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Forecasting macroeconomic variables using

collapsed dynamic factor analysis

Falk Bräuning and Siem Jan Koopman ∗

VU University Amsterdam, Department of Econometrics

Tinbergen Institute Amsterdam

April 18, 2012

Abstract

We explore a new approach to the forecasting of macroeconomic variables based on

a dynamic factor state space analysis. Key economic variables are modeled jointly with

principal components from a large time series panel of macroeconomic indicators using

a multivariate unobserved components time series model. When the key economic

variables are observed at a low frequency and the panel of macroeconomic variables

is at a high frequency, we can use our approach for both nowcasting and forecasting

purposes. Given a dynamic factor model as the data generation process, we provide

Monte Carlo evidence for the finite-sample justification of our parsimonious and feasible

approach. We also provide empirical evidence for a U.S. macroeconomic dataset. The

unbalanced panel contain quarterly and monthly variables. The forecasting accuracy

is measured against a set of benchmark models. We conclude that our dynamic factor

state space analysis can lead to higher forecasting precisions when panel size and time

series dimensions are moderate.

1 Introduction

Forecasting economic growth is a challenging task and it requires a good understanding of

both economic theory and dynamic econometric modeling of macroeconomic and financial

time series. The methodological development of economic forecasting is therefore still in

process. In addition, the different crises since the collapse of Lehman Brothers in 2008

have given some ammunition to policy makers to review their methodology of forecasting

∗Contact: f.brauning@vu.nl and s.j.koopman@vu.nl. We would like to thank James Mitchell, our
discussant at the 8th IIF Workshop 2011 on ’Forecasting the Business Cycle’ at the Banque de France in
Paris, for his valuable comments.
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macroeconomic time series. This paper aims to provide a contribution to this debate by

considering new methods for forecasting economic time series and by presenting empirical

evidence for the U.S. economy.

We propose a collapsed dynamic factor analysis for the forecasting a target variable vec-

tor using information from many predictor variables. The dynamic factor model is collapsed

by applying a dimension reduction on the high dimensional vector of predictors which we

do not aim to forecast. A typical dimension reduction method that is used in this context

is the principal components technique. We then analyse the target variable jointly with the

collapsed vector of predictors by means of a multivariate unobserved components time series

model that is represented as a linear Gaussian state space framework. The uncobserved

components are all present in the equation for the target variable vector but a subset of the

components are specifically linked to the collapsed vector of predictors, typically the prin-

cipal components. Hence the information from the cross-section and time dimensions are

accounted for simultaneously in the model. Due to the application of the dimension reduction

technique, the model is far more parsimonious than the dynamic factor model specification

for all series in the macroeconomic panel. It further allows for a flexible parametrization of

the covariance structure in the idiosyncratic part of the target variable vector. The unknown

parameters can be estimated using the method of maximum likelihood for which the loglike-

lihood function is evaluated by the Kalman filter. The proposed method can be implemented

as a two-step procedure where principal component analysis produces first-step factor esti-

mates that are in a second-step jointly modeled with the target variable in the state space

framework. It combines principal component analysis and maximum likelihood estimation.

The state space framework also allows for an unified and easy-to-implement treatment of

time series analysis. Practically relevant issues such as the forecasting with mixed data fre-

quency, nowcasting quarterly GDP from monthly macro panels, factor smoothing and the

treatment of so-called jagged edges can be implemented straightforwardly.

Our modeling approach relates to several recent developments in dynamic factor analysis

and in forecasting based on large panels of macroeconomic variables. The early contribu-

tions in the development of dynamic factor analysis have been recently reviewed by Stock

and Watson (2006a), Breitung and Eickmeier (2006) and Bai and Ng (2008). Our approach

is motivated by the diffusion indices of Stock and Watson (2002a, 2002b) . We adopt their

use of principal components in the modeling of a vector of target variables. However, in our

new modeling approach we analyse the target and the principal component variables simul-

taneously in a multivariate unobserved component time series model. A similar approach

is taken by Doz, Giannone, and Reichlin (2011) who propose a two-step estimation method

that is based on a dynamic factor model with the factor loadings set equal to the eigenvectors

associated with a set of principal components. In the first step, the principal components

are computed and its dynamic properties are estimated by means of a vector autoregressive
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model. In the second step, factor estimates and forecasts are obtained from Kalman filter

methods applied to a model with the eigenvectors as factor loadings and with autoregressive

coefficient matrices for the factors set equal to those estimated from the principal compo-

nents. Doz, Giannone, and Reichlin (2011) provide the asymptotic properties of the Kalman

filter estimates and apply the model to nowcasting quarterly GDP with monthly variables

that are released in a non-synchronized dating scheme. The Kalman filter estimates have

exploited the factor dynamics and it is therefore expected that the resulting factor estimates

are more efficient compared to principal components estimates.

Our approach is distinctive from the approach of Doz, Giannone, and Reichlin (2011)

since we adopt a simultaneous model for the target variable, the principal components and

the unobserved dynamic factors, and we estimate all parameters in this parsimonious model

by the method of maximum likelihood. In this setting we aim to capture all cross-sectional

and time information in an optimal way. The idiosyncratic parts of the target vector series

are specified explicitly and estimated jointly with the common factors. Hence we prevent

the problem that factors estimated from a large macroeconomic panel might be irrelevant

to the forecasting target.

A Monte Carlo experiment illustrates the forecasting performance of the collapsed model

and compares it with forecasts from models which include principal components or other

factor estimates as predictors. We find that the collapsed factor model outperforms standard

methods in terms of mean square forecast errors, specifically for models where irrelevant

factors for the target series are included and where macroeconomic panels have only small

time and cross-sectional dimensions. These are cases which seem in particularly relevant for

small countries where macro panels are less extensive and for institutions where the means

to maintain large databases for forecasting are not available.

The remainder of the paper is organized as follows. In the next section we review principal

components analysis and dynamic factor state space analysis. We also establish notation

and discuss some methods in detail for future references. In section 3, we introduce our new

method of a collapsed dynamic factor analysis. Issues related to forecasting with mixed data

frequencies, nowcasting quarterly variables using panels of monthly macroeconomic time

series, factor smoothing and treating data with jagged edges are discussed in detail. The

results of a Monte Carlo study is presented in section 4. Empirical evidence is given in section

5. We find that our feasible methods do not compromise in its forecasting performance

when compared with other methods. In most cases the collapsed dynamic factor model

outperforms benchmark and competitor models. Section 6 concludes.
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2 Review of dynamic factor models

2.1 Static and dynamic model specifications

Assume that observation xit is for variable i observed at time t with i = 1, . . . , N and

t = 1, . . . , T . The variables are part of a large panel with cross-section dimension N and

time series length T . Observations in the panel may be missing. Dynamic factor models

assume that the time series properties for each variable in the panel rely on common and

idiosyncratic unobserved components. The common component is typically represented by

a small set of dynamic factors which drive the bulk of correlations both in the cross-section

and time series dimensions. The static representation of a factor model is given by

xt = ΛFt + et, t = 1, . . . , T, (1)

where xt = (x1t, . . . , xNt)
′, Ft is a vector of r << N common factors, Λ = (λ′1, . . . , λ

′
N)

′ is an

N×r matrix with λi the 1×r vector of factor loadings for variable i, and et = (e1t, . . . , eNt)
′

is a vector of idiosyncratic components or errors. In the remainder of the paper we assume

that prior to the analysis all time series in the panel are demeaned and transformed to

stationarity. We also do not consider the inclusion of regressors and constant terms in the

model although the inclusion of these terms is a straightforward extension of our analysis.

Since the processes for Ft and et are uncorrelated at all leads and lags, the covariance matrix

of xt is given by

Σx = ΛΣFΛ
′ + Σe.

The factors and factor loadings are only identified up to a pre-multiplication of an invertible

matrix. We assume the usual identifying restriction ΣF = Ir so that Σx = ΛΛ′ + Σe. This

restriction fixes the scaling of factors up to their multiplication by an orthonormal matrix.

In the dynamic factor model literature, different names are used to refer to the model

(1) when different structures are imposed on the variance matrix Σe. When Σe is diagonal,

the idiosyncratic components are cross-sectionally uncorrelated and the covariances between

the variables in the panel are due the common factors. This model is usually referred to as

an exact factor model. When a limited degree of covariance structure in et is allowed, the

model is often referred to as an approximate factor model; see, for example, Chamberlain and

Rothschild (1983). The relation between xt and Ft in (1) is static in the sense that current

xt is related to current Ft. The dynamic properties for xt are introduced by imposing time

series processes for Ft and et. A popular dynamic specification for Ft is given by the vector

autoregressive (VAR) process for some lag order pF as

Ft = Φ1Ft−1 + . . .+ ΦpFFt−pF + ut, t = 1, . . . , T, (2)
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where Φi is the r × r autoregressive coefficient matrix for i = 1, . . . , pF and ut is the r-

dimensional disturbance vector for which each element is identically and independently dis-

tributed (i.i.d.) with zero mean and variance matrix Σu. The idiosyncratic vector component

is also assumed to follow a VAR processes of order pe and represented by

et = Γ1et−1 + . . .+ Γpeet−pe + vt, (3)

where Γi is an N ×N diagonal autoregressive coefficient matrix for i = 1, . . . , pe and vt is an

N -dimensional i.i.d. random vector with mean zero and variance matrix Σv. Both dynamic

specifications can be modified in many different ways. For example, moving average terms

can be added to the specifications.

In contrast with the static representation, the dynamic representation of a factor model

is given by

xt = Λ0Ft + Λ1Ft−1 + . . .+ ΛsFt−s + et, (4)

where Λj is an N × r matrix of factor loadings for j = 0, 1, . . . , s for some maximum lag

order s and disturbance vector et has the same properties as in (1). This model relates xt

to both current and lagged factors Ft, Ft−1, . . . , Ft−s. By adding moving arverage terms to

this specification so that the lag order s is effectively infinite, the model is referred to as a

generalized dynamic factor model; see, for example, Forni, Hallin, Lippi, and Reichlin (2000,

2005) and Forni and Lippi (2001).

The dynamic representation of the factor model can also be represented by the static

specification (1). We define

F+
t =













Ft

Ft−1

...

Ft−s













, Λ+ = [Λ0,Λ1, . . . ,Λs] ,

so that we can represent (4) as xt = Λ+F+
t + et which is the static model (1). Hence

we can adopt the static form in many general settings and for many purposes including

macroeconomic forecasting. The estimation of the parameters and of the factors in the

static model are straightforwardly carried out using time domain methods. We therefore

will concentrate on the static factor representation in the developments below.

2.2 Principal component analysis

An important motivation for a dynamic factor analysis based on the static model (1) is to

extract and to forecast the common factors Ft given the data x1, . . . , xT . Stock and Watson

(2002a, 2002b) propose a non-parametric method based on principal component analysis
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in the time domain; see also the references in Breitung and Eickmeier (2006). Denote the

matrix of unobserved factors F = (F1, . . . , FT ), factor loadings matrix Λ = (λ′1, . . . , λ
′
N)

′ and

N × T data matrix X = (x1, . . . , xT ) where xt = (x1t, . . . , xNt)
′ for t = 1, . . . , T . The static

model (1) can then be expressed in matrix form as

X = ΛF + E, E = (e1, . . . , eT ).

The principal component approach is based on the minimization of the nonlinear objective

function

(NT )−1

T
∑

t=1

N
∑

i=1

(xit − λ′iFt)
2 = (NT )−1tr[(X − ΛF )′(X − ΛF )] = (NT )−1tr(E ′E),

with respect to F and Λ. The minimizing values are denoted by F̂ for F and Λ̂ for Λ. It

follows that

F̂ = (Λ′Λ)−1Λ′X.

We concentrate out F̂ from the objective function. The problem reduces to the maximization

of tr(XX ′ΛΛ′) with respect to Λ and subject to the identification restriction Λ′Λ/N = Ir.

Hence the estimates for Λ are obtained by applying a principal component analysis to XX ′;

we obtain

Λ̂ = U = (U1, . . . , Ur), (5)

where Uj is the eigenvector corresponding to one of the r largest ordered eigenvalues uj of

XX ′ for j = 1, . . . , r. The resulting principal component estimate for F is then given by

F̂PC = Λ̂′X = U ′X. (6)

Stock and Watson (2002b) refer to these factor estimates as diffusion indices. An alter-

native analysis can be based on a principal component analysis applied to X ′X which is

computationally more convenient when N > T .

The principal components are consistent estimates of the true factor F when both T and

N go to infinity; see Stock and Watson (2002a). However, the principal component estimates

do not take account of possible heteroskedasticity and cross-correlation in the idiosyncratic

component of the model. In other words, the principal component factor estimates do not

account for the data properties as specified by the parametric model (2) and are therefore

in general inefficient. The principal component estimates are only efficient when we consider

an exact factor model with homoscedastic idiosyncratic components.

When the ratio of the variation due to common factors versus the variation due to the

idiosyncratic factors (signal-to-noise ratio) is small in the static model (1), Onatski (2009)
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shows that the principal component estimates of the factors and loadings are inconsistent.

This is a relevant problem for a large set of variables in a macroeconomic panel of time

series. Onatski (2009) derive a formula for the extent of inconsistency; it can be used

to carry out an asymptotic correction for the estimates. Karoui (2008) argue that if the

cross-section dimension N and the time dimension T are both large and both of the same

magnitude, the eigenvectors provide inaccurate estimates for Λ. We may conclude that the

principal component estimates are in many cases inefficient and even erroneous in the way

the estimates of F are extracted from the data. However, it is also true that the method of

principal components is simple to implement.

2.3 Dynamic factor state space analysis

The static factor model specification (1) – (3) can be cast in state space form and the Kalman

filter with its related methods can be used for its analysis. For example, the Kalman filter

and smoother enable the extraction of the latent factors from the time series panel when

the parametric model is known. Unknown parameters can be estimated by the method of

maximum likelihood in which the loglikelihood function is evaluated by the Kalman filter

and is maximised numerically using an appropriate quasi-Newton method. The state space

framework provides a unified approach to time series analysis for almost all linear Gaussian

models; see, for example, Harvey (1989) and Durbin and Koopman (2001) for textbook

treatments. The general linear state space model is based on observation and state equations

as given by

xt = Ztαt + εt, αt+1 = Ttαt +Rtηt, (7)

respectively, with observation vector xt, latent state vector αt, and i.i.d. disturbance vectors

εt ∼ N(0,Σε) and ηt ∼ N(0,Ση). The system matrices Zt, Tt and Rt, together with the

disturbance covariance matrices Σε and Ση, are deterministic and they completely determine

the dynamic statistical properties of xt.

The dynamic factor model can be represented in state space form. As an example we

take the model with a vector autoregressive process of order pF , VAR(pF ), for the common

factor component and an i.i.d. sequence for the idiosyncratic component. We set the state

vector as αt =
(

F ′
t , F

′
t−1, . . . , F

′
t−pF

)′
. The state space representation of model (1) and (2) is

as follows. The observation equation is given by

xt =
(

Λ 0 . . . 0
)













Ft

Ft−1

...

Ft−pF













+ εt, (8)

with Σε = Σe, the covariance matrix of the idiosyncratic term. The state transition equation
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in (7) is given by the companion form of the VAR(pF ) process, we have

















Ft+1

Ft

Ft−1

...

Ft−pF+1

















=

















Φ1 Φ2 . . . ΦpF−1 ΦpF

Ir 0 . . . 0 0

0 Ir 0 0
...

. . .
...

0 0 Ir 0

































Ft

Ft−1

...

Ft−pF+1

Ft−pF

















+













Ir

0
...

0













ut, (9)

with Ση = Σu. Similar state space representations can be provided for other dynamic factor

models. The dynamic specification of the factor model in (4) is obtained in the state space

form (8) and (9) by replacing in the Zt matrix of (8), the matrix Λ with Λ0 and the zero

block matrices with Λj for j = 1, . . . , s. A similar representation of the dynamic factor model

is given by Forni, Hallin, Lippi, and Reichlin (2000).

The Kalman filter and smoother evaluates the minimum mean square linear estimator

(MMSLE) of the facors Ft, together with its variance, conditional on all observations, that

is

E(αt|x1, . . . , xT ), Var(αt|x1, . . . , xT ), t = 1, . . . , T, (10)

where Ft is a part of αt. The resulting MMSLE for all factors F = (F ′
1, . . . , F

′
T )

′ is denoted by

F̂KFS. The Kalman filter can also be used for the computation of the h-step ahead MMSLE

forecast of Ft, that is

E(αT+h|x1, . . . , xT ), Var(αT+h|x1, . . . , xT ), h = 1, 2, . . . , (11)

where Ft is a part of αt. The MMSLE property is specific to the estimates from the Kalman

filter and smoother and is not shared by the principal components estimates. For a correctly

specified model, the maximum likelihood parameter estimates are consistent and efficient

under weak regularity conditions. The analysis also provides specification tests to verify the

correct specification of the model. In particular, diagnostic tests for normality and serial

correlation are widely used.

Parameter estimation by maximum likelihood, specifically for those in the loading matrix,

becomes a heavy task when the panel dimension increases as the number of parameters

growth in N . State space methods have therefore typically been used for models with small

and moderate panel dimensions N ; see, for example, Engle and Watson (1981) and Mariano

and Murasawa (2003). Hence most applications focus therefore on principal component

estimation; see the references in the survey of Bai and Ng (2008).

Recent approaches in dynamic factor analysis, however, has moved towards maximum

likelihood estimation via Kalman filtering and smoothing; see Jungbacker and Koopman

(2008), Kapetanios and Marcellino (2009), Doz, Giannone, and Reichlin (2011). Jungbacker

and Koopman (2008) propose to transform the observation equation into a lower dimension
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which leads to a computationally efficient approach to parameter and factor estimation.

Kapetanios and Marcellino (2009) suggest the use of the so-called sub-space algorithm for

parameter estimation with the purpose of avoiding high-dimensional computations. In a

recent development, Doz, Giannone, and Reichlin (2011) estimate the factors, the loadings

and the VAR coefficients of a dynamic factor model in two steps. In the first step, parameter

estimation is based on a principal component analysis. In the second step, the factors are

re-estimated by the Kalman filter and smoother. They show that their two-step procedure

leads to consistent factor estimates.

3 Collapsed dynamic factor analysis

3.1 Incorporating a target variable in a factor model

Our aim is to reduce the dimension of the observation vector in a way that preserves the

information on common components and the idiosyncratic dynamics of a specific subset

of all time series in the panel. The dimension reduction should enable maximum likelihood

estimation by means of the Kalman filter in a feasible fashion even when the panel dimension

is large. The main motivation for our approach is forecasting of macroeconomic time series

when many variables are present. In applied econometrics, we are often only interested in

forecasting a selection of target series while the future values of other series are of minor

or no interest beyond the information they contain to forecast the target series. Examples

of target series are gross domestic product (GDP) and inflation. Such variables provide a

summary of the state of the economy.

Suppose that yt denotes the L-dimensional target variable. Its dynamic properties are

represented by a set of time series components that we collect in the state vector αyt. The

initial time series model for yt under consideration can be given by its state space form

yt = Λyyαyt + εyt, αy,t+1 = Tyyαyt +Ryyηt, (12)

where the same assumptions apply as for the general linear state space model (7). The

system matrices Λyy, Tyy and Ryy are fixed and their elements rely partially on unknown

parameters. The initial model for yt can be regarded as a time series model in which no

other information is used for the forecasting of yt than its own past realisations. With the

aim to improve the forecast precision of the model for yt, we augment the observation vector

yt in its state space representation (12) to (y′t, x
′
t)

′ where the N × 1 vector xt represents a

large panel of macroeconomic variables, with L << N . The time series vector xt is assumed

to be generated by the static factor model (1) and where the factor Ft is modelled by the

general linear state space model (7) where Ft is a part of the state vector αt. We propose to
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analyse the augmented observation vector (y′t, x
′
t)

′ using the model

(

yt

xt

)

=

[

Λyy Λyx

0 Λxx

](

αyt

Ft

)

+

(

εyt

εxt

)

,

(

εyt

εxt

)

∼ N

(

0,

[

Σyy 0

0 Σxx

])

, (13)

for t = 1, . . . , T , where Λxx represents Λ and εxt represents et in (1). The additional factor

coefficient matrix in the augmented model is Λyx which is assumed to be fixed and unknown.

The factor loading matrix Λyx allows the information in xt to be used for the modeling and

forecasting of the target variable yt through the factor Ft. The variable xt loads uniquely

on Ft while variable yt loads both on the state αyt and Ft. We restrict the model to have

no interaction between xt and αyt since we are focused on the generation of the optimal

forecasts for yt only.

It follows almost immediately that the augmented model can be represented by the linear

state space model (7). Specifically, we can express the augmented model as

(

yt

xt

)

=

[

Λyy Λyx 0 . . .

0 Λxx 0 . . .

](

αyt

αxt

)

+

(

εyt

εxt

)

, αxt =







Ft

Ft−1

...






, (14)

where we can formulate the dynamic process for the state vector αt = (α′
yt, α

′
xt)

′ by the state

updating equation αt+1 = Ttαt +Rtηt in (7) or, more specifically,

(

αy,t+1

αx,t+1

)

=

[

Tyy 0

0 Txx

](

αyt

αxt

)

+

[

Ryy

Rxx

]

ηt, ηt ∼ N(0,Ση), (15)

for t = 1, . . . , T , with reference to equation (12) and the use of obvious notation.

An illustration of our general modeling framework can be presented for a single target

variable yt, that is L = 1. We assume that an appropriate dynamic model for yt is given by

the trend-cycle decomposition model of Harvey and Jaeger (1993) as given by

yt = µt + ψt + εyt, εyt ∼ N(0, σ2
ε,y), (16)

where µt is the trend component, ψt is the cycle component and εyt is the i.i.d. disturbance

with mean zero and variance σ2
ε,y, for t = 1, . . . , T . Different dynamic specifications for the

nonstationary trend component and for the stationary stochastic cycle component can be

considered and are discussed in detail by Harvey (1989). All specifications can be cast into

the state space form (12) with the state vector αyt containing the variables µt and ψt and

matrix Λyy selecting these variables into the observation equation for yt. The forecasting

performance of this univariate time series model may be improved by including a set of

dynamic factors that can be constructed from a large macroeconomic time series panel.
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Hence, for this purpose we can consider the joint model

yt = µt + ψt + ΛyxFt + εyt, xt = ΛxxFt + εxt, εyt ∼ N(0, σ2
ε,y), εxt ∼ N(0,Σε,x), (17)

which is directly in the form of the augmented observation equation (13). From an analysis

based on this model and for a real data set, we can assess whether the inclusion of the factor

Ft in the model for yt improves the forecasting performance of the model. As N increases,

the number of parameters increases rapidly and estimation becomes a heavy computational

task. We therefore aim to develop a feasible estimation procedure that remains feasible even

when the panel size N increases to high numbers.

3.2 Collapsing the dynamic factor model

To avoid a dynamic factor analysis based on the high-dimensional N×1 vector xt and to avoid

the estimation of all unknown parameters including those in Λxx, we introduce the collapsed

dynamic factor model. We carry out a transformation based on the same eigenvector space

that is used for the computation of principal components. In particular, we pre-multiply the

observation equation (13) by the transformation matrix

P =

[

IL 0

0 A

]

(18)

where matrix A is an r×N matrix where r is the dimension of the number of factors in Ft.

Since r < N , the transformed vector A(y′t, x
′
t)

′ has a reduced dimension. We obtain

(

yt

Axt

)

=

[

IL Λyx

0 AΛxx

](

αyt

Ft

)

+

(

εyt

Aεxt

)

, (19)

for t = 1, . . . , T . The transition equation for the dynamic specifications of both αyt and Ft

remains unchanged.

The choice of matrix A in (18) determines the information loss we are willing to accept

from the dimension reduction of xt. We typically want to find a transformation that preserves

as much information as is relevant for the forecasting of yt. Here we consider the suggestion

of Stock and Watson (2002a, 2002b) by taking A = U ′ where U is defined in (5) as the

N × r matrix of eigenvectors used for the construction of the principal components for XX ′.

The principal component estimates are given by F̂PC,t = U ′xt for t = 1, . . . , T . We assume

loosely that Ft ≈ F̂PC,t which we can formalize by imposing that Ft = F̂PC,t + error and

U ′Λxx = Ir.

11



When N is sufficiently large, we may expect that the approximation becomes more accurate.

By defining the transformation matrix as

PPC =

[

IL 0

0 U ′

]

we obtain the collapsed dynamic factor model as

(

yt

F̂PC,t

)

=

[

IL Λyx

0 Ir

](

αyt

Ft

)

+

(

εyt

εPC,t

)

. (20)

where εPC,t = U ′ (εxt − [U − Λxx]Ft) for t = 1, . . . , T . The disturbance εPC,t includes the

error due to replacing U for the loading matrix Λxx. We expect this error to be small since

U ′Λxx ≈ Ir. Hence we suppose that εPC,t is approximately i.i.d. with zero mean and a

variance matrix that can be partly derived from its construction. However, we will treat

Var(εPC,t) as an unknown variance matrix.

Since it is encountered in many studies based on both economic theory and statistical

data analysis that the number of r common factors is relatively small, the collapsed dynamic

factor model relies on small dimensions, even when xt represents a large time series panel of

economic and financial variables. Due to the parsimonious structure with many zeros and

ones in the system matrices, only a few parameters need to be estimated by the method

of maximum likelihood. The use of more parsimonious models are preferred in empirical

studies; it is often concluded from forecasting comparison studies that parsimonious models

outperform large econometric models with many parameters in their forecasting accuracy.

The collapsed dynamic factor model representation in (20) emphasizes that the principal

components in F̂PC,t are explicitly treated as an errors-in-variables problem. The errors-in-

variables are made explicit in the model and their magnitude is determined by the variance

matrix of εPC,t. Clearly, when the variance of some linear function of εPC,t reduces to zero,

a part of the error is non-existent and Ft in the state vector αxt is partly observed. More

specifically, when all variances of εPC,t are zero, Ft is equal to F̂PC,t and the model for yt

is closely related to the dynamic model used in the second step of a principal component

analysis. The variance matrix of εPC,t is estimated by the method of maximum likelihood in

our analysis. Finally, it is straightforward to represent the collapsed dynamic factor model

in state space form. For completeness, we present the model here as

(

yt

F̂PC,t

)

=

[

IL Λyx 0 . . .

0 Ir 0 . . .

](

αyt

αxt

)

+

(

εyt

εPC,t

)

, (21)

where the state vector αxt is defined in (14) and the updating equations for the state vectors

αxt and αyt are given in (15).
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The collapsed dynamic factor approach offers a compromise between the principal com-

ponent analysis of section 2.2 and the parametric dynamic factor state space analysis of

section 2.3. We keep the state space framework but we reduce the observation and parame-

ter vector dimensions substantially with a minimum loss of information. The Kalman filter

and smoother method is used for the signal extraction of the factors Ft using the target

series yt and the principal components F̂PC,t for t = 1, . . . , T . Hence the factor estimates are

established jointly by the macroeconomic time series panel xt (via the principal components

F̂PC,t) and by the target variable yt. A particular feature of our model is that the principal

components in F̂PC,t are treated as dependent variables that are exclusively associated with

the factors Ft. At the same time, the factors Ft are added to the time series model equation

for the target variable yt. In the approach of Stock and Watson (2002a, 2002b), the principal

components are placed directly in the model equation for the target variable. Since principal

components may be regarded as (possibly) noisy estimates of the factors in Ft, we expect

a more effective use of the principal components when we model them explicitly as noisy

indicators of the factors, and jointly with the target variable yt.

We can summarize our procedure as a two-step procedure. We first carry out a princi-

pal component analysis for dimension reduction of the large panel of macroeconomic time

series. This step circumvents the maximum likelihood method for estimating many param-

eters in a large dimensional state space model. Hence we avoid an infeasible or expensive

exercise which also may erode the forecasting performance. In the second step we model

the principal components jointly with the target variable yt in a small-scale dynamic factor

state space model a small number of parameters. The unknown parameters are estimated

by the method of maximum likelihood in a standard manner. Our reliance on the state

space framework in the second step allows us to keep the benefits of the use of Kalman filter

methods for signal extraction, forecasting, diagnostic checking of residuals, and handling of

missing observations.

The collapsed factor model is related to the two step procedure for factor estimation by

Doz, Giannone, and Reichlin (2011). In their approach the target variable yt is supposed to

be part of xt and the focus is then on xt that is analysed by the static factor model (1) and

(2). The first step also carries out a principal component analysis but with the purpose of

estimating the parameters of the model. A VAR model is fitted on the principal component

estimates F̂PC,t to provide estimates for the VAR coefficient matrices and the variance matrix

of the VAR disturbance vector in (2). The loading matrix Λ in (1) is set equal to U which is

consistent with a principal component analysis; compare equation (5). The estimate of the

disturbance variance matrix Σε is set to IN −UU ′ where we assume that xt is standardized.

In the second step, the state space model (8) and (9) is considered with all unknown matrices

replaced by their estimated counterparts from the first step. The Kalman filter and smoother

method is used to obtain the in-sample estimates and the out-of-sample forecasts of Ft. This
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two step procedure is used in empirical studies; see Giannone, Reichlin, and Small (2008)

and Banbura and Rünstler (2011). Conceptually the two procedures have similarities since

they are both grounded in a principal component analysis. However, a distinguishing feature

is the role of the target variable yt which is diminished in the procedure of Doz, Giannone,

and Reichlin (2011). In our procedure we have the flexibility to design a specific dynamic

model for yt that may already provide good forecasts for yt. All unknown parameters in our

model are estimated by the method of maximum likelihood in the second step.

3.3 Forecasting with the collapsed dynamic factor model

The forecasting of macroeconomic time series using information from many predictors can

be carried in the context of a collapsed dynamic factor model. Many practical issues such as

forecasting with mixed frequency data, missing observations, nowcasting and backcasting can

be easily accommodated in our proposed framework. For expositional purposes we focus on

the case where we need to forecast a single target variable yt and where we typically consider

the model (17) with trend µt fixed at some constant µ, cycle ψt specified as the autoregressive

process ψt = φψt + κt, with i.i.d. disturbance κt ∼ N(0, σ2
κ), and with Ft specified as the

VAR(pF ) process (2), that is Ft ∼ VAR(pF ) with pF = 1. The model for yt is then given by

yt = µ+ ψt + ΛyxFt + εt, with εt ∼ N(0, σ2
ε), for t = 1, . . . , T . Models for a vector of target

variables with more unobserved components and other dynamic specifications are regarded

as straightforward generalizations.

For given values of the parameters in this model, the minimum mean square linear error

h-step ahead forecast ŷT+h at time T is given by

ŷT+h = E(yT+h|ΩT )

= µ+ E(ψT+h|ΩT ) + Λyx E(FT+h|ΩT )

= µ+ φh
E(ψT |ΩT ) + ΛyxΦ

h
1 E(FT |ΩT ), (22)

where Ωt = {yt, yt−1, . . . , y1, xt, xt−1, . . . , x1} is the observed information set at time t and

where E(aT |ΩT ) is obtained from the Kalman filter for a = ψ, F . The last two equalities

are only valid for the specific model under consideration. Different model specifications and

different parameter choices, possible due to the use of different estimation methods, will

lead to different forecasts ŷT+h. This approach to forecasting applies to any model that is

represented in state space form. Hence it applies to the dynamic factor state space model

(14) and to the collapsed dynamic factor model (21) where in both cases the state updating

equations are given by (15). When considering the collapsed dynamic factor model, the

information set Ωt is effectively reduced to Ωt = {yt, yt−1, . . . , y1, F̂PC,t, F̂PC,t−1, . . . , F̂PC,1}.
The forecasting practice in a principal component analysis is mainly developed by Stock

and Watson (2002b). When the principal component estimates F̂PC,t, . . . , F̂PC,T are com-
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puted, the h-step ahead forecast for the target variable is based on the autoregressive model

with explanatory variables as given by

yt+h = µh + ϕh
0yt + . . .+ ϕh

py
yt−py + βh

0 F̂PC,t + . . .+ βh
ky
F̂PC,t−ky + uyt, (23)

for some integers py and ky, with regression coefficients µh, ϕh
0 , . . . , ϕ

h
py
, βh

0 , . . . β
h
ky
, and i.i.d.

disturbances uyt, for t = 1, . . . , T − h. The regression coefficients can be estimated by least

squares. The regression coefficients have superscripts h to emphasize that for each forecasting

horizon h, a new least squares regression takes place with new regression coefficient estimates.

The actual forecast ŷT+h is then computed as

ŷSWT+h = µ̂h + ϕ̂h
0yT + . . .+ ϕ̂h

py
yT−py + β̂h

0 F̂PC,T + . . .+ β̂h
ky
F̂PC,T−ky , (24)

for some positive integer h. This forecasting approach based on principal components is

widely used; see, for example, Marcellino, Stock, and Watson (2003), Breitung and Eickmeier

(2006) and the references therein. Many different forecasts for yt can be constructed in this

way: we only require to replace the principal component estimate F̂PC,t by another factor

estimate in (24). For example, we can use the factor estimates from the procedure of Doz,

Giannone, and Reichlin (2011) as discussed in section 3.2.

The methods of forecasting in a principal component analysis and in a dynamic factor

state space analysis are clearly different but in both cases the forecasts ŷT+h are weighted

linear functions of the available data y1, . . . , yT and x1, . . . , xT ; see the discussion in Durbin

and Koopman (2001, Chapter 4). The different constructions of the forecasting observation

weights are based on different optimum criteria. In the sections below we will investigate

in more detail which approaches are providing the best weights for forecasting when many

predictors are available. These questions will be analysed in both a Monte Carlo simulation

study and in an empirical study based on different data sets.

3.4 Forecasting density

The MMSLE forecasting equations (22) and (24) only provide point forecasts. For many

purposes of practical interest, the point forecasts are not sufficiently informative. On the

other hand, it may not be feasible or desirable to generate forecasts from other statistical

procedures which are based on loss functions motivated from economic theory and princi-

ples. As an alternative, economic researchers often focuses on density forecasting to produce

prediction intervals of the h-step ahead variable yT+h. Density forecasting may provide a

more comprehensive picture of future economic developments.

Under the assumption of normally distributed disturbances in the state space model, the

variance (or the standard deviation) for the MMSLE point forecasts provides, together with
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the mean (or the point forecast), a complete and well-defined forecast density. For example,

when we assume that the parameter estimates are equal to their true parameter values, we

obtain the conditional variance of yT+h as

Var(yT+h|ΩT ) = Var(µ+ ψT+h + ΛyxFT+h + εT+h|ΩT )

= Var(ψT+h|ΩT ) + Λyx Var(FT+h|ΩT )Λ
′
yx + Var(εT+h)

= Var(ψT+h|ΩT ) + Λyx Var(FT+h|ΩT )Λ
′
yx + σ2

ε , (25)

where Var(aT+h|ΩT ) is obtained from the Kalman filter for a = ψ, F . We notice that for a

linear Gaussian model, we have Var(ŷT+h) = Var(yT+h|ΩT ). Hence the forecasting density

is given by

yT+h|ΩT ∼ N
(

ŷT+h|T , Var[yT+h|ΩT ]
)

, h = 1, 2 . . . .

The prediction interval for ŷT+h can be obtained in the usual way as for any normal random

variable. In practical applications, parameters are estimated from the observations and

we need to accommodate the parameter estimation errors when the forecasting density is

constructed. For general state space models, to account for parameter uncertainty, bootstrap

methods can be used for the adjustments of ŷT+h|T and Var(yT+h|ΩT ); see Stoffer and Wall

(1991) for a more detailed discussion. In our approach, forecasting in a dynamic factor

analysis, whether it is based on a full or a collapsed dynamic factor model, is carried out via

a state space model and therefore the forecasting density can be obtained straightforwardly

using the Kalman filter.

When applying the forecasting procedures of Stock and Watson (2002a, 2002b) and Doz,

Giannone, and Reichlin (2011), but also for other step-wise forecast procedures, density

forecasting requires additional adjustments. In the first step of such procedures, the factors

are typically estimated by principal components. In the second step, these estimates are used

as regressors or as indicators in a model with the aim to analyse of to forecast the target

series. The forecasting intervals or densities are then constructed from this model. Although

the principal components are consistent estimates of the factors, Bai and Ng (2006) show

that the effect of estimated regressors should be taken into account for the construction of

forecast intervals, unless T/N goes to infinity. They also provide a procedure to correct for

the use of principal components as regressors. Although the collapsed dynamic factor model

also relies on principal component estimates, the Bai and Ng (2006) correction procedure

is not needed here. The principal components are treated as dependent variables in our

approach. They have been the result of a data transformation. The consequences of this

transformation for the model are incorporated in its specification. Hence the correction

procedure does not apply to a collapsed dynamic factor analysis.
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3.5 Mixed frequency observations

Most forecasting applications with many predictors are based on time series panels with

variables that are sampled at different frequencies. An example of practical relevance is the

forecasting of quarter-on-quarter growth (usually measured in percentages) of gross domestic

product (GDP) which is sampled at a quarterly frequency. Many of the predictors in the

model are month-on-month changes of variables which are sampled at monthly frequencies.

For expositional purposes, we explore this example further and notice that generalisations of

this case to other, mostly higher, frequencies are straightforward extensions of the solution

presented below.

When we consider GDP as a stock variable, we can simply treat the quarterly series as a

monthly series where the observations in the first two months of each quarter are treated as

missing and are ignored for the updating equations in the Kalman filter. However, GDP is a

flow variable and we introduce autocorrelation by construction when we model a quarterly

flow variable at a monthly frequency. We define the unobserved (annualized) month-on-

month GDP growth as

yt = 12× log(GDPt / GDPt−1), t = 1, . . . , T.

We consider a dynamic factor model with GDP as the target series. We further define

yQ3k = 4× log(GDP3k / GDP3(k−1)),

as the observed (annualized) quarter-on-quarter GDP growth for quarter k = 1, . . . , ⌊T/3⌋
where ⌊b⌋ is the largest integer value that is smaller than b. We can express the observed

quarterly GDP growth as the average of the monthly growth rates, that is

yQ3k =
1

3
(y3k−1 + y3k−2 + y3k−3), k = 1, . . . , ⌊T/3⌋. (26)

We observe the monthly variable yQt ≡ yQ3k in the third month of each quarter and we treat

yQt as a missing value for the other months.

The dynamic factor model can incorporate the relation between the quarterly obvserved

variable and the underlying monthly flow variable that is not observed. In a monthly model,

the dynamic processes are formulated in the monthly frequency. The implied dynamics for a

quarterly variable defined as (26) is then accounted for by the model explicitly. We therefore

keep the latent monthly GDP variable in the model and assume that it is modeled as in our

earlier example : yt = µ+ψt+ΛyxFt+ εt with constant µ, stationary AR(1) process ψt, and

i.i.d. disturbance εt. We take µ = 0 for expositional purposes. Furthermore we introduce

a cumulator variable to obtain the quarterly variable from the monthly rates; see Harvey

(1989, Chapter 8) for a more detailed discussion. The aggregation will be established by the

17



latent cumulator variable yCt that is generated by

yCt+1 = δty
C
t +

1

3
yt+1, δt =

{

0, t = 3k,

1, otherwise,
yC1 =

1

3
y1, k = 1, . . . , ⌊T/3⌋,

for t = 1, . . . , T , where t refers to a month and k to a quarter. We assume that yQt is only

observed at the third month of each quarter.

The dynamic factor state space representation is constructed as follows. The observation

equation becomes

(

yQt
F̂ PC
t

)

=

[

0 1 0 0

0 0 0 Ir

]











yt

yCt
ψt

Ft











+

(

0

εPC,t

)

, (27)

and the transition equation for the extended state vector is given by











−1/3 1 0 0

1 0 −1 −Λyx

0 0 1 0

0 0 0 Ir





















yt+1

yCt+1

ψt+1

Ft+1











=











0 δt 0 0

0 0 0 0

0 0 φ 0

0 0 0 Φ1





















yt

yCt
ψt

Ft











+











0

εt+1

κt

ut











, (28)

for t = 1, . . . , T . These observation and state equations can be placed in the usual state

space form (7) with observation xt, state αt and disturbance ηt given by

xt =

(

yQt
F̂ PC
t

)

, αt =











yt

yCt
ψt

Ft











, ηt =







εt+1

κt

ut






,

and with system matrices

Zt =

[

0 1 0 0

0 0 0 Ir

]

, Tt =











0 0 φ ΛyxΦ1

1 δt φ/3 ΛyxΦ1/3

0 0 φ 0

0 0 0 Φ1











, Rt =











1 1 Λyx

1/3 1/3 Λyx/3

0 1 0

0 0 Ir











,

for t = 1, . . . , T . We notice that the transition matrix Tt is time-varying due to the inclusion

of the deterministic indicator variable δt. Further discussions of mixed frequencies with

empirical illustrations in the context of dynamic factor models are provided by Mariano and

Murasawa (2003), Mitchell, Smith, Weale, Wright, and Salazar (2005) Proietti and Moauro
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(2006) and Banbura and Rünstler (2011).

An alternative approach to the analysis of time series with mixed frequencies is the

mixed data sampling regression (MIDAS) method as proposed by Ghysels, Santa-Clara, and

Valkanov (2006). The MIDAS method provides linear projections without specifying the

dynamics of the regressors. When the model is correctly specified and the parameters are

known, the Kalman filter is superior to MIDAS by construction. Otherwise, it is under

investigation whether MIDAS or the state space method is superior; see the study of Bai,

Ghysels, and Wright (2011) where both MIDAS and state space methods are considered.

They show under which conditions the methods are identical and provide evidence that the

Kalman filter is slightly more accurate.

3.6 Missing values, unbalanced panels and rigged edges

In a time series panel with many macroeconomic variables, it is likely that different series

start and end at different times. Such a panel is often referred to as an unbalanced panel.

Also specific sections in the time series may not be available. Hence many missing values

can be present in a macroeconomic panel. The treatment of unbalanced panels and missing

values is straightforward in the the state space framework because missing observation can

be handled explicitly in the Kalman filter; see Durbin and Koopman (2001, Chapter 4). In

a collapsed dynamic factor analysis we need to distinguish between missings in the target

variable yt which is treated directly in the model, and missings in the panel vector xt which

we transform into a set of principal components. We need to account for the missing values

when computing the principal components. A specific expectation-maximization algorithm

can be used as described in Stock and Watson (2002b). Alternatively, the Kalman filter

and smoother can be adopted before the collapse takes place. We can consider the dynamic

factor model for xt and take Λxx = U . Estimation of the other parameters, including those

for the vector autoregressive process for Ft, can be based on the principal components from a

balanced subsample ofX ; this procedure is suggested by Doz, Giannone, and Reichlin (2011).

The principal component estimates can be extracted from this “estimated” balanced panel.

The two methods also provide solutions for the treatment of data sets with jagged or

rigged edges which are due to unsynchronized data releases and publication lags. We can

consider jagged edges as a specific structure of missing values in the time series panel. The

incorporation of publication lags is specifically relevant in the “nowcasting” of GDP. The aim

of nowcasting is to use information such as market expectations that can be generated from

survey and financial data when forecasting quarterly GDP in the current quarter. Survey

and financial data is often available weeks before other indicators from, for example, the

national accounts are released; see the discussions in Giannone, Reichlin, and Small (2008)

and Banbura and Rünstler (2011).
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4 Monte Carlo study and finite sample properties

In this section we investigate how the out-of-sample forecast precision from a collapsed

dynamic factor model compares to the forecasts from other factor-based approaches including

those of Stock and Watson (2002b) and Doz, Giannone, and Reichlin (2011). We carry out

an extensive Monte Carlo study to address the forecasting performances for different cross-

section (N) and time series (T ) dimensions, and for different forecasting horizons h. We study

in more detail the collapsed dynamic factor model. For example, we want to assess whether

the collapsed dynamic factor model can mitigate weak factors (relative to the idiosyncratic

part) and erode forecasting performances.

In the Monte Carlo study, we compare the forecast performances with those of random

walk (RW) and univariate autoregressive (AR) models which are typical benchmarks in

many forecasting studies. Furthermore, we consider the forecast results from the principal

component analysis of Stock and Watson (2002b, SW), the factor estimates in a Kalman

filter and smoother analysis of Doz, Giannone, and Reichlin (2011, DGR), and our collapsed

dynamic factor analysis (CFM). We consider data generating processes (DGP) that also have

been used in Stock and Watson (2002b) and Doz, Giannone, and Reichlin (2011). The DGP

allows for a certain degree of cross- and serial-correlation in the idiosyncratic terms as well

as the factor dynamics. The design of this DGP reflects features of empirical relevance and

is given by

• xit =
∑r

j=1 λijfjt + ξit, for i = 1, . . . , N and t = 1, . . . , T ; in vectors Xt = ΛFt + ξt;

• λij ∼ N(0, 1), for i = 1, . . . , N and j = 1, . . . , r;

• A(L)Ft = ut with ut ∼ N(0, (1−ρ2)Ir) and for i, j = 1, . . . , r; we take the (i, j) element

of A(L) as aij(L) = 1− ρL, if i = j and 0 otherwise;

• D(L)ξt = vt with vt ∼ N(0, Q) and for i, j = 1, . . . , N ; we take the (i, j) element of

D(L) as dij(L) = 1− dL, if i = j and 0 otherwise; the elements of variance matrix Q

are given by

Qij =
√
qiqjτ

|i−j|(1− d2), i, j = 1, . . . , N,

with

qi =
ci

1− ci

r
∑

j=1

λ2ij, ci ∼ U([C, 1− C]).

A special case of this DGP is obtained when we set τ = 0 so that no cross-correlations

appear in the idiosyncratic terms corresponding to an exact factor model. If in addition

d = 0 and C = 0.5, we have a so-called spherical, exact static factor model for which the

principal component estimates are efficient. The coefficient ci determines the noise-to-signal

ratio, this is the ratio between the variance of the idiosyncratic component and the variance
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of xit. In our simulation study this ratio is uniformly distributed with an average of 0.5

unless specified differently.

Table 1: Monte Carlo study for exact factor model
This table presents the MSEs of 5000 h-step ahead forecasts for h = 1, 2, 3, 6, 12 and different sample sizes N
and T . Parameter values of DGP model reflect exact factor model (ρ = 0.9, d = 0, τ = 0, C = 0.1). Different
forecast models are random walk (RW), autoregression of order 2 (AR), the principal component SWmethod,
the smoothed factor DGR method, and our collapsed dynamic factor model (CFM). The smallest MSE for
each experiment is highlighted.

T = 50 T = 100

h = 1 h = 2 h = 3 h = 6 h = 12 h = 1 h = 2 h = 3 h = 6 h = 12

N = 10 N = 10
RW 1.2432 1.3577 1.4864 1.7301 2.0553 1.1847 1.2755 1.4087 1.6410 1.9047
AR 0.8384 0.8989 0.9429 1.0018 1.1681 0.8124 0.8780 0.9369 0.9980 1.1044
SW 0.7791 0.8761 0.9510 1.0885 1.3387 0.7278 0.7972 0.8846 0.9879 1.1826
DGR 0.7818 0.8793 0.9548 1.0788 1.3126 0.7385 0.8091 0.8959 0.9910 1.1712
CFM 0.7782 0.8645 0.9288 1.0287 1.2101 0.7298 0.7961 0.8884 0.9716 1.0954

N = 50 N = 50
RW 1.2930 1.4020 1.5154 1.7783 2.1457 1.1656 1.2975 1.4281 1.6858 1.9327
AR 0.8369 0.9086 0.9288 1.0217 1.1567 0.7978 0.8284 0.9101 1.0021 1.1038
SW 0.7343 0.8489 0.9226 1.1190 1.3398 0.6731 0.7377 0.8519 1.0235 1.1869
DGR 0.7346 0.8497 0.9223 1.1124 1.3210 0.6749 0.7388 0.8530 1.0236 1.1808
CFM 0.7340 0.8187 0.8674 1.0258 1.1913 0.6685 0.7319 0.8364 0.9605 1.0885

N = 100 N = 100
RW 1.2729 1.4282 1.4971 1.7676 2.1076 1.1455 1.2736 1.3875 1.5737 1.8809
AR 0.8608 0.9015 0.9366 1.0155 1.1920 0.8008 0.8740 0.9260 0.9983 1.1006
SW 0.7478 0.8502 0.9406 1.1214 1.3661 0.6719 0.7635 0.8487 1.0060 1.1880
DGR 0.7483 0.8498 0.9392 1.1167 1.3568 0.6724 0.7649 0.8501 1.0059 1.1833
CFM 0.7426 0.8294 0.8868 1.0385 1.2225 0.6720 0.7542 0.8312 0.9570 1.0925

Dynamic factor models are typically used for short-term forecasting and therefore we

present the results for forecast horizons h = 1, 2, 3, 6, 12. We generate data for a given set of

parameters with two common factors, compute the mean square errors (MSE), and repeat

this exercise 5,000 times for each experiment. We abstract from model misspecification by

taking the correct number of lags and factors for all models and all experiments.

In Table 1 we present the results for an exact factor model with homoskedastic idiosyn-

cratic errors as the DGP. The smallest MSEs (among the 5 different forecasts of RW, AR,

SW, DGR and CFM) for different values of T , N and h are highlighted. We confirm the

results reported by Doz, Giannone, and Reichlin (2011) who find that the MSEs from SW

and DGR are similar for all reported T/N combinations. However, we find that the MSEs

from the collapsed dynamic factor model (CFM) in most cases are smaller compared to all

benchmarks although differences are small in relative terms. To investigate whether, for

small and moderate T/N ratios, principal components are noisy factor estimates, we com-

pute the average and median of the estimated noise-to-signal ratio Var(εPC,t) / Var(Ft) over

all simulations. In the case of T = 10 and N = 50, the median of the noise-to-signal ratio

estimates is close to zero so that the factor estimates from CFM are close to the principal

21



Table 2: Monte Carlo study for approximate factor model
This table presents the MSEs of 5000 h-step ahead forecasts for h = 1, 2, 3, 6, 12 and different sample sizes
N and T . Parameter values of DGP model reflect approximate factor model (ρ = 0.9, d = 0.5, τ = 0.5,
C = 0.1). Different forecast models are random walk (RW), autoregression of order 2 (AR), the principal
component SW method, the smoothed factor DGR method, and our collapsed dynamic factor model (CFM).
The smallest MSE for each experiment is highlighted.

T = 50 T = 100

h = 1 h = 2 h = 3 h = 6 h = 12 h = 1 h = 2 h = 3 h = 6 h = 12

N = 10 N = 10
RW 1.2437 1.3549 1.4865 1.7319 2.0549 1.2129 1.3074 1.3731 1.6827 1.9132
AR 0.8391 0.8978 0.9442 1.0038 1.1667 0.8278 0.8824 0.9006 1.0509 1.0965
SW 0.7854 0.8801 0.9520 1.0849 1.3169 0.7431 0.8151 0.8637 1.0613 1.1587
DGR 0.7882 0.8799 0.9541 1.0839 1.3261 0.7394 0.8125 0.8604 1.0620 1.1630
CFM 0.7842 0.8480 0.9122 1.0090 1.1809 0.7427 0.8131 0.8494 1.0252 1.0795

N = 50 N = 50
RW 1.2886 1.4294 1.5189 1.8234 2.1605 1.1898 1.2774 1.3776 1.6066 1.9485
AR 0.8563 0.9444 0.9534 1.0650 1.2152 0.8062 0.8566 0.9113 1.0133 1.1309
SW 0.7471 0.8790 0.9214 1.1457 1.4089 0.6676 0.7609 0.8450 1.0101 1.2020
DGR 0.7457 0.8779 0.9216 1.1516 1.4197 0.6659 0.7601 0.8400 1.0077 1.2081
CFM 0.7438 0.8598 0.8797 1.0666 1.2483 0.6687 0.7512 0.8224 0.9665 1.1180

N = 100 N = 100
RW 1.2594 1.3542 1.4745 1.7283 2.0128 1.2199 1.3241 1.4505 1.6683 2.0644
AR 0.8472 0.8631 0.9357 1.0278 1.1260 0.8228 0.8461 0.9200 0.9799 1.1339
SW 0.7257 0.8228 0.9306 1.1120 1.3273 0.6882 0.7405 0.8367 0.9849 1.2108
DGR 0.7268 0.8240 0.9315 1.1159 1.3395 0.6882 0.7391 0.8355 0.9852 1.2138
CFM 0.7318 0.7832 0.8832 1.0268 1.1539 0.6826 0.7283 0.8166 0.9323 1.1227

component estimates. The collapsed factor forecasts are then similar to the factor-augmented

VAR forecasts of SW. We also find that the relative performance of CFM increases when

the forecasting horizon gets higher while the SW forecasts appear to perform worse com-

pared to the AR forecasts. This finding is in line with results where Kalman filter forecasts

outperform other forecasts under correct model specification, especially for longer forecast

horizons; compare the findings of Marcellino, Stock, and Watson (2006).

Table 2 presents the results for a different DGP that resembles an approximate factor

model with heteroskedastic and serially correlated idiosyncratic errors. In this case the

principal component estimates are not efficient while Doz, Giannone, and Reichlin (2011)

claim that their second step Kalman filter and smoothing estimates may be more accurate.

We find that our method improves now stronger compared to the other two factor fore-

casts but differences remain small with gains of around 5% smaller MSEs. Here, different

forecasting horizons also give different results. The short-term forecasts from the collapsed

dynamic factor model are similar (sometimes slightly worse) to the SW forecasts. However

for larger forecast horizons, the CFM forecasts are better with MSE reductions of around

10%. Moreover, these results become more pronounced for a larger time series dimension T .

We also provide the simulation results for parameter settings that represent a weak factors

situation. In this case, we set ci = 0.9 such that the common factors have relatively little
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explanatory power. The results are presented in Table 3 and we learn that the SW forecasts

have large MSEs compared to the AR forecasts for small sample sizes. On the other hand,

the CFM forecasts appear to produce forecasts that have a similar or even slightly better

precision than the AR forecasts. It is interesting to find that the mean of the signal-to-noise

ratio of the principal component estimates increases to approximately 0.20 for T = 50 and

N = 10. For a larger N and T , and for short-term forecasts, the CFM forecasts are more

precise than the AR forecasts even when the factors are weak. In almost all cases the CFM

forecasts have the smallest MSE among all other models.

Table 3: Monte Carlo study for model with weak factors
This table presents the MSEs of 5000 h-step ahead forecasts for h = 1, 2, 3, 6, 12 and different sample sizes
N and T . Parameter values of DGP model reflect factor model with weak factors (ρ = 0.9, d = 0.5, τ = 0.5,
ci = 0.9). Different forecast models are random walk (RW), autoregression of order 2 (AR), the principal
component SW method, the smoothed factor DGR method, and our collapsed dynamic factor model (CFM).
The smallest MSE for each experiment is highlighted.

T = 50 T = 100

h = 1 h = 2 h = 3 h = 6 h = 12 h = 1 h = 2 h = 3 h = 6 h = 12

N = 10 N = 10
RW 1.2436 1.3547 1.4860 1.7309 2.0566 1.1433 1.2477 1.3439 1.5718 1.8749
AR 0.8382 0.8971 0.9434 1.0026 1.1698 0.7762 0.8377 0.8933 0.9955 1.1241
SW 0.8570 0.9391 0.9791 1.0731 1.2727 0.7762 0.8378 0.9071 1.0303 1.1720
DGR 0.8593 0.9379 0.9774 1.0679 1.2661 0.7758 0.8398 0.9072 1.0285 1.1701
CFM 0.8350 0.8902 0.9452 1.0047 1.1626 0.7419 0.8160 0.8791 0.9959 1.1167

N = 50 N = 50
RW 1.2169 1.3389 1.4941 1.7448 2.1198 1.1293 1.2710 1.3553 1.5888 1.8761
AR 0.8139 0.8728 0.9294 1.0360 1.2021 0.7759 0.8474 0.8807 1.0136 1.1304
SW 0.8137 0.8887 0.9565 1.0967 1.3197 0.7532 0.8275 0.8833 1.0450 1.1843
DGR 0.8096 0.8850 0.9523 1.0960 1.3065 0.7526 0.8288 0.8810 1.0413 1.1801
CFM 0.8037 0.8554 0.9225 1.0291 1.1983 0.7379 0.8116 0.8579 1.0058 1.1114

N = 100 N = 100
RW 1.2780 1.4299 1.4961 1.7997 2.0076 1.1821 1.2842 1.4020 1.6209 1.8806
AR 0.8473 0.9017 0.9488 1.0674 1.1549 0.8037 0.8601 0.9049 1.0292 1.1019
SW 0.8138 0.8889 0.9498 1.1244 1.2621 0.7362 0.8146 0.8827 1.0371 1.1510
DGR 0.8125 0.8885 0.9454 1.1192 1.2547 0.7361 0.8139 0.8813 1.0379 1.1463
CFM 0.8122 0.8734 0.9210 1.0488 1.1482 0.7254 0.8045 0.8669 1.0019 1.0792

5 Two empirical illustrations

In this section we illustrate the forecasting performance of our collapsed dynamic factor

analysis relative to a selection of benchmark models for pseudo real-time forecasting of

macroeconomic variables in the US economy. We adopt the dataset of Stock and Watson

(2005) to forecast monthly industrial production and quarterly GDP based on a panel of

132 indicator variables observed at a monthly frequency from 1960 to 2003. For a detailed

data and transformation discussion we refer to the Appendix of Stock and Watson (2005)).

We compare the forecast accuracy based on the MSE and the mean absolute error (MAE)
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using recursive parameter and factor estimates. We do not consider issues with respect to

publication delays and/or data vintages. We focus on the final revised data sets in our

forecasting exercise.

5.1 Forecasting Monthly Industrial Production

We first consider the forecasting performance of our collapsed dynamic factor model (CFM)

for target variable US industrial production. The macroeconomic panel and target variables

are all observed at a monthly frequency. Table 4 presents the MSE and MAE of the h-

step ahead forecasts produced by the collapsed dynamic factor model and compares it with

those of the four benchmarks RW, AR, SW and DGR. For the AR forecasts we adopted the

autoregressive model of lag order 2. The same abbreviations for the four methods are used

as in the previous section.

Dynamic factor models are typically used for short-term forecasting and therefore we

focus on the forecast horizons h = 1, . . . , 6. We also consider a subsample of the entire

dataset starting with the first forecasts in 1990 so that T is somewhat small. For the large

and small time dimensions, the estimation window starts 10 years earlier. For the factor

models, we chose the number of factors according to the criterion proposed by Bai and Ng

(2002). As reported in previous studies which use the same data set, the Bai and Ng criterion

obtains its minimum for 7 factors; see also the findings in Stock and Watson (2005) and

Jungbacker and Koopman (2008). However, this number is quite large and for forecasting

purposes it may be interesting to consider a smaller number of factors. We therefore also

report the results for one, two and three factors.

Table 4 presents the results of our forecasting exercise. The collapsed factor model

compares well when compared with SW and DGR; in 11 out of 16 cases it produces the

smallest MAE or MSE. This holds for the analysis based on both short and large samples

although the gains are more pronounced in small samples. We also evaluated the forecasting

performance of CFM versus SW and DGR based on Diebold and Mariano (1995) tests. The

cases where CFM produces more accurate forecasts than SW and DGR, at the 15% level,

are marked by a star and dagger, respectively. The result shows that improvements are

statistically significant in some but only a few cases. Moreover, we find that for the long

sample, the MSE are typically higher than MAE; it indicates a presence of large forecast

errors (outliers). The one-step-ahead forecasts of CFM perform relatively worse in terms of

MSE in many cases while differences in MAE are smaller. The noise-to-signal ratio is close to

zero for all factors indicating that principal component estimates are quite accurate for the

given dataset and for the selected dimensions of T and N . We also learn that dynamic factor

model forecasts based on information from many predictors do not dramatically outperform

simple AR forecast; in particular for the longer forecasting horizons. This is an indication

that much of the information is contained in the forecasts series itself; similar findings are
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Table 4: Forecast comparisons for monthly US Industrial Production
We report MSE and MAE statistics for different forecast models including random walk (RW), autoregression
of order 2 (AR), the principal component SW method, the smoothed factor DGR method, and our collapsed
dynamic factor model (CFM), and for different number of factors. A short sample with 138 forecasts (January
1990 – June 2003) and a long sample with 378 forecasts (January 1970 – June 2003) are considered. The
smallest MSE and MAE over all different models is highlighted. More accurate forecasts by CFM compared
to SW and DGR (according to the Diebold-Mariano two-sided test, 15% significance level) are marked by ∗
and †, respectively.

Short sample (1990-2003) Long sample (1970-2003)

h = 1 h = 2 h = 3 h = 6 h = 1 h = 2 h = 3 h = 6

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
RW 1.4143 0.9105 1.0296 0.7829 1.0204 0.7448 0.9918 0.8050 1.3259 0.8746 1.2074 0.8329 1.2147 0.8346 1.4013 0.8872
AR 0.6514 0.6524 0.6083 0.6206 0.6403 0.6392 0.6781 0.6793 0.7538 0.6581 0.7287 0.6410 0.7511 0.6517 0.8100 0.6737
1 factor
SW 0.6235 0.6329 0.6100 0.6273 0.6362 0.6366 0.6785 0.6749 0.6617 0.6184 0.6922 0.6276 0.7366 0.6440 0.8341 0.6797
DGR 0.6025 0.6202 0.6060 0.6259 0.6340 0.6353 0.6817 0.6763 0.6570 0.6137 0.6982 0.6288 0.7412 0.6451 0.8251 0.6780
CFM 0.6117 0.6212 0.5955 0.6158 0.6196∗† 0.6279 0.6490∗† 0.6625 0.7186 0.6353 0.6841 0.6214 0.7001∗† 0.6357 0.7871 0.6661
2 factors
SW 0.6008 0.6174 0.6245 0.6344 0.6607 0.6519 0.6772 0.6770 0.6506 0.6199 0.6803 0.6341 0.7183 0.6558 0.7994 0.6864
DGR 0.5882 0.6120 0.6243 0.6359 0.6652 0.6533 0.6795 0.6774 0.6456 0.6220 0.6855 0.6386 0.7254 0.6567 0.8021 0.6901
CFM 0.6097 0.6111 0.6027 0.6140 0.6360† 0.6328† 0.6814 0.6755 0.6853 0.6258 0.6902 0.6175† 0.7348 0.6448 0.8036 0.6672
3 factors
SW 0.6147 0.6254 0.6227 0.6308 0.6633 0.6537 0.6800 0.6787 0.6380 0.6134 0.6590 0.6229 0.7006 0.6493 0.7770 0.6704
DGR 0.5976 0.6155 0.6234 0.6321 0.6726 0.6572 0.6864 0.6808 0.6315 0.6130 0.6675 0.6313 0.7109 0.6532 0.7797 0.6739
CFM 0.6437 0.6229 0.6044 0.6132 0.6352∗† 0.6311∗† 0.6809 0.6753 0.6914 0.6291 0.6992 0.6243 0.7438 0.6430 0.8189 0.6710
Bai and Ng (2002) factors
SW 0.6281 0.6258 0.6161 0.6274 0.6265 0.6365 0.7023 0.6904 0.6361 0.6102 0.7055 0.6378 0.7145 0.6510 0.7776 0.6769
DGR 0.6260 0.6213 0.6251 0.6285 0.6458 0.6446 0.7198 0.6991 0.6398 0.6151 0.7218 0.6528 0.7357 0.6632 0.7793 0.6768
CFM 0.7554 0.6591 0.6016 0.6066 0.6352 0.6286† 0.6801∗† 0.6784† 0.7407 0.6499 0.6884 0.6319 0.7324 0.6495 0.8391 0.6810

discussed in Stock and Watson (2006b).

5.2 Forecasting Quarterly Gross Domestic Product

A key macroeconomic variable that summarizes the state of the economy is Gross Domestic

Product (GDP) which is collected at a quarterly frequency and is published with a delay of

several weeks. To obtain an estimate of the state of the economy before the first official GDP

figures are released, recent approaches have emphasized the importance of GDP nowcasting

and forecasting using monthly economic and financial variables; see, for instance, Giannone,

Reichlin, and Small (2008), Banbura and Rünstler (2011) and de Winter (2011). Here we

investigate the performance of the collapsed dynamic factor model to nowcast and forecast

quarterly US GDP using a large time series panel of monthly economic variables.

We compare the performance of the CFM with the naive random walk (RW) model and

an unobserved components model based on an AR model for unobserved monthly GDP

(flow variable) which is linked with observed quarterly GDP via a cumulator variable; we

have discussed the details in section 3.5. We further consider two other approaches of

making use of information from monthly panels of macroeconomic variables when forecasting

a quarterly variable. The first approach is known as the bridge equation forecasts that takes

a weighted average of individual indicator forecasts where the weights are functions of the

inverse MSEs from past forecasts; see Angelini, Camba-Méndez, Giannone, Rünstler, and
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Reichlin (2008) for further details. The second approach is the mixed frequency version of

Doz, Giannone, and Reichlin (2011) that is recently proposed to forecast quarterly GDP

from monthly indicators by Banbura and Rünstler (2011). We refer to the two approaches

as BE and BR, respectively.

Table 5: Forecast comparisons for quarterly US Gross Domestic Product
We report MSE and MAE statistics based on random walk (RW), autoregressive model with cumulator of
order 2 (AR), pooled bridge equation (BE), Banbura and Rünstler (2011, BR), and our collapsed dynamic
factor model (CFM) forecasts. A short sample with 43 forecasts (Q3 1990 – Q2 2003) and a long sample with
123 forecasts (Q3 1972 – Q2 2003) are considered. The smallest MSE and MAE over all different models is
highlighted. More accurate forecasts by CFM compared to BE and BR (according to the Diebold-Mariano
two-sided test, 15% significance level) are marked by ∗ and †, respectively.

Short sample (1992-2003) Long sample (1972-2003)

h = 1 h = 2 h = 3 h = 6 h = 1 h = 2 h = 3 h = 6

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
RW 0.6326 0.6324 0.6476 0.6469 0.6515 0.6529 0.4601 0.5515 1.3102 0.8484 1.3160 0.8490 1.3119 0.8494 1.4948 0.8454
AR 0.3933 0.4805 0.4012 0.4861 0.4138 0.4975 0.3590 0.4627 0.8832 0.6812 0.8818 0.6784 0.8824 0.6809 0.9119 0.6855
BE 0.3003 0.4240 0.3229 0.4405 0.3575 0.4657 0.3506 0.4589 0.7303 0.6177 0.7650 0.6308 0.8339 0.6614 0.8668 0.6682

1 factor
BR 0.3329 0.4441 0.3438 0.4523 0.3649 0.4668 0.3612 0.4631 0.5441 0.5244 0.5233 0.5268 0.7094 0.6406 0.9945 0.7017
CFM 0.2652 0.4155 0.2919 0.4423 0.3694 0.4797 0.3525 0.4564 0.6270 0.5409 0.5841 0.5325 0.7454 0.6365 1.0544 0.7093

2 factors
BR 0.4260 0.5148 0.4249 0.5114 0.4230 0.5131 0.4065 0.4969 0.8596 0.6134 0.7446 0.5992 0.8752 0.6869 0.9948 0.7109
CFM 0.2700∗ 0.4217∗ 0.2912∗ 0.4367 0.3597 0.4708 0.3528 0.4609 0.5493∗† 0.5270∗† 0.5212∗† 0.5260∗† 0.6706∗† 0.6178∗ 0.9445 0.6793

3 factors
BR 0.3456 0.4555 0.3318 0.4411 0.3402 0.4527 0.3499 0.4504 0.6369 0.5551 0.6203 0.5556 0.6845 0.6371 0.7756 0.6394
CFM 0.2692 0.4216 0.2877 0.4398 0.3501 0.4723 0.3377 0.4485 0.5621† 0.5301† 0.5344∗† 0.5277† 0.6833† 0.6240 0.9435 0.6817

Bai and Ng (2002) factors
BR 0.4640 0.5431 0.4598 0.5262 0.4696 0.5298 0.4205 0.5114 0.7604 0.5835 0.7190 0.5937 0.9294 0.6929 0.9866 0.7067
CFM 0.2681∗ 0.4058∗ 0.2853∗ 0.4368 0.3548 0.4635 0.3552 0.4596 0.5194∗† 0.5011† 0.4671∗† 0.5016∗† 0.6498 0.6136 0.9495∗ 0.6718∗

Table 5 presents the MSE and MAE forecast statistics of the collapsed factor model and

the four benchmark models. We consider h-step ahead forecasts for h = 1, 2, 3, 6 months.

When h = 1, we are in the second month of a quarter and use information of the monthly

panel to forecast (nowcast) quarterly GDP which is released next month. When h = 2, we

are in the first month of a quarter and forecast quarterly GDP that is released two month

ahead. The forecasting performance of the collapsed factor model is in many cases more

accurate than the considered benchmarks; especially for more than one factor, the Diebold

and Mariano (1995) test reveals superior predictive accuracy compared to the two other

forecast methods that use information from many predictors. In most cases we find that

the model of Banbura and Rünstler (2011), based on factor estimation methods by Doz,

Giannone, and Reichlin (2011), cannot produce forecasts of the same accuracy as CFM.

When compared with the bridge equation (BE) forecasts, the CFM forecasts are overall

more precise.

For the long sample based statistics, we find that MSEs are typically higher than MAEs

indicating the presence of large forecast errors. These outliers in our data set may be due to

the two recession periods in the 1970s when forecast errors have been typically larger. We

can inspect these outlying quarterly GDP observations in Figure 1 against the nowcasts of
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Figure 1: Quarterly US GDP and monthly current quarter nowcasts
Forecasts are from the collapsed dynamic factor model (CFM), the bridge equation (BE), and the Ban-
bura/Rünstler (BR) model forecasts. CFM and BR forecasts are three-month average of monthly latent
GDP. The number of factors selection is based on the Bai & Ng criterion.
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the current quarter GDP. In the period 1992-2003 we also have many cases where the MAEs

are larger than the MSEs. Figure 1 also shows that the forecasts from the three methods are

strongly co-moving. However, the two-factor BR and CFM forecasts track quarterly GDP

much closer than the pooled bridge equation BE forecasts. It is due to the idiosyncratic

factors that the collapsed dynamic factor model forecasts are less smooth than those of

Banbura and Rünstler (2011) who only relate quarterly GDP to common factors. Overall

we find that the forecasting performance of CFM generally compares well with existing

forecasting methods.

6 Conclusions

We have introduced a new method for analysing and forecasting macroeconomic time series

when many predictors are available. A fully specified dynamic factor model is collapsed by

means of a set of principal components which are simultaneously modeled with the target

series. It is shown that the framework of the multivariate unobserved components time

series model is instrumental for this development. Most practical issues of macroeconomic

forecasting can be handled with our collapsed dynamic factor model. Monte Carlo and

empirical evidences are given that show that the collapsed model is a competitive and feasible

alternative to the current practices. We leave the development of several extensions of our

proposed framework for future research. For example, we can investigate in our framework

whether we can improve the analysis and forecasting by having different numbers of principal

components and latent factors in the model.
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