Vulkanen

Het klimaat warmde 55 miljoen jaar geleden in korte tijd flink op. Dat gebeurde toen een ongekende hoeveelheid methaan uit de oceaanbodem ontsnapte. Herhaling van zo’n klimaatsprong ligt volgens prof dr Dick Kroon ook bij de huidige opwarming van de aarde op de loer.

Aardwetenschappers hebben de afgelopen jaren in de oceaanbodem aanwijzingen gevonden dat 55 miljoen jaar geleden de temperatuur op aarde in korte tijd met meer dan vijf tot acht graden toenam. Ter vergelijking met het heden is snel gemaakt. De komende eeuw verwacht ons toestand mogelijk ook ‘flink’ op door de toegenomen uitstoot van koolstofdioxide.

Wat veroorzaakte de spectaculaire temperatuurstijging 55 miljoen jaar geleden? En als we het antwoord op die vraag vinden, kunnen we dan beter voorstellen hoe ons klimaat de komende eeuwen zal veranderen? Met die vragen zette een internationaal team van onderzoekers afgelopen april koers naar de Walvis Rug, een onderzees gebied voor de westkust van Zuid-Afrika. De expeditie vond plaats binnen het Ocean Drilling Program, een internationaal onderzoeksprogramma dat zich richt op de bestudering van de oceaanbodem en de aardkern.

De leiding van de expeditie lag in handen van prof dr Dick Kroon, hoogleraar paleoklimatologie aan de Vrije Universiteit in Amsterdam. Half mei keerde Kroon met opmerkelijke resultaten terug. “Het klimaat sloeg 55 miljoen jaar geleden op vol omstand van een grote hoeveelheid methaan ontsnapt uit de oceaanbodem. Een versterkt broeikas-effect was het gevolg. De temperatuur op aarde spoort omhoog. Een belangrijke les voor ons. Als de temperatuur van de oceaan zo ver toeneemt dat methaan zich kan losmaken uit ijskristallen in de bodem is het proces van opwarming niet meer tegen te houden.”

Broeikasaarde

Even terug in de aardgeschiedenis. Dan kunnen we beter begrijpen wat de nieuwe ontdekking van Kroon en consorten betekent. Afrika en Zuid-Amerika, zaten ooit aan elkaar vast, maar 120 miljoen jaar geleden begon de zuidelijke Atlantische Oceaan zich langzaam maar zeker te openen. Daar ligt tegenwoordig de Walvis Rug, waar het team in de oceaanbodem boorde.

De continenten Afrika en Zuid-Amerika dreven uit elkaar met een snelheid van een paar centimeter per jaar, de snelheid waarmee vloertegels groeien. Kroon: “55 Miljoen jaar geleden was dat dus al genuanceerde tijd aan de gang. De oceaan was al open, zija het dat het water nog een stuk minder breed was dan nu. De noordelijke Atlantische Oceaan begon zich te openen tussen Groenland en Noorwegen, waarbij grote hoeveelheden lava naar boven kwamen.”

Bij die uitbarstingen kwamen veel opgeloste gassen vrij die het broeikas-effect versterkten. Ook op andere plaatsen op aarde was de vulkaanische activiteit hoog. “De gemiddelde temperatuur op aarde liep daardoor snel op. Het was in die tijd veel warmer dan tegenwoordig. Er waren kleine of geen ijsschappen op de polen. We spreken van een broeikasaarde, een aarde waarin het broeikas-effect extra sterk aanwezig is.”

Om erin te weten te komen over het klimaat van toen lieten de onderzoekers vanaf hun onderzoeksschip de Joides Resolution kilometers aan buiten naar beneden zakken. “Een behoorlijk technische uitdaging. We boren op een waterdiepte van drie tot vijf kilometer een paar honderd meter in de oceaanbodem. Vervolgens moeten die buizen weer naar boven om de boorkernen aan dek te analyseren.”

Plankton

geen twintig procent van het sediment dat op de oceaanbodem terechtkomt.”


“Maar wat zagen we toen we de boorkernen van de Walvis Rug openbraken? In alle kernen was een scherpe overgang te zien van normaal witte kalk naar donkerrode klei”, zegt Kroom, met glimlachende ogen. “Echt prachtig. Plankton kwam nog wel voor in de oceaan, maar de kalkskeletjes losten op voor ze op de oceaanbodem terechtkwamen.”

De onderzoekers haalden uit de hele boorkernen millimeter kleine beetjes sediment om de verschillende laagjes te analyseren op soorten plankton, chemische samenstelling en kalkgehalte. Kroom: “De datering van de verschillende lagen gebeurt onder andere met magnetosratigraphie. Uit metingen elders in de aardkern weten we dat het magnetisch veld in de loop der tijd regelmatig omgepoold is. Het sediment in de oceaanbodem bevat ijzerverbindingen waarin die ompoling ook terug te vinden is. Door het patroon van ompoling in het sediment over miljoenen jaren vast te stellen en het te vergelijken met de literatuur weten we hoe oud het sediment is. De scherpe overgang naar rode klei bleek in alle boorkernen 55 miljoen jaar oud te zijn.”


Methaan

55 Miljoen jaar geleden is er een drempelwaarde overschreden. De ijiskristallen begonnen te smelten, waardoor methaan uit de bodem ontsnapte. Methaan is een veel sterker broeikasgas dan CO₂. De opwarming van de aarde kwam daardoor in een stroomversnelling. In slecht een jaar eeuwen tot een paar duizend jaar – voor aardwetenschappers korte tijd – liep de gemiddelde temperatuur op aarde verder omhoog met vijf tot acht graden, vooral in de poolgebieden.”

Dieren en planten moesten om te overleven zich snel kunnen aanpassen aan deze extreme klimaatverandering. Het is een van de grootste sprongen in de evolutie van zoogdieren. Kroom: “Het duurde 100.000 jaar voor de situatie van voor het tijdperk van het methaangas weer hersteld was. In de boorkernen zien we het sediment langzaam weer lichter worden.”

“Hoewel het koolstofevenwicht op aarde zich weer herstelde weten Kroom en zijn collega’s overigens nog niet. “We vermoeden dat het meer is gaan regenen op aarde. Daardoor namen rivieren meer nutriënten mee naar zee. Er ontstond meer leven in de oceanen en die namen koolstof uit het water op. De komende tijden gaan we de kleilaag uit de boorkernen ondersoeken op de aanwezigheid van organische verbindingen. We hopen daarmee meer te weten te komen over de verschillende levensvormen in de oceanen.”

Walvis Rug
Kalk lost bij lage temperatuur en hoge druk op in water. Kroom: “Dichtbij het wateroppervlak wordt er veel kalk aan gemaakt dat na het afvallen van het plankton naar beneden zakt. Dieper in de oceaan heersen er andere omstandigheden. De druk is er hoger, de temperatuur lager. Het evenwicht tussen oplossen en aanmaken van kalk kan hier om-slaan in netto oplossen van kalk.”
Plankton als paleothermometer

Plankton dat in de bovenste meters van de oceaan leeft, maakt een kalksketelje (CaCO₃) aan. Zuurstof dat daarvoor gebruikt wordt, legt vast welke temperatuur het water had waarin het beestje leefde. Van zuurstof bestaan meer isotopen. Naast de 'normale vorm' ¹⁶O bestaat er ook ¹⁸O, dat twee neutronen meer in de kern heeft. De verhouding tussen die twee isotopen zegt iets over het klimaat op aarde.

Bij hogere watertemperaturen neemt plankton relatief meer ¹⁸O dan ¹⁶O op in het kalksketel. Dat is een kinetisch effect.

Een tweede effect is de verdamping van zuurstof uit het water. Er verdampt altijd meer ¹⁶O dan ¹⁸O. In koude tijden met veel ijs op de polen wordt daarom relatief veel ¹⁶O vastgelegd in ijs. In die periode is het water bovendien koud en dus neemt het kalksketel relatief weinig ¹⁸O op.

Door nu boorkernen uit de bodem omhoog te halen, kunnen we achterhalen hoe de verhouding ¹⁶O/¹⁸O in de geologische geschiedenis varieerde en daarmee de temperatuur. Elk beestje is dus een soort paleothermometer!

Gegevens uit honderden boringen zijn samengevat in de figuur hiernaast voor het Kenozoicum (het 'nieuwe leven', de periode van de zoogdieren). Deze periode loopt van het moment dat de dinosauriërs uitsterven door een meteoriet, 65 miljoen jaar geleden, tot nu.

Een hoge waarde van ³⁶Cl geeft aan dat er relatief veel ¹⁸O in het kalk zit. Veel ¹⁸O betekent dat het koud is op aarde.

55 Miljoen jaar geleden vond er duidelijk een spectaculaire temperatuursprong plaats. Merk ook op dat we dit moment in de koudste periode leven sinds het uitsterven van de dinosauriërs.
Het niveau waaronder kalk oplost, de Carbonaat Compensatie Diepte, ligt vandaag de dag op 4200 meter diepte. Kroon: "Door de toename van metaan in het water schoof die grens destijds omhoog. Kortweg komt het op neer dat het water op minder grote diepte door de aanwezigheid van metaan zuurder wordt, waardoor de kalkskeletjes van het plankton oplossen. (zie kader) Het enige wat er dan nog op de oceaanbodem terechtkomt is klei. Precies wat we zien bij de scherpe overgang in de boorkernen."

"Als we bepalen tot welke diepte het kalk is opgelost, kunnen we ook berekenen hoeveel metaan er ongeveer is vrijgekomen", verklart Dick Kroon. "Daarom zijn we ook op Walvis Rug gaan boren. Walvis Rug is een soort onderwaterberg. De oceaanbodem loopt snel omhoog van meer dan vijf kilometer diep aan de voet, tot ongeveer 2700 meter onder zeevlak, op de diepste punten. Hierdoor konden we in een klein gebied op verschillende diepgangen boren. En wat denk je? Zelfs in de meest ondiepe haring is alle kalk weg! Er is alleen maar rode klei te zien."

Kroon heeft met computermodellen berekend dat voor het oplossen van de Carbonaat Compensatie Diepte met minstens twee kilometer ongeveer vierduizend gigaton metaan nodig was. "Een onvoorstelbaar grote hoeveelheid, als je bedenkt dat er op dit moment vijf gigaton metaan in de atmosfeer zit. Dat is de grootste ondertekening geweest tijdens deze boorexpeditie, dat er zoveel metaan is vrijgekomen. De laatste honderd miljoen jaar heeft één keer zo'n grote metaanontsnapping plaatsgevonden."

Finse Riviera

Ook tegenwoordig zit er metaan in de oceaanbodem dat vrij kan komen. Kroon: "Er zijn zelfs plannen om metaan te winnen als brandstof. Een land als Japan heeft geen olievoorraad, maar wordt wel omringd door oceaanwelven. Technisch is het sinds een paar jaar haalbaar, maar of het handig is, is de

Koolzuur in de oceaan

Hoe komt het dat er door vrijkomend metaan meer kalk oplost in de diepzone?

Dat is geen direct verband, het zit als volgt:

\[
\text{CaCO}_3 + \text{H}^+ \rightarrow \text{Ca}^{2+} + \text{HCO}_3^- \\
\]

Er zijn dus vrij H\(^+\)-ionen nodig voor het oplossen van kalk en daar zorgt het metaan indirect voor. Door de introductie van metaan in het systeem wordt er CO\(_2\) geproduceerd door oxidatie:

\[
\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} \\
\]

Het CO\(_2\) gaat oplossen in water waarbij H\(^+\)-ionen en koolzuur ontstaan, of anders gezegd vrij H\(^+\)-ionen komen in het zeezuur teder doordat CO\(_2\) er in oplost:

\[
\text{H}_2\text{O} + \text{CO}_2 \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \\
\]

De omgekeerde reactie is welbekend: koolzuur in frisdrank! CO\(_2\) komt vrij bij het openen van de fles, dus onder hogere druk is er meer CO\(_2\) op te lossen. Dit evenwicht hangt niet alleen af van druk en temperatuur maar natuurlijk ook van de hoeveelheid CO\(_2\). Hoe meer daarvan in het zeezuur komt, des te meer vrij H\(^+\)-ionen, des te zuurder het water. Dus: meer metaan in het water geeft meer vrij H\(^+\)-ionen en kalk begint op te lossen.
vraag. De mens zorgt al voor een snelle toename van CO₂ in de atmosfeer, vergelijkbaar met wat er 55 miljoen jaar geleden door vulkanen gebeurde. Maar gelukkig komt het methaan uit de oceaanbodem nog niet vrij."

"Daarvoor moet het diepe oceanawater eerst behoorlijk opwarmen, nog minstens vijf graden. Voorlopig koelen de ijskappen aan de polen het water in de oceaan. Onze generatie zal het waarschijnlijk niet meer meemaken dat de ijskappen helemaal wegsmelten. Met een zo groot effect als 55 miljoen jaar geleden hoeven we binnen ons leven dus nog geen rekening te houden."

Maar volgende generaties krijgen er volgens Kroon wel mee te maken. Op een 'koude aarde' met ijskappen op de polen zit vierhonderd gigaton methaan opgesloten in de permafrost, gebieden waar de bodem het hele jaar door bevroren is. Kroon: "Die gebieden in het noorden van Canada en Siberië liggen precies in de regio die ook het meest te maken gaat krijgen met de opwarming van de aarde. Aan de polen zal de temperatuur namelijk harder omhoog gaan dan aan de evenaar. Minus dertig in plaats van minus vijf in de winter lijkt geen probleem. Maar daardoor omsloot tellen van de permafrost in de zomer en kan er methaan vrijkomen. Dit proces is al in volle gang. Uit oude satellietbeelden blijkt dat de permafrost een stukje afgeloopen twintig jaar teruggegaan. De hoeveelheid methaan die daarbij vrijkomt is onbekend, maar kan voldoende zijn om het broeikas-effect op aarde te versterken en het smelten van de ijskappen te versnellen."

En daardoor kan het diepe oceanawater opwarmen. Kroon: "Deze gebeurtenissen leiden tot een warmteverlaging, zodat de permafrostgebieden of de oceaanbodem zullen succesief in de ruimte gaan zinken, met warme stranden en palmen in de tuin."

Informatie
www.geo.uu.nl
Ocean Drilling Program:
www.odp.tamu.edu