The pathological manifestation of tuberculosis is very typical in terms of the presence of granulomas, or cellular aggregates, that form around infection foci. Besides the host-protective role of containment of infection, granulomas have a host-detrimental role, as they provide a niche for bacterial persistence, contribute to the sequestration of bacteria from drugs and promote bacilli to adopt a persister state [1-3]. In approximately 90% of the individuals infected with *Mycobacterium tuberculosis*, a dynamic balance between host and pathogen maintains the disease in a subclinical stage, where bacilli reside in a latent state within granulomas. However, the bacilli can remain in the host for a lifetime and in roughly 10% of the cases reactivation and initiation of clinical disease occurs at some point in life [4]. Although this proportion of reactivation might seem low, 10% of the estimated 2 billion infected individuals represents a gigantic reservoir of renascent active bacilli that sustains disease and transmission [5]. Eradication of *M. tuberculosis* will only become realistic when a strategy is found to prevent granuloma formation or to kill bacilli within granulomas. To reach this goal, it is crucial to understand the mechanisms involved in the granuloma response. In this thesis, the *Mycobacterium marinum* zebrafish embryo model was used to investigate the effect of mycobacterial genes on the initial stages of granuloma formation. This led to the identification of mycobacterial factors that are required for the initiation of the granuloma response. This knowledge might be instrumental to the success of new therapeutic strategies directed against tuberculosis.

GRANULOMA MODELS

Recent studies indicating that granuloma formation is part of a pathogen-directed virulence program have fueled interest in the mycobacterial factors that influence the granuloma response. Different models of tuberculous granuloma formation have been developed that might be considered for the execution of medium- or high-throughput screens to delineate the mycobacterial mechanisms of granuloma formation.

One of these models is an *in vitro* human mycobacterial granuloma model [6-8]. In *in vitro* models, incubation of human peripheral blood mononuclear cells (PBMC) with either artificial beads coated with mycobacterial compounds or live mycobacteria induces cellular aggregates. It has been shown that these *in vitro* aggregates display similar characteristics to their human counterparts in terms of the cell types involved, morphological features, cellular differentiation levels and immunological responses of host cells [6-11]. These *in vitro* assays enable analysis of the molecular and cellular interactions occurring during the very first steps of the human granulomatous response. They allow for quick and relatively easy analysis of granuloma formation, i.e. aggregates develop within one week, the assay can be performed in tissue culture plates and formation of aggregates can be monitored by light microscopy. However, while much emphasis has been put on host cell dynamics within the *in vitro* model, the status of the bacteria has not been analyzed in detail. It would be relevant to evaluate how bacterial