Differential modulations of ipsilateral and contralateral beta (de)synchronization during unimanual force production
van Wijk, B.C.M.; Beek, P.J.; Daffertshofer, A.

published in
European Journal of Neuroscience
2012

DOI (link to publisher)
10.1111/j.1460-9568.2012.08122.x

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. Aug. 2024
Differential modulations of ipsilateral and contralateral beta (de)synchronization during unimanual force production

B. C. M. van Wijk, P. J. Beek and A. Daffertshofer
Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands

Keywords: beta power, corticospinal synchronization, interhemispheric facilitation/inhibition, motor cortex

Abstract

Unilateral movement is usually accompanied by ipsilateral activity in the primary motor cortex (M1). It is still largely unclear whether this activity reflects interhemispheric ‘cross-talk’ of contralateral M1 that facilitates movement, or results from processes that inhibit motor output. We investigated the role of beta power in ipsilateral M1 during unimanual force production. Significant ipsilateral beta desynchronization occurred during continuous dynamic but not during static force production. Moreover, event-related time–frequency analysis revealed bilateral desynchronization patterns, whereas post-movement synchronization was confined to the contralateral hemisphere. Our findings indicate that ipsilateral activation is not merely the result of interhemispheric cross-talk but involves additional processes. Given observations of differential blood oxygen level-dependent responses in ipsilateral and contralateral M1, and the correlation between beta desynchronization and the firing rate of pyramidal tract neurons in contralateral M1 during movement, we speculate that beta desynchronization in contra- and ipsilateral M1 arises from distinct neural activation patterns.

Introduction

The organization of the human motor system is largely symmetric. Most corticospinal pathways transect in the pyramidal decussation, resulting in a predominantly contralateral cortical motor control. Nevertheless, left and right pathways are anatomically connected at various levels along the neural axis: through the corpus callosum; via non-crossing corticospinal fibers; and in the spinal cord. Although these left/right connections may facilitate the coordination of bimanual movements, activity is not limited to the contralateral hemisphere when performing movements with one hand only. Activity in ipsilateral motor areas is known to accompany unilateral movement (Kristeva et al., 1979, 1991; Babiloni et al., 1999; Baraldi et al., 1999; Huang et al., 2004; Gross et al., 2005), and its strength correlates with task complexity (Salmelin et al., 1995; Manganotti et al., 1998; Hummel et al., 2003; Verstynen et al., 2005).

Why ipsilateral primary motor cortex (M1) is involved in unimanual tasks is still largely unclear. Does this activity result from projections between bilateral areas, giving rise to a mere ‘cross-talk’ of contralateral M1 activity that may facilitate movement? Or does it reflect distinct processes related to the prevention of involuntary movements, i.e. inhibition of cross-talk? Interhemispheric cross-talk seems particularly functional when performing symmetric, bimanual movements, which require less cortical activation than asymmetric bimanual movements (Sadato et al., 1997; Stephan et al., 1999; Immisch et al., 2001; Gross et al., 2005). If unilateral performance is desired, however, ipsilateral M1 activity should not induce movements of the homologous limb. In this case the (crossed) output of the ipsilateral cortex to the spinal cord has to be suppressed. A candidate mechanism for this is interhemispheric inhibition, which is effectuated through excitatory transcallosal connections projecting on local inhibitory interneurons (Carson, 2005). Improper suppression of contralateral motor activity may lead to mirror movements (Armatas et al., 1994; Daffertshofer et al., 1999; Mayston et al., 1999; Aranyi & Rosler, 2002; Hoy et al., 2004; Cincotta & Ziemann, 2008; Hubers et al., 2008) and transitions in rhythmic bimanual coordination (Daffertshofer et al., 2005; Aramaki et al., 2006; Houweling et al., 2010).

The aim of the present study was to investigate the role of ipsilateral beta activity for unimanual static and dynamic force production. Dynamic tasks may be more demanding as they require continuous adjustments of motor output. One may therefore expect enhanced cross-talk during dynamic force production, possibly resulting in stronger ipsilateral activity. In fact, Gross et al. (2005) found a stronger ipsilateral involvement of M1 during dynamic compared with static performance. In contrast to their study, we opted for simple, non-rhythmic dynamic force production tasks to minimize activity in sources other than bilateral M1 as they might hamper a clear-cut interpretation. We hypothesized that ipsilateral beta activity not only results from interhemispheric cross-talk but also reflects neural processes needed to prevent mirror movements. In case of mere cross-talk, its dynamics should follow an activity pattern that, alterations in strength aside, agrees with that of its contralateral counterpart. We therefore also compared ipsilateral and contralateral movement-related beta desynchronization (ERD) and synchronization (ERS).
Materials and methods

Participants
Twenty healthy participants (11 male, 22–35 years old) volunteered in the experiment. They were all right-handed according to the Edinburgh Handedness Inventory (Oldfield, 1971), and had normal or corrected-to-normal vision. The local ethics committee had approved the experiment, and written informed consent was obtained from each participant prior to recordings. The experiments were conducted in accordance with the Declaration of Helsinki. Data from one participant were excluded for further analysis due to technical problems during the recordings.

Experimental procedure
Participants performed static and dynamic grip forces in a seated position while their brain activity was recorded using a 151-channel whole-head magnetoencephalography (MEG) system (CTF Systems, Vancouver, BC, Canada) with third-order synthetic gradiometers. Force was exerted either uni- or bimanually by squeezing with each hand separately an MEG-compatible compliant force sensor between the thumb and index finger, while the lower arms were resting on the chair. Surface electromyographs (EMGs) were obtained from left and right first dorsal interosseous, flexor pollicis brevis and flexor digitorum communis muscles. Signals were sampled with a frequency of 1.25 kHz after low-pass filtering at 400 Hz. Online visual feedback was provided on a screen in front of the subjects by means of two adjacent bars of in-/decreasing height on which the target force was indicated as well. Participants were instructed to fixate their gaze on a white dot displayed between the force bars, and to minimize eye movements and blinks during trials.

The experimental conditions were divided into long and short trials of force production (see Fig. 1 for a schematic overview). For the long trials, participants followed a prescribed continuous force pattern for 45 s. Six active conditions were performed: static unimanual-left; static unimanual-right; static bimanual; dynamic unimanual-left; dynamic unimanual-right; dynamic bimanual force production; and a resting state condition during which no force was exerted. The static conditions required the production of a constant force of 3 N. The dynamic force profiles contained a slow build-up and release of force that was unpredictable in timing (build-up/release of 2 or 3 s duration) and peak force (either 1.5 or 3 N), hence being different from rhythmic force generation. The force profiles always agreed for both hands in the bimanual condition. Low target forces (approximately 5% MVC) were chosen in order to avoid muscle fatigue during the experiment. Three trials were performed in each condition. These were presented in three blocks of static and three blocks of dynamic trials in a random order. The resting state trials were placed at the start of the first, third and fifth block. This amounted to a total of 21 trials distributed over six blocks for each subject.

After the continuous force conditions, two short-duration conditions were performed. The prescribed force level for these conditions entailed 3 s rest followed by a 2 s linear increase in force and a subsequent constant 3 N target force for 5 s. These were performed either with the right hand only or bimanually. Both conditions contained 100 trials that were presented in two blocks of 50 trials. A condition performed with the left hand only was omitted for the sake of brevity.

Head localization was measured during the MEG recordings before and after each block using coils on the nasion and pre-auricular points (de Munck et al., 2001).

© 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd European Journal of Neuroscience, 36, 2088-2097
a grand-averaged statistical map over all subjects and conditions. The sensor data were projected onto these source locations by a weighted sum of the time series of each MEG channel, as determined by the beamformer weights. In this way, a ‘virtual sensor’ representing source activity was constructed per subject for all single trials of the continuous force production conditions, as well as the short-duration conditions. All subsequent analyses and results are based on this activity in source space.

Spectral power
The left and right M1s were the only sources that showed significant task-related activity. For the continuous force production trials, the strength of the activity was assessed via the mean beta power in the 40-s active time window. We followed this approach for both sources even if they were not significantly active in the condition under study. Spectral power was computed using 2-Hz frequency bins over the 15–30 Hz interval. Per frequency bin the source time series were filtered (bi-directional second-order Butterworth) and the modulus of the analytic signal obtained via Hilbert transform served as an estimate of spectral power. Subsequently, these power values were averaged over all frequency bins and the 40-s time window to obtain a single measure for the beta band activity. To correct for inter- and intra-individual differences in power levels, we divided the mean power in the active conditions by the corresponding mean power of the resting state. The so-normalized power was subsequently averaged over trials and left and right M1s to obtain separate values for the hemispheres contralateral and ipsilateral to the force producing hand for unimanual conditions, and a single value for the bimanual conditions. A log-transform was applied prior to any averaging to improve normality (Halliday et al., 1995).

The power for the EMG signals was calculated in a similar way after offset removal and full-wave rectification, i.e. the modulus of the analytic signal (Myers et al., 2003). In view of the expected variability of EMG power across trials, we opted for the median rather than the mean over trials. Because EMG power during resting state was low, we normalized the power values per subject by dividing the power for each condition by the sum over conditions. The resulting relative power values were further averaged over the three muscles per arm/hand and over conditions to obtain separate values for the active and passive hand during the unimanual conditions and a single value for the bimanual conditions.

The short-duration trials enabled us to study time-resolved changes in synchronization patterns. Time–frequency spectra were obtained using again the Hilbert amplitude, but now for a frequency range of 5–45 Hz and averaging over trials instead of time. Here the power was normalized per frequency bin via the mean power in the baseline time period without force production (0–3 s) prior to averaging over trials and participants.

Phase synchronization
In addition to local synchronization as reflected by spectral power, between-area synchronization was assessed using the relative phase uniformity as a measure of phase synchronization. We looked at synchronization between left and right M1s and between the EMG signals and M1s (both contra- and ipsilateral hemisphere). The instantaneous Hilbert phase was used to calculate phase differences between pairs of signals. The (circular) variance over time of the phase differences served as a measure of phase locking (Mardia, 1972). This method is identical to the ‘phase-locking value’ described by Lachaux et al. (1999). Unlike the often-employed coherence, these measures of circular statistics are strictly independent from spectral power and hence served as a proper estimate of true phase synchronization (the terms relative phase uniformity and phase synchronization are used as synonyms in this paper). The relative phase uniformity (1 - variance) was calculated for the same frequencies as the spectral power. For the short-duration trials, the variance was taken over trials instead of over time to obtain time-resolved phase synchronization. The same number of trials was used for each subject and condition to avoid any biases in phase uniformity estimates. Corticospinal values were averaged over the three muscles per arm/hand.

Statistics
The average beta activity during the 40-s active period of the continuous force production trials was used to test for differences in activation between conditions. For this, we conducted separate 2 × 3 repeated-measures ANOVAs for M1 power, EMG power, contra- and ipsilateral M1-EMG and left–right M1 phase synchronization. The main factor ‘movement type’ (static, dynamic) was the same for all ANOVAs. The three levels of the main factor ‘hand’ depended on the measure tested. For M1 power, these refer to power in the hemisphere ipsilateral to the active hand, contralateral to the active hand, and bilateral M1s for bimanual force production (ipsilateral, contralateral, bimanual). For EMG power and contra- and ipsilateral M1-EMG phase synchronization the levels refer to whether the hands were producing force (unimanual-passive, unimanual-active, bimanual). A distinction between left and right hand was made in the ANOVA for left–right M1 phase synchronization (unimanual-left, unimanual-right, bimanual). A Greenhouse–Geisser correction was applied whenever Mauchly’s test indicated a lack of sphericity. Post hoc Bonferroni-adjusted paired-samples t-tests were performed whenever a main effect of hand was detected. In addition, for the EMG power and M1-EMG phase synchronization, paired-samples t-tests were performed for each active condition compared with resting state. For these latter tests, we indicate the cases for which a significant effect disappears due to a Bonferroni correction for multiple comparisons. We applied a log-transform to the left–right M1 relative phase uniformity values to obtain normally distributed data (as determined with Shapiro–Wilks tests) prior to ANOVA and paired-samples t-tests. In addition, a Friedman’s ANOVA was performed to the original data. For all tests, we used an α-level of 0.05, and a P-value below 0.10 was considered a trend.

For the short-duration trials, we tested for differences between ipsilateral and contralateral beta synchronization patterns during selected time intervals in which ERD (4–5 s) or ERS (6.5–7.5 s) occurred. For each subject, power was averaged within the time interval and the 15–30-Hz frequency band. Paired-samples t-tests were conducted for both time intervals separately, and for unimanual as well as bimanual conditions. Again, an α-level of 0.05 was used, and a P-value below 0.10 was considered a trend.

Results
All subjects were able after a few practice trials to perform the task without difficulty, and none of them reported muscle fatigue at the end of the experiment.

Beamformers
Significant SAM sources for all conditions are shown in Fig. 2. Only decreases in beta power in bilateral M1 were found. The lack of
significant effects in the supplemental motor area (SMA) and other sources was likely due to the non-rhythmicity and simplicity of the tasks (Lang et al., 1990; Gerloff & Andres, 2002). Significant ipsilateral M1 activation during unimanual force production was only present during dynamic conditions. Peak pseudo-\(t\)-values and number of significant voxels were always larger for dynamic compared with static force production (Table 1). The additionally activated voxels were located primarily in more posterior regions and may reflect a contribution from somatosensory regions.

Continuous force production – power modulations

Grand averaged power in bilateral M1 sources is shown in Fig. 3A. As expected from the beamformer results, beta desynchronization in ipsilateral M1 only occurred during dynamic force production. Also, a significant main effect of ‘movement type’ indicated that beta desynchronization was overall stronger during dynamic compared with static force production (\(F\)-statistics and \(P\)-values of all ANOVAs are summarized in Table 2). In addition, a significant main effect of ‘hand’ and a significant ‘hand \(\times\) movement type’ interaction were found. Post hoc \(t\)-tests indicated that power for contralateral M1 and during bimanual force production was significantly lower than for ipsilateral M1, but only during static force production. A direct comparison of ipsilateral beta power during unimanual static and dynamic conditions confirmed the stronger desynchronization during dynamic force production (\(t_{18} = 8.099, P < 0.001\)).

EMG power was high during active force production conditions (Fig. 3B). However, the EMG of the passive hand in the unimanual conditions was also enhanced compared with resting state (static \(t_{18} = 2.837, P = 0.010\); dynamic \(t_{18} = 2.534, P = 0.021\)), although these effects lost significance after Bonferroni correction for multiple comparisons (number of observations = 6). We found a trend for ‘movement type’ towards lower power for dynamic conditions. Significant effects were found for ‘hand’ and the ‘hand \(\times\) movement type’ interaction. Post hoc \(t\)-tests indicated that EMG power differed only between conditions in which force was exerted compared with passive conditions. No difference was found between EMG power of the passive hand in the static and dynamic force conditions (\(t_{18} = 0.719, P = 0.482\)).

Continuous force production – phase synchronization

Relative M1-EMG phase synchronization data for one subject were excluded from statistical tests because they exceeded three standard deviations from the sample mean during static force production.
Results for contralateral and ipsilateral M1-EMG phase synchronization are displayed in Fig. 3C and D, respectively, and F-statistics and P-values of all ANOVA performed are summarized in Table 2. Contralateral M1-EMG showed a trend for ‘movement type’, a significant effect of ‘hand’, but no interaction. Post hoc t-tests indicated that phase synchronization was larger for the bimanual and unimanual-active conditions compared with unimanual-passive, and agreed for unimanual-active and bimanual. Compared with resting state, phase synchronization was only larger when force was exerted, of which the effect for bimanual dynamic force production ($t_{17} = 2.347, P = 0.031$) disappeared with a Bonferroni correction. Although we cannot fully exclude that the increased synchronization levels are influenced by an enhanced signal-to-noise ratio, phase synchronization is expected to rise when the muscles become active, i.e. with higher EMG power.

Ipsilateral M1-EMG phase synchronization showed a significant effect of ‘movement type’, with lower values for static compared with dynamic force production. When comparing individual conditions to resting state, however, no significant differences were found. The only condition that showed a trend was static-bimanual ($t_{17} = 1.983, P = 0.064$). No significant effects of ‘hand’ or ‘hand × movement type’ interaction were found.

Phase synchronization between M1s was enhanced in all active conditions compared with resting state (Fig. 3E). Compared with resting state, only unimanual-left dynamic force production showed a significant increase ($t_{17} = 2.180, P = 0.044$, but disappeared with a Bonferroni correction). The corresponding ANOVA did not reveal significant effects. For these parametric tests, the data of one subject were excluded because they exceeded three standard deviations from the sample mean. A non-parametric Friedman’s ANOVA with all subjects included did not reveal a significant effect between any of the conditions [$\chi^2(6) = 2.549, P = 0.863$].

Table 2. Results of the 2 × 3 repeated-measures ANOVAs for spectral power and phase synchronization

<table>
<thead>
<tr>
<th>Movement type</th>
<th>Hand</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>$F_{1,18} = 76.317$</td>
<td>$F_{1,36,25,127} = 10.713$</td>
</tr>
<tr>
<td></td>
<td>$P < 0.001$</td>
<td>$P = 0.001$</td>
</tr>
<tr>
<td>EMG</td>
<td>$F_{1,18} = 3.907$</td>
<td>$F_{2,36} = 486.493$</td>
</tr>
<tr>
<td></td>
<td>$P = 0.064$</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>Phase synchronization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1-EMG</td>
<td>$F_{1,17} = 3.811$</td>
<td>$F_{2,34} = 14.044$</td>
</tr>
<tr>
<td>contralateral</td>
<td>$P = 0.068$</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>M1-EMG</td>
<td>$F_{1,17} = 4.456$</td>
<td>$F_{2,34} = 0.394$</td>
</tr>
<tr>
<td>ipsilateral</td>
<td>$P = 0.050$</td>
<td>$P = 0.678$</td>
</tr>
<tr>
<td>M1-M1</td>
<td>$F_{1,17} = 0.144$</td>
<td>$F_{2,34} = 0.470$</td>
</tr>
<tr>
<td></td>
<td>$P = 0.709$</td>
<td>$P = 0.629$</td>
</tr>
</tbody>
</table>

Significant effects are indicated in bold. EMG, electromyogram; M1, primary motor cortex.

Fig. 3. Mean power (A, B) and phase synchronization (C–E) during continuous force production. For unimanual movements the hemisphere ipsi- and contralateral to the moving hand is denoted by ‘ipsi’ and ‘contra’; ‘passive’ and ‘active’ refer to the hand being actively involved in the task; ‘left’ and ‘right’ indicate which hand was active during the task. Error bars are corrected for a within-subjects design by setting between-subject variance to zero (Loftus & Masson, 1994). Significant ANOVA effects for each measure are written in the top right corner. Conditions that showed a significant deviation compared with resting state are indicated with a ‘*’. Phase synchronization averages are based on 18 subjects (see main text). M1 activity was estimated in source space. EMG, electromyogram; M1, primary motor cortex.
Short-duration trials – event-related power and phase synchronization

Figure 4 displays the dynamics of spectral power in both M1s during the short-duration trials. Beta power decreased (ERD) during the buildup of force and increased (ERS) as soon as force production was held constant. For unimanual movements, the ERD had a similar time course and magnitude in contra- and ipsilateral M1. In contrast, only a clear ERS occurred contralateral to the moving hand. The power in ipsilateral M1 returned to baseline level but did not show a pronounced ‘overshoot’ as in contralateral M1. This was specific for ipsilateral involvement as the same M1 displayed ERS in the bimanual condition. Statistical comparisons between left and right M1 power within the ERD and ERS time intervals indicated only a significant difference for ERS in the unimanual condition ($t_{18} = 3.483, P = 0.003$).

Corticospinal M1-EMG synchronization was only present during static force production, and only when the hand was actively involved in the task (Fig. 5). No modulations in ipsilateral M1-EMG and left–right M1 phase synchronization were observed.

Discussion

We investigated the functional role of beta oscillations in ipsilateral M1 during unimanual force production under continuous static and dynamic conditions, as well as in an event-related design. A movement-related power decrease was only found during dynamic force production, which did not result in increased muscle activation or M1-EMG synchronization. Synchronization between M1s was enhanced compared with resting state across conditions, but did not reach significance. Furthermore, ERD was bilaterally modulated during unimanual movement, whereas ERS exceeded baseline only in contralateral M1. These findings suggest that ipsilateral M1 activity not only reflects mere cross-talk effects but also additional means for achieving proper motor control, hence confirming our hypothesis. In the following, we provide a possible explanation for these observed beta modulations in ipsilateral M1. In doing so, we discuss our results against the background of recent functional (f)MRI and transcranial magnetic stimulation (TMS) studies with emphasis on interhemispheric facilitation vs. inhibitory mechanisms.

Indications for distinct neural mechanisms underlying beta desynchronization in contra- and ipsilateral motor cortex

Decreased beta power in both contra- and ipsilateral motor areas during (rhythmic) motor behavior has been reported in several studies (Salmelin et al., 1995; Manganotti et al., 1998; Hummel et al., 2003; Gross et al., 2005; Houweling et al., 2008). Although the suppression appears stronger in the contralateral hemisphere, bilateral M1s show a comparable modulation. In contrast, fMRI studies revealed markedly different blood oxygen level-dependent (BOLD) responses in contra- and ipsilateral M1 – positive BOLD responses in contralateral M1 and
negative ones in ipsilateral M1 (Allison et al., 2000; Nirkko et al., 2001; Hamzei et al., 2002; Stefanovic et al., 2004; Newton et al., 2005; Hayashi et al., 2008). Interestingly, the negative ipsilateral BOLD response in M1 represents a reduced metabolism that has been interpreted as a decrease or ‘inhibition’ of activation (Stefanovic et al., 2004); we note, however, that the interpretation of the BOLD signal in terms of neural activity is far from straightforward (Logothetis, 2008).

Reconciling the bilateral beta desynchronization in our experiments with the modulations in BOLD response in contra- and ipsilateral hemisphere requires an account of the neurophysiological origin of oscillatory activity recorded with MEG/electroencephalography (EEG). Rather than neural spikes, M/EEG picks up intra-/extracellular currents related to postsynaptic potentials on the dendrites of spatially aligned pyramidal cells, lumped over a large neural population. Moreover, it is impossible to discriminate between postsynaptic inhibitory and excitatory potentials, and hence to determine whether summation of postsynaptic potentials led to neural firing (Buzsáki, 2006). Measured spectral M/EEG power may drop when less postsynaptic activity takes place, but also when the timing of postsynaptic potentials within the population is more asynchronous.

Invasive recordings in the macaque contralateral M1 showed a positive correlation between beta desynchronization and firing rate of pyramidal tract neurons during movement (Baker et al., 2001; Spinks et al., 2008). In contrast, the negative BOLD response suggests that ipsilateral beta desynchronization may be caused by a mere decrease in neural activity.

Interhemispheric facilitation vis-à-vis inhibition

Both interhemispheric facilitation and inhibition have been observed by testing the excitability of ipsilateral M1 using TMS. The amplitude of motor-evoked potentials (MEPs) elicited with TMS over contralateral M1 increases when, at the same time, the other hand performs static muscle contractions (Hess et al., 1987; Stedman et al., 1998; Muellbacher et al., 2000; Liepert et al., 2001). For rhythmic muscle contractions the excitability is modulated by the phase of the movement cycle (Stinear & Byblow, 2002; Carson et al., 2004) and may even become inhibitory (Liepert et al., 2001; Sohn et al., 2003). Direct transcallosal interactions have been tested using a paired-pulse paradigm where single TMS stimuli are applied to both M1s separated by a short time interval. Depending on latency this either results in a facilitation (1–5 ms) or inhibition (6–20 ms) of the corticospinal excitability in the hemisphere receiving the second pulse (Ferbert et al., 1992; Salemo & Georgesco, 1996; Gerloff et al., 1998a; Hanajima et al., 2001; Hoy et al., 2008).

Premotor areas may play a mediating role in suppressing mirror movements through interhemispheric inhibition. More precisely, the actual inhibition of ipsilateral M1 occurs intrahemispherically, as excitatory transcallosal projections from contralateral motor areas activate ipsilateral interneurons, which in turn inhibit corticospinal neurons (Daffertshofer et al., 2005). This idea finds support when hampering normal functioning of ipsilateral premotor cortex using repetitive TMS (rTMS), which results in an increased correlation in activity between left and right M1 during unimanual movements (Verstynen & Ivry, 2011). Similarly, rTMS applied over contralateral premotor cortex can enhance the excitability of ipsilateral M1, whereas a single pulse yields converse effects (Cincotta et al., 2004). In fact, the involvement of ipsilateral premotor areas during unimanual movement has been established in fMRI experiments. In addition to the aforementioned negative BOLD responses in ipsilateral M1, there are several studies that report increased BOLD in the ipsilateral hemisphere, which have been attributed to secondary motor areas, including the premotor cortex and SMA (Cramer et al., 1999; Nirkko et al., 2001; Hanakawa et al., 2005; Verstynen et al., 2005; Horenstein et al., 2009; Verstynen & Ivry, 2011). In the present study, peak locations of left and right M1 during contra- and ipsilateral unimanual dynamic force production were identical, implying activation of homologous neural structures.

Interhemispheric facilitation should become apparent in the phase synchronization between left and right M1s, but we did not find any
significant effects. Reports in the literature of M1–M1 entrainment are scarce, although some evidence in favor of statistically significant bilateral entrainment can be found (Gerloff et al., 1998b; Mima et al., 2000; Gross et al., 2005). Perhaps the occurrence of high-frequency synchronization in these studies is related to the rhythmicity of the employed motor tasks and the accompanying involvement of SMA. The lack of significant M1–M1 synchrony in the present study could also result from the involvement of two (or more) distinct neural mechanisms. That is, both ipsi- and contralateral M1 are active but no bilateral synchronization emerges because different neuronal activity patterns bring about the beta desynchronization.

Differential ipsilateral activation for static and dynamic force production

The reason why beta power in ipsilateral M1 significantly decreases during unimanual dynamic but not during static force production might be directly related to the degree of contralateral activation. Despite the lower average force production during the dynamic compared with static conditions, beta desynchronization was much stronger and comprised a larger number of significantly activated voxels, in line with MRI observations (Thickbroom et al., 1999; Keisler et al., 2010). Compared with static muscle contractions, dynamic force production involves a continuous change in motor output that requires more movement parameters to be controlled as well as accurate timing. As a consequence, interhemispheric cross-talk might be both larger and also harder to suppress, possibly leading to the observed larger beta desynchronization in ipsilateral hemisphere.

ERD/ERS and corticospinal excitability

Studying corticospinal excitability during different phases of event-related ipsilateral beta modulations might give more insight into inhibitory and facilitatory mechanisms. By combining TMS and EEG, Rau et al. (2003) found that in unimanual phasic finger movements the excitability of ipsilateral M1 during beta desynchronization was increased (by means of increased MEPs). This effect did not last for the entire time interval during which ipsilateral ERD was present, but was confined to the duration of the EMG burst of the moving finger. Paired-pulse TMS revealed that the increased corticospinal excitability was caused by (or at least related to) increased interhemispheric facilitation. In contrast, no change in excitability was found during ERS, which is associated with a decrease in corticospinal excitability in contralateral M1 (Chen et al., 1998) and inhibition of movement initiation (Gilbertson et al., 2005; Androulidakis et al., 2007; Zhang et al., 2008; van Wijk et al., 2009).

Unlike bilateral ERD, post-movement ERS only occurred after contralateral hand movement. Ipsilateral beta power increases after movement termination, but an overshoot compared with baseline level has been found to be diminished (Salmenlinna et al., 1995; Stancak et al., 1997) or even entirely absent (Alegre et al., 2003; Erbil & Ungan, 2007); when present, it is not coherent with contralateral ERS (Andrew & Pfurtscheller, 1999). Considering the positive correlation between beta desynchronization and firing rate of pyramidal tract neurons during movement (Baker et al., 2001; Spinks et al., 2008), post-movement beta synchronization might reflect a deactivation of pyramidal cells and restoration of resting state oscillations. Restoration of ipsilateral deactivation of neural activity might give rise to different synchronization patterns than the reduction in firing rate of contralateral pyramidal tract neurons.

Modulations of corticospinal synchronization

Event-related contralateral M1-EMG synchronization is typically absent during increases in force production, but builds up when force is held constant (Kilner et al., 2000, 2003), and might even arise directly after transient movements (Feige et al., 2000). Increased levels are generally also found when averaging over a time interval of rhythmic or static motor behavior (Conway et al., 1995; Salenius et al., 1997; Gross et al., 2005; Chakarov et al., 2009). Our findings regarding contralateral M1-EMG phase synchronization are in line with these observations and hence did not come as a surprise. However, we did not anticipate the significant main effect of ‘movement type’ for ipsilateral M1-EMG synchronization. Synchronization was diminished during static force production and enhanced during dynamic force production. It seems that during static force production, cortical output to the spinal cord via ipsilateral pathways may be suppressed, unlike during dynamic force production. This would resemble the stronger interhemispheric cross-talk for dynamic compared with static force conditions. However, the size of this effect seems only weak as no significant differences with resting state were found. A clear-cut explanation for the modulation of corticospinal synchronization hence remains remote.

Conclusion

Modulations of ipsilateral M1 beta power during unimanual force production do not fully resemble those of contralateral M1. Therefore, ipsilateral activity does not solely stem from an interhemispheric cross-talk but seems to reflect additional neural mechanisms that can be related to inhibition of motor output. Identification of the (distinct) neural processes underlying the observed bilateral beta desynchronization likely requires future research to include invasive techniques assessing local field potentials and spike activity in ipsi- and contralateral M1.

Acknowledgements

We thank Bert Clairbois and Bert Coslen for their technical support. This work was supported by The Netherlands Organisation for Scientific Research (grant number 021-002-047).

Abbreviations

BOLD, blood oxygen level-dependent; EEG, electroencephalography; EMG, electromyography; ERD, event-related desynchronization; ERS, event-related synchronization; fMRI, functional magnetic resonance imaging; M1, primary motor cortex; MEG, magnetoencephalography; MEP, motor-evoked potential; MRI, magnetic resonance imaging; rTMS, repetitive transcranial magnetic stimulation; SAM, synthetic aperture magnetoencephalography; SMA, supplemental motor area; TMS, transcranial magnetic stimulation.

References

