Efficacy of Spinal Manipulation for Chronic Headache: A Systematic Review

Gert Bronfort, DC, PhD,a Willem J.J. Assendelft, MD, PhD,b Roni Evans, DC,a Mitchell Haas, DC,c and Lex Bouter, PhDd

ABSTRACT

Background: Chronic headache is a prevalent condition with substantial socioeconomic impact. Complementary or alternative therapies are increasingly being used by patients to treat headache pain, and spinal manipulative therapy (SMT) is among the most common of these.

Objective: To assess the efficacy/effectiveness of SMT for chronic headache through a systematic review of randomized clinical trials.

Study Selection: Randomized clinical trials on chronic headache (tension, migraine and cervicogenic) were included in the review if they compared SMT with other interventions or placebo. The trials had to have at least 1 patient-rated outcome measure such as pain severity, frequency, duration, improvement, use of analgesics, disability, or quality of life. Studies were identified through a comprehensive search of MEDLINE (1966-1998) and EMBASE (1974-1998). Additionally, all available data from the Cumulative Index of Nursing and Allied Health Literature, the Chiropractic Research Archives Collection, and the Manual, Alternative, and Natural Therapies Information System were used, as well as material gathered through the citation tracking, and hand searching of non-indexed chiropractic, osteopathic, and manual medicine journals.

Data Extraction: Information about outcome measures, interventions and effect sizes was used to evaluate treatment efficacy. Levels of evidence were determined by a classification system incorporating study validity and statistical significance of study results. Two authors independently extracted data and performed methodological scoring of selected trials.

Conclusions: SMT appears to have a better effect than massage for cervicogenic headache. It also appears that SMT has an effect comparable to commonly used first-line prophylactic prescription medications for tension-type headache and migraine headache. This conclusion rests upon a few trials of adequate methodological quality. Before any firm conclusions can be drawn, further testing should be done in rigorously designed, executed, and analyzed trials with follow-up periods of sufficient length. (J Manipulative Physiol Ther 2001;24:457-66)

Key Indexing Terms: Headache; Orthopedic Manipulation; Chiropractic Manipulation; Osteopathy; Systematic Review

INTRODUCTION

Headaches vary widely in terms of severity, frequency, and disability—from rare episodes of minor discomfort to daily, incapacitating headaches. By far the most common type of headache is tension-type headache, with a 1-year prevalence ranging from 40 to 80%. The cost, in terms of work loss and decreased quality of life, is high among those who experience tension-type headache, with 10% reporting lost workdays and almost half reporting decreased effectiveness at work, home, or school.

Although less common than tension-type headaches, migraines affect a sizable proportion of individuals and tend to be more severe and disabling. Recent population-based studies which use International Headache Society (IHS) criteria estimate that 10 to 12% of adults have experienced a migraine in the previous year, with 2 to 4 times more women affected than men. In one study, almost all mi-
graineurs reported that headache pain affected their ability to work and perform daily activities, and 43% missed work because of their headaches.1

The financial cost of headaches is great, with billions of dollars spent annually for lost productivity and treatment.4 Although persons affected with headaches are commonly treated by traditional medical practitioners, they are increasingly turning to non-medical or alternative therapies for relief. A recent study by Eisenberg et al5 reported that one of the most common alternative practitioners sought out for the treatment of headaches was the chiropractor—the most common provider of spinal manipulation in the United States. For the purpose of this study, spinal manipulative therapy (SMT) is defined as the application of high-velocity, low-amplitude manual thrusts to the spinal joints slightly beyond the passive range of joint motion.6

A systematic review of cervical SMT for neck pain and headache published in 1996 concluded that SMT might be beneficial for tension-type headaches, but further studies of higher methodological quality were needed in order to reach firmer conclusions.7 Further studies have been performed since that time. The purpose of this article is to assess the clinical efficacy of cervical SMT for chronic headache based on the results of the existing randomized clinical trials (RCTs).

METHODS

Study Selection
Randomized clinical trials on chronic headache were included in this review if they compared SMT with a placebo or other interventions, and if they had at least 10 subjects in the SMT arm of the trial. The trials also had to have at least one patient-rated outcome measure such as headache pain severity, frequency, duration, improvement, analgesic use, disability, or quality of life. “Chronic headache” included, but was not limited to, tension-type, cervicogenic, and migraine headaches classified according to the International Headache Society (IHS) criteria (some studies were anticipated to predate or not adhere to the 1988 IHS classification system). Studies were identified by a comprehensive search of MEDLINE (1966-11/1998) and EMBASE (1974-11/1998). The primary MeSH headings and keywords were: headache, manipulation/orthopedic, randomized controlled trials, comparative study, review literature, chiropractic, and osteopathy medicine. Studies were further identified through the Cumulative Index of Nursing and Allied Health Literature, the Chiropractic Research Archives Collection, and the Manual, Alternative, and Natural Therapies Information System (MANTIS), and by citation tracking and hand searching of the non-indexed chiropractic, osteopathic, and manual medicine journals. References found in relevant publications were also examined. Abstracts from proceedings and unpublished studies were not included.

Data Extraction
A best-evidence synthesis method incorporating explicit information about outcome measures, interventions, and effect sizes was used to evaluate treatment efficacy. Two of us (GB and WJJA) independently extracted and recorded relevant data from each article. All original data on outcomes were standardized into percentage-point scores whenever possible. Contrary to meta-analysis, studies for which effect sizes cannot be computed are retained as primary evidence in a best-evidence synthesis.8-11 Statistical pooling of effect sizes was considered to be an adjunct to the systematic review and not the primary goal.

Effect Size Computations
The effect size (ES) differences between the SMT and comparison groups were calculated at the end of the treatment intervention phase and at the main post-treatment follow-up and were adjusted for baseline differences in main outcome measures. Effect sizes were computed as described by Glass et al12 and Cohen13 (difference in treatment and control group means divided by the pooled standard deviation). In the absence of these statistics, effect sizes were calculated from T-scores, F-values, and confidence intervals, provided sample sizes were given.12,14 Effect sizes for differences in proportions were estimated by using probit transformation.14 Correction for ES estimate bias associated with small sample sizes (n < 50) was accomplished by using the method described by Hedges and Olkin.15 If confidence intervals could not be directly calculated for effect sizes, they were estimated by using p-values and sample sizes.

Assessment of Methodological Quality of RCTs
A critical evaluation list of 20 methodological items and their operational definitions was used to assess methodological quality. This list represents a modification of previously used instruments.16,17 Fourteen of the items addressed validity issues, yielding a validity score. An additional 6 items concerned descriptive information. For example, we awarded points for the following: a statistical analysis that included a power calculation based on a predetermined clinically important difference between treatment and control groups; an adjustment made for baseline differences between treatment and control groups (e.g., analysis of covariance); an adjustment of significance levels to account for multiple comparisons, primary outcomes, and follow-up time; and an appropriate analysis of dropouts, compliance, and missing data. The study conclusions also had to be supported by the design and data analyses. A detailed list of the individual items and operational definitions is described in the Appendix. The methodological scoring of the RCTs was performed by 2 reviewers independently (WJJA and GB). Differences in scores were resolved through consensus by the 2 reviewers. The validity scores of the individual RCTs were used as part of the evidence determination. Two of us (GB and RE) performed a supplementary methodological scoring of the studies by using the short checklist developed by Jadad et al.18

Assessment of the Level of Evidence of Efficacy
The criteria for determining the level of evidence of efficacy has been adapted from the Agency for Health Care
Policy and Research panel that evaluated the efficacy of various treatments for acute low back pain.19 Our system evaluates the evidence taking into account: (1) the type of comparison intervention (established efficacious treatment, commonly used therapy, or placebo); (2) methodological quality (validity scores); (3) the number of studies; and (4) statistical significance of study findings. Four categories were used to describe evidence levels: strong, moderate, limited, and inconclusive. All eligible RCTs were considered regardless of their results. Statistical pooling of 2 or more trials was considered if they were homogeneous in terms of headache type, subjects, treatments, outcomes, and follow-up time.

For determination of the outcome of each RCT, we prioritized patient-rated pain severity, frequency, and duration, unless otherwise specified.

The assessment of efficacy depended on the type of comparison intervention. If the study showed that SMT had at least a similar magnitude of effect compared with an established efficacious treatment or was superior to a placebo or a commonly used therapy, it was considered to be evidence of efficacy. If the study showed that SMT was inferior to an established efficacious treatment, commonly used therapy or placebo, or showed an effect similar to a placebo intervention, it was considered evidence of inefficacy. We specified that SMT was considered superior/inferior to a comparison therapy or placebo if the ES was equal to ±0.5.

Methodological quality and statistical significance were then considered to determine the evidence level, as defined in Table 1.

**RESULTS**

Our literature search identified 22 original studies that assessed the effect of SMT in the treatment of headache. We excluded 13 papers because one was a case study20 and 12 were prospective or retrospective clinical series without comparison groups.21-32 The reports of 9 RCTs involving 683 patients were retained in our review. The main features of these trials are summarized in Table 2.

A total of 386 patients received spinal manipulation. Age inclusion criteria ranged from 15 to 70 years of age. The number of SMT treatments ranged from 1 to 12 (average of 6) over a period of 1 day to 8 weeks (average of 4 weeks). In 3 studies, SMT was combined with other therapies (massage,33 azapropazone,34 and deep friction massage with placebo).35 In 5 of the studies, SMT was performed by chiropractors35-39; in 3 studies, by medical doctors34,40,41; in 1 study, by medical doctors or physical therapists,38 and in another study, by osteopaths.33

Comparison groups included amitriptyline,36,39 deep friction with placebo,35,37 mobilization,38,41 palpation and rest,33 cold packs,40 azapropazone,34 and waiting list.41 None of the studies compared spinal manipulation directly with a sham or placebo spinal manipulation procedure. Outcome measures varied greatly across studies. The main outcomes abstracted from the 9 trials were pain intensity and frequency of headaches, medication use, and general health status.

The methodological quality (validity) scores of the trials ranged from 21 to 87 on a 100-point scale. Detailed results of the methodological quality assessment of the trials are noted in Table 3. The 2 methodological quality assessors initially agreed on 74% of the 20 quality items for the 9 RCTs; all disagreement was resolved through joint review by the assessors.

The ES differences including 95% confidence intervals for the 9 trials are depicted in Figure 1.

**Description of the Individual Trials**

**Tension-Type Headache.** The trial by Boline et al included a mix of patients with chronic headache and patients with episodic tension-type headache. The primary research goal was to assess the sustained treatment effect (4 weeks after treatment) of 6 weeks of SMT when compared with 6 weeks of amitriptyline (an efficacious prescription medication). At the 4-week post-treatment follow-up, the results showed an advantage for SMT in headache pain, use of non-prescription analgesics, and general health status ($P < .05$). Conversely, at the end of the 6-week treatment period the amitriptyline group fared slightly better than the SMT group in terms of headache pain ($P = .05$). Amitriptyline patients reported more side effects than those receiving SMT.

The trial by Bove and Nilsson assessed whether the addition of SMT to soft tissue massage would improve outcomes for episodic tension-type headache. There were 2 treatment groups: deep friction massage with SMT and deep friction massage with placebo laser treatment. All participants received 8 treatments over a 4-week period. Outcomes were assessed at the end of treatment and 3 months after treatment. Both groups improved at similar rates during the

### Table 1. Definition of levels of evidence modified from the U.S. and British low back pain clinical guidelines

<table>
<thead>
<tr>
<th>Level of evidence of efficacy or inefficacy</th>
<th>Number of RCTS with validity score ≥50</th>
<th>Number of RCTS with validity score ≥21-49</th>
<th>Number of RCTS with validity score ≤20</th>
<th>Statistically significant results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Strong</td>
<td>≥2</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>B. Moderate</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>C. Limited either I or II</td>
<td>—</td>
<td>≥1</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>D. Inconclusive</td>
<td>—</td>
<td>—</td>
<td>≥2</td>
<td>No</td>
</tr>
</tbody>
</table>

Minimal standards for classification as limited evidence were not met if the evidence taking into account:

- the evidence from eligible RCTs was conflicting.
Table 2. Randomized controlled trials of spinal manipulation for headaches (arranged in order of methodological quality [validity score])

<table>
<thead>
<tr>
<th>First author, reference, year, validity score</th>
<th>Headache type</th>
<th>Study groups (n)</th>
<th>Results of abstracted data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson39, 1998 (VS = 87)</td>
<td>Chronic migraine</td>
<td>G1: SMT-DC (77)</td>
<td>Small group difference in headache pain index (pain × frequency) and medication use at the end of 2 months of treatment (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: SMT-DC+ Amitriptyline (70)</td>
<td>G1 had greater reduction in headache pain index at 1-month follow-up (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: Amitriptyline (71)</td>
<td>G2 had greater pain reduction after 6 weeks of tx (SS)</td>
</tr>
<tr>
<td>Boline36, 1995 (VS = 75)</td>
<td>Chronic and episodic tension-type</td>
<td>G1: SMT-DC (75)</td>
<td>G1 had greater reduction in pain, frequency, and medication use 4 weeks after tx (SS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: Amitriptyline (75)</td>
<td>G1 had greater reduction in headache intensity and hours of headache per day at the end of 3 weeks of treatment (SS)</td>
</tr>
<tr>
<td>Nilsson37, 1997 (VS = 67)</td>
<td>Chronic cervicogenic</td>
<td>G1: SMT-DC (28)</td>
<td>G1 had greater pain reduction than G3 after 2 months of tx (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: Deep friction massage + placebo laser (25)</td>
<td>G1 had greater reduction in headache intensity and hours of headache per day at the end of 3 weeks of treatment (SS)</td>
</tr>
<tr>
<td>Parker 38,42, 1978 and 1980 (Re-analyzed by New Zealand Gov’t Commission) (VS = 67)</td>
<td>Chronic migraine</td>
<td>G1: SMT-DC (30)</td>
<td>G1 had greater pain reduction than G3 after 2 months of tx (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: SMT-PT/MD (27)</td>
<td>G1 had greater reduction than G3 after 2 months of tx (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: Cervical mobilization-PT/MD (28)</td>
<td>G1 had greater reduction than G3 after 2 months of tx (NS)</td>
</tr>
<tr>
<td>Bove35, 1998 (VS = 56)</td>
<td>Episodic tension-type</td>
<td>G1: SMT-DC + friction massage (38)</td>
<td>Relatively small group difference in headache pain severity, duration, and medication use at the end of 2 months of treatment and at 1- and 3-month follow-ups (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: friction massage + placebo laser (37)</td>
<td>Immediately after one tx G1 had much greater pain reduction than G2 and G3 (SS)</td>
</tr>
<tr>
<td>Hoyt33, 1979 (VS = 45)</td>
<td>Chronic muscle-tension</td>
<td>G1: Massage + SMT-DO (10)</td>
<td>G1 had much greater pain reduction after 3 weeks of tx (SS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: Palpation (6)</td>
<td>G1 had much greater pain reduction after 3 weeks of tx (SS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: Rest 10 min (6)</td>
<td>G1 had much greater pain reduction after 3 weeks of tx (SS)</td>
</tr>
<tr>
<td>Jensen40, 1990 (VS = 34)</td>
<td>Post-traumatic</td>
<td>G1: SMT-DO (11)</td>
<td>Immediately after one tx G1 had much greater pain reduction than G2 and G3 (SS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: Cold Packs (12)</td>
<td>Immediately after one tx G1 had much greater pain reduction than G2 and G3 (SS)</td>
</tr>
<tr>
<td>Howe34, 1983 (VS = 32)</td>
<td>Neck pain related</td>
<td>G1: NSAID (Azapropazone) + SMT-DO (14)</td>
<td>After one and only tx G1 had higher % of patients showing improvement immediately (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: NSAID (13)</td>
<td>After one and only tx G1 had higher % of patients showing improvement immediately (NS)</td>
</tr>
<tr>
<td>Bitterli41, 1977 (VS = 21)</td>
<td>Cervicogenic-like</td>
<td>G1: SMT-DO (10)</td>
<td>G1 had greater pain reduction than G2, and much higher than G3 after 3 weeks of tx (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: Mobilization-DO (10)</td>
<td>G1 had greater pain reduction than G2, and much higher than G3 after 3 weeks of tx (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: 3 week waiting list, then SMT-DO (10)</td>
<td>G1 had greater pain reduction than G2, and much higher than G3 after 3 weeks of tx (NS)</td>
</tr>
</tbody>
</table>

VS, Validity score; MD, medical doctor; DO, osteopathic doctor; PT, physiotherapist; DC, chiropractor; G1, group 1; G2, group 2; G3, group 3; tx, treatment; SMT, spinal manipulative therapy; MOB, spinal mobilization; NSAID, nonsteroidal anti-inflammatory drug; SS, statistically significant (<i>P</i> ≤ .05); NS, not statistically significant.

Table 3. Methodological quality scores of randomized clinical trials evaluating spinal manipulation for chronic headache.

<table>
<thead>
<tr>
<th>First author, reference, year</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>J</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>Validity % score</th>
<th>Study information items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson (39) 1998</td>
<td>+</td>
<td>+</td>
<td>na</td>
<td>na</td>
<td>p</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>87</td>
<td>+</td>
<td>p</td>
</tr>
<tr>
<td>Boline (36) 1995</td>
<td>+</td>
<td>p</td>
<td>+</td>
<td>na</td>
<td>na</td>
<td>p</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>75</td>
<td>+</td>
<td>p</td>
</tr>
<tr>
<td>Hoyt (33) 1979</td>
<td>p</td>
<td>–</td>
<td>p</td>
<td>na</td>
<td>na</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>–</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>45</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

+, Yes; –, no; p, unclear/partly; na, not applicable.

*The critical evaluation list contains 20 items (A-T) of which 14 (B-G, J, L-N, P-S) have been classified as (internal) validity items and six (A, H, I, K, O and T) as information items. The Appendix contains a description of each item as worded in the list (italicized), accompanied by operationalization where needed.
treatment and follow-up period. There were no important differences between the groups in either daily headache hours, pain intensity per episode, or daily analgesic use. Headache pain intensity per episode showed no important change during the trial in either of the groups.

Migraine. In the RCT by Parker et al.,38,42 chiropractic SMT showed an advantage in pain intensity, disability score, duration, and frequency of attacks after 8 weeks of treatment when compared with SMT and mobilization delivered by medical physicians and physical therapists. There was also a slight advantage in headache frequency in patients receiving chiropractic SMT at 20 months’ follow-up. However, there was uncertainty regarding the appropriateness of the original statistical analyses and subsequent re-analyses.42

In a recently published trial on chronic migraine by Nelson et al.,39 patients were randomized into 3 groups: SMT, amitriptyline, or a combination of the 2 therapies. Patients were treated for 8 weeks and were evaluated at the end of treatment and 4 weeks after treatment. In the follow-
up period, there was a reduction in headache index score for the SMT group compared with the other 2 groups, which was of borderline statistical significance. There was no advantage to combining amitriptyline and SMT. During the treatment phase, the SMT group experienced a clinical effect of similar magnitude to the amitriptyline group, but reported fewer side effects.

**Cervicogenic Headache.** The trial by Nilsson et al\(^3\) on cervicogenic headache compared 3 weeks of SMT with 3 weeks of deep friction massage with placebo laser therapy with no follow-up period. The study was performed in 2 stages. The first stage, reported in 1995,\(^4\) was unable to detect a clinically important difference between the 2 treatment arms. The trial was continued after a pause in recruitment; an additional 14 patients added to the original sample, resulting in a total sample of 53 patients. The results of the extended trial showed a decrease of 69% in headache hours in the SMT group compared with a 47% decrease in the massage group (\(P < .05\)). Patients receiving SMT also reported approximately twice as much reduction in headache intensity per episode than the massage group (\(P < .05\)).

**Other Types of Chronic Headache.** The remainder of the trials either predated the IHS classification system or did not adequately adhere to it. They were also of lower methodological quality. Jensen et al\(^5\) compared 2 sessions of SMT with 2 sessions of cold packs for patients with post-traumatic chronic headaches. The cold pack group did not improve over the 8-week study duration, and the advantage of SMT was evident at both 3 (\(P = .03\)) and 8 weeks (\(P > .05\)). The trial by Howe et al\(^6\) on headache-related neck pain showed that the addition of 1 SMT session to nonsteroidal anti-inflammatory drug therapy compared with nonsteroidal anti-inflammatory drug therapy alone was superior immediately following treatment, but this difference was lost at 3 weeks after treatment (\(P > .05\)). Bitterly et al\(^7\) showed a clinically important advantage for SMT compared with mobilization and waiting list control (\(P > .05\)) after 3 weeks of treatment for cervicogenic-like headache. The trial by Hoyt et al\(^8\) showed a large advantage for SMT over the 2 controls (palpation and rest) for muscle-tension headache (\(P = .0001\)). However, the investigators tested the effect of only 1 SMT session immediately following treatment; no follow-up was included.

**Evidence of Efficacy.** Statistical pooling was not justified due to study differences in chronic headache type, main outcome measures, baseline clinical characteristics, assessment time points, and number and type of SMT interventions. Assessing the preponderance of the evidence based on our predefined criteria, and factoring in the magnitude and direction of effect size differences, we conclude that there is moderate evidence that SMT has short-term efficacy comparable with amitriptyline in the prophylactic treatment of chronic tension-type headache and migraine. SMT does not appear to improve outcomes when added to soft-tissue massage for episodic tension-type headache. There is moderate evidence that SMT is more efficacious than massage for cervicogenic headache.

Several sensitivity analyses were performed to test the robustness of the assumptions behind the weighting of the evidence by using headache pain as the main outcome measure. An increase of 33% or any amount of decrease of the prespecified cut-off point for adequate methodological quality (validity) did not change the weight of the evidence or the overall conclusions. Neither a decrease of the prespecified cut-point for what constituted a minimal clinically important effect size difference from 0.5 to 0.1 nor an increase to 0.6 changed the weight of the evidence or the overall conclusions. The effect size cut-point had to be set to 0.7 or above (corresponding to a near large effect size difference) to invalidate the conclusions regarding the effect of SMT for cervicogenic headache.

**Side Effects.** In the studies comparing SMT with amitriptyline,\(^9,10\) more than half the patients taking amitriptyline reported side effects such as drowsiness, dry mouth, and weight gain, and approximately 10% were withdrawn from the studies due to drug intolerance. In comparison, only 5% of the patients receiving SMT reported side effects, the most frequent being muscle soreness and neck stiffness. These effects are common and considered normal reactions to spinal manipulation.\(^11\) No serious complications (ie, vertebrobasilar accidents) were reported in any of the studies included in this review. The risk of serious complications from SMT is considered low. Estimates of vertebrobasilar accidents range from 1 per 20,000 patients to 1 per 1 million cervical manipulations;\(^12\) however, large prospective studies are needed to provide more reliable estimates.

**Discussion**

A previous systematic review assessing the effect of SMT on chronic headaches has suggested that SMT may be a worthwhile therapy for tension-type headache.\(^7\) The findings of our review, which includes 3 additional relatively high-quality RCTs, provide a basis for considering SMT in the therapeutic management of migraine, chronic tension-type and cervicogenic headaches. Although migraine, cervicogenic headache and tension-type headache generally are considered to be separate conditions, there is some support in the literature for the notion that they represent a continuum with several common underlying mechanisms, including cervical spine dysfunction.\(^13,14\) One possible explanation of the apparent effect of SMT in chronic headache comes from the results of several studies that have demonstrated that headache can be induced experimentally by noxiously stimulating tissues, including joint capsules, ligaments, and paraspinal muscles, enervated by the cervical nerve roots (C1-C3).\(^15\) Headache pain caused by such stimulation may be possible because of the common neurological pathways shared by the trigeminal nucleus and the C1-C3 nerves.\(^16\)

**Methodological Limitations**

Different methodologies have been advocated for the systematic review of studies addressing therapeutic efficacy.\(^17,18,49-52\) Given the nature of RCTs available for this review, we chose to evaluate the strength of the evidence...
based on the best-evidence synthesis method rather than a
casual meta-analysis.\textsuperscript{9,53} A number of meta-analytical methods
have been advocated for combining results of RCTs.\textsuperscript{15,54} It
is recognized by international experts that one of the most
important limitations of published meta-analyses is inade-
quate control for clinical heterogeneity among synthesized
studies.\textsuperscript{8,55,56} There is currently little consensus on decision
rules regarding statistical pooling of study results.\textsuperscript{57} The
clinical heterogeneity of the trials, in terms of headache
type, patient characteristics, interventions, comparison ther-
apies, and outcome measure prevented statistical pooling in
this review.

A possible limitation of the current review is publication
bias, of which there are several potential sources.\textsuperscript{58} No effort
was made to identify unpublished research,\textsuperscript{59} which is more
likely to have negative outcomes.\textsuperscript{60} However, it is recog-
nized that attempts to retrieve unpublished trial data may
also bias studies.\textsuperscript{60} The search strategy may have missed
important studies not currently indexed, but by including
citation tracking of non-indexed journals it is unlikely that
many were overlooked. Optimally, reviews should include
all trials regardless of language.\textsuperscript{61-63} However, this review
was initially restricted to the languages we spoke: English,
German, French, Dutch, and the Scandinavian languages.
Although an attempt was made to identify trials in other lan-
guages, this approach was not fully systematic; the possibil-
ity that some relevant trials may have been overlooked must
be acknowledged.

The evidence for efficacy or inefficacy rests primarily on
the results of a small number of RCTs of acceptable metho-
dological quality. A few additional high-quality RCTs in
the future could easily change the conclusions of our
review.\textsuperscript{62,64} Little research has been done to determine what
constitutes a minimal clinically-important difference in
headache outcomes. The chosen cut-point of a medium
effect-size (0.5) difference to determine inferiority/superi-
ority of an intervention is somewhat arbitrary but similar to
other reported estimates.\textsuperscript{65,66} Also, sensitivity analyses
showed that the results and the overall study conclusions
remained the same even when substantial changes in the pre-
specified assumptions/rules regarding the evidence determi-
nation were applied.

The reliability with which different reviewers use similar
methodological scoring systems is a source of uncertainty.\textsuperscript{67} Conclusions regarding the weight of evidence are largely
dependent on the exact definition of the evidence classifica-
tion system used.\textsuperscript{64} An additional methodological assess-
ment of the studies included in this review was performed
by using a 5-point scoring system developed by Jadad et
al.\textsuperscript{18} This scale addresses 3 areas—randomization, double
blinding, and description of dropouts—which, if not
addressed adequately, may be important sources of bias.
Studies that scored highly with our system also scored rela-
tively high with the Jadad scale (correlation coefficient of
.62). It is important to note that none of the studies could
achieve higher than a 3-point score with the Jadad scale
because none of them were double-blinded.

Another possible limitation of this review is that we who
performed the methodological scoring were not blinded to
the authors and results of the individual RCTs because of
our familiarity with the SMT literature. Some maintain that
blinding yields significantly lower methodological scores,\textsuperscript{18}
whereas others contend that it does not make a difference.\textsuperscript{68}
Berlin et al\textsuperscript{69} have demonstrated that the overall results of
meta-analyses are uninfluenced by blinding.

Limitations of the Individual Trials

Most of the headache trials, including those of acceptable
quality, have substantial methodological limitations. In the
trials by Boline et al\textsuperscript{36} and Nelson et al,\textsuperscript{39} withdrawal of
amitriptyline at the end of treatment is inconsistent with nor-
mal clinical practice. The return of these patients to near base-
line values could be largely due to a medication rebound
effect, making the apparent advantage of the SMT group less
impressive. Longer periods of observation after treatment are
necessary to adequately judge the value of SMT as a potential
first line of therapy for tension-type headache.

In the trial by Nelson et al,\textsuperscript{39} it appears that SMT has a
magnitude of effect similar to the commonly used prophy-
lactic medication amitriptyline. However, the trial was not
designed to assess equivalence and did not have sufficient
power to do so. Thus, whether the 2 therapies are equiva-
 lent is still unknown. Another concern regarding this
study is the substantial loss of patients to follow up
(28\%). Although the study investigators performed missing
data analyses, these can never fully compensate for
the loss of data.

The authors of the trials by Bove and Nilsson\textsuperscript{35} conclude
that, as an isolated intervention, SMT does not have a posi-
tive effect on episodic tension-type headache. However, by
its design the Bove and Nilsson trial did not assess the iso-
lated effect of SMT; rather it looked at the combined effect
of SMT with soft tissue massage. Whether there is an inter-
action that results from combining SMT with soft tissue
massage is unknown. A more appropriate conclusion would
have been that SMT, when combined with soft tissue mas-
sage, is no better than soft tissue therapy alone for episodic
tension-type headache. This conclusion neither supports
nor refutes the efficacy of SMT as a separate therapy.

In the trial by Parker et al,\textsuperscript{38,62} there is no description of
the dropouts, increasing the likelihood of bias. The extended
trial by Nilsson et al\textsuperscript{57} on cervicogenic headache is some-
what unorthodox in that the decision to recruit more patients
was made after the original analyses of the data. No pre-
specifications were made regarding separate analyses of the
data, and one must be concerned about the possibility of a
Type I error.

The results of the remainder of the trials, which were of
lower methodological quality, all tend to suggest that SMT
was better than the comparison therapies. This is consistent
with studies in other fields that have shown that those of
lower methodological quality tend to have positive out-
comes.\textsuperscript{52,64,70} Thus, one must interpret the results of these
trials with caution.
None of the studies reviewed evaluated the cost-effectiveness of SMT for chronic headaches. Trials are needed to establish SMT’s relative cost-effectiveness to other commonly used therapies, and are particularly needed to address the potential for long-term effects. Finally, caution should be exercised when extrapolating from studies of SMT, because there is substantial diversity in terms of training and technique among providers.

CONCLUSION

SMT appears to have a better effect than massage for cervicogenic headache. It also appears that SMT has an effect comparable with commonly used first-line prophylactic prescription medications for tension-type headache and migraine headache. This conclusion rests on a few trials of adequate methodological quality. Before any firm conclusions can be drawn, further testing should be done in rigorously designed, executed, and analyzed trials with follow-up periods of sufficient length.

REFERENCES


APPENDIX
Evaluation list for scoring: descriptions

- Scoring: A YES score (+) is only used when all described individual item criteria are met. A NO score (-) is only used when it is clear from the article that none of the described individual item criteria are met. UNCLEAR/PARTLY (p) is used when the documentation or description is insufficient to answer yes or no to whether any or all of the described individual item criteria are met. The validity score (VS) is the percentage score of the applicable validity items (maximum of 14). (+) = 1, (p) = 1⁄2, and (-) = 0.

A. Are the inclusion and exclusion criteria clearly defined? They must be stated explicitly. If a more detailed description was needed, or only inclusion or exclusion criteria were clearly defined, the score is UNCLEAR/PARTLY.

B. Is it established that the groups are comparable at baseline? If different, are appropriate adjustments made during the statistical analysis? Comparability should be present especially for main outcomes, but also for important clinical and demographic variables, such as age, gender, duration and severity of condition, and known prognostic indicators.

C. Is the randomization procedure adequately described and appropriate? If it was only noted that randomization was used, the score is NO. To receive a YES score, the randomization process must be described (ie, randomly generated list, opaque envelopes), the method used (simple, block, stratification, minimization) must be appropriate, and the concealment of randomization must be described explicitly. If only one or two of these criteria are met, a score of UNCLEAR/PARTLY is the highest possible.

D. Is it established that at least one main outcome measure was relevant to the condition under study, and were the reliability and validity documented? This must be explicitly
established by investigation, appropriately referenced, or generally accepted (e.g., VAS scales, Oswestry, or Roland-Morris disability scales). If all of the above conditions are not met the score is NO.

E. Are patients blinded to the degree possible, and did the blinding procedure work? This may not apply to study (na) (e.g., a comparison of a drug and physical therapy) and is therefore not included in % scores. If the presence of either “optimal blinding” or “effectiveness of blinding” is not documented, a score of UNCLEAR/PARTLY is the highest attainable. If at least one study involves a “blindable” intervention, then the effectiveness of the blinding must be documented; otherwise a score of UNCLEAR/PARTLY is the highest attainable.

F. Is it established that treatment providers were blinded to the degree possible, and did the blinding procedure work? This may not apply to study (na) and is therefore not included in % scores.

G. Is it established that assessment of the primary outcomes was unbiased? If assessment of outcomes could be blinded, was it done? Was the effectiveness of blinding documented? Was there documentation that patients were not influenced by providers or investigators on how they scored their own outcomes?

H. Is the postintervention follow-up period adequate and consistent with the nature of the condition under study? This may not apply to study (na) (e.g., crossover designs) and is therefore not included in % scores. This minimum follow-up period is 1 month for acute conditions and 3 months for chronic conditions in order to receive a YES score. A minimum of 2 weeks for acute conditions and 1 month for chronic conditions must be met for an UNCLEAR/PARTLY score.

I. Are the interventions described adequately? Did all interventions follow a defined protocol? Is it possible from the description in the article or reference to prescribe or apply the same treatment in a clinical setting? If not, YES is not an appropriate score.

J. Were differences in attention bias between groups controlled for and explicitly described? Were time, provider enthusiasm, and number of intervention sessions equivalent among study groups?

K. Is comparison made to existing efficacious or commonly practiced treatment option(s)? If a placebo controlled study, has a comparison to existing efficacious standard therapy been made previously?

L. Is the primary study objective (hypothesis) clearly defined in terms of group contrasts, outcomes, and time points a priori? (Many studies present biased posthoc conclusions.)

M. Is the choice of statistical test(s) of the main results appropriate? Is the main analysis consistent with the design and the type of the outcome variables?

N. Was it established at randomization that there was adequate statistical power ($\beta = 0.2$ with $\alpha = 0.05$) to detect an a priori determined clinically important between-group difference of the primary outcome(s) including adjustment for multiple tests and/or outcome measures?

O. Are confidence intervals (CI), or data allowing CI to be calculated, presented?

P. Are all dropouts described for each study group separately and accounted for in the analysis of the main outcomes? Look for analysis of impact of dropouts or worst/best case analysis. Almost all studies with appropriate follow-up periods that evaluated the effects of therapeutic management of a condition will have some attrition (>5%). If no dropouts, this item does not apply to study (eg, studies with one intervention and outcomes collected in same session) and is not included in % scores.

Q. Are all missing data described for each study group separately and accounted for in the analysis of the main outcomes? Look for analysis of impact of missing data. Almost all studies that evaluated the effects of therapeutic management of a condition will have missing data (>5%). If no missing data, this item will not apply to study (na) and is not included in % scores.

R. If indicated, was an intention-to-treat analysis used? In studies with documented full compliance with allocated treatments, and no differential co-intervention between groups, a YES score can apply. In single session studies (eg, studies with one intervention and outcomes collected in same session) this item does not apply (na) and is therefore not included in % scores.

S. Were adjustments made for the number of statistical tests (2 or more) when establishing cut-off point of $P$-level for each test? If applicable (avoidance of increasing risk of Type I errors), was it documented that this was an issue that could have influenced the outcome of the study, and were adjustments made (eg, Bonferroni’s or similar type of adjustment)? If indicated adjustment(s) were incapable of changing main result/outcome of study, or if study involved only one test at one point in time, a score of ‘na’ applies.

T. Are the conclusions directly related to the primary objectives of the study, and are they valid? Were the a priori testable hypotheses tested and prioritized appropriately in the conclusions (see also item L)?$