Chapter 10

Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease

Martin H. de Borst, Marc G. Vervloet, Piet M. ter Wee,

Gerjan Navis

Chapter 10: Cross talk between the RAAS and vitamin D, FGF-23 and klotho

Abstract
There is increasingly evidence that the interactions between vitamin D, fibroblast growth factor-23 (FGF-23), and klotho form an endocrine axis for calcium and phosphate metabolism, and derangement of this axis contributes to the progression of renal disease. Several recent studies also demonstrate negative regulation of the renin gene by vitamin D. In chronic kidney disease (CKD), low levels of calcitriol due to the loss of 1-alpha hydroxylase increase renal renin production. Activation of the renin-angiotensin-aldosterone system (RAAS), in turn, reduces renal expression of klotho, a crucial factor for proper FGF-23 signaling. The resulting high FGF-23 levels suppress 1-alpha hydroxylase, further lowering calcitriol. This feedback loop results in vitamin D deficiency, RAAS activation, high FGF-23 levels and renal klotho deficiency, all of which associate with progression of renal damage. Here we review current evidence for an interaction between the RAAS and the vitamin D-FGF-23-klotho axis as well as its possible implications for progression of CKD.

Introduction
The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in renal progression and its complications. Accordingly, RAAS blockade has been the cornerstone of renoprotective interventions. Vitamin D deficiency is also traditionally recognized as a key factor in the bone and mineral disturbances of chronic kidney disease (CKD) and vitamin D supplementation is standard treatment for many renal patients. As reviewed elsewhere, vitamin D interacts with the more recently identified moieties, fibroblast growth factor 23 (FGF-23) and klotho. As such, vitamin D, FGF-23, and klotho represent an endocrine axis involved in the regulation of calcium and phosphate metabolism. Besides having effects on mineral metabolism, vitamin D deficiency is also associated with progressive renal disease and with mortality in CKD. In line with these observations, the use of vitamin D analogues associates with a survival advantage in dialysis patients, and preclinical and clinical data indicate that vitamin D analogues have additional renoprotective effects in addition to RAAS blockade, supporting their clinical relevance. Multiple mechanisms may be involved in the protective effects of vitamin D, including autocrine anti-inflammatory and anti-fibrotic effects, as well as a suppressive effect on the RAAS. Several
lines of evidence support the impact of vitamin D on RAAS activity at the clinical, pathophysiological, and molecular level. The other way round, RAAS activity influences the vitamin D-FGF-23-klotho axis. Recent studies show that angiotensin II reduces renal expression of klotho, which in turn modulates FGF-23-signaling and 1-alpha hydroxylase, the enzyme converting calcidiol to calcitriol. As derangement of the vitamin D-FGF-23-klotho axis associate with cardiovascular complications in several studies, the interactions of this axis with the RAAS may have therapeutic implications in CKD patients, regarding both renal and cardiovascular outcomes.

Modulation of the RAAS by vitamin D

The first clinical studies suggesting an inverse relationship between calcitriol and renin levels were published two decades ago\(^9\)^\(^{10}\) and were recently confirmed in a large cohort study\(^11\). Vitamin D deficiency, defined as calcidiol levels below 15 ng/mL, associates with reduced renal plasma flow responses to infused angiotensin II, suggesting endogenous intrarenal RAAS activation in vitamin D deficient subjects,\(^12\) and intervention with calcitriol decreases plasma renin and angiotensin II levels in hemodialysis patients with secondary hyperparathyroidism\(^13\).

Several mechanistic studies confirming negative regulation of the renin gene by calcitriol have been published by the group of Li et al., who demonstrated increased renin gene expression in kidneys of vitamin D receptor (VDR)-null mice, accompanied by increased plasma angiotensin II levels, hypertension, and cardiac hypertrophy\(^14\). In wild-type mice, conversely, treatment with calcitriol reduces renal renin production. The negative regulation of renin by calcitriol seems independent of calcium and PTH\(^15\). On a molecular level, calcitriol binds to the VDR and subsequently blocks formation of the CRE-CREB-CBP complexes in the promoter region of the renin gene, reducing its level of expression\(^16\).

Together, the associations found in clinical studies and the supporting mechanistic studies make it plausible that vitamin D deficiency could indeed contribute to an inappropriately activated RAAS, as a mechanism for progression of CKD and/or cardiovascular disease. This may well be relevant for therapeutic purposes. Pharmacological blockade of the RAAS is the main therapeutic modality in CKD, and despite its proven efficacy, renoprotection is usually
far from complete17. Several lines of evidence indicate that persistent RAAS-activity, either
by incomplete pharmacological blockade or related to the reactive rise in renin during
therapy, can hamper its therapeutic efficacy. This is suggested by the added antiproteinuric
effect of renin inhibition to AT1 receptor blockade18. These findings hypothesize that
treatment with a vitamin D receptor agonist on top of conventional RAAS-blockade, would
give additional renoprotection through its negative regulation of renin.
In line with this notion, several experimental studies confirm that the renoprotective effects
of vitamin D at least in part through the suppression of renal renin expression5,7. In a recent
randomized controlled trial, paricalcitol given in addition to RAAS blockade further reduces
albuminuria compared to RAAS blockade alone in patients with diabetic nephropathy,
although it remains unclear whether this therapeutic benefit was obtained by an effect on
renal renin activity19. Vitamin D analogues may also have cardioprotective effects in
association with suppression of renin in kidney and heart20,21. Whether paricalcitol reduces
left ventricular hypertrophy in stage III/IV CKD patients is currently under investigation in the
PRIMO study (ClinicalTrials.gov Identifier: NCT00497146).
Interactions between vitamin D and other RAAS components have been studied as well.
Aldosterone acts through the mineralocorticoid receptor, which belongs to the same
superfamily of nuclear receptors as the VDR. Therefore, crosstalk between these receptors
and their agonists could potentially exist, but this has not been studied so far. Mice that are
genetically deficient for klotho, a protein associated with downregulation of 1-alpha
hydroxylase and thus limited production of calcitriol, show excessive levels of calcitriol but
also hyperaldosteronism, which is similarly reversed by a vitamin D-deficient diet22. Although
these findings suggest a possible interaction between vitamin D and aldosterone synthesis, it
is uncertain whether hyperaldosteronism is a direct consequence of hypervitaminosis D.
Data from \textit{in vitro} studies do not support positive regulation of aldosterone synthesis by
vitamin D, as treatment of cultured adrenocortical cells with calcitriol reduce aldosterone
levels23. In VDR null mice, although there seems to be a trend towards increased aldosterone
levels, the elevation is not significant as compared to wild-type mice,24 which is in contrast
with the strong down-regulation of renal renin,5 suggesting the effect on aldosterone may in
fact be through renin. Treatment of spontaneous hypertensive rats (SHR) with
cholecalciferol also reduces plasma aldosterone levels, but here also a direct suppressive effect on renin transcription cannot be excluded25. Vice versa, aldosterone may potentiate the effects of calcitriol, as demonstrated in cultured renal thick ascending limb cells26. In this study, calcitriol negatively regulates HCO\textsubscript{3} absorption in the rat medullary thick ascending limb which may contribute to net urine acid and/or calcium excretion. Addition of aldosterone potentiated the effects of calcitriol through an ERK-dependent, non-genomic pathway. This implicates a crosstalk between the mineralocorticoid receptor and VDR may indeed be present, but understudied.

Whether vitamin D modulates the expression of angiotensin II receptors is unknown. The only study on this subject reports that in adipocytes, vitamin D down-regulates expression of the AT1 receptor in a dose-dependent manner,27 but to our knowledge these findings have never been replicated in other cell types.

In conclusion, both clinical and mechanistic studies suggest that calcitriol, through the VDR, has a negative regulatory role on renin gene transcription. Whether vitamin D also interacts with other RAAS components is unclear. Correcting vitamin D deficiency may have renal and cardioprotective effects, at least in part through suppression of the RAAS. The direct suppressive effect of calcitriol on the renin gene raises the question whether a feedback loop exists; that is, if the RAAS also influences vitamin D metabolism. Recent data suggest that indeed activation of vitamin D, through klotho and 1-alpha hydroxylase, could be affected by angiotensin II.

Possible effects of the RAAS on klotho, FGF-23, and vitamin D

The possible regulation of vitamin D metabolism by the RAAS is less well defined than the opposite regulation of the renin gene by calcitriol. Although there is no evidence that any RAAS component directly influences the enzyme 1-alpha hydroxylase or VDR, indirect effects of angiotensin II on 1-alpha hydroxylase, through klotho and FGF-23, may play a role.

Negative regulation of klotho by angiotensin II.

Accumulating data suggests that angiotensin II negatively regulates renal klotho expression28-31. In an animal model, Mitani et al. demonstrated down-regulation of renal
klotho expression in response to angiotensin II infusion. Klotho down-regulation also followed infusion of angiotensin II in a non-pressor dose28. The down-regulation of klotho was angiotensin II type 1 (AT1) receptor-dependent, since it is completely abolished by losartan and not by hydralazine. Intriguingly, subsequent restoration of klotho abundance in the kidney by gene transfer improved angiotensin II-induced proteinuria, suggesting that non-pressor-driven angiotensin II-induced proteinuria at least in part depends on loss of klotho.

In cultured tubular epithelial cells, angiotensin II-induced AT1-receptor-mediated down-regulation of klotho was confirmed29. In a recent elegant study, Yoon et al. demonstrated in a mouse model that salt restriction, a well-known RAAS-activating intervention, reduced klotho expression, which was reversed by losartan30. The same study revealed that 195hosphaturia-induced damage associates with down-regulation of renal klotho in association with up-regulation of renal RAAS activation; addition of losartan completely prevented the loss of klotho expression30.

Several other animal models characterized by an activated RAAS including SHR, non-insulin-dependent diabetic nephropathy (Otsuka Long-Evans Tokushima Fatty rats) and 5/6 nephrectomy all demonstrate downregulation of renal klotho32. The fact that renal klotho expression is also reduced in the DOCA salt rat model, characterized by RAAS suppression and renal damage, suggests that also other factors such as tubular injury contribute to down-regulation of klotho in renal damage. Studies in patients suggest reduced renal klotho expression per nephron in kidney sections from CKD patients as compared to control kidneys, but whether this is associated with RAAS activation is unclear33. Interestingly, calcitriol has been shown to enhance renal klotho expression in vivo,34 possibly as a consequence of reduced RAAS activation.

Mechanisms of klotho down-regulation.

The mechanisms of klotho down-regulation by angiotensin II are incompletely understood. Although direct negative regulation through the AT1 receptor is possible, other factors such as oxidative stress may contribute. Like angiotensin II, oxidative stress itself can cause down-regulation of renal klotho31,35. Subsequent administration of a free radical scavenger not
only prevented klotho down-regulation induced by oxidative stress, but also by infusion of angiotensin31. It is well established that angiotensin II influences oxidative stress through the NADPH oxidase system36-38. Conversely, inhibitors of the RAAS ameliorate the production of reactive oxygen species,39 which could at least in part explain the effects of RAAS inhibitors on klotho expression.

Interestingly, tumor necrosis factor alpha converting enzyme (TACE or ADAM17), which is up-regulated in the presence of vitamin D deficiency,40 may be involved in cleavage of the extracellular domain of klotho41. Moreover, angiotensin II itself also up-regulates TACE,42 providing another mechanism for klotho down-regulation. It may be through this mechanism, through TACE, that even distant inflammation down-regulates renal klotho43. These preliminary data suggest that klotho function could be affected by vitamin D deficiency through proteolytic activity of TACE, especially under inflammatory conditions.

Consequences of down-regulated klotho and FGF-23 resistance.

The klotho gene encodes two proteins from five exons: membrane bound klotho (mKlotho; molecular weight 130 kDa) and secreted klotho (sKlotho; 80 kDa), which is a product of alternative splicing44,45. A third form of klotho, a cleavage product of the extracellular domain of mKlotho, is referred to as cut-Klotho (cKlotho)46. Although under physiological conditions the klotho gene is expressed only in selected tissues, including distal tubular segments of the kidney, klotho null mice have the phenotype of generalized aging47. The similarity between klotho and FGF-23 mice led to the discovery that klotho is mandatory for FGF-23 signaling by modification of the low-affinity FGF receptor (FGFR1), leading to the high-affinity receptor that comprises the membrane-bound FGFR1/klotho complex47,48. Only mKlotho, and not one of the circulating forms, can form an FGF-23 receptor from FGFR149.

As a consequence of klotho down-regulation, the high-affinity FGFR1/klotho complex is reduced, inducing FGF-23-resistance. Thus, by its effect on klotho, angiotensin II could theoretically be involved in induction of FGF-23 resistance. In CKD, FGF-23 resistance abates fractional excretion of phosphate, leading to further hyperphosphatemia and thus providing another trigger for FGF-23 release50. As a consequence of high FGF-23 levels, vitamin D activation is suppressed. Administration of recombinant FGF-23 to normal mice reduces
renal expression of 1-alpha hydroxylase and increases renal CYP24A1, resulting in low calcitriol levels51. This effect is mediated by extracellular signal-regulated kinase (ERK)52. Both FGF-23 and klotho null mice display increased expression of 1-alpha hydroxylase53,54. This suggests that klotho, in concert with FGF-23, participates in an inhibitory feedback loop that results in the suppression of calcitriol synthesis34. High levels of FGF-23 suppress activation of vitamin D and are associated with progression of CKD,55 left ventricular mass and geometry,56,57 atherosclerosis,58 and mortality in dialysis patients59. Clinical data suggest that the mechanisms underlying the association between FGF-23 and vascular complications are multiple, including suppression of vitamin D activation, reduced fetuin-A levels, and endothelial dysfunction, partially through asymmetrical dimethyl arginine (ADMA)60. Moreover, higher FGF23 is associated with proteinuria throughout several ranges of CKD,60 independently of levels of active vitamin D51.

Besides its role as part of the FGF-23 receptor complex, the \(\beta\)-glucuronidase activity of klotho is important in stabilizing the abundance of the TRPV5 in the apical membrane of tubular cells54,62. Loss of renal klotho in CKD33 may thus lead to renal calcium loss, providing another impulse for vitamin D activation. In addition, overexpression of klotho provides renoprotection in mouse63 and rat64 models of renal damage, suggesting that renal loss of klotho as observed in CKD may result in renal damage.

Finally, klotho appears to have distant effects, especially on the vasculature. Although it is possible that the originally described phenotype of premature aging in klotho-deficient mice46 is the consequence of disturbed regulation of calcium, phosphate, and vitamin D metabolism in the kidney, several recent reports suggest that klotho has specific functions at distant tissues. Klotho, for example, protects endothelial cells against oxidative-stress induced apoptosis65,66. An elegant study demonstrated that klotho-deficient mice have endothelial dysfunction, which could be restored by parabiosis with wild-type mice67. At least part of these beneficial effects may be mediated by inhibition of insulin/IGF-1 signaling, thereby improving resistance against oxidative stress68. Recently it was shown that klotho is involved in intracellular calcium handling in endothelial cells through the VEGF receptor and TRPC-1, and thus protects these cells from loss of integrity through apoptosis69. The resemblance of the abovementioned observations with the effects of RAAS activation
suggests that a part of the clinical picture as observed in state of RAAS activation in CKD might in fact be due to klotho deficiency.

Can the vitamin D-FGF-23-klotho axis be monitored and targeted?
The data summarized here suggest a relationship between RAAS activation, low renal klotho levels, and high FGF-23 levels in CKD patients, all of which associate with adverse outcomes. Future studies are needed to address whether adequate renal klotho, as measured for instance by fractional phosphate excretion, vitamin D, or FGF23 levels, (possibly) circulating klotho, or a combination of these factors, could be a therapeutic intervention. Targeting klotho deficiency in CKD, which can be achieved by optimizing RAAS blockade and correction of vitamin D deficiency, may further reduce cardiovascular disease and progression of kidney injury.

Conclusions
Emerging evidence demonstrates the negative regulation of the RAAS by calcitriol, providing renoprotective effects of vitamin D analogues in addition to RAAS blockade in CKD. A growing number of studies support suppression of 1-alpha hydroxylase by angiotensin II through renal down-regulation of klotho and subsequent FGF-23 resistance (summarized in Figure 1, left panel). Besides its effects on vitamin D metabolism, high levels of FGF-23 or FGF-23 resistance due to klotho deficiency are associated with endothelial dysfunction, cardiovascular morbidity and mortality, and progression of CKD. In CKD, loss of capacity for excreting phosphate by reduced nephron mass and loss of klotho due to RAAS activation and tubulointerstitial damage both further enhance circulating levels of FGF-23 and reduce levels of active vitamin D (Figure 1, right panel). Further derangement of these interconnected axes may well contribute to the cardiovascular complications of CKD.
Chapter 10: Cross talk between the RAAS and vitamin D, FGF-23 and klotho

RAAS inhibition and supplementation of vitamin D deficiency are well-established interventions for prevention of progressive renal function loss and its extrarenal complications, as recommended by current guidelines\(^{71}\) (http://www.nice.org.uk/cg73). Interestingly, these interventions appear to share a part of their beneficial effects by

![Diagram](image.png)

Figure 1:
Cross-talk between vitamin D (red), FGF-23-Klotho (yellow) and the RAAS (blue) in healthy subjects and patients with chronic kidney disease. In the normal situation (left panel), active vitamin D (1,25(OH)\(_2\) vitamin D) generated by renal 1-alpha hydroxylase, suppresses renal renin production. When the RAAS is not activated (low angiotensin II), renal klotho levels are sufficient to allow normal function of the FGF-23 receptor. Therefore levels of FGF-23, a negative regulator of 1-alpha hydroxylase, are normal under these conditions. In chronic kidney disease (right panel), the RAAS, vitamin D, FGF-23 and klotho are concordantly disturbed. (1) Activity of 1a-hydroxylase is reduced due to nephron loss and high FGF-23 in CKD, (2) leading to reduced production of 1,25(OH)\(_2\)-vitamin D, which in turn upregulated renal renin production. (3) The subsequent higher levels of angiotensin II cause renal klotho loss and (4) disrupted FGF-23 signaling, impairing 199phasaturia and rising FGF-23 levels. RAAS activation, vitamin D deficiency, high FGF-23 levels and low renal klotho have all been associated with adverse renal outcome in CKD.

Interrupting the vicious cycle of increasing FGF23 resistance due to klotho deficiency. However, the protection against renal progression and its extrarenal complications by current therapy is far from complete, prompting for improvement of treatment strategies. Currently, management of blood pressure and proteinuria by RAAS blockade, and vitamin D supplementation are independent components of the treatment regimen. Their separate and combined impact on the FGF-23-klotho axis is not monitored, nor is it a treatment target. It would be attractive to hypothesize that targeting optimization of this axis, particularly optimal levels of renal klotho, could enhance therapeutic efficacy, either by adapting titration strategies for currently available drugs, or by novel agents.
Chapter 10: Cross-talk between the RAAS and vitamin D, FGF-23 and klotho

Disclosures: Dr. De Borst is supported by personal development grants from the Dutch Kidney foundation (KJPB.08.07) and the University Medical Center Groningen (Mandema stipend), and by the European Union (FP7, Systems Biology towards Novel Chronic Kidney Disease Diagnosis and Treatment Project consortium (SysKid), project number 241544).

References

200
Chapter 10: Cross talk between the RAAS and vitamin D, FGF-23 and klotho

201
Chapter 10: Cross-talk between the RAAS and vitamin D, FGF-23 and klotho

Chapter 10: Cross talk between the RAAS and vitamin D, FGF-23 and klotho

Chapter 10: Cross talk between the RAAS and vitamin D, FGF-23 and klotho

64. Wang Y, Sun Z: Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 54: 810-817, 2009

