We appreciate the interest of Drs. Meh and Denišlić in our study. There are two points in their letter which we would like to address.

The first concerns the relation between sensory thresholds and age. In our study, as in several others including measures of vibratory and thermal perception, it proved necessary to carry out a logarithmic transformation of the sensory threshold data in order to obtain normally distributed residuals in the regression analysis. In the age category of 50 years and older, included in our study, the exponential relation between sensory thresholds and age clearly provided a better description of the data than a simple linear regression function. In our view, however, judging from the scatterplot added to their letter, the same seems to be true for the study of Dr. Meh and colleague.

The second point concerns the possible confounding effect of the skin temperature on the relation between body height and sensory threshold levels at the feet. As we measured (and registered) the skin temperature during the assessment of the temperature discrimination threshold, we were able to examine whether such an effect had indeed occurred in our study. Body height and skin temperature showed a slight and statistically nonsignificant negative correlation ($r = -0.08$), indicating that taller people tended to have a somewhat lower
Table 1. Log_{10} sensory threshold as a function of age, sex, body height, and skin temperature among healthy subjects aged 50–76 years (n = 216): intercept; regression coefficients (95% confidence intervals); and proportion of variance explained by regression (R^2).

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Age (years)</th>
<th>Sex (M = 0, F = 1)</th>
<th>Height (cm)</th>
<th>Skin temperature (°C)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPT (\log_{10} \mu m)</td>
<td>0.39</td>
<td>0.289</td>
<td>-0.141</td>
<td>NI</td>
<td>-0.032</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(-0.81; 0.89)</td>
<td>(0.022; 0.036)</td>
<td>(-0.250; -0.032)</td>
<td>(-0.060; -0.005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5.69</td>
<td>0.033</td>
<td>0.186</td>
<td>0.026</td>
<td>NI</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(-7.27; -4.11)</td>
<td>(0.027; 0.040)</td>
<td>(0.043; 0.330)</td>
<td>(0.018; 0.034)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4.92</td>
<td>0.034</td>
<td>0.177</td>
<td>0.025</td>
<td>-0.025</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>(-6.06; -2.53)</td>
<td>(0.027; 0.041)</td>
<td>(0.034; 0.320)</td>
<td>(0.017; 0.033)</td>
<td>(-0.050; 0.001)</td>
<td></td>
</tr>
<tr>
<td>TDT (\log_{10} ^\circ C)</td>
<td>-1.30</td>
<td>0.012</td>
<td>-0.132</td>
<td>NI</td>
<td>0.007</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(-2.29; -0.31)</td>
<td>(0.004; 0.021)</td>
<td>(-2.59; -0.004)</td>
<td>(0.000; 0.020)</td>
<td>(-0.025; 0.039)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.06</td>
<td>0.014</td>
<td>0.002</td>
<td>0.010</td>
<td>NI</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(-5.03; -1.10)</td>
<td>(0.006; 0.023)</td>
<td>(-1.80; 0.177)</td>
<td>(0.000; 0.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.39</td>
<td>0.014</td>
<td>0.002</td>
<td>0.011</td>
<td>0.010</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(-5.60; -1.18)</td>
<td>(0.006; 0.023)</td>
<td>(-0.177; 0.181)</td>
<td>(0.001; 0.021)</td>
<td>(-0.022; 0.042)</td>
<td></td>
</tr>
</tbody>
</table>

VPT, vibratory perception threshold; TDT, temperature discrimination threshold; M, male; F, female; NI, not included in the regression model.

skin temperature at their feet. By means of regression analysis, we studied the relations between the (logarithmically transformed) sensory thresholds as the dependent variables, and age, sex, height, and skin temperature as the independent variables (Table 1). When height was not included in the model, skin temperature was inversely associated with vibratory perception threshold \(P = 0.02\). However, the proportion of variance explained by this model was small compared to that explained by the model including age, sex, and body height. When both height and skin temperature were included in the model, the relation between skin temperature and vibratory threshold was not statistically significant anymore. The latter model yielded only a minimal increase in the proportion of variance explained by regression, compared to the model with age, sex, and body height. When both height and skin temperature were included in the model, the relation between skin temperature and vibratory threshold was not statistically significant anymore. The latter model yielded only a minimal increase in the proportion of variance explained by regression, compared to the model including age, sex, and body height.

We conclude that, in our study, confounding by skin temperature cannot explain the association between body height and sensory threshold levels at the foot. Specification of the sensory reference values for height greatly enhances their informational value. Specification for skin temperature has little or nothing to add to that.

J. Nico D. de Neeling, PhD
Institute for Research in Extramural Medicine
Vrije Universiteit
Van der Boechorststraat 7, 1081 BT
Amsterdam, The Netherlands

Pieter J. Beks, MD
Institute for Research in Extramural Medicine
Vrije Universiteit
Amsterdam, The Netherlands
Frits W. Bertelsmann, MD, PhD
Department of Neurology
Vrije Universiteit
Amsterdam, The Netherlands
Robert J. Heine, MD, PhD
Institute for Research in Extramural Medicine and Department of Internal Medicine
Vrije Universiteit
Amsterdam, The Netherlands
Lex M. Bouter, PhD
Institute for Research in Extramural Medicine and Department of Epidemiology and Biostatistics
Vrije Universiteit, Amsterdam, The Netherlands