
VU Research Portal

Towards Automatic Partitioning of Class Hierarchies

Stuckenschmidt, Heiner; Klein, Michel

published in
Proceedings of the 1st International Conference on Knowledge Management and Decision Support
(ICKMDS'04)
2004

document version
Peer reviewed version

document license
Unspecified

Link to publication in VU Research Portal

citation for published version (APA)
Stuckenschmidt, H., & Klein, M. (2004). Towards Automatic Partitioning of Class Hierarchies. In Proceedings of
the 1st International Conference on Knowledge Management and Decision Support (ICKMDS'04)
http://www.cs.vu.nl/~heiner/public/ICKMDS04.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Dec. 2024

https://research.vu.nl/en/publications/2efa187b-77bf-4226-bb5f-fbc2ff805910
http://www.cs.vu.nl/~heiner/public/ICKMDS04.pdf

Towards Automatic Partitioning of Class Hierarchies

Heiner Stuckenschmidt
KR & R Group

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

heiner@cs.vu.nl

Michel Klein
KR & R Group

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

michel.klein@cs.vu.nl

Abstract|The increasing awareness of the bene�ts of
ontologies for information processing has lead to the
creation of a number of large ontologies about real world
domains. The size of these ontologies and their monolithic
character cause serious problems in handling them. In
other areas, e.g. software engineering, these problems
are tackled by partitioning monolithic entities into sets
of meaningful and mostly self-contained modules. In
this paper, we suggest a similar approach for ontologies.
We propose propose an approach for automatically
partitioning large ontologies into smaller modules based
on the structure of the class hierarchy. The method is
demonstrated on a part of the UMLS semantic network.
Experiments with larger ontologies are available online at
http://swserver.cs.vu.nl/partitioning/

Keywords: Ontologies, Modularization, Graph Analysis

I. INTRODUCTION

The increasing awareness of the bene�ts of ontologies
for information processing in open and weakly structured
environments has lead to the creation of a number of such
ontologies for real world domains. In complex domains
such as medicine these ontologies can contain thousands
of concepts. Examples of such large ontologies are the
NCI cancer ontology [5] with about 27.500 and the Gene
ontology [7] with about 22.000 concepts. Other examples
can be found in the area of e-commerce where product
classi�cation such as the UNSPSC or the NAICS contain
thousands of product categories. While being useful for
many applications, the size and the monolithic nature of
these ontologies causes new problems that a�ect di�erent
steps of the ontology life cycle.

Maintenance Ontologies that contain thousands of con-
cepts cannot be created and maintained by a single
person. The broad coverage of such large ontologies
normally requires a team of experts. In many cases
these experts will be located in di�erent organiza-
tions and will work on the same ontology in parallel.
An example for such a situation is the gene ontology
that is maintained by a consortium of experts.

Publication Large ontologies are mostly created to pro-
vide a standard model of a domain to be used by de-

velopers of individual solutions within that domain.
While existing large ontologies often try cover a com-
plete domain, the providers of individual solutions
are often only interested in a speci�c part of the over-
all domain. The UNSPSC classi�cation for example
contains categories for all kinds of products and ser-
vices while the developers of an online computer shop
will only be interested in those categories related to
computer hardware and software.

Validation The nature of ontologies as reference models
for a domain require a high degree of quality of the
respective model. Representing a consensus model, it
is also important to have proposed models validated
by di�erent experts. In the case of large ontologies it
is often di�cult if not impossible to understand the
model as a whole due to cognitive limits. What is
missing is an abstracted view on the overall model
and its structure as well as the possibility to focus
the inspection of a speci�c aspect.

Processing On a technical level, very large ontologies
cause serious scalability problems. The complexity
of reasoning about ontologies is well known to be
critical even for smaller ontologies. In the presence
of ontologies like the NCI cancer ontology, not only
reasoning engines but also modelling and visualiza-
tion tools reach their limits. Currently, there is no
OWL-based modelling tool that can provide conve-
nient modelling support for ontologies of the size of
the NCI ontology [5].

All these problems are a result of the fact that the on-
tology as a whole is too large to handle. Most problems
would disappear if the overall model consists of a set of co-
herent modules about a certain subtopic that can be used
independently of the other modules while still containing
information about its relation to these other modules.

� In distributed development, experts could be respon-
sible for an single module and maintain it indepen-
dently of other modules thus avoiding revision prob-
lems.

� Users of an ontology could use a subset of the over-
all ontology by selecting a set of relevant modules.
While only having to deal with this relevant part, the
relations to other part of the model is still available
through the global structure.

� Validation of a large ontologies could be done based
on single modules that are easier to understand. Be-
ing related to a certain subtopic, it will be easier to
judge the completeness and consistency of the model.
Validated modules could be published early while
other parts of the ontology is still under development.

� The existence of modules will enable the use of soft-
ware tools not able to handle the complete ontology.
In the case of modelling and visualization tools, the
di�erent modules could be loaded one by one and
processed individually. For reasoning tasks we could
make use of parallel architectures where reasoners
work on single modules and exchange partial results.

Recently, some proposals concerning the representa-
tion of modules and their connections have been made
[3, 6, 8] that propose languages and discuss issues like
the organization of modules and dependencies between
them. A problem that has not been addressed yet
concerns the creation of modules from existing on-
tologies. This problem we refer to as modularization
or partitioning is discussed in the remainder of this paper.

The key question connected to modularization is about
criteria for determining the assignment of concepts to
modules. This requires a good intuition about the nature
of a module. Intuitively, we can say that a module should
contain information about a coherent subtopic that can
be stand for itself. This requires that the concepts within
a module are semantically connected to each other and
do not semantically depend on information outside the
module. These considerations imply the need for a notion
of dependency between concepts that needs to be taken
into account. There are many di�erent ways in which
concepts can be related explicitly or implicitly. At this
point we abstract from speci�c kinds of dependencies and
use a general notion of dependency between concepts.
The resulting model of an ontology is the one of a
weighted graph O = hC; D; wi where nodes C represent
concepts and links D between concepts represent di�erent
kinds of dependencies that can be weighted according
to the strength of the dependency. There are many
di�erent ways in which concepts can depend on each
other. These dependencies can be re
ected in the de�ni-
tions of the ontology or can be implied by the intuitive
understanding of concepts and background knowledge
about the respective domain. Looking for an automatic
partitioning method, we are only interested in such kinds

of dependencies that can be derived from the ontology
itself. This need leads us to the central assumption
that dependencies between concepts can be derived
form the structure of the ontology. Depending on the
representation language, di�erent structures can be used
as indicators of dependencies. These structures can be
subclass relations between classes, other relations linked
to classes by the range and domain restrictions or the ap-
pearance of a class name in the de�nition of another class.

The paper is organized as follows. We �rst describe the
basic steps of our proposed method which includes the
creation of the dependency graph based on the ontology
structure and the determination of modules. In section II
we discuss the general approach and identify some prob-
lems. Based on the discussion we present an iterative
algorithm in section III that assigns concepts to modules
in such a way that minimal user input is required. We il-
lustrate the algorithm using a part of the UMLS semantic
network. We further discuss use cases for our partition-
ing method in section IV and conclude with an discussion
of the proposed method and some directions for future
improvements.

II. PARTITIONING METHOD

Our method consists of two tasks that are executed in
four independent steps. The �rst task is the creation of
a weighted graph from an ontology de�nition. This is
done in two steps: extraction of the dependency struc-
ture and determination of the weight of the dependency.
The second task concerns the identi�cation of modules
from the dependency graph. This task includes the detec-
tion of strongly related sets of concepts and the handling
of unassigned concepts. In the following we discuss the
techniques currently used in these steps.

A. Step 1: Create Ontology Graph

In the �rst step a dependency graph is extracted from
an ontology source �le. We implemented a PROLOG-
based tool that reads OWL and RDF schema �les using
the SWI semantic web library [9] and outputs a graph for-
mat used by the networks analysis tool pajek [2] that we
use for detecting related sets of nodes. The tool can be
con�gured to use di�erent kinds of dependencies. Cur-
rently it can extract dependencies corresponding to the
subclass hierarchy and dependencies created by the do-
main and range restrictions in property de�nitions. Fig-
ure 1 shows the dependency graph created from an OWL
version of the UMLS-semantic network using only the
class hierarchy.

B. Step 2: Determine Strength of Relations

In the second step the strength of the dependencies be-
tween the concepts has to be determined. Following the
basic assumption of our approach, we use the structure of
the dependency graph to determine the weights of depen-
dencies. In particular we use results from social network
theory by computing the proportional strength network
for the dependency graph. The proportional strength pij
of a connection between a node ci and cj describes the
importance of a link from one node to the other based on
the number of connections a node has (aij is the weight
preassigned to the link between ci and cj) [4]:

pij =
aij + ajiP

k
aik + aki

The intuition behind it is that individual social contacts
become more important if there are only few of them. In
our setting, this measure is useful because we want to
present that classes that are only related to a low number
of other classes get separated from them. This would be
against the intuition that classes in a module should be
related. Figure 2 shows the proportional strength network
for the UMLS dependency graph.

C. Step 3: Determine Concept Islands

The proportional strength network provides us with a
foundation for detecting sets of strongly related concepts.
For this purpose, we make use of the ’island’ algorithm
[1]. A set of vertices I � C is a line island in network
if and only if it induces a connected subgraph and the
lines inside the island are stronger related among them
than with the neighboring vertices. In particular there is
a spanning tree T over nodes in I such that

max
(u;v)2V;v 62T

w(u; v) < min
(u;v)2T

w(u; v)

This criterion exactly coincides with our intuition about
the nature of modules given in the introduction. The
algorithm requires an upper and a lower bound on the size
of the detected set as input. Figure 3 shows the result of
determining islands of a size between 5 and 15 nodes.

D. Step 4: Assign Isolated Concepts

Depending on the nature of the dependency graph it
may happen that some nodes cannot be assigned to an
island. In Figure 3 there are 6 of these unassigned nodes
marked with a zero (four concepts related to organiza-
tions as well as the concepts animal and invertebrate).
As our de�nition of a partitioning does not allow unas-
signed classes, we have to assign these concepts to a mod-
ules as well. The example shows that leftover nodes can

occur at di�erent places in the graph and are not neces-
sarily related. Therefore we chose assign them to existing
modules. The assignment is based on the strength of the
relation to nodes already assigned to a module. In par-
ticular leftover nodes are assigned to the island of a that
neighboring node they have the strongest they have the
strongest relation to. In cases where all neighboring nodes
are unassigned as well, these nodes are assigned �rst. The
concepts relating to organizations are assigned to module
2 (rooted at the general concept entity) and the concepts
animal an invertebrate are assigned to module 7 (organ-
isms).

E. Discussion

The di�erent steps described above lead us to a par-
titioning of the input ontology into modules that satisfy
the formal conditions mentioned in the previous section.
One of the main problems with the approach as described
above is the fact that we have to determine the size of
modules that we want to be generated. the reason is
that the optimal size of modules heavily depends on the
size and the nature of the ontology. In some preliminary
experiments we found a module size of one to ten per per-
cent of the size of the complete ontology works quite well
for some example ontologies that had between 1000 and
2000 concepts. This heuristic, however, did not work for
larger or more fragmented ontologies. In some cases a bad
choice of the upper and lower bound for the size of mod-
ules also led to an extremely high number of unassigned
nodes that in turn created quite large modules with little
internal coherence after reassigning them as described in
step 4.

III. ASSIGNMENT STRATEGY

In order to avoid the problems caused by a wrong choice
of upper and lower bond for the module size, we designed
an algorithm that iterates over steps 3 and 4 of the process
and generates ’natural’ islands that are not in
uenced by
the choice of a particular size. In the following we de-
scribe the algorithm and exemplify its e�ect using the
same example as above.

A. Iterative Algorithm

The idea of the iterative assignment algorithm is to
not prescribe the size of modules to be generated but to
let them determined solely by the island criterion given
in the last section. A way of doing this is to set the lower
bound to 1 and the upper bound to s � 1 where s is the
size of the complete ontology. Reducing the limit by one
forces the algorithm to split up the ontology in some way
as the complete model exceeds the upper size limit for an
island. Choosing a limit that is just one below the size

of the complete ontology does not further restrict the
selection of islands. This way we get the most natural
grouping of concepts into strongly dependent sets. Even
in this case where we do not restrict the size of island
it can still happen, that nodes cannot be assigned to
islands. Therefore we have to perform the extension
step afterwards in order to assign these nodes to a module.

Algorithm 1 Partition
Require: limit: integer
Require: ontology: graph
Require: counter:integer

current := ontology
if jcurrentj > limit then

min := 1
max := jcurrentj � 1
candidates := islands(min,max,current)
for all module 2 candidates do

Expand(module,current)
Partition(limit,module,counter)

end for
else

counter := counter + 1
for all c 2 current do

�(c) := counter
end forreturn counter

end if

As a result of this strategy the islands found by the
algorithm can signi�cantly di�er in size. In particular, we
often get large islands that cover most of the ontology. In
order to get modules of a reasonable size, we iteratively
apply the algorithm to islands that are too large to be
useful modules. Often this applies only for a single large
island, but there are also cases especially in the case
of very large ontologies where the algorithm has to be
applied recursively on di�erent parts of the ontology.
Nodes in islands that are small enough are assigned to a
unique number and form a module of the ontology.

Algorithm 1 shows the corresponding labelling algo-
rithm that takes a graph and labels the nodes of the graph
with numbers that correspond to a partitioning assign-
ment. The algorithm also needs the upper limit of the size
of a module as input in order to determine when to stop
the iterating. The counter is used in the recursive calls
to make sure that modules have unique numbers When
starting the iteration, the counter has to be set to zero.

B. Partitioning Example

We now illustrate the labelling algorithm described
above using the UMLS model we also used to describe the

di�erent steps of our method. We chose an upper limit
of 20 for the size of modules. For the relatively small ex-
ample model, the algorithm only needs three iterations to
determine modules. We discuss the result of the di�erent
iterations in the following.

Iteration 1 In the �rst iteration the algorithm already
determines three islands that are smaller than 20
(compare Figure 4 . These islands consist of concepts
related to biological active substances, di�erent age
groups as well as the subtree rooted at the concept
concept or idea. While it could be argued that bi-
ologically active substances could be included in a
larger module on substances the other two modules
and in particular the one about ideas and concepts
clearly contain concepts that are related and su�-
ciently di�erent from the other concepts for form a
module on their own.

Iteration 2 After removing the modules found in the
�rst step iterating steps three and four results in an-
other island of size lower than 20 namely the subtree
rooted at the concept organism (compare Figure 5).
This island is a good example of a very natural mod-
ule found by the algorithm as the di�erent kinds of
organisms clearly form a coherent subtopic within the
ontology.

Iteration 3 The third iteration already produces a par-
tition of the remaining concepts into islands that are
all of the required size thereby ending the iteration.
Figure 6 shows the result of the third iteration that
contains the following additional modules:

� Entity

� Organization

� Device

� Anatomical Structure

� Fully Formed Anatomical Structure

� Substance

� Organic Chemical

Most of these modules make sense, the only ques-
tionable results are the separation of fully formed
anatomical structures from anatomical structures
and the separation of organic chemical from sub-
stance. We will analyze and discuss these results in
more details in the conclusions.

IV. CONCLUSIONS

We proposed a practical approach for ontology parti-
tioning that works on the structure of the ontology and
can be completely automated. Looking at the result of the

example application we get a �rst idea about the strengths
and weaknesses of the algorithm. We can see that the al-
gorithm generates some modules that meet our intuition
about the nature of a module quite well. In some cases
subtrees that could be considered to form one module are
further split even if the complete subtree does not exceed
the upper size limit. This can be explained by an unbal-
anced modelling of the ontology as subtrees tend to be
split up at concepts with a high number of direct sub-
classes compared to its sibling classes. This phenomenon
often re
ect a special importance of the respective concept
in the ontology that also justi�es the decision to create a
separate model for this concept. The iterative strategy
frees us from determining a lower bound for the size of
modules. As a result, however, the algorithm sometimes
create rather small modules. In our example the manufac-
tured objects module for example only contains four con-
cepts. This normally happens when the root concept of a
small subtree is linked to a concept that has many direct
subclasses. For the result of the partitioning method these
subsets are often pathological because coherent topic are
split up into a number of small modules that do not really
constitute a sensible model on their own.

V. References

[1] V. Batagelj. Analysis of large networks - islands.
Presented at Dagstuhl seminar 03361: Algorith-
mic Aspects of Large and Complex Networks, Au-
gust/September 2003.

[2] V. Batagelj and A. Mrvar. Pajek - analysis and
visualization of large networks. In M. Jnger and
P. Mutzel, editors, Graph Drawing Software, pages
77{103. Springer, 2003.

[3] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Ser-
a�ni, and H. Stuckenschmidt. C-owl: Contextualizing
ontologies. In Proceedings of the 2nd International
Semantic Web Conference ISWC’03, Lecture Notes
in Computer Science, pages 164{179, Sanibal Island,
Florida, 2003. Springer Verlag.

[4] R.S. Burt. Structural Holes. The Social Structure of
Competition. Harvard University Press, 1992.

[5] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim
Hendler, Jim Oberthaler, and Bijan Parsia. The na-
tional cancer institute’s thesaurus and ontology. Jour-
nal of Web Semantics, 1(1), 2003.

[6] H. Stuckenschmidt and M. Klein. Integrity and change
in modular ontologies. In Proceedings of the Interna-
tional Joint Conference on Arti�cial Intelligence - IJ-
CAI’03, pages 900{905, Acapulco, Mexico, 2003. Mor-
gan Kaufmann.

[7] The Gene Ontology Consortium. Gene ontology: tool
for the uni�cation of biology. Nature Genetics, 25:25{
29, 2000.

[8] R. Volz, A. Maedche, and D. Oberle. Towards a mod-
ularized semantic web. In Proceedings of the ECAI’02
Workshop on Ontologies and Semantic Interoperabil-
ity, 2002.

[9] J. Wielemaker, G. Schreiber, and B. Wielinga. Prolog-
based infrastructure for RDF: performance and scal-
ability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03,
Sanibel Island, Florida, pages 644{658, Berlin, Ger-
many, october 2003. Springer Verlag. LNCS 2870.

Fig. 1: Class hierarchy graph for the entity-related part of the UMLS semantic network

Fig. 2: Relative Strength Networks for the Class Hierarchy Graph

Fig. 3: Islands of size between 5 and 15 (10 Islands, 6 unassigned nodes)

Fig. 4: Result of the �rst Iteration

Fig. 5: Result of the second Iteration

Fig. 6: Result of the third Iteration

