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Abstract. We present a method to calibrate and validate ob-1 Introduction

servational models that interrelate remotely sensed energy

fluxes to geophysical variables of land and water surfaces.

Coincident sets of remote sensing observation of visible and?bservation models are widely used for estimating geophys-
microwave radiations and geophysical data are assemblelgal variables of land and water surfaces from remote sens-
and subdivided into calibration (Cal) and validation (Val) ing data. The simplest form is the empirical linear model,
data sets. Each Cal/Val pair is used to derive the coefficientyvhereby coefficients are derived from regressing measured
(from the Cal set) and the accuracy (from the Val set) of thegeophysical variables with observed radiation. In most cases,
observation model. Combining the results from all Cal/Val these empirical models have some physical meaning and are
pairs provides probability distributions of the model coeffi- Often used because of their simplicity. Examples of land re-
cients and model errors. The method is generic and demorote sensing applications are available from active/passive
strated using comprehensive matchup sets from two very dificrowave remote sensing of soil moisture (&gpku et al,
ferent disciplines: soil moisture and water quality. The re-2003. Similarly, water quality applications make use of
sults demonstrate that the method provides robust model cdhe Lambert-Beer law to model the spectral absorption of
efficients and quantitative measure of the model uncertaintylight by suspended and dissolved materials as a linear func-
This approach can be adopted for the calibration/validationfion of their concentrationdX'Sa and Miller 2005 Robin-

of satellite products of land and water surfaces, and the reSONn 2004 Salama et al.2004. Currently, such strate-

sulting uncertainty can be used as input to data assimilatio®iés are proposed for NASAs Soil Moisture Active Pas-
schemes. sive (SMAP) mission combined radar/radiometer soil mois-

ture product Entekhabi et aJ.2010, the Netherlands’ au-
tomated monitoring network (IN PLACE: Integrated Net-
work for Production and Loss Assessment in the Coastal
Environment), and the NASA Moderate Resolution Imag-
ing Spectroradiometer (MODIS) mission ocean colour prod-
ucts McClain et al, 2004). This type of model is developed
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2196 M. S. Salama et al.: CalVal of geophysical observation models

from comprehensive sets of concurrent remote sensing ob2 Data sets

servations and field measurements, hereafter referred to as

matchups. Ideally, the validity of any model is tested against2.1 Land application — soil moisture
an independent data set. Therefore, the available matchups , i
are often subdivided into independent sets used for derival € 2002 OPE campaign focused on the active and pas-
tion of the model coefficients (calibration) and for accuracy SIV& microwave remote sensing of soil moisture throughout
assessment (validation). Most studies subdivide matchupghe corn growth cycle. Part of the field activities consisted

into so-called calibration/validation (Cal/Val) sets based on®f Weekly C- (4.75GHz) and L- (1.6 GHz) band® mea-
a statistical or regional resembland@eglin et al, 2008, surements with the NASA/George Washington University

but without a clear directive on its effect for model accu- (EWU) truck-mounted scatterometer. Further in support of
racy. This is most likely the case because there has been uf1€S€ remote sensing observations, an extensive ground sam-
til now no objective approach for subdividing Cal/Val sets. pling was conducted that included soil moisture. Full details

Many combinations of matchups can be used, specifically®” the_data sets collected during the field campaign can be
when using a large number of points. Each Cal/Val pair hagoUnd in Joseph et al(2010ab). Here, we only make use
the same probability of occurrence, but provides different re-°f the 75 matchups between the L-band HH polarizéab-
sults. As such, the selection procedure not only impacts th&€rved from a 35view angle and the measured soil moisture,
model's accuracy, but also the accuracy assessment. On ti{iereafter referred to as the O?D_Eatchups. The* observa-
other hand, the selection of Cal/Val pairs can also be thoughtions are corrected for vegetation effects through application
of as a stochastic sampling from a known probability distri- °f method described idoseph et al2008, which results in
bution (e.gWang et al, 2005 Salama and Stej2009. Such the o° representative for a bar_e soil surfgce. Many studies
stochastic treatment of matchups within the Cal/Val context(€-9-Ulaby etal, 1984 Champaign and Faivr@997 Njoku
has not yet been investigated in the field of Earth observa®t @l: 2009 have demonstrated the following linear relation-
tion, but has the advantage of providing a quantitative uncerSNiP between soil moisture amd observed under the same
tainty measure for both the model coefficients and derived@nd cover conditions:
geophysical variables.

In this paper we follow a stochastic approach for selecting

Cal/Val sets and demonstrate its use for quantifying uncery,here sm s the soil moisture conten{m~3), « is the slope

tainty. The proposed approach combines the bootstrappingns m~-3dB~1) representing the° sensitivity to soil mois-
method ofEfron and Tibshiran{1993 with the Jackknife (. andp is the offset (M m~3) accounting for the base-
technique (which leaves out one, or more, observation) angine effects, such as surface roughness, topography, and land
adapts the sample size at each iteration. Bootstrapping angdyyer. Both ther° sensitivity to soil moisture and the base-
Jackknife methods are usually used to provide the standargl, o effects depend on the sensing configuration (e.g. wave-

error of the derived “plug in” estimate&fron and Tibshi- angth polarization, view angle) as well as the land surface
rani, 1993 and have been employed for validating observa-(e_g_ surface roughness, land cover, topography).
tion models (e.gPetus et a).201Q Melin, 201Q Salama and ' ’

Su 2010. However, the combination of bootstrapping with- 2.2 Water application — chlorophyll a absorption
out replacement with Jackknife sampling and changing the
sample size at each iteration is novel and provides not onlyThe NASA bio-Optical Marine Algorithm Data (NO-
the accuracy of regressed estimates, but also the underlyinglAD, version 2a.) set includes measurements of spectral
probability distribution of regressed estimates and their er+emote-sensing reflectances, spectral marine absorption and
rors. backscattering coefficients, and concentrations of water con-

The developed method samples from a complete matchuptituents YWerdell and Bailey 2005. Here, we use only
set to populate many sets of Cal/Val pairs. Each pair ischlorophylla (chl @) measurements derived from high per-
used to derive the model coefficients and their associatedormance liquid chromatography (HPLC). The observed ra-
errors, from which the probability distributions of the cal- diance spectra and matching HPLC-derived aldoncen-
ibration and validation result is determined. In this papertration consist of 424 matches, hereafter referred to as the
the method is demonstrated for two data sets: (i) L-bandNOMAD matchups. The general practice is to derive the ab-
(1.6 GHz) backscatters() — soil moisture matchups col- sorption coefficients from the observed radiance spectra us-
lected during the 2002 OPHEOptimizing Production Inputs  ing semi-analytical inversion models (e\jan Der Woerd
for Economic and Environmental Enhancement) campaigrand Pasterkam®008 Maritorena et al.2002. Lambert-
(Joseph et al2010ab), and (ii) matchups of chlorophyi Beer law is then employed to estimate the absorption per unit
concentrations and derived absorption coefficients obtaineanass from derived absorption coefficients and measured con-
from the NASA bio-Optical Marine Algorithm Data (NO- centrations.
MAD, version 2a.) \Werdell and Bailey20095. The chla absorption coefficients at the blue barg &

440 nm) are derived from the observed radiances using the

SM=aoc° +b, (1)

Biogeosciences, 9, 2193201, 2012 www.biogeosciences.net/9/2195/2012/
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Fig. 1. Determination coefficient, R between measured and observed valugap$oil moisture andb) chl a absorption coefficient. The
solid line is the 1 1 reference line. Light-grey coloured points represent the optimal Cal/Val pairs.

cross entropy method as reporte@@ama and Sheg2010.

The Cal/Val sets are derived from thavailable matchups

Following the Lambert-Beer law, the absorption coefficient following two rules: (i) both Cal and Val sets must contain at
of chl a is described as a linear function of the concentra-least 7 samplesin = 7), and (ii) each sample is used once,

tion (D’Sa and Miller, 2005 Eq. 10):
dchl a(A0) = a:ma (20)Cechia +8(10) (2)

whereagn, (Lo) is the absorption coefficient of cal(m—1)
at the wavelengthp (nm); aj,,(*o) is the specific absorp-

tion coefficient that describes the absorption per unit weigh

(m?mg1); Cena is the concentration (mgmn?); 8(io) is
an offset related to sensor noise, retrieval erraggff, (Ao),

(m~1) and the ratio of accessory pigments that are produce@kmi“

either for calibration or for validation (i.e. sampling with-
out replacement). The minimum sample siZgyi{ = 7), is
selected according to the method@dhen et al(2003, to
achieve about 35 % error in the derived slope at 95 % of con-
fidence. This value, 35 %, corresponds to the desired level of
accuracy for satellite-derived Chlproducts McClain et al,
20086 Bailey and Werdell2006.

The number of Cal/Val pairs is computed as=n —
+ 1. Now, for eachi = [kmin, n — kmin], the method

in different conditions of growth (nutrients and irradiance), forms & Cal/Val pair by increasing/decreasing the number of

e.g. “xanthine” that acts as sun protection.

The two unknowns in Eq2j, a},,, (o) andsé(ro), are es-
timated from regressingch, (Ao) versusCehi, USINg linear-
regression model. In practice, EQ) €ould deviate from lin-

earity depending on the packaging effect, cell sizes, physiol—npq -
ogy and species composition of the phytoplankton commu

nity (Bricaud et al. 1995. For example, the effect of pack-

aging on the variability o}, ,(1o) is smaller in open olig-

otrophic oceans than in upwelling regions or coastal areas
where larger phytoplankton cells are abundant. Hence, th
deviation of Eq. 2) from linearity can then be understood

based on the water body investigated. The linearity of Bq. (
for the used data sets is justified in Segtrig. 1b.

3 Method

data points in the sets (forming the Jackknife sample). The
number of possible combinations, nptor thei-th Cal/Val
n!

pair is
n
<ki>=ki!(n—ki)! ®)

wheren is the total number of data points, is the number
of samples in the Cal or Val set during th¢h iteration. For
data sets witlh > 20 (holds for both the OFEand NOMAD
matchups), the number of possible combinations (njx
?arge (e.g. 1.9848 E9 for 75 over 7 in OBEand there-
fore npg is reduced to the number of used combinations,
nug, by bootstrapping nuc= 10log npg combinations from
npgG. In principle, each combination nubas the same prob-
ability of occurrence; therefore, the uniform distribution is
used to select nueinique combinations from npgootstrap
method ofEfron and Tibshiranil993. Each formed Cal/Val

The method randomly subdivides the data into many sets (oset is used for the calibration and the subsequent validation
Jackknife samples) of Cal/Val pairs. The Cal set is used toof the empirical model. The validation is always performed
derive the coefficients of the observation model, whereas thaising type-Il model Bevington and Robinsqr2003, while

Val set is employed to check the accuracy of the model. Thehe calibration depends on the model, e.g. for linear model
results are probability distributions of model coefficients andwe use the type-l regression. The accuracy of the empiri-
their prediction uncertainties. cal model is assessed using two statistical measures: (i) the

www.biogeosciences.net/9/2195/2012/ Biogeosciences, 9, 21852012
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mean absolute error between derived and measured valu@able 1.Estimated parameters of the best4ibcation-scale distri-
(MAE) and (ii) the determination coefficienR(?), The al- bution to model coefficients and MAE uncertainties. The degree of
gorithm produces three probability distributions (PDs): two fitis expressed in standard error.

for the calibration coefficients, RDand one for the accu-
racy measure, PD The above method is implemented in the OPE® matchups
following model, called GeoCalVal:

" o v
1. Takek; samples for the Cal set and-k; for the Val set; slope [P m—3dB~1]  34.0870 1.3729 2.7342
standard error 0.0160 0.0186 0.0882
2. Compute npcfrom Eq.3 and nug = 10log npg; intercept [n? m—3] —26.5426 0.2137 2.7668
. o . standard error 0.0025 0.0029 0.0887
3. Use t_he ynn‘orm distribution to generate pumique MAE [m3m~3] 0.0244 0.0025 3.3380
combinations of Cal sets and their complements for Val  gtandard error 3E05 3E_05 0.1128
sets; NOMAD matchups
4. Compute model coefficients from the calibration set and . - )
store them in PR slope [n?mg~Y] 0.0304 00013  1.9722
5. Use the new model coefficient to estimate the geophys- Standard error 2.6E6 3E-6 0.0085
ical variables from the Val set; intercept [nT1] 0.0195642 0.00128274  2.3505
standard error 2.6E06 3E-06 0.0114
6. Compute the uncertainty of step 5 and store them in MAE [mgm~3] 0.6043 0.0534 3.4957
PDy; standard error 0.0001 0.0001 0.02012

7. Increase; by one and repeat steps 1 to 7.

where the subscripts “cal”, “val” and “data” are for the cali-

4 Results and discussions bration, validation and original data sets, respectively.
. . Equation @) and the equak? for both Cal and Val sets
4.1 Optimal Cal/Val pairs (light-grey coloured points in Fig. 1) are the criteria that

o o 5 should be used to determine the sample size of the optimal
The determination coefficient®=, of the Cal set are plotted  ~ /4] set.

against those of the Val set in Fig. 1 for all possible combina-

tions. The data point position with respect to the x-axis is ang 2 The underlying distribution

indication for the ability of the model to fit the matchups of

the Cal set, whereas its position with respect to the y-axis repFigure 2 shows the derived probability distributions (PDs)

resents the model’s performance in deriving the geophysicabf model coefficients, PE and the associated uncertainties,

variables, here soil moisture and Ghabsorption coefficient  PD,, for the two matchup sets, OPBEnd NOMAD. The re-

(achia(r0)). Obviously, both the Cal and Vat? depend on  sulting PDs of model coefficients have high kurtosis (acute

the number of data points, reaching their maxima when allpeak around the mean) values and flat tails, i.e. more prone

data points are included, which suggests for the Cal sets thab outliers. Different values dfmin were tested (not shown),

the used observation models in Eqt) &nd @) are indeed  and the results show that all derived PDs from both data

linear. sets (OPE and NOMAD matchups) can be described by
Both OPE and NOMAD matchups produce a narrow re- the t-location-scale probability distribution (the black lines

gion of Cal/Val pairs, for which the calibratioR? is similar  in Fig. 2) of the form Evans et a.1993

to validation R?, about 0.75-0.85 (light-grey coloured data

points in Fig. 1). In othe.r words, within these Cal/Val sub- I (0.5v + 0.5) [ B (x _ M>2} (0.50+0.5)

divisions the model validity and the accuracy assessmentar¢g = —————-| 1 (5)

balanced. This region defines the optimal setups for subdivid- o/l (0.5v)

ing matchups into Cal/Val sets. The underlying mechanisms L

of the data points in this region are investigated further. WeWhere“ o andv are the mean, standard de_v lation and shape

found that the optimal Cal/Val sets are obtained when thefaCto.r (or t_he degree of freedom), r_espectl\_/ely. The gamma
) . . . functionT is equivalent to the factorial functiorl extended

arithmetic meany, and dispersiong, of each set are equal

to those of the original data set. As such, the optimal CaINaIto non-integral arguments. The dlstrlbuyon in B8} heans
) S . o that the standard variates of the data points follow the Student
pair satisfies the following condition:

t distribution. The function in EqX5) is fitted to the distribu-

o

Meal = Mval = Mdata tions of derived model co_efficient_s and_ MAEs by va_lrying fthe
AND (4) parameterg., o andv, which are listed in Table 1 with their
Ocal = Oval = Odata, standard errors.

Biogeosciences, 9, 2193201, 2012 www.biogeosciences.net/9/2195/2012/
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Fig. 2. Derived probability distributions of model coefficierfts b, d, e)and associated uncertaintigs f) for the OPBE data (upper panels)
and NOMAD matchups (lower panels). The solid lines are the fits by Bqvith coefficients given in Table 1.

The reason for having flat tails in the PDs of Fig. 2 is due 4.3 Effect of sample size
to the fact that the accuracy of model coefficients depends on
the size of the Cal set. In other words, for a large Cal set we
expect to have higher accuracy as most data points are used; _ _ _ _ _
however, this makes them also sensitive to outliers in the VafFiXing the number of sampling points will result in PD with
set, because most of the data points have been used to cred@ver Kurtosis, i.e. the PD will be less peaked. That means
the Cal set. For a linear observation model, t4peobability ~ @dapting the sample size will increase the accuracy of the
density function should, thus, be employed to describe thelerived parameters (slope and intercept in this case), as the
distributions PR and P, regardless of the original distri- dispersion will also be reduced. The importance of adapt-
bution of geophysical measurements or remote sensing ot'9 the size of the sample is related to the common practice
servations. For example, the NOMAD matchups set has 4n calibration and validation of Earth observation products.
log-normal distribution, while OPEs close to uniform dis- Here, we search for the optimal division (thus, sample size)
tribution (not shown here) for measurements, residuals an@f the Cal/Val sets, such that the Cal set produces EO-model
observations. Yet, the distribution of derived coefficients fol- COefficients that enable generating EO products (estimated
lows, for both data sets, Eq5)( This is basically a con- from the Val set) with an accuracy satisfying the mission re-
firmation of previous statistical studies, for exam@limgh  duirements. Hence, one of the statistical questions addressed
(1988 showed that the normality distribution is not always a within our manuscript is what are the criteria to define the op-
valid assumption for linear models, and thdistribution is timal sample size needed for calibrating observation models
broader and therefore better suited. In this regard, having th€0 that it produces EO products within the designed mission
result of our sampling scheme reproducing tfuistribution ~ @ccuracy and within the accuracy pf th(_e callbratlon_ itself?
is another validation of the correctness of the GeoCalVal. The-0r €xample, we can condition the iterative scheme in Geo-
proposed method reveals the shape of the underlying probalVal to stop when the criteria defined in Settl are met
ability distribution without any a priori assumption on its (these are, Eqd and coloured points in Fig. 1). This will
parameters (e.g. degree of freedom). For non-linear model§owever be at the cost of losing information on the proba-
there is no straightforward theoretical approximation of thePility distributions of regression coefficients, their errors and
expected probability distribution. If we would follow the the- the shape of the underlying distributions. This information
ory, we would have no means to justify our assumption on thec@n only be derived if we change the sample size and study its
underlying probability distribution and its parameters. The gffept on the accuracy of calibration and validation (as shown
only objective approach is by evaluating all possible combi-in Fig. 1). Thus, GeoCalVal makes use of the proposed sam-

nation sets as is proposed through the GeoCalVal method. Pling scheme, because only through this approach we can,
in an objective manner, identify the probability distributions

of coefficients and associated uncertainties of observation

www.biogeosciences.net/9/2195/2012/ Biogeosciences, 9, 21852012
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models through optimal divisions of the data set into Cal andperformance of observation model for geophysical variables.
Val pairs. GeoCalVal combines two traditional re-sampling methods
(bootstrapping and Jackknife) and adapts the sample size at
each iteration. This combination of bootstrapping with Jack-
knife sampling and changing the sample size at each test iter-

The detailed knowledge on the PDs of uncertainties and Unzgi is novel and provides not only the accuracy of regressed

certainty sources embedded within the remote sensed geQgiimates and associated errors but also their underlaying dis-
physical variable (shown in Fig. 2) can be used as inpulyp tions, The GeoCalVal tests all probable combinations of
for data assimilation schemeRdichle 2008. On the other /5| setup and considers the effect of changing the sample

hand, these PDs can also be employed to derive the prObE%‘lze on the accuracy of regressed estimates. The end results

bility d'St,r'bUt',on I(]';)f.uncertamty within the rgmoti senlsw_]g are probability distributions of model coefficients (calibra-
observations itself, i.e. one PD per observation. The re at'on'tion) and uncertainties in the estimates (validation).

ship between measurements and observations is described byGeoCaIVaI is applied to two matchups sets, which shows
a model of the formY = f (&, X), in which ® is the set that
of n model coefficientsg = [¢1, ¢2...¢,], X is the set ofn
geophysical measurements (with> »n) andY is the cor-
responding remote sensing observations. Assuming that the
fluctuations in the measured quantity, and derived model
coefficients @, are uncorrelated, we approximate the second - the coefficients and associated uncertainties of linear
moment using the truncated Taylor series expansion: observation models follow thielocation scale distribu-
tion, i.e. the distribution of their standard variate follows
(6) the Student distribution;

4.4 Application of the GeoCalVal model

— GeoCalVval provides an optimal setup for subdividing
matchups into Cal/Val sets;

n
2__ .22 2 2
0y = wioy + ) w0,
i=1

— the derived PDs provide complete information on the

whereuw is the partial derivative of with respect to the mea-
surement and each model coefficieng;. The termsg2,
are the corresponding variances. For the linear m@del

variations of model coefficients, their uncertainties and
the accuracy of observations, which can be employed in
time series analyses and data assimilation schemes;

a x X + b, the uncertainty in Eq.6) becomes? = a®0? +

x%02 + of2. The coefficientz and the uncertainties termg

and ag are quantified from the derived probability distribu-
tions of model coefficients, RDMeasurement uncertainty,
oxz, is either assumed (e.g. NOMAD matchups) or estimated
from available measurements (e.g. GPHn the NOMAD
data set, the concentrations of Ghlvere estimated using
high-performance liquid chromatography (HPLC) method.
Many studies Claustre et a).2004 Hooker et al. 2005
found that the error in HPLC estimation of Cal on aver-
age, varies between 7% and 25 %. On the other hand, each
observation site in the OPElata set contains 21 soil mois- AcknowledgementsThe authors would like to thank NASA Ocean
ture measurements. The standard deviation of these measuriology Processing Group and individual data contributors for
ments, per observation, can be used as a proxy,foEsti- maintaining and updating the SeaBASS database. This work was
mated values ofy, a, oa andoy, form the inputs to Eq.) to supported in part by the _Ear_th and Lif_e S_c_iences (ALW) divisio_n
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— the optimal Cal/Val sets are obtained when the arith-
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— the presented method is applicable to any data set and
can be adjusted to any observation model regardless of
the application area, e.g. water quality or surface hy-
drology.
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