ R
νL×νL is drawn from the Haar measure on the rotation

group on R
νL . Similarly to before for each L, we take a subset of machines ML ⊆ {1, . . . ,m}

such that |ML| = m′ := m(b∧log(n))
log(n)

, and each machine appears at most in b such sets.

Then machine j ∈ ML, L ∈ C, transmits the bits (Y
j
II(L))i , i = 1, . . . , b′ := mb

m′|C| ∧ νL to
the central machine, where these local test statistics are aggregated, similarly to (10), as

(33) SII(L) = 1√
b′m′

b′∑
i=1

[( ∑
j∈ML

[(
Y

j
II(L)

)
i − 1/2

])2
− m′

4

]
.

In view of Lemma E.1, the Type I error of the test

T
pub,adapt
II := 1

{
max
L∈C SII(L) ≥ 2

√
log logn

}

is o(1). For the Type II error, note that

Ef

(
1 − T

pub,adapt
II

) ≤ Ef 1
{
SII(Ls) < 2

√
log logn

}
.

By Lemma E.2, the above display is o(1) whenever ρ2 � Mn
2Ls

n
√

b
log(n)

∧2Ls
, which, for the

choice of Ls= �s−1 log(1/ρs)� ∨ 1, yields the rates of Theorem 7.1 and 7.2.
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8.3. Proof of the upper bound in the private coin, high-budget regime. We proceed by
adapting the test TIII, provided in Section 4.3, to the nonparametric setting with unknown
regularity using again a Bonferroni type correction to achieve adaptation. For simplicity we
again apply the map ξL, introduced previously, to move between the single and double index
notations of the sequence model.

For all L ∈ C, similarly to the previous cases, we consider a collection of machines
ML with |ML| = m′ = m(b∧log(n))

log(n)
, and similarly to Section 4.3, let us use the notation

Ii (L) ⊂ ML for the collection of machines corresponding the ith coordinate. We note that,
without loss of generality, we can assume that m′ ≥ Mα

√
log logn22Ls /(b′)2 for some large

enough constant Mα ; otherwise, the test T
adapt

I above covers the corresponding range. Then
we modify the test, given in (12), by increasing the threshold with the Bonferroni correction,
that is,

T
priv,adapt,1

III = 1
{
max
L∈C SIII,1(L) ≥ 2

√
log logn

}
, where

SIII,1(L) =
∣∣∣∣∣ 1

|I1(L)|2L/2

νL∑
i=1

( ∑
j∈Ii (L)

(
Y

j
i − 1/2

))2

− 2L/2/4

∣∣∣∣∣, Y j
i |X̃j

ξL(i) = 1
X̃

j
ξL(i)>0

.

To deal with large signal components, similarly to (12) (with d = νL and including the Bon-
ferroni correction in the threshold), we propose the test

T
priv,adapt,2
III = 1

{
max

L∈C,2 log(L)≤b
SIII,2(L) ≥ κα

√
log logn

}
, where

SIII,2(L) =
∣∣∣∣∣ 1

dm′Cb,L

(
m′∑

j=1

(
Nj − Cb,L2L−1))2

− 1

4

∣∣∣∣∣
with Cb,L = 2b−L and Nj given in (13). Finally, we aggregate these tests by taking

T
priv,adapt
III = T

priv,adapt,1
III ∨ T

priv,adapt,2
III .

In view of the law of Lemma E.1, the Type I error tends to zero for both tests. Therefore,
it remained to show that the Type II error is bounded by α. Similarly to the previous cases,
note that

Ef

(
1 − T

priv,adapt
III

) ≤ Ef

(
1
{
SIII,1(Ls) < 2

√
log logn

}∧ 1
{
SIII,2(Ls) < 2

√
log logn

})
.

Following the proofs of Lemmas A.8, A.9 and A.10 (with d = νLs , f taken to be the νLs

dimensional vector f̃ Ls , b replaced by b′ and Mα replaced by M0
√

log logn, for some large
enough M0 > 0) and noting that, for C2

0 > 4R2,
∥∥f̃ Ls

∥∥2
2 ≥ ‖f ‖2

2/2 − R22−2Lss � C0

√
log log(n)ρ2

s

= C023Ls/2√log logn

2n( b
log(n)

∧ 2Ls )
� C02Ls

√
log logn

nb′ m′
m

,

and applying Lemmas A.11 and A.4 with cn,α = 2
√

log logn, we get that the Type II error of

T
priv,adapt
III is bounded from above by α/2.

Finally, we combine the above tests by taking

T priv,adapt = T
priv,adapt
III ∨ T

priv,adapt
I and T pub,adapt = T

pub,adapt
II ∨ T

pub,adapt
I .

Note that both of the above tests still have vanishing Type I error, while the Type II errors are
bounded by the prescribed level α in view of taking the union of the above optimal tests.
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9. Proof of the testing lower bound. We provide the details for Steps 1 and 2, as out-
lined in Section 5. We shall write Lπ(x) = ∫

Lf (x) dπ(f ) with Lf (x) := dPf

dP0
(x) and

Pf = P
X
f :

Step 1. In view of the Markov chain structure given in (2), the probability measure
dPπ(x,u, y) disintegrates as dP

Y |(X,U)=(x,u)
K dPX

f (x) dPU(u)dπ(f ). Using the Markov
chain structure, the first term on the RHS of (16) can be seen to equal

(34)
∑
y∈Y

P
Y |U=u
0 (y)

(∫
Lπ(x)

K(y|x,u)

P
Y |U=u
0 (y)

dP0(x)

)2
= E

Y |U=u
0 E0

[
Lπ(x)|Y,U = u

]2
.

Decoupling the square in X and using Fubini’s theorem, we can write the above display as

(35)
∫

Lπ(x1)Lπ(x2)qu(x1, x2) d(P0 × P0)(x1, x2),

where by independence between the transcripts,

qu(x1, x2) := ∑
y∈Y

K(y|x1, u)K(y|x2, u)

P
Y |U=u
0 (y)

=
m∏

j=1

( ∑
yj∈Yj

Kj (yj |xj
1 , u)Kj (yj |xj

2 , u)

P
Y j |U=u
0 (yj )

)
.

Note that in the above display, x
j
i and yj denote the projection of xi and y on the co-

ordinates indexed by {(j − 1)d + 1, . . . , jd}, respectively. In addition, let us denote by∏m
j=1 q

j
u(x

j
1 , x

j
2 ) the RHS of the preceding display. Since K is a Markov kernel, the func-

tion qu ∈ L2(R
2dm,P0 × P0) is bounded and nonnegative. Furthermore,∫

qu(x1, x2) dP0(x1) = ∑
y∈Y

K(y|x2, u)

P
Y |U=u
0 (y)

∫
K(y|x1, u) dP0(x1) = ∑

y∈Y
K(y|x2, u) = 1,

similarly
∫

qu(x1, x2) dP0(x2) = 1,

(36)
∫

xiqu(x1, x2) d(P0 × P0)(x1, x2) =
∫

xi dP0(xi) = 0 ∈ R
md

for i = 1,2, and

(37)
∫ (

x1
x2

)(
x�

1 x�
2

)
qu(x1, x2) d(P0 × P0)(x1, x2) =:  ∈ R

2md×2md,

where the former display can be seen to follow by the law of total expectation,  =
Diag(1, . . . ,m) ∈ R

2md for

j :=
⎛
⎜⎝

m

n
Id �j

u

�j
u

m

n
Id,

⎞
⎟⎠

with

�j
u := E

Y j |U=u
0 E0

[
Xj |Y,U = u

]
E0

[
Xj |Y j ,U = u

]�
.

Writing L
j
π := ∫ dPXj

f

dPXj

0

dπ(f ), (18) can be seen to equal

(38)
m∏

j=1

∫
L j

π

(
x

j
1

)
L j

π

(
x

j
2

)
qj
u

(
x

j
1 , x

j
2

)
d(P0 × P0)

(
x

j
1 , x

j
2

)
.

Lemma 10.1 below applies to the ratio between (35) and (38) whenever π is chosen to
be centered Gaussian. The lemma yields that the aforementioned ratio is maximized when
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qu(x1, x2) d(P0 × P0)(x1, x2) is a Gaussian distribution on R
2md with covariance , where

the maximization is among all choices of qu such that qu is nonnegative, bounded and sat-
isfying (36)–(37). Deliberation and proof of the lemma is deferred to Section 10 and the
Supplementary Material to the article. For π a centered Gaussian distribution on R

d , the
above lemma applies with k = 2d , σ 2 = m/n, we obtain that the ratio between (35) and (38)
is bounded above by

(39)

∫
Lπ(x1)Lπ(x2) dN(0,)(x1, x2)∏m

j=1
∫

L
j
π (x

j
1 )L

j
π (x

j
2 ) dN(0,j )(x

j
1 , x

j
2 )

.

Combining the result of the lemma with the bound

(40)
m∏

j=1

E
Y j |U=u
0 E0

[
Lπ

(
Xj )|Y j ,U = u

]2 ≤
m∏

j=1

E
Xj |U=u
0

[
Lπ

(
Xj )2]

following from Jensen’s inequality, we obtain that

E
Y |U=u
0

(
P

Y |U=u
π

P
Y |U=u
0

(Y )

)2
≤

∫
Lπ(x1)Lπ(x2) dN(0,)(x1, x2)∏m

j=1
∫

L
j
π (x

j
1 )L

j
π (x

j
2 ) dN(0,)(x1, x2)

(41)

×
m∏

j=1

E
Xj |U=u
0

[
Lπ

(
Xj )2]

.

By the block diagonal matrix structure of , the denominator in the first factor of the RHS
of (41) satisfies
m∏

j=1

∫
L j

π

(
x

j
1

)
L j

π

(
x

j
2

)
dN(0,)(x1, x2) =

m∏
j=1

∫
e

n
2m

( n
m

‖√j (f,g)‖2
2−‖(f,g)‖2

2) d(π × π)(f, g)

=
m∏

j=1

∫
e

n2

m2 f ��
j
ug

d(π × π)(f, g)

≥
m∏

j=1

e
n2

m2
∫

f ��
j
ug d(π×π)(f,g) = 1.

Similarly, the numerator is equal to∫
Lπ(x1)Lπ(x2) dN(0,)(x1, x2) =

∫
e

n2

m2 f � ∑m
j=1 �

j
ug

d(π × π)(f, g).

Combining the above displays (i.e., (16) and the last three displays), we obtain that

Dχ2
(
P

Y |U=u
0,K ;PY |U=u

π,K

) ≤
m∏

j=1

E
Xj |U=u
0

[
Lπ

(
Xj )2]

(42)

·
∫

e
n2

m2 f � ∑m
j=1 �

j
ug

d(π × π)(f, g) − 1.

Step 2. What is left to show in this step is that, for π = N(0,�), � ∈ R
d×d can be chosen

such that the RHS of the previous display is small enough, while also ensuring that π(Hc
ρ) is

controlled whenever ρ2 satisfies (4)–(5) for cα depending only on α ∈ (0,1).
For a given cα > 0, set ε := ρ

c
1/4
α d1/2

and � := ε2�̄ for some �̄ ∈ R
d×d to be specified later,

separately for the private and public coin protocols. The remaining mass π(Hρ) can now be
seen to equal

π
(
f : ‖f ‖2

2 ≤ ρ2) = Pr
(
Z��̄Z ≤ √

cαd
)
,
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where Z is a d-dimensional standard normal vector. If �̄ is symmetric, idempotent and has
rank (proportional to) d , the concentration inequality in Lemma A.13 yields that the proba-
bility on the RHS of the above display can be made arbitrarily small for small enough choice
of cα > 0.

We now proceed to bound the first factor in the product on the RHS of (42), which for a
positive semidefinite choice of �̄ equals

m∏
j=1

∫
E

Xj |U=u
0 exp

(
n

m

(√
�̄(f +g)

)�
Xj − n

2m
‖
√

�̄f ‖2
2 − n

2m
‖
√

�̄g‖2
2

)
dN

(
0, ε2I2d

)
(f, g).

By direct computation the latter display equals

m∏
j=1

∫
exp

(
nε2

m
z��̄z′

)
dN(0, I2d)

(
z, z′).

By applying the moment generating function of the Gaussian chaos, for example, Lem-
ma 6.2.2 in [34] to the above display and using that ρ2 satisfies (4) or (5), we obtain that,

for nε2

m
‖�̄‖� nρ2

c
1/2
α m

√
d

≤ √
cα/m ≤ √

cα small enough, where ‖ · ‖ denotes the spectral norm

of a matrix, there exists a constant C ≥ ‖�̄‖2/d such that

(43)
m∏

j=1

E
Xj |U=u
0

[
Lπ

(
Xj )2] ≤ exp

(
Cc−1

α

n2ρ4

md

)
≤ exp(Ccα).

The exponent can be made arbitrarily close to zero per choice of cα > 0.
We switch our attention now to the second factor in the product on the RHS of (42), which

we bound by applying Lemma 6.2.2 in [34] once more,

(44)
∫

e
n2

m2 (
√

�f )� ∑m
j=1 �

j
u(

√
�g)

dN
(
0, ε2I2d

)
(f, g) ≤ e

C n4ε4

m4 Tr((
√

�̄
�

�u

√
�̄)2)

,

whenever

(45)
n2ε2

m2

∥∥√�̄
�
�u

√
�̄
∥∥

is small enough.
It remains to choose a symmetric, idempotent positive semidefinite �̄ that sufficiently

bounds (45) and to combine the above displays providing the stated lower bound for the
testing risk. For the exact choice of �̄, we distinguish between the public coin and private
coin cases. In both cases we employ the data-processing inequalities of Lemma A.3 and
Lemma A.2, which yield that

(46) Tr(�u) =
m∑

j=1

Tr
(
�j

u

) ≤ min
{

2 log 2 · b

d
,1
}
m2d

n
.

The public coin case: In this case it suffices to take �̄ = Id , which is trivially symmetric,
idempotent and positive semidefinite. By Lemma A.2, n

m
�

j
u ≤ Id , so (45) holds as well for

this choice of �̄,

n2ε2

m2 ‖�u‖ ≤ nε2 ≤ nρ2

√
cαd

≤ √
cα,

where the second to last inequality holds for ρ2 satisfying (4).
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It remains to combine our results and provide a lower bound for the testing risk. Note that

Tr
(
�2

u

) = ‖�u‖Tr(�u) ≤ m2

n
Tr(�u)�

(b ∧ d)m4

n2 ,

where the last inequality follows from (46). Combining the above bound with assertions (44),
(43), (42), (16) and (15), ε4 = c−1

α d−2ρ4 and the fact that π(Hρ) ≤ α/2, we obtain that

inf
T ∈Tpub(b)

R(Hρ,T ) ≥ 1 −
√

2
(
e
C(

n2ρ4
cαmd

+ n2ρ4(b∧d)

cαd2 ) − 1
)− π

(
Hc

ρ

)

≥ 1 −
√

2
(
e2Ccα − 1

)− α/2 > 1 − α,

whenever ρ2 satisfies (4) for cα > 0 small enough. This finishes the proof for the public coin
case.

The private coin case: Since without loss of generality we can assume that U is degener-
ate in the private coin case, �u = � for PU -almost every u. The matrix � is positive defi-
nite and symmetric; therefore, it possesses a spectral decomposition V � Diag(ξ1, . . . , ξd)V .
Without loss of generality, assume that ξ1 ≥ ξ2 ≥ · · · ≥ ξd with corresponding eigenvectors
V = (

v1 . . . vd

)
. Let V̌ denote the d × �d/2� matrix

(
v�d/2�+1 . . . vd

)
. The choice of

prior may depend on �; to see this, note the order of the supremum and infimum in (15) and
the fact that � soley depends on the choice of kernel. To that extent, set �̄ = V̌ V̌ �. It holds
that

Tr
(
V̌ V̌ �) =

d∑
i=1

d∑
k=�d/2�+1

(vk)
2
i = �d/2�.

The choice � = ε2�̄ is thus seen to satisfy the conditions of symmetry and positive definite-
ness and is idempotent with rank �d/2�.

Since the eigenvalues are decreasingly ordered,

ξ�d/2� ≤ 2

d

�d/2�∑
i=1

ξi ≤ 2

d
Tr(�).

By orthogonality of the columns of V , V̌ ��V̌ = Diag(ξ�d/2�+1, . . . , ξd). Combining this
inequality with the last display and assertion (46), we get that, for ρ2 satisfying (5), the term
(45) can be made arbitrarily small for small enough choice of cα , that is,

n2ε2

m2

∥∥√�̄
�
�u

√
�̄
∥∥ ≤ n2ε2

m2 ξ�d/2� ≤ 2
n2ρ2

√
cαd2m2 Tr(�)

≤ (4 log 2)
nρ2(b ∧ d)√

cαd2 ≤ (4 log 2)
√

cα/d.

Finally, a similar argument will be used to bound the RHS of (44) and finally to provide a
lower bound for the testing risk. Note that

Tr
((√

�̄
�
�u

√
�̄
)2) = Tr

((
V̌ ��V̌

)2) =
d∑

i=�d/2�+1

ξ2
i ≤ dξ2�d/2� ≤ 4

d
Tr(�)2,

which implies in turn that

n4ε4

m4 Tr
((

V̌ ��V̌
)2) ≤ 4

n4ρ4

cαm4d3 Tr(�)2 ≤ 4
n2ρ4(b ∧ d)2

cαd3 ,
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where the last inequality follows from (46). Consequently, we have obtained that

inf
T ∈Tpriv(b)

R(Hρ,T ) ≥ 1 −
√

2
(
e
C(

n2ρ4
cαmd

+ n2ρ4(b∧d)2

cαd3 ) − 1
)− π

(
Hc

ρ

)

≥ 1 −
√

2
(
e2Ccα − 1

)− α/2 > 1 − α

for ρ2 satisfying (5) and cα > 0 small enough.

10. Lemma 10.1: Gaussian maximization. Before giving the detailed statement of the
lemma below, we briefly contemplate on its aim and proof. The lemma bears a close con-
nection to Brascamp–Lieb inequalities [8, 10, 21]. Brascamp–Lieb-type inequalities have ap-
peared in context of information theory in the literature before; see, for example, [15, 22],
where Gaussian extremality is established for certain information theoretic optimization
problems. Instead of the information theoretic entropy based route, we rely on the technique
of [21]. The resulting lemma allows us to bound the ratio between (35) and (38), that is,

(47)

∫
Lπ(x1)Lπ(x2)qu(x1, x2) d(P0 × P0)(x1, x2)∏m

j=1
∫

L
j
π (x

j
1 )L

j
π (x

j
2 )q

j
u(x

j
1 , x

j
2 ) d(P0 × P0)(x

j
1 , x

j
2 )

,

by (39), that is, a Gaussian distribution with matching mean and covariance. Consequently,
we obtain a quadratic form in the covariance that we would otherwise obtain via a Taylor
expansion. That such a quadratic form does not follow through more standard means such as
Taylor expansion is described in [3], Section 4.

The proof of the lemma exploits the conjugacy between likelihood of the observation X

and the Gaussian prior on the parameter to obtain that a Gaussian distribution is, in fact, an
extremal case. For reasons of space, we defer the proof to Section F of the Supplementary
Material.

LEMMA 10.1. For x ∈ R
mk , let xj ∈ R

k , j = 1, . . . ,m denote the projection of x on
the coordinates {(j − 1)k + 1, . . . , jk}. Let � ∈ R

k×k a positive definite symmetric matrix
and �⊗m = Diag(�, . . . ,�) ∈ R

mk×mk . For h ∈ R
k , let ph denote the density of a N(h,�)

distribution with respect to the Lebesgue measure on R
k , and let pm

h (x) := ∏m
j=1 ph(x

j ).

Consider for some M > 0, Q ≡ Q(M,) the class of all nonnegative functions q ∈ L∞(Rmk)

satisfying q(x)∫
q(x)pm

0 (x) dx
≤ M P m

0 -a.e.,
∫

xq(x)pm
0 (x) dx = 0 and

∫
xx�q(x)pm

0 (x) dx = .

Furthermore, let H a N(0,ϒ)-distributed random vector in R
k . Then

sup
q∈Q

∫
E

H ∏m
j=1

pH

p0
(xj )q(x)pm

0 (x) dx∫ ∏m
j=1 E

H pH

p0
(xj )q(x)pm

0 (x) dx
≤

∫
E

H ∏m
j=1

pH

p0
(xj ) dN(0,)(x)∫ ∏m

j=1 E
H pH

p0
(xj ) dN(0,)(x)

.
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SUPPLEMENTARY MATERIAL

Supplementary Material to Optimal high-dimensional and nonparametric dis-
tributed testing under communication constraints (DOI: 10.1214/23-AOS2269SUPP;
.pdf). In the supplement to this paper [29], we present the detailed proofs for the main the-
orems in the paper “Optimal high-dimensional and nonparametric distributed testing under
communication constraints”.
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