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Abstract
Bolus-tracking dynamic contrast enhanced magnetic resonance imaging 
(DCE-MRI) is increasingly applied to quantify pulmonary perfusion. 
Quanti!cation requires a deconvolution of a measured arterial input 
function (AIF) and tissue function (TIS) to obtain a residue function 
(R). From R pulmonary blood "ow (PBF), pulmonary blood volume 
(PBV) and mean transit time (MTT) can be obtained. Deconvolution 
methods can be model-dependent or model-independent and generally 
di#er in assumptions of the global shape of R, computational stability 
and oscillations in estimated R. It is unknown what deconvolution 
methods perform best for pulmonary perfusion quantification. 
Furthermore, it is unknown how delay and dispersion in estimated AIF 
a#ect perfusion parameters. $is study evaluates the robustness of 
di#erent deconvolution techniques and explores the role of delay and 
dispersion in pulmonary perfusion quanti!cations. All analyses were 
performed in control subjects, patients with pulmonary hypertension 
and patients with pulmonary atresia who underwent DCE-MRI. Results 
indicated that model-independent deconvolution using Tikhonov regular-
ization with an optimized L-curve criterion and parameterization of R 
using B-splines was most robust and more robust than Tikhonov regular-
ization alone. Delay correction of the contrast bolus arrival time was 
essential for accurate quanti!cation, while dispersion had a negligible 
e#ect on perfusion estimates.

Keywords: dynamic contrast enhanced MRI  deconvolution  
bolus delay and dispersion pulmonary blood perfu-
sion  residue function  delay
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Introduction

ABSOLUTE QUANTIFICATION of blood perfusion using bolus-tracking dynamic 
contrast enhanced magnetic resonance imaging (DCE-MRI) is a useful technique 

in many applications. Perfusion parameters comprise pulmonary blood "ow (PBF), 
pulmonary blood volume (PBV) and mean transit time (MTT). 
 Absolute quanti!cation of perfusion parameters in the lung parenchyma is challenging 
for several reasons. First, the lungs consist of large gas-!lled spaces with a relatively low 
percentage of lung parenchyma. $is fact negatively a#ects the contrast-to-noise ratio 
(CNR). Second, the short transit time of blood in the lungs requires su%ciently high 
temporal resolution to measure the bolus passage with su%cient samples. Optimal perfu-
sion quanti!cation is thus a balance between temporal resolution and CNR1. $ird, the 
level of inspiration during breath hold importantly determines computed pulmonary 
blood "ow, with higher values at expiration2. 
 $e theoretical basis of perfusion quanti!cation is the central volume principle3, which 
assumes linear and stationary tissues. $is implicates that the response of a tissue to an 
injected tracer is proportional with the dose, and that this response does not change 
during injection. $e assumption of linearity is only true when an arterial input (i.e. 
arterial input function (AIF)) is measured directly at the inlet of a tissue. Since this is not 
possible in the lungs, the AIF is usually measured in the main pulmonary artery. $is 
results in a delay and dispersion of the contrast bolus at the arrival in the lung paren-
chyma. Although these factors are usually disregarded in experimental settings it may 
lead to underestimation of blood "ow4,5. 
 $e tissue concentration of contrast agent can be described as a convolution of the 
AIF with a residue function. $is residue function is a tissue characteristic that fully 
de!nes tracer kinetics and thus the perfusion parameters. $e residue function is de!ned 
as a positive, monotonically decaying function. It can be obtained from the AIF and the 
tissue concentration function with a deconvolution procedure. $is tissue concentration 
function (or short tissue function) can be considered is an “output function” and is deter-
mined either in a part or in the whole tissue.3 Since deconvolution is an ill-posed problem 
(i.e. perfusion parameters are sensitive to small perturbations of the data), the e#ect of 
inaccuracies in the measurements should be minimized. $is is usually performed by 
application of constraints to the shape of the residue function that should be estimated. 
$e groups of deconvolution methods can be classi!ed as model-dependent and model-
independent deconvolution methods. It is unknown how these methods di#er from each 
other in estimating perfusion parameters. $is knowledge is especially important when 
perfusion parameters need to be compared between patients, or when follow-up measure-
ments are performed.
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$e aim of this study was twofold: 1) to explore the role of delay and dispersion on 
pulmonary perfusion parameters in experimental data of healthy control subjects and 
patients, and 2) to evaluate the robustness of several model-independent deconvolution 
techniques. All analyses were performed in control subjects and in di#erent patient popu-
lations, including idiopathic pulmonary arterial hypertension (iPAH), chronic throm-
boembolic pulmonary hypertension (CTEPH) and pulmonary atresia patients (PA). 
Pulmonary parenchyma was detected by semi-automatic lung segmentation.

Methods
Patient data
All examinations were performed on a 1.5T Sonata MRI system equipped with a 6-element 
phased array coil, or a 1.5T Avanto MRI system equipped with a 32-element phased-aray 
coil (Siemens Medical Solutions, Erlangen, Germany). Using a 3-D gradient-echo sequence 
with parallel imaging, eight consecutive slices (each 15 mm thick) were obtained in the 
coronal plane during a 30-seconds end-inspiratory breath hold. MR parameters were: 
"ip angle 25°, TR/TE 2.29-3.18/1.12 ms, matrix 320 × 150, acquired voxel size 2.3 x 
1.3 x 15 mm
 As soon as dynamic MR image acquisition was started, a Gadolineum-based contrast 
agent (Magnevist ®; Schering, Berlin, Germany) was injected via an antecubital vein at a 
rate of 5 ml/s, followed by a 20-ml saline "ush at the same rate. In all subjects, 0.2 ml/
kg body weight of MagnevistR was administered with a power injector.
 Included in this study were data from 5 healthy controls subjects and 16 patients. 
Among the patients were 6 patients diagnosed with idiopathic pulmonary arterial hyper-
tension (iPAH), 5 patients with pulmonary atresia (ATRESIA), and 5 patients with 
chronic thromboembolic pulmonary hypertension (CTEPH). PH was diagnosed according 
to a standard diagnostic workup. $e diagnosis of pulmonary atresia was made in all 
patients on CT-angiography and pulmonary angiography. In these patients only the 
preserved lung was considered in the analysis. In all patients, invasive pressure measure-
ments were performed. 
 Cardiac output was measured from main pulmonary artery "ow acquired using phase-
contrast velocity quanti!cation. A 2- D spoiled gradient-echo pulse sequence was applied 
with an excitation angle of 15°, TR/TE 11/4.8 ms, matrix 208 x 256 and a receiver 
bandwidth of 170 Hz per pixel. Velocity sensitivity was initially set to 120 cm/s, but 
adjusted to lower or higher values in individual cases. Velocity encoding was interleaved 
resulting in a temporal resolution of 22 ms. Pulmonary "ow was obtained using Medis 
Flow software package (Medis, Leiden, $e Netherlands). 
 In iPAH patients, the mean pulmonary arterial pressure (mPAP) was 60 ± 7, resistance 
(PVR) 1259 ± 714 dyn × s × cm-5, and CO 3.9 ± 1.5 L/min.  In ATRESIA patients, 
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mPAP was 24 ± 18, PVR 367 ± 431 dyn × s × cm-5, and CO 5.1 ± 1.4 L/min.  In CTEPH 
patients, mPAP was 35 ± 21, PVR 1329 ± 1041 dyn × s × cm-5, and CO 3.6 ± 1.9 l/min.  
In control subjects CO was 6.8 ± 1.7 L/min.
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Semi-automatic lung segmentation
$e lung parenchyma was segmented semi-automatically by segmentation of pulmonary 
arteries and veins1,6,7, and of the outer lung contours. Subsequently, within the outer lung 
contours the segmented vessels were excluded in order to obtain the lung parenchyma.
Pulmonary arteries were detected by standard cross-correlation between a signal Intensity 
(SI) function in the main pulmonary artery (determined from a manually drawn ROI 
in a central slice) and pixel SI functions6 (Figure 1). With this approach a cross-correla-
tion matrix was obtained with each pixels a value between -1 (negative correlation) and 
+1 (perfect correlation).  Pixels with correlation values above a certain threshold were 
considered to belong to arteries and were rejected in the analysis of the lung parenchyma.  
On average a threshold of 0.7 was used, but this value was manually varied between 0.6 
and 0.8 to exclude arteries to the same extent for every subject. $is adjustment was 
based on visual inspection under the consideration that it is better to exclude too many 
than too few pixels. In the latter situation, a pixel corresponding to an artery would result 
in signi!cant overestimation of parenchymal blood "ow. To study the e#ect of leaving 
“arterial pixels” to the lung parenchyma, we also considered a threshold that was 0.1 
higher than the threshold that was considered optimal. $e obtained datasets were anal-
ysed separately.
 To exclude venous vessels from the parenchyma, an SI curve was determined in the 
left atrium. Subsequently, this curve was cross-correlated with the pixel SI functions. 
Again a correlation matrix was obtained and pixels with correlation values above on 
average 0.7 (range 0.6 to 0.9) were excluded in the further analysis of the parenchyma 
(Figure 1).
 In case of exuberant bronchial circulation, additional cross-correlation of pixel SI’s 
with the aortic SI was performed, as pixel SI’s in these vessels do not correlate well with 
the MPA or LA SI. Normally, bronchial vessels only supply nutrition to the parenchyma. 
However, in patients with CTEPH, the bronchial arteries are dilated resulting in increased 
"ow8. $ese vessels become visible as a late phase of bolus passage. 
 To detect the outer border of the lung parenchyma an image was selected just before 
the tracer arrival and intensities were scaled between 0 and 1. Due to the air-!lled spaces 
in the lungs, parenchymal intensity values are consistently lower than in the surrounding 
tissue. $ese pixels were selected using a threshold value between 0.1 and 0.15. Selected 
pixels that were outside the thorax were manually removed (Figure 1).

!eory 
$e central volume principle states that the transport of an injected tracer is linear and 
time-invariant. $e response in a tissue CT(t) to an arbitrary arterial input function (AIF), 
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denoted as concentration curve Ca(t) is then given by the convolution integral of this 
input with the residue function, r(t).9 Let  the discrete-time points with sequence 
t = 0...N −1, the discrete-time convolution yields:
  

  
CT (t) = t r( )

=0

t

Ca (t )+ (t),  with Ca (t) = 0 for t < 0        (1)
     

where ∆t is the sampling interval and  the signal noise. 
For a more compact notation  can be notated as
 
  CT = A r +   (2)

with

  
 

CT =
CT (0)

CT (N 1)
,    r =

r(0)

r(N 1)

and A a Toeplitz matrix, yielding

  

 

A = t

Ca (0) 0 0
Ca (2) Ca (0) 0

0
Ca (N 1) Ca (N 2) Ca (0)

, A NxN

$e residue function r is assumed a monotonically decaying function with its initial 
amplitude a measure of pulmonary blood "ow (PBF) in ml/100ml/min9. 
 From the central volume principle, the relative pulmonary blood volume (PBV; in 
ml/100ml) can be derived by: 

      PBV =
CT0
(t)dt

Ca0
(t)dt      (3)

and mean transit time (MTT; in seconds) as:
     

  MTT = PBV
PBF

60  (4)
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To compensate for discretization errors in matrix A, discretization was performed using 
the Volterra formula. $is method was found to be most accurate compared to four other 
common discretization methods10. A can then be written as
  

Ai0 = Ai for (0 < i n 1)             

Aii = A0
+ for (0 < i n 1)             

Aij = Ai j
±

Aij = 0
for (1< i n 1,  0 < j < i)
elsewhere

 (5)

where    Ai = (2Ai + Ai 1) / 6  and    Ai
+ = (2Ai + Ai+1) / 6 .

 In principle, the residue function can be estimated by inversion of A. However, A is 
numerically ill conditioned and even small amounts of noise on the data may result in 
physiologically meaningless solutions. $erefore, this inversion should be regularized or 
the residue function should be parameterized to obtained stable solutions.

Regularization and parameterization
In a previous simulation study we evaluated several deconvolution methods to estimate 
PBF11. In the current study, some of the model-independent methods are applied to 
experimental DCE-MRI data obtained in the lungs. $ese methods are summarized 
below. 
   $e inversion of (2) can be formulated as a linear problem:

  r̂ = argmin CT Ar 2

2
 (6)

where  is the estimated residue function that can be obtained using a (generalized) 
singular value decomposition (SVD). To ensure that  is not too sensitive to perturba-
tions the problem needs to be regularized. Several regularization methods are described 
below.

SVD truncation
$e most often used (model-independent) technique in perfusion analysis and the simplest 
form of regularization is based on SVD of A with subsequent truncation of the smallest 
singular values12.  $e smallest singular values are due to noise and make  unstable. Trun-
cating these values results in an estimated residue function that is smoother than the 
unregularized solution. In this study, singular values were removed below 5% of the 
largest singular value to provide an optimal balance between stability and loss of infor-
mation11.
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SVD with Tikhonov regularization
A drawback of SVD truncation is that it introduces unwanted oscillations in the time 
course of . An alternative is Tikhonov regularization, which provides a more gradual 
regularization without an abrupt cut-o# for the singular values. $is method is based on 
adding linear constraints to  and has been shown on to improve the characterization of 
tissue residue functions11,13. $e problem becomes: 

         (7)

where L is a matrix operator and a weighting factor or regularization parameter. L should 
be chosen based on a priori information and the optimal should then be computed14. 
$e solution is obtained using the generalized SVD. $e simplest choice for L is the 
identity matrix, but is normally not appropriate to reduce oscillations in the solution 
vector. Other choices of L with increased regularization are the !rst or second derivative 
operator (de!ned as L = bidiag(-1,1) and L=tridiag(1,-2,1), respectively). A common 
method to derive the optimal value of  is the L-curve criterion (LCC), which is based 
on the premise that the optimal value of  is a compromise between the seminorm Lr 2  

versus the residual norm CT −Ar 2.  A plot of these norms often reveals a characteristic 
L-shaped curve, with the assumption that the corner represents the point of optimal 
balance between both norms. For more detail of this method we refer to Hansen14 and 
Calamante et al.13

SVD with TIkhonov regularization and B-splines parameterization
To further improve the stability of , the shape of the residue functions can be repre-
sented by using a basis of smooth B-splines15,16. $e advantage of this parameterization 
is that it reduces the number of parameters that should be estimated. $e residue func-
tion can be represented by16:

   (8)

where  is the jth B-spline of order k for an equally distributed knot sequence containing 
P+k knots (equal distribution is not a requirement but would su%ce and is also used 
in16), and  represents the real valued B-spline coe%cients. In this study we used B-splines 
of order 4 and 5 break points11.

$e estimated tissue function can be expressed as:

  ĈT (t, ) = (t)T ,  (9)
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where 

 

   

=
1

P

, (t) =
B1
(k )(t) CT (t)

BP
(k )(t) CT (t)

.

$e problem in (6) is rewritten as:

  ˆ = argmin 1
N

CT (t) ĈT t,( )
2

2

t=0

N 1

,  (10)

where ˆ  is the optimal parameter vector that completely determines the estimated residue 
function. Inserting (9) in (10) yields:

  
ˆ = 1

N
t( ) T t( )

t=0

N 1 1
1
N

t( )CT (t)
t=0

N 1

= 1
N

T
1 1
N

CT (t).

 (11)

Because matrix  T
  is ill-conditioned Tikhonov regularization is applied before inverting 

this matrix.

Conversion of signal intensity to tracer concentration
Concentration functions C(t) were approximated by enhanced SI functions17. Within 
certain limits, a linear relationship can be assumed between the vascular concentration 
and enhanced SI: S(t)-S(0) = kC(t), with S(t) the signal intensity as a function of time, 
and k a scaling factor that depends on the MR sequence (it is a#ected by e.g. "ip angle 
and coil sensitivity) and may vary on voxel position space17. When it is assumed that k 
is independent of the tissue type, it is the same for input and tissue function, and thus 
cancels out in quantitative perfusion analysis. Before deconvolution, recirculation e#ects 
were removed by !tting a gamma-variate function to the SI functions18, covering the 
time domain until signal intensity falls below 50% of the dynamic range. $e !tted data 
were upsampled to a sample interval of 0.05s to avoid discretization errors (Figure 2). 

Delay and dispersion
$e !tted gamma-variate function was used to determine that bolus arrival time in the 
MPA and in the lung parenchyma. $e parenchymal tissue function was shifted back in 
time to correct for the delay in bolus arrival. $e presence of dispersion was evaluated 
by determining the peak time of estimated r(t). A peak of r(t) at non-zero time would 
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indicate a delay and/or dispersion of the AIF at the inlet of the tissue13. When a tissue 
function is adequately corrected for a bolus delay, a peak of r(t) at non-zero time would 
then be solely due to dispersion of the AIF. To investigate the presence of dispersion, the 
B-spline + Tikhonov deconvolution was used to evaluate the peak of r(t) after adequate 
delay correction of the tissue function. 

Statistics 
Due to the absence of a Gaussian distribution all perfusion parameters are presented by 
median values and interquartile range. Parameters between controls and patients, and 
between the deconvolution methods, were compared using the Mann Whitney U test.  
A p-value < 0.05 was considered statistically signi!cant. 

Results
Lung segmentation
$e segmentation of large vessels worked well in control subjects, but in patients occa-
sionally problems occurred. As a result, optimal threshold values to di#erentiate between 
intrapulmonary vessels and lung parenchyma were found to be di#erent than in control 
subject (0.7-0.9 versus 0.6-0.75). In these situations, additional manual adjustments were 
often required. Increasing the threshold by 0.1 to exclude less arterial pixels from the 
lung parenchyma resulted in an average overestimation of PBF of 28±16%, in PH patients, 
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while the average overestimation in the control subjects was 4±3%. 
Exclusion of bronchial vessels in the CTEPH patients by using the aortic arch as arterial 
reference did not lead to improved segmentation of pulmonary vessels. Detection of the 
outer lung contours using a magnitude frame just before the contrast arrival worked fairly 
well in all subjects. $e threshold values to select parenchymal pixels were adjusted 
between 0.1 and 0.15.

Tabel 1 -

Control (N=5) iPAH (N=7) Atresia (N=5) CTEPH (N=5)
Semiquantitative analysis

Quantitative analysis

SVD truncation

-
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Semi-quantitative perfusion analysis
Table 1 shows the results of the semi-quantitative perfusion analysis. $e results indicate 
that the delay in iPAH patients is signi!cantly longer than in control subjects. Further-
more, the tissue signal intensity curves are broader, with a markedly increased PTT and 
FWHM, while their normalized SI-upslope is smaller than for controls. In the PA patients, 
no marked di#erences in semi-quantitative parameters are found compared to controls 
subjects. In CTEPH patients the delay is not signi!cantly longer than in control subjects. 
Although the FWHM is increased, the PTT and normalized SI-upslope is not signi!-
cantly di#erent than in control subjects.

Quantitative perfusion analysis
Results of delay corrected quantitative perfusion analysis are also shown in Table 1. Figure 
3 shows the results of absolute perfusion parameters obtained using B-spline + Tikhonov 
deconvolution. All methods yield decreased PBF values for iPAH and CTEPH patients, 
while a large range is observed in the Atresia patients. PBV was similar in iPAH and 
control subjects. For all methods the PBV was decreased in the CTEPH group. Although 
this decrease is not signi!cantly di#erent, the range is much larger than in control subjects. 
In iPAH and CTEPH patients, MTT values were increased with a large range in CTEPH 
patients, while in Atresia patients it was similar to control subjects. 
 $e deconvolution methods di#ered signi!cantly in accuracy and precision. $e trun-
cated SVD approach yielded signi!cant oscillations in the estimated residue curve. In 
this study, the threshold value below which singular values were removed was 5% of the 
largest singular value. Decreasing this value to 4% lead to unstable solutions. Increasing 
this threshold lead to large oscillations with decreased values of PBF. 
   With Tikhonov deconvolution oscillations were signi!cantly reduced. However, appli-
cation of this technique resulted occasionally in unstable solutions of r(t) when the L-curve 
criterion could not optimize the regularization parameter . $is happened in !ve study 
subjects. Choosing L as a second order derivative operator could not stabilize these solu-
tions, while parameterization of r(t) by B-splines and subsequent Tikhonov regularization 
resulted in a more robust estimates of r(t). Five break points were found optimal for stable 
and accurate estimates of r(t).
  
Delay and dispersion
$e e#ect of the delay as displayed in Table 1 on the absolute PBF is shown in Table 2. 
In all study subjects there was a considerable underestimation of PBF. $e presence of 
dispersion was explored based on the peak time of r(t). In all patients the peak of r(t) 
occurred at t = 0s. 
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Discussion
In this study, di#erent deconvolution methods to estimate pulmonary perfusion param-
eters were evaluated in healthy control subjects and in patients with idiopathic pulmonary 
hypertension (iPAH), chronic thromboembolic pulmonary hypertension (CTEPH) or 
pulmonary atresia (PA). Furthermore, the e#ects of delay and dispersion of the measured 
arterial input function (AIF) on pulmonary blood "ow (PBF) were explored. 

Lung segmentation
$e advantage of the semi-automatic lung segmentation approach is a fast, less user-
dependent approach, reducing potential overestimation of perfusion parameters by more 
accurate segmentation of lung parenchyma. Pulmonary arteries and veins were excluded 
by using double reference standard cross correlating all pixel SI’s with the MPA and LA 
SI’s6,7. A general drawback of the cross correlation method is the arbitrary cut-o# value. 
$is choice is always a trade-o# between exclusion of vessels and preservation of lung 
parenchyma. Because there is a gradual decrease in vessel size distally from the pulmonary 
arteries (on a scale much smaller than the voxel size), perfusion parameters might decrease 
gradually by excluding more vessels6. 
 Exclusion of bronchial vessels appeared inaccurate by using the aortic arch as arterial 
reference and was therefore manually excluded. Possibly, dispersion in the bronchial 
circulation might be underlying to this problem, as dispersed pixel SI functions do not 
correlate well with the non-dispersed aortic SI function.
 $e outer lung contour was segmented using a magnitude frame just before the arrival 
of the contrast bolus. Ingrisch et al.1 suggested additional segmentation by calculating 
the normalized area under the curve (nAUC) of all pixel SI’s (i.e. normalized by the AUC 
obtained in the MPA) and to exclude pixels with low values, assuming that these correspond 

Tabel 2 -
from uncorrected parenchymal SI functions. 

Control (N=5) iPAH (N=7) Atresia (N=5) CTEPH (N=5)
Quantitative analysis

SVD truncation
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to noise. $is approach worked fairly well in the control subjects in this study, but 
frequently failed in patients with lower mean signal intensity values in the lung paren-
chyma than in surrounding tissue. 

Perfusion analysis
Since deconvolution is an ill-posed problem, constraints were applied to the estimation 
of the residue function r(t), such as regularization or parameterization. Evaluation of the 
deconvolution techniques was based on volume-of-interest (VOI) perfusion analysis. 
Although regional perfusion defects cannot be detected using this approach, the CNR 
is substantially higher compared to pixel-based analysis, providing more accurate and 
precise results. 

Delay and dispersion
Both in healthy control subjects and in patients a delay occurred, which was largest in 
iPAH patients. In pulmonary atresia patients no di#erences were found compared to 
control subjects, while in CTEPH patients a large range of delays was observed. Neglecting 
this delay resulted in large underestimation of PBF in all patients (Table 2). Since the 
delay di#ers between subjects, delay correction is especially important when comparisons 
are made between patients.
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In this study the delay of bolus arrivals in the MPA and lung parenchyma was removed 
and subsequently Volterra discretization was performed. In VOI perfusion analysis, 
removing the delay prior to the deconvolution procedure is most accurate, but in case of 
pixel-by-pixel deconvolution this is more di%cult since the delay may vary from pixel to 
pixel. In the latter situation, delay insensitive discretization methods should be considered 
(e.g. the block-circulant matrix22 or the time-shift method23). $ese methods are a trade-
o# between delay invariance and absolute accuracy.  Despite systemic errors, these methods 
should still be considered in pixel-based analysis10.
   In addition to a delay, the existence of dispersion of the contrast bolus may also result 
in errors in estimated perfusion parameters. In contrast to the delay, the dispersion is 
much more di%cult to account for as it would require vascular models that are not known 
in advance5. $erefore, dispersion was detected by estimating the time of peak r(t). 
Although this approach provides no quanti!cation, at least, it provides information over 
the presence or absence of signi!cant dispersion (assuming that the data is already delay 
corrected). Based on this method no dispersion was observed in all patients, suggesting 
limited e#ects of dispersion on global perfusion parameters. $is might be explained by 
the short transit time in the pulmonary vasculature. $is is in contrast to the much longer 
transit time in the brain. In particular in stroke patients considerable delays and disper-
sion may occur in the ipsilateral hemisphere13. 
 Despite a residue function with its maximum at zero time, it does not totally exclude 
that regional dispersion exists. Especially, in CTEPH local stenosis or collateral "ow may 
result in considerable delay and dispersion of local AIF’s. $is is, however, not included 
in the global AIF and may exaggerate any perfusion de!cit4. On the other hand, a pixel-
by-pixel deconvolution would require correction for delay and dispersion to avoid large 
estimation errors in perfusion defected regions. One solution would be to obtain local 
AIF’s for each pixel. Willats et al.24 proposed estimating these by using independent 
component analysis. In case absolute perfusion values are not of importance, a time-to-
peak mapping, which re"ect both delay and dispersion, are very useful for the identi!ca-
tion of abnormal regions since delay and dispersion are additive.

Limitations
$ere are some limitations of the present study. First, all analyses were based on enhanced 
signal intensity curves. $erefore, factor k that relates signal intensity to concentration 
could not be estimated. In this study, a similar k in the AIF and tissue SI curve was 
assumed so that it cancels out in the quantitative analysis. However, it is unsure whether 
this assumption is correct in pulmonary perfusion quanti!cation. $is limitation could 
be circumvented using relative enhanced SI functions, but requires additional measure-
ments of the pre-contrast relaxation rate (T1 mappings), which were not performed. 
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Second, perfusion quanti!cation is limited by a maximum concentration of tracer agent 
in MPA to avoid T2* saturation e#ects and to maintain a linear association between 
observed signal intensity and tracer concentration25. $e assumption of absence of satu-
ration e#ects could not be warranted in this study.

Conclusion
Quantitative pulmonary perfusion analysis using DCE-MRI can be e#ective for assess-
ment of perfusion in several pulmonary diseases. Model-independent deconvolution 
with parameterization of the residue function using B-splines and Tikhonov regulariza-
tion was a robust technique for pulmonary perfusion quanti!cation and was more robust 
than Tikhonov regularization alone. $is technique has potential for more widespread 
application. Delay correction of the contrast bolus arrival time is required for accurate 
perfusion estimates. Dispersion of the contrast bolus has small e#ects on pulmonary 
perfusion estimates.
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