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1. Introduction

1.1 History

Roughly 20 years ago, in 1991, Xerox PARC researcher Mark Weiser wrote the famous
visionary article �The Computer for the 21st Century�[116], in which he envisioned
computers being present everywhere � i.e. ubiquitous �, but disappearing in the
background of daily life. He believed that, instead of the then popular desktop
computers, in 20 years we would use a threefold of computing devices consisting of
inch-scale mobile hand-held devices (tabs), somewhat larger yet still mobile foot-size
devices (pads) and large yard-size displays (live boards) equivalent to blackboards.
These devices would interact with each other, act smart based on the current state
of their environment and would lead to the ultimate goal of �. . . making everything
faster and easier to do, with less strain and fewer mental gymnastics, it will transform
what is apparently possible.�

Ever since the publication of this paper, both academia and industry got inspired
by the vision and took steps to get the vision towards reality. During this period two
major technological advancements became widely adopted by the public. First of
all, many people � starting in the Western world � became connected to the Internet
and second the mobile phone made its entrance and had an even more global impact
than the Internet. While in early years the mobile phone was mainly used for what it
was intended for, i.e. making phone calls and texting, there were various attempts
to connect these devices to the Internet in order to widen the functionality and
applicability.

Early attempts such as Internet connectivity through the Wireless Application
Protocol (WAP) never became popular in the world, except for Japan. Because of both
technological and commercial reasons the acronym was also used as Wait And Pay.
It was too expensive for the average customer, there was not much content available,
and retrieving data took too much time. Also the user interface of mobile phones
at that time made accessing the Internet a cumbersome experience. Nonetheless
the advancements in mobile phones continued. Sensors such as cameras, GPS and
accelerometers were added and also more and more applications became available on
the high end phones, now called smartphones.

Much changed with the introduction of the �rst iPhone in 2007. Apple made
agreements with providers to sell their devices in combination with unlimited Inter-
net access plans at relatively high speeds for a �xed price. The wide area Internet
connectivity, often through Third Generation (3G) networks, operated at considerably
higher speeds than the �rst generation networks that succeeded the WAP protocol.
In combination with an incredibly fast growing application market for third party
applications, that was launched about a year after, and a polished user interface, this
made the iPhone the symbol of the era of smartphones.

In the meantime another large Silicon Valley company, Google, was also working
on a platform for smartphones: Android. The �rst phone running on this platform,
the HTC Dream, also known as T-Mobile G-1, was launched in October 2008 and also
Android came with an application market. In contrast with the Apple market, the

1



Distributed Smartphone Computing Introduction

Android market does not impose strict regulations on applications to be allowed in
the market, it even allows for third party market places for applications. Due to the
success of the iPhone, many hardware competitors of Apple started competing in the
smartphone market and chose Google’s Android as operating system.

The resulting �erce competition caused dramatic shifts in market share for the
hardware vendors where Nokia’s share, once the market leader, got marginalized and
both Apple and Samsung became the new market leaders. But more important it
resulted in increasingly powerful smartphones. Whereas the �rst iPhone included a
single core 412 MHz processor, the Samsung Galaxy SIII, a �ve years later top model
smartphone, has a 1.4 GHz quad core processor, an increase of 13x of raw compute
power.

The compute power, its various sensors, the simple touch-based user interfaces
and the programmability of the smartphone combined with the various forms of
connectivity, from short range NFC and Bluetooth, to high bandwidth WiFi and wide
area cellular networks o�er functionality even beyond what Mark Weiser envisioned
20 years ago for the handheld tabs. In contrast with Weisers prediction of persons
grabbing a random tab once needed, smartphones have become very personal and
rather than looking for a tab while working on a particular task, people carry their
smartphone always with them and adapt the functionality of the smartphone to
particular tasks through speci�c applications, popular known by their shorter name
apps.

Not only the envisioned small size devices are present in today’s society. Whereas
the smartphone resembles the tabs, todays tablet computers such as the Apple iPad are
very close to what Weiser predicted with the pads and also large �at screens and often
Internet connected smart televisions are dominating todays living rooms. Together
smartphones, tablets and smart televisions have truly become the Computer for the
early 21st century.

1.2 Distributed Smartphone Computing

A key factor to the popularity of smartphones today is the abundance of applica-
tions. There are several ways to categorize these applications, for instance by theme
(e.g. production, games, travel, health, etc.) or by monetization type (e.g. free, ad-
supported, paid, etc.). In this thesis we focus on a categorization based on the technical
implementation of applications.

We �rst di�erentiate between standalone applications, which only need the avail-
able resources on the smartphone to execute, and distributed applications. Distributed
applications need the available network connectivity of the smartphone to be able to
connect to external resources in order to execute certain tasks. Part of the applica-
tion runs on the phone and another part executes on one or more external machines.
Typical examples of distributed smartphone applications are applications that access
online information (tra�c, weather, news, ads, etc.), query online databases (web
search, music search, image search), act as a thin client for a website (Facebook,
Youtube, etc.), or upload data to the web (Instagram).

A closer look at distributed smartphone applications reveals that the vast majority
of these applications shares a common distribution model. That is, a distribution

1
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model where the smartphone (local) part of the application is retrieved from a central
place, for instance an app store, and the non-smartphone (remote) part is hosted as
a web application at a �xed location of the Internet. The use of this model has �ve
important implications for app users and app providers.

First of all, whereas users provide the resources to run the local part of the appli-
cation (i.e. their smartphone), the provider has to provide the resources to run the
web application, which has a hosting cost associated. There are various ways how
this cost can be covered, for instance, by requesting a fee from the users (either one
time, or periodically through subscriptions or in app purchases, or voluntarily with
donations), through advertizing, by funding from investors, etc. Depending on the
hosting cost for the application and the monetization model and/or available funding
for the given distributed smartphone application one can determine whether at all,
and if so, for how long it is feasible to keep up web servers to support the remote
part of the application. If there is not enough funding or if the application does not
generate enough income to support the cost of keeping up the associated web servers,
the web application distribution model is not appropriate from the app provider’s
perspective.

A second implication of using the web application distribution model has to
do with scalability. Whereas various applications are targeted at a relatively small
and well-known audience (e.g. an app exclusively used within a company), many
other applications have virtually no audience restrictions and target the entire world
population. Because smartphone platforms have centralized marketplaces where these
applications can be distributed, the number of users for an application can increase
rapidly. If the application in case uses the web application distribution model, the
remote part of the application needs to be scalable to such a multitude of users. Making
an application scalable can be a complex task, for instance through changing from
a single web server to multiple web servers and from relational databases to NoSQL
databases, and if such e�ort is too expensive for the given smartphone application,
the web application model is not appropriate from the app provider’s perspective.

Third, the web application distribution model naturally requires the use of mul-
tiple development environments, one for making the smartphone application and
another one for making the web application counterpart. This requires the app
provider to have the skills to develop for both environments.

Whereas the previous three implications are concerns of the app provider, the web
application model has also two important implications that concern the app user.

When an app user installs a standalone application, a copy of the complete appli-
cation is put on the user’s device. Therefore the user can use the app for as long as the
application is installed on the smartphone and is not dependable on the app provider
to run the application. In contrast, when the app user installs a distributed smart-
phone application following the web application distribution model, the user will
only install the client part of this application. This makes the user dependable on the
remote part of the application. If the remote part of the application changes, but the
local part on the user’s smartphone does not, the user can encounter interoperability
problems due to di�erent versions.

In addition the web application distribution model implies that the local resource
is controlled by the user and the remote resources by the app provider. That means
that the app user has to put trust in the app provider to protect the information related

3
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Figure 1.1: Distributed Smartphone Application Models. Above the traditional web application solutions.
Below, on the left: computation o�oading, on the right: distributed sensing. We focus on these two
distributed computing models in this thesis.

to the remote execution. If the app user does not trust the app provider’s protection
the web application model is not appropriate for the user.

Thus, for those applications where the cost of keeping up web servers is too high,
or scalability is problematic, or maintaining interoperability is too expensive, or users
trust is limited, or application developers lack experience with web programming,
novel distribution models other than the traditional web application distribution
model have to be investigated. New knowledge is needed about which models can
serve as alternatives, and how these models are best implemented and o�ered to
application developers.

In this thesis we gain knowledge on how to provide a common structure for
application development with two of such non-traditional distributed smartphone
computing models, one in the application domain of compute intensive applications
and the other one in the domain of sensing applications:

� computation o�oading, where user’s remote resources are used on the �y to run
compute intensive parts of a standalone application.

� distributed sensing, which can be used for context aware applications that take
both local context and context on remote resources into account.

The key bene�ts of the computation o�oading distribution model are that scal-
ability is reached by having each user providing its own remote resources (Figure
1.1 bottom-left), instead of having the developer maintaining a single centralized
web application (Figure 1.1 top-left). Furthermore, the distributed parts are always
compatible with each other, because they are bundled together, thereby preventing
the situation that they are updated independently. Third, development can be done
with knowledge of only the mobile platform and �nally, code is executed on the
resource of the user’s choice. In other words by allowing the user to provide resources,
computation o�oading has the potential to solve issues related to scalability, trust,

1
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interoperability and development that exist with the traditional web application ap-
proach. The obvious drawback of using the computation o�oading distribution model
is that the app user has to be able to provide su�cient compute resources himself.

In distributed sensing applications the context as sensed through the sensors
locally available on a smartphone, but also from sensors on other phones or web
resources, can be used to trigger speci�c actions to happen. While it is possible to
push all the sensor data to a centralized web application and process the data there
(Figure 1.1 top-right), this introduces serious scalability issues at the web application,
because of the large amount of contextual data, and thus increases complexity and
cost of running such a web application. Also sensor data is typically privacy sensitive
and therefore application users may object that this data is sent to and processed by
a web application. Thus, rather than sending sensed context information to a web
application, non traditional distributed sensing keeps sensor data and processing as
much as possible local and sends remote context data directly from the source to the
destination, without an intermediate centralized point controlled by a third party
(Figure 1.1 bottom-right).

Whereas the advantages of using the non traditional distribution models for
compute intensive applications and sensing applications are attractive, it is still a
challenge to actually employ these models in application development, because of a
lack of understanding and tools for how to best structure such distributed smartphone
applications.

In this thesis we tackle this challenge by investigating how we can create a common
structure for smartphone applications that want to use these distribution models. We
focus on the following central research question:

� Central Research Question: How can we provide a common structure for the
development of distributed smartphone applications that are based on computa-
tion o�oading or distributed sensing?

By providing common structures for the development of computation o�oading
and distributed sensing applications, we o�er application developers of distributed
smartphone applications more choice in selecting the distribution model that best �ts
their application. Also we give reason for existence for those smartphone applications
that are not viable with the traditional web application distribution model, but will
be with computation o�oading and/or distributed sensing.

1.3 Programming Frameworks

A common practice to ease development of applications is to create common building
blocks that can be reused in various applications that share the same functionality. In
programming, these building blocks are referred to as software libraries. However, for
the two distributed smartphone computing areas we identi�ed, applications do not so
much share functionality, but rather they can share a common structure. To support
rapid development of applications with a similar structure a programming framework
can be used.

Such a framework provides an extensible base structure for applications, rather
than functionality that can be called as in a software library, a di�erence known
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as the Hollywood Principle: �Don’t call us, we’ll call you�. The base structure can
be built according to best practices and avoids reinvention of the wheel for similar
applications. Furthermore, parts of the development can be simpli�ed or automated
by the framework. We therefore use the strategy of creating programming frameworks
to structure the development of distributed smartphone applications. Given the
central research question, we next de�ne two major research goals:

� Research Goal 1: Create a framework for computation o�oading that structures
the development of compute intensive applications

� Research Goal 2: Create a framework for distributed sensing that structures the
development of context aware applications

1.4 Research Overview

In this thesis we address the research goals by developing two programming frame-
works for distributed smartphone computing: Cuckoo, a framework for computation
o�oading and SWAN, a framework for distributed sensing.

The Cuckoo framework is suitable for smartphone applications that contain com-
pute intensive tasks.

Fortunately, smartphones are equipped with various radios and can communicate
with more powerful external compute resources, such as cloud computing resources.
These cloud resources can be used to o�oad parts of native apps that require more
compute power or memory than available on a smartphone. Also, if remote execution
in the cloud is faster or more energy e�cient o�oading is a useful technique.

Cuckoo takes advantage of Android’s separation between user interface applica-
tions and background services, to e�ectively partition the application in local and
remote parts. In addition, Cuckoo automates a large part of the development of
a computation o�oading application, so that developers can focus on the actual
implementations of the compute intensive part. In contrast to other o�oading sys-
tems, Cuckoo allows developers to specify both a local and a remote implementation.
Cuckoo can at runtime decide whether to o�oad or not.

The contributions of the Cuckoo framework are:

� We formulate requirements for a computation o�oading framework through
case studies.

� We show that Android’s activity/service model can be used to intercept method
calls for remote invocation

� We present a working framework, which can be used for future research in
the area of computation o�oading, containing the necessary components for
such a framework, including a runtime system, a resource manager applica-
tion for smartphone users, a programming model for developers and a server
application.

� We show that the e�ort of transforming an app to a computation o�oading appli-
cation can be largely automated if a framework integrates with the development
environment.

� We show that it is feasible to build a decision engine that at runtime decides
whether o�oading is bene�cial.

1
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� We provide two example applications and several micro benchmarks that can be
used to evaluate a computation o�oading framework.

In answer to our second research goal we extend standalone SWAN, a sensing
framework that allows applications to register complex expressions of contextual
information. The standalone SWAN framework simpli�es the process of gathering
and evaluating sensor data. It provides a domain speci�c language, called SWAN-Song,
that allows developers to focus on describing the contextual information their app
is interested in, rather than having to spend their time on writing code that gathers
and processes this sensor data. At run time, SWANs Evaluation Engine e�ciently
evaluates the contextual expressions.

The SWAN framework can deal with contextual information that is sensed on the
device itself, through the various sensors such as accelerometers, GPS, light intensity
sensors, etc.

In this thesis we extend the standalone SWAN framework to support distributed
sensing, including gathering contextual information from other phones, and also with
contextual information that is available on the web, such as weather predictions, train
delays etc.. Because monitoring a web resource from a smartphone is a costly task
� the smartphone has to check the web resource with a regular interval for changes
(polling) � we extend SWAN with the introduction of the concept of communication
o�oading for network sensors. With communication o�oading we use an external
resource to poll the web resource and only when a change has been detected, we notify
the smartphone with a push message.

Furthermore, our extensions to SWAN allow expressions to address sensors not
only on the mobile device itself, but also to access sensors on other devices, using cross
device expressions, thereby improving what can be expressed as a contextual trigger.

The contributions of the Distributed SWAN framework are:

� We introduce the concept of communication o�oading for networked sensors.
Furthermore, we present a way to perform structured development of communi-
cation o�oading sensors in SWAN by automating a large part of the transforma-
tion of a polling sensor into a cloud based push sensor.

� We show that a Domain Speci�c Language that includes the location of an ex-
pression can be used for cross device sensing and increases expressivity. We show
that no centralized web application is needed to execute distributed evaluation
of such expressions.

1.5 Thesis Outline

This thesis is structured as follows. In Chapter 2 we start by conducting two case
studies for compute intensive applications in which we gather requirements for our
own computational o�oading framework, Cuckoo, that we present in the second part
of that Chapter. In Chapter 3 we discuss the SWAN sensing framework, including
the SWAN-Song domain speci�c language, the principle of communication o�oading
for network sensors and the extension to SWAN to support cross device expressions.
In the last chapter, Chapter 4, we summarize and discuss the results of the research
presented in the earlier chapters and present future research directions.
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2. Cuckoo

2.1 Introduction

In the last decade we have seen, and continue to see, a wide adoption of smartphones.
These smartphones typically have a rich set of sensors and radios, a relatively powerful
mobile processor as well as a substantial amount of internal and external memory. A
wide variety of operating systems [7, 51, 106, 117] have been developed to manage
these resources, allowing programmers to build custom applications.

Centralized market places, like the Apple App Store [52] and the Google Play Store
[9], have eased the publishing of applications. Hence, the number of applications
has exploded over the last several years � much like the number of webpages did
during the early days of the World Wide Web � and has resulted in a wide variety of
applications, ranging from advanced 3D games [89], to social networking integration
applications [71], navigation applications [74], health applications [46] and many
more.

Not only has the number of third-party applications available for these mobile
platforms grown rapidly � from 500 [11] to 200,000+ [53] applications within two
years for the Apple App Store, and currently over 900,000[12] �, but also the smart-
phones’ processor speed increased along with its memory size (see Figure 2.1), the
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Figure 2.1: Starting from the earliest Nokia 9000 Communicator, the processor speed as well as the memory
size have grown enormously. In this graph, we show the increase in processor speed and the increase of the
memory size (logarithmic scale) of some of the top model smartphones over the last 15 years, including the
trendlines. Data gathered from http://www.gsm-arena.com.
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screen resolution and the quality of the available sensors. Furthermore, the cell net-
working technology grew from GSM networks allowing for 14.4 kbit/s to the current
4G networks that will provide around 100 Mbit/s, while simultaneously the local
wireless networks increased in bandwidth [1, 18].

Todays’ smartphones o�er users more applications, more communication band-
width and more processing, which together put an increasingly heavier burden on its
energy usage, while advances in battery capacity do not keep up with the requirements
of the modern user.

It has been recognized that o�oading computation using the available communi-
cation channels to remote compute resources can help to reduce the pressure on the
energy usage [24, 60]. Furthermore, o�oading computation can result in signi�cant
speedups of the computation, since remote resources have much more compute power
than smartphones.

In this chapter we elaborate on the idea of computation o�loading and present a
practical system, called Cuckoo1, that can be used to easily write and e�ciently run
applications that can o�oad computation. Cuckoo is targeted at the Android platform,
since Android provides an application model that �ts well for computation o�oading,
in contrast with other popular platforms, such as the iOS platform for iPhone and
iPad devices.

The Cuckoo framework o�ers the following components: a very simple program-
ming model and environment, a runtime that is prepared for mobile environments,
such as those where connectivity with remote resources suddenly disappears, a re-
source manager application to collect remote resources, including laptops, home
servers and cloud resources, and a server application that can be run on those re-
sources. Cuckoo supports local and remote execution and it bundles both local and
remote code in a single package, so that the remote code can be installed from the
smartphone onto a running Cuckoo server. It allows for the local and remote im-
plementation to di�er to optimally support specialized compute languages. Cuckoo
integrates with existing development tools that are familiar to developers and auto-
mates large parts of the development process, thereby making it extremely simple
to transform an app into a computation o�oading app. Cuckoo also incorporates a
smart decision algorithm that, based on historical data, contextual data and heuristics
decides whether or not to o�oad a method invocation.

The contributions of this chapter are:

� We perform two case studies that help us to formulate the requirements for
Cuckoo. We investigate the use of the cyber foraging distribution model and the
use of specialized compute languages in computation o�oading.

� We show that computation o�oading can be implemented elegantly, if the
underlying operating system architecture di�erentiates between interactive user-
oriented activities and computational background services, by intercepting calls
to the background services and relay these calls to remote invocations.

� We present Cuckoo: a complete framework for computation o�oading for
Android, containing the necessary components for such a framework, including
a runtime system, a resource manager application for smartphone users and a
programming model for developers and a server application.

1The framework is named after the Cuckoo bird which o�oads egg brooding to other birds.
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� We discuss how we integrated the framework with the Eclipse development
environment to simplify development so that a project can be transformed into a
computation o�oading project from the GUI of Eclipse with a single command.

� We describe a decision model that is used at runtime by Cuckoo to make a smart
decision whether to o�oad the computation or not.

� We evaluate the framework with two example applications and several micro
benchmarks.

2.2 Background

2.2.1 Android

Before we detail the design and implementation of Cuckoo we will turn our attention
to the Android platform, as for this we need to understand how mobile applications
on Android are composed internally.

Android is an open source platform including an operating system, middleware
and key applications and is targeted at smartphones and other devices with limited
resources. Android has been developed by the Open Handset Alliance, in which
Google is one of the key participants. Android applications are written in Java and
then compiled to Dalvik bytecode and run on the Dalvik Virtual Machine.

Since the introduction of Android the platform has received several major software
updates, providing additional functionality, new user interfaces and many bug-�xes.
Also the number of devices running Android has seen a tremendous growth, whereas
just a single smartphone was launched in 2008, only four years later Android runs on
hundreds, if not thousands, of models of smartphones, tablets, car navigation systems,
home entertainment systems and more, serving hundreds of millions of users.

Android Application Components

The main components of Android applications can be categorized into Activities,
Services, Content Providers, and Broadcast Receivers, which all have their own speci�c
lifecycle within the system.

Activities are components that interact with the user, they contain the user interface
and do basic computing. Services should be used for CPU or network intensive
operations and will run in the background, they do not have graphical user interfaces.
Content Providers are used for data access and data sharing among applications.
Finally, Broadcast Receivers are small applications that are triggered by events which
are broadcasted by the other components in the system.

For computation o�oading, we focus on activities and services, because the sepa-
ration between the large computational tasks in the services and the user interface
tasks in the activities form a natural basis for the Cuckoo framework. We will now
have a closer look at how activities and services communicate in Android.
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Figure 2.2: A schematic overview of the Android IPC mechanism. An activity binds to a service (1), then it
gets a proxy object back from the kernel (2a), while the kernel sets up the service (2b) containing the stub
of the service (2c). Subsequent method invocations by the activity on the proxy (3) will be routed by the
kernel to the stub, which contains the actual implementation of the methods.

Android IPC

When a user launches an application on a device running the Android operating
system, it starts an activity. This activity presents a graphical user interface to the
user, and is able to bind to services. It can bind to running services or start a new
service. Services can be shared between multiple activities. Once the activity is bound
to the running service, it will communicate with the service through inter process
communication, using a prede�ned interface by the programmer and a stub/proxy pair
generated by the Android pre compiler (see Figure 2.2). Service interfaces are de�ned
in an interface de�nition language called AIDL [6]. Service methods are invoked by
calling the proxy methods. These proxy methods can take primitive type arguments
as well as Parcelable arguments. Parcelable arguments can be serialized to Parcels
and created from Parcels, much like Java Serialization serializes and deserializes
Objects from byte arrays. The Android IPC also supports callbacks, so that the service
can invoke a method on the activity, allowing for asynchronous interfaces between
activities and services.

Android Application Development

Android applications have to be written in the Java language and can be written in
any editor. However, the recommended and most used development environment for
Android applications is Eclipse [36], for which an Android speci�c plugin is available
[5].

Eclipse provides a rich development environment, which includes syntax high-
lighting, code completion, a graphical user interface, a debugging environment and
much more convenient functionality for application developers.

The build process of an Android application will be automatically triggered after
each change in the code, or explicitly by the developer. The build process will invoke
the following builders in order:
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Figure 2.3: Overview of the Ibis middleware. The Ibis middleware consists of several subprojects, each
implementing a part of grid middleware requirements. The left part of the Ibis middleware is the Ibis
Distributed Deployment System, with JavaGAT as main component. The right part is the Ibis High-
Performance Programming System. Its main component is the Ibis Portability Layer (IPL). The boxes with
texts are subprojects used for Cyber Foraging.

� Android Resource Manager: which generates a Java �le to ease the access of
resources, such as images, sounds and layout de�nitions in code.

� Android Pre Compiler: which generates Java �les from AIDL �les
� Java Builder: which compiles the Java source code and the generated Java code
� Package Builder: which bundles the resources, the compiled code and the

application manifest into a single �le
After a successful build, an Android package �le (.apk) is created, which can be
installed on a device running the Android operating system.

2.2.2 The Ibis Middleware

The Ibis middleware was originally designed for the domain of High-Performance
Distributed Computing and Grid Computing, but also has potential for Mobile Com-
puting [80]. It allows programmers to build powerful distributed applications using
a very simple interface, one of the challenges for general smartphone middleware
described by [94]. The Ibis middleware on smartphones ful�lls a number of the
middleware challenges through its two orthogonal components: the Ibis Distributed
Deployment System and the Ibis High-Performance Programming System (see Figure
2.3).

The Ibis Distributed Deployment System o�ers the means to deploy a remote
application, an essential feature needed to turn available resources into surrogates. Its
main component is the Java Grid Application Toolkit (JavaGAT) [76], a toolkit that
o�ers an API for remote File Management, remote Job Submission, Monitoring and
Steering. Due to its �exible design it can bind to any middleware using an adaptor that
maps the JavaGAT API calls to the calls for a particular middleware. JavaGAT contains
adaptors for grid middleware among which Globus, and common middleware such as
SSH and SFTP, while adaptors for cloud platforms are in progress (Amazon EC2).
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On top of the JavaGAT the Ibis Distributed Deployment System o�ers a deployment
library, called IbisDeploy, tailored to start distributed applications built using the Ibis
High-Performance Programming System, simplifying the complex task of deploying a
distributed application onto compute resources. The deployment of a distributed Ibis
application consists of the following subtasks:

� Copy the application, the libraries and the input �les to the compute resources
� Start an Ibis Server (registry) process
� Form an overlay network
� Construct middleware-speci�c job descriptions
� Submit the jobs to the compute resources
� Keep track of the job statuses
� When the jobs are done, retrieve the output �les
� Clean up the remote �lesystems
IbisDeploy does not require any software to be available on the remote machines

other than its default middleware where JavaGAT binds to and a Java Virtual Machine,
used to run the application.

Having described how an Ibis-based application is deployed we now turn our
attention to how Ibis applications are programmed. The Ibis High-Performance
Programming System o�ers a programming environment to build distributed ap-
plications. The main component of this system is the Ibis Portability Layer (IPL), a
communication library, that o�ers lightweight but powerful and e�cient commu-
nication primitives. The IPL supports unidirectional communication streams, that
can be connected between multiple endpoints (ports). The IPL ports support one-
to-one, one-to-many and many-to-many connections. For each communication port,
the programmer can specify the requirements for that port, thereby allowing the
IPL to choose the most e�cient communication implementation that satis�es the
requirements. The IPL can do very e�cient object serialization [66] and it also o�ers
the means to implement fault-tolerance and malleability (the possibility to add and
remove compute resources).

The IPL can communicate over normal TCP streams based on sockets, but there is
also an implementation that communicates over SmartSockets streams. The Smart-
Sockets library [65] is also part of the Ibis High-Performance Programming System
and provides connections in di�cult situations where normal TCP connections cannot
be established. It can make connections through �rewalls, it can e�ectively deal with
Network Address Translation (NAT) issues and also solves the problem of connecting
with machines with multiple network addresses.

2.3 eyeDentify: a Case Study with Cyber Foraging

We performed two case studies with applications that contain compute intensive tasks
with the goal to derive requirements for our generic Cuckoo framework. Although
both applications are from the imaging domain and perform computations on the
data captured by the phone’s camera, we use di�erent approaches to implement them
and therefore learn di�erent lessons that we use to design Cuckoo.

The �rst application, eyeDentify, is a color-based object recognition application,
in which the compute intensive task is to compute feature vectors out of images (see
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Figure 2.4). It is an interactive application in which the user can teach the application
names of objects and subsequently let the application identify these objects. This
application is a typical example from the general domain of Multimedia Content
Analysis (MMCA) that aims to extract new knowledge from multimedia archives and
data streams [99].

In learning mode the user takes a picture of an object and enters its name. The
application stores the learning result into its internal database.

In recognition mode, the user takes a picture of an object, possibly under di�erent
viewpoint and lighting conditions, and eyeDentify will present the best match from
the local database of learned objects.

Algorithms developed for object recognition try to mimic to some extent the way
humans recognize objects. An important di�erence between algorithms and humans
is that algorithms operate on image input only, whereas humans use additional
contextual information to identify an object. Therefore algorithms focus on getting as
much useful information as possible out of the source image through a series of steps
where the raw image information is converted into useful information, called features.

For this application an algorithm in Java was already available2. The algorithm
was written to exploit data parallelism if multiple compute resources are available
and speeds up execution if run on a cluster of compute nodes. The algorithm has
several parameters that can be tuned to trade quality for less compute time.

We developed two versions of the application: one that is able to execute without
additional resources in stand-alone mode and one for which the feature vector algo-
rithm runs on remote resources. The distributed version adopts cyber foraging [96]
as the model to distribute the application. With cyber foraging, compute resources
called surrogates can be found and used to deploy parts of the application on.

2.3.1 Cyber Foraging with Ibis

We used the Ibis middleware to implement the distributed version of eyeDentify. Both
the deployment of the remote parts as well as the communication between the original

2This algorithm was used by the team in which the author participated for the �robot dog" demo that
won the 1st IEEE Scalable Computing Challenge [100]

Figure 2.4: Two screenshots of the eyeDentify application. The left one shows the eye looking at an object in
recognition mode. The right screenshot shows the result after the user has triggered the object recognition.
The object is recognized correctly.

15

2



eyeDentify: a Case Study with Cyber Foraging Cuckoo

���������������������	�
���	�
��
������������������������������	���������

����������������������
��������	������������	�������	���	

�
�������������	�
���	�
��������������������
���������	��������	�

� ����������	��������	���!���������	�
��������	��� ������������"

� ��������������������#�����$�%
���������
������ �&

�	����

��� �����	�������������������	���������������#�	������������
�
�	� �	�����	�����
�	���������������������#�����$�%���������
������ �&�	����

�	���	���	�������'��
� �����	������������

�������"�(���)���������	�


� ����������	
������	

���	����
������	

� ����������	
������	

� ����������	
������	

Figure 2.5: Schematic overview of how eyeDentify uses the Ibis middleware.

smartphone application and the surrogates make use of the Ibis middleware.

We ported the JavaGAT to Android together with two adaptors, one to access the
local resources and one to access resources using SSH. Using the JavaGAT version
on Android we are able to start any remote application on any machine that can be
reached using SSH.

We then ported both the library and the graphical user interface tool of IbisDeploy
to Android. IbisDeploy on Android o�ers an easy-to-use library together with an
application to deploy remote Ibis applications.

EyeDentify uses the IbisDeploy library to connect to remote resources and start
and monitor jobs on these resources. The resources can be accessed using SSH and
to this end IbisDeploy requires SSH keys to exist on the smartphone. Furthermore,
the deployable code for the compute intensive operation and the descriptions of the
remote jobs had to be stored as �les on speci�c locations on the mobile device.

EyeDentify uses the other main component of the Ibis middleware, the Ibis High-
Performance Programming System, to send images to the remote resources. Multiple
resources can cooperate in processing the images in a data-parallel fashion. Since �re-
walls and NAT-boxes are common, we use the IPL implementation over SmartSockets
for cyber foraging.

Figure 2.5 summarizes how eyeDentify uses the Ibis middleware. Through the
IbisDeploy library, which in turn uses JavaGAT and its SSH adapter, a job is submitted
to a compute cluster. This job is distributed over multiple compute nodes who work
together in a data parallel fashion to compute the resulting feature vectors from the
images received from the client app on the phone. Both the inter node communication
between the compute nodes and the communication between the client app on the
phone and the elected master of the compute nodes uses IPL messaging.

2.3.2 The Object Recognition Algorithm

For a given image the object recognition algorithm �rst designates a number of circular
areas, called receptive �elds, around the image center. Then, for each receptive �eld
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Figure 2.6: Schematic overview of feature extraction process of the image recognition algorithm used by
eyeDentify. The process starts with a source image (a), with an overlay of rings with receptive �elds (b).
The bigger the source image, the more information of the original source is preserved. More receptive �elds
also increase the information preservation. Then, for each receptive �eld various color models (c) can be
used to compute color histograms. An increase in the number of color models, increases the information
about the image. The number of bins (d) in the histograms of the color models can be varied. The shape of
the histograms can be approached by a weibull �t with two parameters, beta and gamma.

a number of color histograms is built, each for a di�erent color model. Each color
model has been selected for its invariance to speci�c imaging conditions, such as
shadows, shading, and di�erences in the color of the light source. Subsequently, the
shape of each color histogram is approached by a weibull �t. The resulting parameters
for all histograms are combined in a single feature vector, thus forming a condensed
description of the image scene. As each feature vector represents a point in a high-
dimensional space, object recognition is achieved by �nding the closest neighboring
point in this space. A more detailed discussion of the algorithm can be found in
Seinstra and Geusebroek [101].

The accuracy parameters that can be changed without breaking the algorithm are
the dimensions of the input image (Figure 2.6a), the number of receptive �elds (Figure
2.6b), the number of color models (Figure 2.6c) and the number of the bins in the color
histograms (Figure 2.6d). However, changes in these parameters will have an e�ect
on the accuracy and performance of the algorithm. A higher number of receptive
�elds, color models or bins in the color histograms, will result in more accurate image
recognition but also in higher resource usage. We made three accuracy pro�les (Table
2.1), one with high accuracy and strong performance requirements, another one with
low accuracy and low performance requirements and one in between to evaluate the
impact of the accuracy parameters on the resource usage.

Table 2.1: accuracy pro�les
receptive �elds color models bins

low (?) 7 1 100
medium (??) 19 2 500
high (? ? ?) 37 3 1000
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Table 2.2: T-Mobile G-1 Smartphone Speci�cations.
Processor

CPU Single Core
Max. Frequency 528 MHz

Memory
Memory Size 192 MB

Other
Camera 3.2 MP

Table 2.3: algorithmic initialization time (in sec.) vs. accuracy.
version . standalone foraging

accuracy . ? ?? ? ? ? ? ? ?
image size

32 x 24 0.55 0.95 1.92 0.12
64 x 48 4.54 9.28 17.33 0.12

128 x 96 28.52 79.76 - 0.13
256 x 192 - - - 0.67
512 x 384 - - - 4.25

1024 x 768 - - - 42.1
2048 x 1536 - - - 451

2.3.3 Experiments

Ideally a smartphone application should be responsive and energy e�cient. We show
that by using cyber foraging, both the responsiveness and the energy usage of eyeDen-
tify improve. We have performed experiments with the two versions of the eyeDentify
application. One version does all the computation on the phone itself (standalone
version) and one that uses cyber foraging to o�oad the computation to surrogates
(foraging version). In this section we will �rst brie�y outline the environment in which
we performed our experiments by describing the hardware resources we used and
then proceed with a description and a discussion of the experiments.

We have run our experiments on the T-Mobile G-1 smartphone (see Table 2.2) 3.
Furthermore, we used 8 nodes of the VU cluster of the DAS-34 as surrogates for the
cyber foraging version of eyeDentify. Each of the cluster nodes has a dual-CPU /
dual-core 2.4 GHz AMD Opteron processor and 4 GB of RAM. The nodes run the
Scienti�c Linux Operating System.

The phone was connected to the campus WiFi network, which is in the same Local
Area Network as the compute cluster. In the results of the experiments we show both
the total time, including the network communication, and the time spent purely on
computation.

We de�ne responsiveness as the time used by an application to respond upon a
user-triggered request by performing an action. Whether a user is satis�ed with the

3By the time we did this research [56], the G-1 was the only available Android phone. Since then
every new generation of smartphones got increased processing power. However, the algorithm remains
appropriate for o�oading even when run on modern high end devices as we show in Section 2.10.4

4Distributed ASCI Supercomputer, http://www.cs.vu.nl/das3
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Table 2.4: response time after one time initialization (in sec.) vs. accuracy
version . standalone foraging

accuracy . ? ?? ? ? ? ? ? ?
image size total comp.

32 x 24 0.66 5.99 25.61 0.46 (0.12)
64 x 48 1.38 8.57 32.21 0.54 (0.12)

128 x 96 4.09 17.49 - 0.55 (0.13)
256 x 192 - - - 0.60 (0.19)
512 x 384 - - - 0.81 (0.41)

1024 x 768 - - - 2.06 (1.29)
2048 x 1536 - - - 6.51 (4.87)

responsiveness o�ered by an application highly depends on personal preferences, but
in general the lower the response time is, the higher the user’s satisfaction.

In eyeDentify the user can trigger three actions which cause a considerable amount
of computation and therefore may not meet the responsiveness requirements of the
user. These actions are: the initialization of the application and the learn and recognize
actions. We will brie�y describe the initialization experiments and then focus on the
experiments of the learn and recognize actions.

During the initialization eyeDentify initializes the object recognition algorithm.
For each receptive �eld a number of Gaussian �lters is computed. The size of a receptive
�eld depends on the dimensions of the images that are going to be used. The more
and the bigger the receptive �elds the longer the initialization process takes. Table
2.3 shows the algorithmic initialization times for di�erent accuracy settings for both
versions. While the foraging version bene�ts from parallel algorithmic initialization
on the surrogates, it has additional algorithm independent foraging initialization time
to start up the processes. The foraging initialization time in our experiments was
about 34.8 seconds and in general will depend on factors like �le transfer and queuing
time on the surrogates.

Once the algorithm is initialized, the learn and recognize actions will be repeatedly
invoked. They both trigger the same heavy weight computing task, the computation of
a feature vector out of a captured image. The database lookup time for the recognize
action is neglectable for use with small size databases, and therefore is not included
in the experiments. We measured the responsiveness of eyeDentify while varying
the accuracy settings (i.e. the accuracy pro�le together with the image size) and the
results are shown in Table 2.4. The last column of the table shows the total response
time of the foraging version and the portion of it caused by computation.

Due to the limited memory (16 MB) available to an application on the G-1 running
Android, the standalone version can perform object recognition on images with sizes
up to 128 x 96 pixels, but only with medium accuracy settings. For images larger
than 128 x 96 pixels, the initialization process requires more memory. The memory
size is also a limiting factor for the 128 x 96 image with the highest accuracy pro�le,
although not during the initialization of the algorithm, but during the execution of
the algorithm itself.

While the standalone version can only operate on fairly small images, the foraging
version can use the maximum resolution of the camera (3.2 MegaPixels) with the
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highest accuracy pro�le. Even when operating on an image with 1024 times more
pixels (64 x 48 vs. 2048 x 1536), the cyber foraging version is still about 5 times faster
than the standalone version. For small images, a major part of the response time of
the cyber foraging version gets spent on communication, however, it is still about
56 times faster with the smallest image size and about 60 times faster with the 64 x
48 images. The computation itself is about 250 times faster on the surrogates than
on the smartphone, which means that if the phone would have enough memory, the
computation for a 2048 x 1536 image would take about 20 minutes.

We consider response times of up to 20 seconds still acceptable for the learn and
recognize actions, which means that we consider running the standalone version with
the high accuracy pro�le as not acceptable. The response times of the cyber foraging
version, however, are all well below the 20 seconds. We conclude that cyber foraging
proves to be a good technique that can drastically improve the responsiveness of
smartphone applications that are compute intensive and that need only a limited
amount of communication to o�oad the computation.

Although o�oading computation using cyber foraging increases the responsive-
ness of the application, it also introduces communication, which is known to be much
more energy consuming than computation [38]. To evaluate the impact of cyber
foraging on the smartphone’s energy usage we performed experiments in which we
measured the energy consumption on the smartphone of both the standalone and the
foraging version of eyeDentify.

In each experiment we fully charged the phone and then let it repeatedly execute a
feature vector computation until the battery was only 20 percent charged. We counted
the number of executions for both the standalone and the foraging version, while
varying the accuracy pro�le and the image size for each experiment.

The results of the experiments are shown in Figure 2.5 and show that increasing
the computation complexity for the standalone version by either increasing the image
size or the accuracy settings results in a lower number of executions. For the foraging
version, a larger image size and thus an increase in communication, results also in
fewer executions.

Even for the smallest images (32 x 24 pixels) with low accuracy recognition where
the computation for the standalone version is relatively small, the foraging version
performs about the same number of executions, but then with high quality accuracy
settings.

When both versions use the high quality accuracy settings the foraging version can
do about 40 times more executions than the standalone version. The foraging version
operating on the full 3.2 MegaPixel image can still do about 5 times more executions
than the standalone version operating on 64 x 48 pixel images.

Battery lifetime is a very important aspect of todays smartphones and smartphone
applications therefore should focus on consuming as little as possible energy. The
additional costs for communicating in the foraging version are less than the costs that
are saved by not doing heavy weight computation on the phone itself, making cyber
foraging an attractive alternative to the local computing with respect to energy usage.
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Table 2.5: number of executions for 80% of battery charge vs. accuracy
version . standalone foraging

accuracy . ? ?? ? ? ? ? ? ?
image size

32 x 24 15,764 1,652 405 15,283
64 x 48 7,928 1,351 333 15,047

128 x 96 2,930 590 - 14,375
256 x 192 - - - 12,119
512 x 384 - - - 8,481

1024 x 768 - - - 3,746
2048 x 1536 - - - 1,712

2.3.4 Lessons Learned from eyeDentify

From the eyeDentify case study we learned several lessons that we can apply in
generating a generic framework for computation o�oading, which is one of our
research goals. First and foremost the eyeDentify case study shows us that distributed
computing indeed can lead to wins in both execution time and energy consumption.
In addition we notice that a remote implementation is able to provide the same
functionality to a local implementation, but then with a higher quality.

The second point of interest is how we distribute the application. With eyeDentify
we explored the cyber foraging model. The advantage of this model is that it imposes
minor requirements on the remote resources, it only needs to be accessible with
some kind of middleware and have a Java Virtual Machine installed. This model is
suitable for the use of the more professionally managed compute resources, such as
cluster or cloud resources that typically have middleware installed to be accessible,
but not for private resources of end-users. If an end-user for instance wants to enable
his home desktop machine to be used as remote resource, he has to install an SSH
server or any other grid middleware that is supported by JavaGAT, a task we consider
as too complex for an end-user. Because of this and because of the overhead of
copying all Ibis communication libraries before each remote execution, we reject the
cyber foraging model and thus the usage of the Ibis Distributed Deployment System.
Instead we require Cuckoo to contain a server application, which is trivial to install
and already contains all necessary code to communicate with the client library on the
smartphone, for which we will use the Ibis High-Performance Programming System.
A strong point of cyber foraging that we want to keep is that client and server code
are bundled together and therefore compatibility between those is ensured. Therefore,
as an additional requirement for the Cuckoo o�oading framework, we require it to
support code bundling, which implies code that can migrate from the smartphone to
be loaded into the running server application.

In the eyeDentify case study we needed to explicitly include code that deploys
the remote part of the application, which added considerable complexity to the
implementation of the application. We further note that this code can easily be reused
for other o�oading applications and therefore add another requirement for Cuckoo:
Cuckoo should abstract away as much as possible deployment code between client
and server and provide this code through either a library or code generation.
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Below we summarize the requirements (E1 - E3) for Cuckoo gathered through the
eyeDentify case study:

E1 Deployment: We require Cuckoo to be able to deploy code to an already running
server, we do not require Cuckoo to start such a server from the smartphone. We
thereby relax the requirement with respect to cyber foraging, which expects the
mobile device to be able to �nd a machine and start a server on that machine.
The consequence of this relaxation is that the Cuckoo framework should include
a server application and that the problem of discovering this server by the mobile
device should be solved.

E2 Bundling: We require Cuckoo to support code bundling, which means that
the remote code is shipped together with the smartphone code in a single
package. This is challenging because it requires a build environment that
generates a package that contains code that can be extracted from the package
and transferred to a remote resource where it can be executed. Without this
requirement one has to �nd other means to get the remote code to the correct
location, either because it is preinstalled or transferred from some well known
source. Such an approach complicates deployment and introduces threats such
as incompatibility of local and remote code, and non-availability of the remote
code.

E3 Simplify Development: Cuckoo should o�er or generate all the generic code
needed to enable computation o�oading for an application, preferably through
integration with the default development tools. Much of the work of changing an
application into a computation o�oading application is generic. If a framework
can prevent a developer having to write this code himself, this will save time
and also reduce the chances on mistakes in this generic part. The simplicity of
development can be measured with an analysis of which steps a developer has
to take to transform an application into a computation o�oading application.

2.4 HDR: a Case Study with Specialized Compute Lan-
guages

For the second case study we were allowed to use an application created by NVIDIA
and derived from the standard Android 4.0 Camera app. NVIDIA extended this
application to support features such as Negative Shutter Lag and High Dynamic
Range (HDR) photography.

The focus in this case study is threefold. We want to analyze:

� the impact of the use of specialized compute languages,
� the applicability of a completely transparent o�oading model,
� the impact of bandwidth, latency and compression on o�oading

Within the camera application we speci�cally consider the HDR component, since
this component is very compute intensive. More speci�cally, we focus on exposure
fusion, a computer vision algorithm within the HDR process. This algorithm performs
the computationally expensive operation of fusing together multiple images taken
from roughly the same spot and at the same time with di�erent exposure levels, in
such a way that the result image is detailed in both dark and bright regions, which can
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Figure 2.7: Example of three input images with di�erent exposure levels and the resulting HDR image.
Images from http://en.wikipedia.org/High_dynamic_range_imaging

greatly improve the end-user experience of capturing images in scenes with details in
both the darker and brighter areas. An example of such a scene and the resulting HDR
image is shown in Figure 2.7. A detailed speci�cation of the algorithm can be found
in [68]. Relevant for this case study is that the computation in this algorithm is based
on matrix, �lter and pyramid operations, which are all data parallel operations. We
use a control script around these operations to control how the output of one operation
is used as input for another operation.

The application is implemented on top of the OpenCV imaging library[78], which
supports data parallel execution through CUDA[27] kernels. The application is writ-
ten for Android 4.0, which supports the compute language RenderScript[92]. We
created two new versions of the application, one in which we compare the use of a
RenderScript implementation to the original reference implementation, and another
implementation that enables CUDA for OpenCV on Android through using compu-
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tation o�oading with the existing Remote CUDA (RCUDA) o�oading framework
developed by NVIDIA. The implementation of RCUDA that we used is similar to the
framework described by Duato et al. [33], however their framework is targeted at HPC
cluster systems. We then perform experiments with the applications in which we focus
on execution time and energy consumption. With this case study we can evaluate
whether Cuckoo should allow the local implementation to be implemented di�erently
from the remote implementation. This is desired in case it bene�ts from using a special
compute language that is available only locally. Furthermore, where with the eye-
Dentify case study we explored a distribution model that is completely explicit to the
developer, the RCUDA framework entirely hides the distribution from the developer
by intercepting all CUDA calls and forwarding them to a remote CUDA-server.

2.4.1 Implementations: RenderScript and Remote CUDA

In this section we describe the important details that we found when we ported the
existing implementation with the Native Development Kit (NDK)[75] to the two new
implementations: RenderScript and RCUDA.

RenderScript is a host/device language similar to languages such as OpenCL and
CUDA. RenderScript host code is written in Java, whereas the device code is written
in C99. Memory allocations can only be done in host code. Device code can be started
single threaded or multi threaded. If device code is multi threaded it executes a
particular kernel for each element of a 1, 2, or 3 dimensional array. RenderScript
automatically distributes the elements over the available processors and also does load
balancing. While the kernel code is written in C99, it is compiled to an intermediate
byte code which, at runtime, gets compiled to the appropriate instructions for the
hardware that the RenderScript runtime selects.

To port the reference implementation to RenderScript we initially replaced the
OpenCV calls with RenderScript equivalents, while leaving the control code as is.
This naive port allowed for easy debugging of the RenderScript kernels because we
could switch between OpenCV and RenderScript at kernel level and therefore debug
kernels individually instead of debugging the entire algorithm.

Once all kernels were correctly ported we started optimizing the code. The �rst
naive port su�ered from the overhead of continuous transitions to di�erent execu-
tion environments (see Figure 2.8-(a)). Each kernel invocation starts in the native
environment, then goes to the virtual machine using JNI where Java code is used to
retrieve the data from the native environment and allocate it for the RenderScript
environment. Once the data is available to RenderScript, the kernel executes (in paral-
lel) and afterwards the Java code retrieves the resulting data from the RenderScript
environment and passes it to the native environment. Then the control code selects
the next operation and the same process happens over again, until the control code is
�nished and the �nal HDR picture is computed.

To reduce the overhead related to the transition from native to Java and back with
JNI, we moved the control code to Java such that we only have a single transition
to Java at the start of the control function. Then the entire control code is executed
in Java and only when the result is computed the program goes back to the native
environment (see Figure 2.8-(b)). By using references to the memory allocations, this
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Figure 2.8: Schematic overview of the optimizations of the RenderScript implementation. ctrl: control
script, alloc: memory allocation, kern: execution of a kernel, retr: retrieval of the results. The vertical boxes
indicate context switching (JNI) overhead. The boxes are not proportional to the actual execution time.

implementation did not have to copy intermediate data back and forth to RenderScript,
except from the initial input images and the �nal output image.

We noticed that the transition from Java to RenderScript also added overhead to
the algorithm and therefore we started to merge as many kernels together as possible
(see Figure 2.8-(c)). As an example, instead of executing an add kernel followed by a
multiply kernel one can create a single add-multiply kernel. This optimization enabled
the reduction of the number of kernel invocations drastically, albeit that the kernels
themselves are larger.

Finally, we further reduced the transition overhead from Java to RenderScript by
moving the control script to RenderScript (see Figure 2.8-(d)). While the Java code
still does all the memory allocations, it will transfer the control to RenderScript which
starts computing until the �nal image is computed without any context switches.

The comparison of the resulting optimized RenderScript implementation versus
the reference NDK implementation is discussed in the next section.

Next to an implementation with RenderScript that exploits data parallelism on the
device itself, we also implemented exposure fusion with computation o�oading using
Remote CUDA (RCUDA). RCUDA does classic computation o�oading by o�ering
a proxy on the client side that forwards calls to a CUDA enabled server, such as a
laptop or desktop with a CUDA enabled graphics card. RCUDA operates at the CUDA
abstraction layer and therefore executes computation on the GPGPU of the host in
parallel (see Figure 2.9).

Although the porting process to CUDA is trivial, we encountered and overcame
several issues in building OpenCV with both Android and CUDA support, a combina-
tion that has never been used before, because none of the current Android hardware
supports CUDA.

The exposure fusion algorithm is the �rst algorithm of substantial size that has
been used with RCUDA and therefore we expected to identify performance bottle-
necks in RCUDA. Because the computation o�oading in RCUDA is at the CUDA call
abstraction level, a reasonably sized algorithm, such as our exposure fusion algorithm,
can easily include thousands of calls. For each call a synchronous request is sent to the
server that, depending on the call, immediately returns a response and executes the
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Figure 2.9: Schematic overview of the RCUDA computation o�oading system. Apps for the mobile device
can be written as if hardware that supports CUDA is available, while the actual CUDA calls are intercepted
in a modi�ed libcuda.so on the device and forwarded to a remote machine, such as a laptop or a desktop,
on which a cudaserver listens for these calls and executes them on a real GPGPU.

request asynchronously, or �rst executes the request and thereafter returns a response.
Either way the client blocks until the response arrives.

Because of the sheer number of calls, even a low network latency of 1 ms would add
communication overhead of multiple seconds to the process. Therefore we changed as
many requests as possible from synchronous to asynchronous, we cached the results of
some calls that were called repeatedly on the client side, thereby reducing the number
of CUDA calls over the network and the overhead of the calls. Furthermore we noticed
that for the remaining synchronous calls, Nagle’s algorithm [73] in TCP � bu�ering
small messages into a large message for a certain time � caused much overhead,
as described in [33]. Turning this o� with TCP_NODELAY increased performance
dramatically.

In addition to the above latency based optimizations to RCUDA we also introduced
compression to the client-server protocol, to reduce the amount of data that needs to be
transferred at the cost of a additional computation. We use the zlib compression library,
which supports 10 di�erent compression levels, ranging from easy compression at a
low cost to very complex compression at a high cost.

In the next section we assess the impact of latency, bandwidth and compression on
the execution time and energy usage of the RCUDA implementation of the exposure
fusion algorithm on a Tegra 3 device.

2.4.2 Experiments

Hardware

The hardware we use in this study is the NVIDIA Tegra 3 Developer tablet, the only
available mobile quad core processor at the time of our study. The speci�cations of
this device are listed in Table 2.6. The Tegra 3 SoC has a 4-PLUS-1 architecture which
has either a low power core active if the load is low, or 1-4 normal cores if the load
is higher. The maximum clock speed � 1.4 GHz � of the device can only be reached
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when one of the four normal cores is active; as soon as multiple cores are active the
clock speed is reduced to 1.3 GHz.

On the developer device it is possible to explicitly turn cores on or o� with hotplug.
Furthermore, the device has several power rails on which di�erent components are
placed. For each power rail the amperage and power consumption can be read out in
real time, both in software and with a special breakout board that can be connected to
a regular computer.

Methodology

The key targets of our experiments are the execution time and the energy usage of a
particular implementation under particular circumstances. Next to these main targets,
we also collect data about the CPU load, the CPU frequency and the temperature, to
be able to investigate unexpected results and form hypotheses about causality. With
this information we can for instance see if using multiple cores indeed leads to all
processors being active, or if temperature causes the frequency to be scaled down
thereby lengthening execution time.

Next to a speci�c implementation there are several other variables that will impact
the execution time and energy usage of the exposure fusion algorithm. The more
pixels an image has, the longer the execution takes; the higher the latency or the
lower the bandwidth, the longer computation o�oading takes. The more complex the
compression, the more computation is required, but also the less data has to be sent.

To change the variables for the implementation and the image size we add settings
to the user interface of the demo Camera application. For varying the latency we
arti�cially increase the latency on the server side using netem [47]. With trickle [37]
we manipulated the bandwidth for both the up and downlink of the server. We used
the hotplug feature of linux to measure the impact of the number of active cores for
the multicore implementation.

For each combination of settings we repeated the experiment 30 times. Whereas
the results in general are very consistent, we inspect the data for explainable outliers.
We use the additional information such as temperature, CPU usage and CPU frequency
to determine whether we discard the outlier for the �nal results.

Table 2.6: NVIDIA Tegra 3 Developer Tablet Speci�cations.
Processor

CPU Quad-Core plus Low Power Core
Max. Frequency 1.4 GHz on single core, 1.3 GHz on mul-

ticore
L2 Cache 1MB

L1 Cache I/D 32KB / 32KB per core
Memory

Frequency DDR3-L 1500, LPDDR2-1066
Memory Size 1 GB

Other
Camera 5 MP
Process 40 nm
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Figure 2.10: Design of the On Device Pro�ler

For the RCUDA experiments we remove the result of the �rst execution, because it
includes a one time overhead of initializing the libraries. Furthermore, for the RCUDA
experiments we use ethernet over USB to connect the mobile device to the network, to
prevent interference artifacts from the wireless network and make the experiments
repeatable.

Software vs. Hardware Monitoring

The Tegra 3 Developer Tablet supports hardware monitoring through various monitor-
ing applications in combination with a PM292 breakout board. The main advantage
of hardware monitoring is that it does not interfere with a running application, it
neither takes cycles from the CPU nor does it consume energy from the battery. The
main disadvantage of using hardware monitoring is that we cannot easily correlate
the data we gather with the execution of a particular part of an application, because
the gathered data will be timestamped with the time on the external machine, not the
tablet.

To overcome this issue we can use software monitoring, such as Power Tutor [121].
A background process runs on the mobile device and reads out, timestamps and
persistently stores the target data. No additional hardware is needed. Such a back-
ground process can provide an API to applications, that subsequently can instrument
pro�ling to be started and stopped. Because of the importance to be able to accurately
start and stop pro�ling we use software monitoring for our experiments.

Pro�ler Design

Since no �ne grained software monitoring based pro�ler exists for the Tegra 3 hard-
ware, we designed a new pro�ler that reads the pro�ling information from the appro-
priate locations on the device. A graphical overview of the pro�ler is shown in Figure
2.10.

The main components are an Application Programmers Interface (API) that allows
applications to steer pro�ling, the central monitoring background service which
includes various monitor threads that each monitor a speci�c target (such as energy
usage, temperature, etc.), a database where all pro�ling information is stored and an
application that can be used to �lter and present the information from the database
(see for instance the screen shots in Figure 2.11). This application uses the same API
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as which can be used by 3rd party apps to enable the user to start and stop pro�ling
manually.

2.4.3 Results

Above we have described the application, the di�erent implementations, the method-
ology and tool for the measurements. In this section we present the results of the
experiments and discuss them.

Discarded Results

First, we will have a closer look at some of the discarded results from the experiments.
Since we monitored not only our primary variables � energy usage and execution time
� but also the related variables CPU frequency, usage and temperature, we were able
to analyze the results for abnormal values.

Figure 2.11-(a) shows a screenshot of the pro�ler app where the pro�ling results
are �ltered to show the results of the RenderScript experiment on four cores with VGA
size images. Whereas the average execution time of the 30 measurements is 679 ms, we
found one measurement that had a signi�cant larger execution time (1223 ms), almost
twice as high as the average. A closer look at this experiment’s measurements com-
pared to the other 29 measurements shows us that for this particular measurement the
frequency of the quad cores dropped, whereas it did not for the other measurements.
We therefore marked this measurement as abnormal and removed it from our series,
which resulted in a change of the average to 660 ms.

The RenderScript experiment on four cores with 3 MP images had four abnormal
results that we discarded, because of irregular CPU usage. Whereas in the other
measurements in this experiment we see all four cores being used 100% during the
execution, these four measurements have highly variable usage percentages in the
beginning of the run. Three of these measurements are consecutive, a reason for this
could be that another process was interfering, or that the RenderScript runtime had
problems distributing the work to the cores, or that work was moved between cores
continuously. Figure 2.11-(b) shows the fourth abnormal measurement we discarded;
during this measurement one core was not used at all for about 70% of the total
execution time.

In the �nal discarded result that we discuss, we suspect a too high temperature
causing the frequency to scale down and only scale up after the board has su�ciently
cooled down (see Figure 2.11-(c)) causing the execution time of this particular run
being about 40% longer than on average. Removing this measurement changes the
average from 8779 ms to 8670 ms.

Multi Core

In our �rst experiment we compare the execution times of the NDK implementation
and the RenderScript implementation, while varying the image size and the number
of active cores. Since the computation scales with the number of pixels we expect
a linear relation between the image size and the execution time. Furthermore, we
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(a)

(b)

(c)

Figure 2.11: Screenshots of the pro�ler application. The detailed charts of the individual measurements
in (a) and (b) give a clue about the di�erence with the other measurements for the experiment. In (a) the
frequency (red line) drops for a while. In (b) the CPU usage of core 3 (one of the darker blue lines) is zero
from 0.8 to 5.5 seconds. Screenshot (c) shows a maximized chart in which the frequency (red line) drops for
a while such that the temperature (yellow line) goes down to an acceptable value, then the frequency goes
back up.

expect RenderScript to perform up to 4 times better than the NDK implementation,
because it can make use of all the available cores. We also expect that the RenderScript
runtime adds some overhead.

Figure 2.12 shows the results of both the reference and the RenderScript imple-
mentation while varying the image size. We found that indeed the execution time has
a linear relation with the image size for both implementations. Furthermore, Render-
Script does not achieve a 4x speedup, indicating that the usage of the RenderScript
runtime introduces overhead. To get a better idea about the runtime overhead, we
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Figure 2.12: Execution times for RCUDA, RenderScript (RS) and the reference implementation (NDK) while
varying the image sizes.

performed a second experiment where we varied the number of active cores for the
RenderScript implementation with hotplug.

The results of this experiment are shown in Figure 2.13, where we normalized
the RenderScript execution times with respect to the reference execution time to
calculate the speedup. From this �gure we can see that the image size does not impact
the scalability of RenderScript signi�cantly. The overhead of using RenderScript on
a single core is 25.9% on average and increases to 45.7% on four cores. Although
increasing the number of cores leads to an increase in overhead, the speedup factor
increases too � up to 2.2x on four cores. This means that we have not yet reached an
assymptot in the speedup graph, and although the current hardware prevents us from
running the algorithm on more than four cores, adding more cores can possibly lead
to even lower execution times and thus higher speedups.

We also perform the same experiment without explicitly turning on or turning
o� cores with hotplug, but rather letting the default governor activate cores when
needed, such as would happen in real world scenarios. We �nd that it takes a constant
time period for the governor to turn on all four cores (about 0.5 seconds). With small
problem sizes (such as VGA resolution), the activation time for the other cores wastes
the possible speedup severely, whereas the activation time is hardly noticeable for
an image size of 5 MP. A possible solution to improve the execution time with small
problem sizes in real world scenarios is that the governor could o�er an interface to
applications such that they can explicitly instruct the governor to turn on multiple
cores if some compute intensive job is about to start.

Now that we have seen that the RenderScript implementation improves the exe-
cution time by using multiple cores, we analyze what the impact of using multiple
cores on the energy usage is. On the one hand we expect RenderScript to consume
less energy, because of the shorter execution time, on the other hand we expect Ren-
derScript to consume more energy because it uses multiple cores. If we only consider
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Figure 2.13: Although the RenderScript implementation does not reach linear speedup, adding cores
improves the speedup compared to the native reference implementation.

the energy usage of the quad core, we �nd that RenderScript’s shorter execution time
with a higher power draw results in energy usage equal to the NDK’s longer execution
time with lower power draw (see Figure 2.14). This is surprising given the fact that
some of the energy of RenderScript is spent on overhead and one would therefore
expect that RenderScript would consume more energy.

Further analysis of the measurements reveals that the power draw of the quad
core CPU does scale linearly with the number of active cores, but also includes a
�xed draw, and can be roughly approximated by the following formula: Pquadcore =
500mW + n � 500mW

Using more cores therefore results in better power e�ciency. In the case of the
RenderScript implementation however, what is won in e�ciency due to the use of
multiple cores is wasted on the RenderScript runtime overhead, resulting in an equal
energy usage to the reference implementation.

From the experiments with RenderScript we conclude that the exposure fusion
algorithm bene�ts from a multicore implementation, leading to a maximum speed up
of 2.2x on four cores, while using an equal amount of energy on the CPU. Although the
energy usage for the CPU is equal, RenderScript will likely lead to device wide energy
savings, because the shorter the algorithm has to run, the shorter other components,
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Figure 2.14: Energy used by RenderScript on four cores compared to the reference (NDK) implementation.

such as the screen have to be turned on. Furthermore, for smaller size jobs the use
of RenderScript will not automatically lead to good speed ups, because it takes some
time for the CPU governor to switch from single core to quad cores.

Computation O�oading

In this section we turn our attention to the experiments we performed with the
computation o�oading implementation based on Remote CUDA. Our primary focus
is how latency, bandwidth and compression level impact both execution time and
energy usage.

In our �rst experiment we optimized the circumstances to get the lowest possible
execution times for computation o�oading. This means that we did not put limits
on the bandwidth and latency and used compression level 1, as we show in later
experiments this turns out to be the optimal compression level value. Figure 2.12
shows the results of this experiment. Because of GPU memory limits on our o�oading
laptop, which has a 512 MB Fermi based GPU, we could not run the algorithm for
images with a size larger than 2 MP. Although the RCUDA implementation for all
our measurements is slower than the reference implementation, we see the di�erence
between the two implementations decreasing when the image size increases. Future
experiments with a host with larger GPU memory have to prove whether this is a
trend and the RCUDA implementation is faster than the NDK implementation with
su�ciently large images.

Because the remote GPGPU computation is much faster than the computation
of the reference implementation, much of the total execution time is determined
by the communication. The time spent in communicating depends on the available
bandwidth and the latency. We performed a second experiment with RCUDA in
which we vary both the bandwidth and the latency. The results of this experiment
are shown in Figure 2.15. We observe that increases in the latency and decreases
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Figure 2.15: The impact of both bandwidth and latency on the execution time of the RCUDA implementation
on a 1MP image.

in the bandwidth to real world values lead to dramatic increases in execution time,
well above what is acceptable for an algorithm like exposure fusion (for instance a
latency well above 50 ms is common in 3G networks [49]). Therefore we can conclude
that for this particular algorithm the RCUDA computation o�oading framework is
not a competitive alternative to on device computation. This is partially due to the
abstraction level of the RCUDA framework � a low abstraction level leads to many
messages, sensitive to latency � and partially due to the fact that the algorithm blows
up the data, making the algorithm sensitive to bandwidth. For instance, single 1MP
images, which as compressed JPEG images are typically below 200 kB, get converted
to 9 MB �oat arrays in the algorithm. Other computation o�oading frameworks that
operate at a higher abstraction level can reduce the number of messages to a single
response/reply and the data to JPEG compressed images.

In order to limit the impact of bandwidth on the execution time we added compres-
sion to RCUDA by using the zlib [124] library. The zlib library supports compression
levels from 0 to 9, where a higher compression level makes use of better compression
techniques, at the cost of more computation. Thus with compression we can trade
communication for computation. We performed an experiment where we varied the
compression level and bandwidth. We expect that when there is plenty of bandwidth
only simple compression will contribute to a lower execution time, whereas at low
bandwidth it may be worthwhile to spend additional time on compressing to reduce
the data that is sent.
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Figure 2.16: The relative execution time for a speci�c bandwidth and compression level compared to the
execution time with maximum compression on a 1MP image.

Figure 2.16 shows the results of this experiment. We �nd that indeed increasing
the compression level in the cases where we have a bandwidth of more than 100
kB/s only slows down the algorithm, whereas with the lowest bandwidth setting
we see that an increase in compression level � beyond level 2 � leads to slightly
lower execution times. However, compression level 1 is even at low bandwidth an
equal choice to compression level 9, indicating that even at the lowest bandwidth
that we used in our experiment, putting more e�ort in compressing data does not
improve execution time. If we shift our focus from the execution time to the energy
usage, we can see clearly that an increase in compression level, and thus an increase
in computation leads to an increase in energy usage of the CPU (see Figure 2.17).
This gives additional reason to only use simple compression. Whereas we expected
that computation o�oading would reduce the energy consumed by the CPU, we see
that without compression RCUDA uses only 5% less energy on the CPU than our
reference implementation and with compression it always uses more energy. Whereas
these �gures only compare energy used on the CPU rail, we should not forget that
o�oading computation introduces additional energy usage for communication. Since
we use Ethernet over USB in our experiments, we did not include the energy usage
for communication, because in real world settings a wireless variant will be used for
connectivity. However, we can safely conclude that RCUDA computation o�oading
for the exposure fusion algorithm on a Tegra-3 device does not lead to better execution
times nor to lower energy usage if the additional communication cost is taken into
account.

2.4.4 Lessons Learned from HDR

We have learned the following lessons from the HDR case study and apply them in
the design and implementation of the Cuckoo framework:

H1 Distribution Level: Distributing partitions of an application as small as CUDA
kernels introduces too much communication overhead. In Cuckoo we should
allow partitions into larger chunks of code to minimize communication between
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Figure 2.17: Energy usage at di�erent compression levels for RCUDA with a 1MP image.

the smartphone and the remote resource. Furthermore, RCUDA o�oads at a
level where for instance compact image data has been blown up at the smart-
phone. Although we can compensate for this using compression, this introduces
additional overhead. We therefore require Cuckoo to distribute the application
at such a level, that we can still send over compact data before it has been blown
up.

H2 Programming Model: RCUDA o�ers transparent o�oading, there is no explicit
programming model for computation o�oading other than the models used
for the ’normal’ implementation. A complete transparency contributes to the
main goal of simplifying development, because no new concepts have to be
learned by developers using the framework. However, complete transparency
can come with a price and con�ict with other requirements such as the required
distribution level as described above. Therefore, in Cuckoo we should strive to
keep the programming model as transparent as possible within the limitations
posed by the other requirements.

H3 Multiple Implementations: Despite the former requirement with which we
try to achieve high transparency, we learn from the HDR application that the
best local implementation (in this case using RenderScript), can di�er from the
best remote implementation. We therefore require Cuckoo to support in its
programming model both a local and a remote implementation of o�oadable
functionality. These implementations may be identical, but can also di�er to
bene�t from available specialized languages (for instance: locally RenderScript
and remotely CUDA). Another bene�t of having multiple implementations is
that we can fall back to the local implementation if connectivity between the
smartphone and the remote resource drops.

H4 Smart O�oading: The experiments with RCUDA show us that both bandwidth
and latency can have a huge impact on the usefulness of o�oading. Therefore
Cuckoo should be able to decide at runtime whether a given o�oadable part
of the application will be o�oaded, to prevent situations where one o�oads
but is better o� executing locally or vice versa. Amongst others, bandwidth and
latency should be taken into account to make the decision. Making the right
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decision on whether or not to o�oad a particular task before its actual execution
is challenging, because it requires a prediction of the expected network and
execution characteristics. Since the o�oading decision is made before actual
execution it is not possible to always give the correct advice, because one cannot
know the exact future, however the quality of a decision engine can be measured
to show in hindsight how many of its advices were correct.

2.5 Cuckoo Design

In the previous sections we have derived requirements and set the background for the
Cuckoo o�oading framework, in the following sections we will outline the design
that follows the requirements. Our aim is to come to a practical framework that will
greatly reduce the e�ort of adding computation o�oading to applications so that the
bene�ts of o�oading � faster execution and/or less energy usage � become accessible.

To this end we have to design several components of the framework that together
cover what is needed to write, build and run an application that contains o�oadable
compute intensive tasks. In the table (Table 2.7) below we list Cuckoo’s components,
the sections that address the component and which of the lessons that we learned
through our case studies we apply for its design.

Table 2.7: Overview of the Cuckoo components.
Component Purpose Section Lessons Applied

Programming Model write app 2.6 H1, H2, H3
Builders build app 2.7 E2, E3
Oracle client runtime 2.8 H4
Server server runtime 2.9.1 E1

Resource Manager client/server discovery 2.9.2 -

2.6 Programming Model

One of the important design decisions, but also one of the key contributions of Cuckoo
is the programming model that is o�ered to application developers. This programming
model acts as the interface of the system to the developers and will guide them to add
computation o�oading to their application.

The following requirements that we posed in the previous sections are of impor-
tance for the programming model:

� Distribution level that minimizes communication (H1)
� High degree of transparency (H2)
� Allow for multiple implementations (H3)

To make the programming model easy to understand and to reduce the additional
work a developer needs to do, we decided to exploit the existing activity/service model
[8] in Android that already makes a separation between background tasks (services)
and interactive parts of the application (activities), through an interface de�ned by
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the developer in an interface de�nition language (AIDL, see also Section 2.2.1). Using
the activity/service model has several advantages.

First, for Android applications that contain compute intensive operations, the
compute intensive code either already resides in a service or can easily be refactored
into a service. That means there is a way to create the local implementation of
the compute intensive operation. Since AIDL is part of the default Android SDK,
developers do not have to learn new concepts. Figure 2.18 shows an example of how
AIDL and the activity/service model is used in Android.

To discriminate regular services from o�oadable services a developer can use
annotations in the AIDL speci�cation. Once a developer uses Cuckoo in the devel-
opment of his project, we assume that all AIDL de�ned services are intended to be
o�oaded. A developer can exclude services by adding a special comment anywhere in
the speci�cation �le:

// cuckoo:enabled=false.
What we added in our programming model is that developers also have to pro-

vide a remote implementation of the interface. This remote implementation can be
identical to the local implementation, but is allowed to be di�erent. The overhead
of implementing this remote service can be as minimal as simply copy-pasting code
from the local service implementation. An example of a remote implementation of
the service described in Figure 2.18 is shown in Figure 2.19.

A second advantage is that every method invocation on the service will go through
the Android IPC system and will use the stub/proxy objects to reach the service.
These stub and proxy objects are generated by the Android builders, but can easily
be rewritten at build time to add code that will intercept method invocations at run
time. Once method invocations of compute intensive operations are intercepted,
an o�oading system then can decide to continue execution and invoke the local
implementation, but also invoke a remote implementation instead.

Third, AIDL explicitly requires developers to mark parameters as in, out and
inout parameters. We therefore exactly know which parameters to copy back, so that
parameters can be used in a C-style way as output parameter.

Finally, o�oading at the method level allows data to be sent in its original compact
form. Images for instance can be sent as JPEG byte arrays and decoded at the (remote)
service side, something that is not possible with lower level o�oading models, such as
RCUDA.

Limitations

Cuckoo does not support callbacks, although they are supported by the Android
interface de�nition language. Implementing asynchronous callback communication
for remote services is challenging and is left as future work.

Currently, Cuckoo does not support any form of security, which means that the
remote resources can be accessed by untrusted phones, which in turn can install any
code onto the system. However, setting up a security infrastructure can be realized
with current technology, but is beyond the scope of our research.

Furthermore, Cuckoo intentionally supports only stateless services. Although the
programming model does not forbid a service to maintain internal state, Cuckoo can
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/* * AIDL f i l e ( IComputeIntensive . a i d l ) * */
package interdroid . cuckoo . example ;

i n t e r f a c e IComputeIntensive {
byte [ ] compute ( in byte [ ] input ) ;

}

/* * S e r v i c e f i l e ( ComputeIntensiveService . j ava ) * */
package interdroid . cuckoo . example ;

// imports not shown

public c l a s s ComputeIntensiveService extends Service {
publ ic IBinder onBind ( Intent intent ) {

return mBinder ;
}

p r i v a t e f i n a l IComputeIntensive . Stub mBinder = new IComputeIntensive . -
Stub ( ) {
publ ic byte [ ] compute ( byte [ ] input ) throws RemoteException {

// compute i n t e n s i v e code here . . .
}

} ;
}

/* * A c t i v i t y f i l e ( ComputeIntensiveActivity . j ava * */
package interdroid . cuckoo . example ;

IComputeIntensive service ;

// . . .
byte [ ] result = service . compute ( input ) ;
// . . .

Figure 2.18: AIDL de�nition, with local service implementation and invocation from an Activity.

arbitrarily change from local to remote execution or from one remote resource to
another without transferring state. We do not support such state transfers, because
whenever the state needs to be transfered, it is generally too late to access the state,
because the connection to the running service has been lost. Nonetheless, this lim-
itation is acceptable, since application developers understand well how to transfer
state between stateless services by using the Representational State Transfer (REST)
architectural style [40].

Finally, there is a limitation in the Android platform to what size the IPC messages
can be. Currently this is set to 1Mb [111]. Because Cuckoo uses Android’s IPC system,
method invocations are limited to this maximum.

Changing a project into a Cuckoo project also requires the application to have
additional permissions in its Android Manifest, because with o�oading it will access
the Internet and use contextual data. The following permissions are required by
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/* * RemoteService f i l e ( IComputeIntensiveImpl . java ) * */
package interdroid . cuckoo . example . remote ;

// imports not shown

public c l a s s IComputeIntensiveImpl implements interdroid . cuckoo . example . -
remote . IComputeIntense {

publ ic byte [ ] compute ( byte [ ] input ) throws Exception {
// compute i n t e n s i v e code here . . . can be equal to or d i f f e r e n t  -

from l o c a l
}

}

Figure 2.19: Additional implementation after adding computation o�oading to the code in Figure 2.18.

Table 2.8: Application Development Process. An overview of what steps need to be performed during the
development process of an Android application that supports computation o�oading.

step actor action
1 developer creates project, writes source code
2 developer de�nes interface for compute intensive service
3 build system generate a stub/proxy pair for the interface and

a remote service with dummy implementation
4 developer writes local service implementation, overwrites

remote service dummy implementation
5 build system compiles the code and generates an apk �le
6 user installs the apk �le on its smartphone

Cuckoo:
� android.permission.INTERNET
� android.permission.ACCESS_WIFI_STATE
� android.permission.ACCESS_NETWORK_STATE
� android.permission.ACCESS_FINE_LOCATION

2.7 Integration into the Build Process

Important for the Cuckoo Build Process are the following lessons that we learned in
our case studies:

� Local and remote code should be bundled in one installable package. (E2)
� Development should be simpli�ed where generic code can be added or generated.

(E3)
To this end the Cuckoo framework provides two Eclipse builders and an Ant [10]

build �le that can be inserted into an Android project’s build con�guration in Eclipse.
The �rst Cuckoo builder is called the Cuckoo Service Rewriter and has to be invoked

after the Android Pre Compiler, but before the Java Builder. The Android Pre Compiler
generates Java Stub and Proxy classes based upon the AIDL �les. The Cuckoo Service
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Figure 2.20: Schematic overview of the build process of an Android application, the area within the
dashed line shows the extensions by Cuckoo for computation o�oading. The �gure shows the process of
building an Android application from source code to a user installable apk �le. The developer has to write
application source code and if applicable AIDL service de�nitions and implementations for these services.
Then the build system will use these to generate Java Source �les from the AIDL �les (1), compile the source
�les into Dalvik bytecode (5) and bundle them into an installable apk �le (6). To enable an application
for computation o�oading, the only thing the developer has to do is to overwrite remote service dummy
implementations generated by the Cuckoo Remote Service Deriver (2). The Cuckoo Service Rewriter (4) will
insert additional code into the generated Java Source Files and these rewritten Source Files will be compiled
(3) and subsequently bundled with the compiled remote implementation (6) to again an installable apk �le.

Rewriter will rewrite the generated Stub for each AIDL interface, and inserts code
so that at run time Cuckoo can decide whether a method will be invoked locally or
remote.

The second Cuckoo builder is called the Cuckoo Remote Service Deriver and derives
a dummy remote implementation from the available AIDL interface. This remote
interface has to be implemented by the programmer. Next to generating the dummy
remote implementation, the Cuckoo Remote Service Deriver also generates an Ant
build �le, which will be used to build a Java Archive File (jar) that contains the remote
implementation, which is installable on cloud resources. The Cuckoo Remote Service
Deriver and the resulting Ant �le have to be invoked after the Java Builder, but before
the Package Builder, so that the jar will be part of the Android Package �le that
results from the build process. A schematic overview of how the Cuckoo components
integrate into the default Android build process is shown in Figure 2.20, whereas
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Table 2.8 shows the order of the development process.

We created a Cuckoo plugin for Android that simpli�es the process even further.
A developer can add a Cuckoo nature to an Android project within the GUI of Eclipse
(see Figure 2.21). This automatically triggers the service rewriter and remote service
deriver to be executed leading to the creation of the remote code and dummy imple-
mentations as well as the appropriate build �le. Furthermore, it adds the Cuckoo
libraries to the project. Then, whenever changes are made in the remote code, the
Cuckoo plugin automatically invokes the build �le to ensure that the package contains
the actual remote implementation. Through this integration of the builders with
the standard build tools we ful�ll the requirement of simplifying development of
computation o�oading applications as well as the requirement of packaging all code
together into one deployable package.2
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Figure 2.21: A screenshot of the Cuckoo Plugin in Eclipse. A developer only has to add the Cuckoo nature to
an existing Android project containing AIDL �les. Then all o�oading code is generated by the framework,
so that the developer can focus on implementing the local and remote service methods.

2.8 Smart O�oading

Now that we have seen how Cuckoo satis�es the requirements to create computation
o�oading applications, we shift focus to the execution of these applications. At run
time the rewritten code in the Stub will be executed. This code ultimately will invoke
the local or the remote implementation. In this section we will have a closer look at
how we can make a smart decision where to execute the method, in accordance with
the lesson we learned from the HDR application that runtime parameters determine
whether o�oading is bene�cial (H4).
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2.8.1 O�oading Decision

When an activity invokes a method of a service, the Android IPC mechanism will
direct this call through the proxy and the kernel to the stub. Normally, the stub
will invoke the local implementation of the method and then return the result to the
proxy. The Cuckoo system intercepts all method calls and then decides whether it is
bene�cial to o�oad the method invocations or not, through consulting its internal
decision component: the Oracle.

It is a complex task to determine whether o�oading a particular method is bene-
�cial or not, because both the local and the remote processing environment as well
as the network are dynamic environments. It is non trivial to estimate the execution
time and the energy usage of the method in general, because the parameter values
may in�uence it. For estimating the execution time and energy usage for remote
execution, the parameter and return size, the bandwidth and latency of the network
connection are useful information. An estimate of energy usage needs additional infor-
mation, such as idle power consumption, transmission power consumption, network
connection type and network connection state.

In this section we will introduce a model that we use in Cuckoo’s Oracle to make a
smart decision about whether to o�oad or not. Such a model should strive to be as
close as possible to reality, to achieve a high rate of correct decisions, but should also
be very light weight in itself, so that the overhead cost of consulting the model does
not waste the time or energy gained by computation o�oading.

2.8.2 O�oading Strategy

The model in Cuckoo �rst distinguishes between the strategy of o�oading as indicated
by the developer. The strategy can be �local", �remote�, �energy�, �speed� and
�parallel�. Cuckoo also supports a multifold o�oading strategy of �energy� combined
with �speed�. In this case Cuckoo will o�oad the execution of the method if any of
the strategies results in a positive answer on the question: Should we o�oad? The
order of consulting the model for energy usage and execution time depends on the
order within the purpose description � �energy/speed� will �rst consult the energy
model. If the strategy is remote, Cuckoo will always try to o�oad the method, because
the remote implementation will for instance deliver a better quality result. By default
the purpose of o�oading is �speed/energy�.

2.8.3 Estimating Execution Time

For the �speed� strategy we can use historical information of earlier executions of the
method. The pitfall of using historical data to estimate the execution time is that the
parameters of a method might heavily impact the execution time of the invocation.
For instance face detection on a small image takes less time than on a very large image.
Calculating a new move for a chess application can be very fast, if the �rst search is
already a checkmate move, but can also require a long search multiple moves ahead.

Cuckoo introduces method weights functions to make it possible to improve the
estimate of the execution time while taking the current parameter values into account.
For each method that is executed the execution time is measured and a method weight
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is computed. By default the method weight is 1, but developers can override the
function that computes method weight to compute a more appropriate value. The
combination of the method weight and the execution time is stored for future use.
Then, on subsequent invocations the historical method weight, the current method
weight and the historical execution time is used to provide an estimated execution
time with the following formula:

tnow = weightnow=weighthist � thist

To illustrate the use of method weights we provide the following example. Consider
a compute intensive operation:

List<Face> doFaceDetection ( Image image ) ;

For this method Cuckoo generates the method:

f l o a t weight_doFaceDetection ( Image image ) ;

Note that generated weight functions have exactly the same parameters as the
original compute intensive methods, but return a float value. By default the function
weight_doFaceDetection will return 1. This means that if the execution time of a
small image will take t seconds, then the estimate for an image that has twice the
height and twice the width is still t seconds. A better estimate in this case would be 4t
seconds, since the number of pixels is four times larger than the number of pixels of
the small image.

Now a developer who knows that the execution time of the doFaceDetection
method scales with the number of pixels of the image can override the weight function.
An appropriate implementation can return the number of pixels as weight. Then, the
following situation arises. The �rst invocation with the small image will result in the
storage of the tuple < t;p >, where p is the number of pixels. To estimate the execution
time of the second invocation with the larger image, we will use the results from the
�rst execution, the weight of the current invocation (4p) and the formula above to
estimate the new execution time:

tnow = 4p=p � t = 4t
With little help of the developer we can much better estimate execution time at

run time based on historic results.
Note that the implementation of the weight function is optional for the developer;

there is always the default implementation that returns 1. In many cases this is a
reasonable implementation, for instance in the case of an application that invokes
face detection on only images of the same size, or for methods whose execution times
do not depend on the actual parameter values. Also, it might be beyond the skills
of the developer to express the weight of the parameters in a function. For instance,
writing an appropriate weight function for the method doMove(Board b) in a chess
application is not as trivial as for an image based method. Such a function probably
should take the progress of the game, the number of pieces on the board, etc. into
account.

In the above examples we used the historical weight (weighthist) and the historical
execution time (thist), but these values were based on a single previous value. In order
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to improve the accuracy of the historic values we can take an average of multiple
historical executions, thereby reducing the impact of outliers. In order to do so the
Oracle calculates the new weighthist and thist as follows:

// e x i s t i n g globa l v a r i a b l e s double tHist , double weightHist , i n t n
f l o a t weightNow = weight_computeIntensiveFunction ( . . . ) ;
long start = System . currentTimeMillis ( ) ;
computeIntensiveFunction ( . . . ) ;
long tNow = System . currentTimeMillis ( ) � start ;
// update h i s t o r y information
tHist = ( tHist * n + tNow ) / ( n + 1) ;
weightHist = ( weightHist * n + weightNow ) / ( n + 1) ;
n = n + 1 ;

The described model to estimate the execution time does not take the current
clock frequency and number of active cores into account, but assumes that the local
device is running at full compute power. However, from the experiments with the
HDR application we found that (i) Dynamic Frequency Scaling (DFS) might cause
the execution time to be longer if for instance the clock speed is scaled down because
of a too high board temperature and (ii) if not all cores of a device are active at the
beginning of an operation it takes time until the device is at the maximum processing
level (e.g. all cores are activated). In Section 2.10.3 we evaluate the impact of DFS on
the execution time.

For both local and remote execution we can use the above described method to
predict the execution time. But whereas for local execution the resulting value is the
�nal estimate, for remote execution we have to include the time for the transfer of the
data to and from the remote resource.

2.8.4 Bandwidth Estimation

Precisely estimating the transfer time is an inherently di�cult task, because of the
network dynamics in mobile computing. Depending on factors like the location, speed,
radio in use, interference, weather conditions, etc. the bandwidth and latency from
the mobile client to the remote resource may vary.

In our model we assume that the bandwidth5 and latency do not change during the
execution of a single remote method, but might change between multiple invocations.
The total transfer time to and from the remote resource, can be approximated with
the following formulas:

tupload = latency + bandwidthup � inputsize

tdownload = latency + bandwidthdown � returnsize

ttransf er = tconnectionsetup + tupload + tdownload

In practice there are several problems with using this model. First, although
the input size is always known beforehand, we might not know the return size of a
method. For instance the result of the earlier example method List<Face> doFaceDe-
tection(Image image) can potentially be very small (empty List), but also very large

5with bandwidth we mean the bandwidth as it appears to Cuckoo, including all lower level overhead,
this can also be called goodput.
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Figure 2.22: Schematic overview of the di�erent paths between the mobile device and the remote resource.
Path 1-2-3 uses the cellular network. Path 4-5-3 uses a WiFi access point connected to the internet, whereas
path 4-6-7 can connect the phone and remote resource over a local network.

if the image contains many faces. If the result type is of a non primitive data type,
Cuckoo generates a method that by default returns the average size of the historic
return values but that can be overridden by the developer if for instance the return
size depends on the input size. Like the weight function, the return size function
takes the same arguments as the compute intensive function and is pre�xed with long
returnSize_.

Another problem of using the model in practice is that determining proper values
for the bandwidth and latency is non trivial. Bandwidth can be determined by (i) ac-
tively measuring bandwidth, (ii) using historic data, (iii) using contextual information
or a combination of historic data and contextual information. The cost of actively
measuring bandwidth to determine whether or not the execution of a method should
be o�oaded is high both in terms of time and especially energy. Although an active
measurement does not need the radio for a long time, there will be additional tail
energy costs after using the radio. This does not matter if indeed the conclusion is
that the method should be o�oaded, but it does matter if the conclusion is that local
execution is preferred.

Whereas the use of historic data for estimating compute time is reliable, because
the processor speed is not likely to change over time, the network bandwidth on a
mobile device is very dynamic. Mobile devices switch between WiFi networks and cell
networks, but also within networks the mobility may cause the bandwidth to change
over time. Therefore using an average of all historic bandwidth to estimate the current
bandwidth is a bad idea. However, if we are able to consult only those historic values
that share the same important contextual factors such as network type and location,
we can provide a much more reliable estimate. Depending on the actual use of the
computation o�oading framework such information might be available.

If active measurement is considered to be too expensive and historic data is not
available, we can use contextual information to estimate the bandwidth. The Android
platform provides an API to query the ConnectivityManager for network information.
If the phone is connected to a cell based network the ConnectivityManager tells which
of the following network types it is, for each network there is an approximate range of
what the bandwidth will be between the phone and the cell tower.
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Note that this approximation only gives an indication of the connection bandwidth
between the mobile device and the cell tower (hop 1 in Figure 2.22). The connection
from the cell tower to the remote resource (Path 2-3) can have a lower bandwidth
in which case the approximation will be an overestimate. Furthermore, consulting
the network type alone does not take into account that network bandwidth might be
limited by the phone’s hardware or capped by providers because of contract limitations
with the customer.

We therefore extend the approximation process in two ways. First, we take the
minimum of the customer’s contract up and download speed, the phone’s maximum up
and download speed, and the network type based estimate to estimate the bandwidth
between the mobile device and the cell tower. Further, under the assumption that
the bandwidth from a cell tower to the ISP server of the remote resource is not the
limiting bandwidth, we take the minimum of the estimate to the cell tower with the
bandwidth of the remote resource to the ISP. Because both the connection from the
mobile device to the cell tower as well as the connection from the remote resource to
the ISP can be asymmetric, we compute both a bandwidth from the mobile device to
the remote resource and vice versa.

double bandwidthUp = min ( bandwidthUpFromConnectionType ( ) ,  -
bandwidthUpFromContract ( ) , bandwidthUpFromDevice ( ) ,  -
bandwidthDownServer ( ) ) ;

double bandwidthDown = min ( bandwidthDownFromConnectionType ( ) ,  -
bandwidthDownFromContract ( ) , bandwidthDownFromDevice ( ) ,  -
bandwidthUpServer ( ) ) ;

For now we require the customer to enter the details about his contract. Also
for each o�oading server that is started on a remote resource, the up and download
should be provided manually.

While this approach works �ne for cell based networks where we can assume
that the connection from the cell tower to the Internet has enough bandwidth, this
assumption does not always hold for WiFi (Path 4-* in Figure 2.22). For instance
when the mobile device is connected to an ADSL WiFi router, the ADSL up and
download bandwidth of the router can be the limiting factor (hop 5). To compensate
for this e�ect we maintain a lookup table with perceived bandwidth per WiFi network,
thereby e�ectively using contextual historic data. If no historical data is available we
assume that the bandwidth between the WiFi access point and the ISP server of the
remote resource is in�nite. The data that we use to identify a WiFi network is the
BSSID, a unique identi�er of a wireless network, rather than the SSID which could
have similar values for di�erent networks. After each transfer we compute both the
up- and download bandwidth. Then we update the look up table, but only when
indeed the hop 5 is the limiting factor.

A special situation occurs when both the mobile device and the remote resource
are located in the same local area network (LAN) such as shown in Path 4-6-7 in Figure
2.22. An example of such a situation is when the home server is used for o�oading and
the user is at home. In this situation it does not matter what the bandwidth between
the LAN and the ISP is, since all communication will happen inside the LAN. To
detect such a situation, Cuckoo matches the current WiFi BSSID with a list of BSSIDs
that are within the LAN in which the remote resource is located. For instance a remote
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resource in the VU University can specify that both the BSSIDs of ’VU-CampusNet’
and ’eduroam’ are within its local network.

2.8.5 Round Trip Time Estimation

Now that we have a method for determining bandwidth both when connected to WiFi
and cellular networks, we need to estimate the round trip time (RTT) and connection
setup time in those networks. Again we can actively measure RTTs or use historic and
contextual data to make an estimate. But where we could assume that the bandwidth
between the remote resource and the edge of the internet close to the mobile device is
in�nite, we cannot assume that the RTT is zero. Depending on the network distance
between the remote resource and the mobile device the RTT varies. We approximate
the network distance with the geographic distance. To this end, we compute the
distance between the remote resource and the mobile device. Although mobile devices
are equipped with GPS to determine their geolocation, retrieving the position from
the GPS receiver is a costly operation both in terms of energy usage and time. We
therefore do not actively �nd a GPS �x, but rather consult the last known location
of the mobile device, which includes a timestamp of the �x. Ever since this last �x
the user may have moved. To compensate for possible negative e�ects of this we
add a delta RTT to the geographic RTT. In addition to the computed RTT based on
geographic distance, we include the RTT of the �rst hop (hop 1 in Figure 2.22) as it is
typically much larger than a geographic approximation would estimate.

s t a t i c f i n a l double MAX_SPEED = 0 . 0 0 3 ; // m/ms 100 km/h
s t a t i c f i n a l double SPEED_OF_LIGHT_FIBER = 20086; // m/ms

Location lastFix = locationManager . getLastKnownLocation ( ) ;
long timeSinceFix = System . currentTimeMillis ( ) � lastFix . getTime ( ) ;
long deltaRTT = 2 * timeSinceFix * MAX_SPEED / SPEED_OF_LIGHT_FIBER ;

double distance = lastFix . distanceTo ( remote ) ;
long geographicRTT = 2 * distance / SPEED_OF_LIGHT_FIBER ;

long totalRTT = getRTTWithEdge ( ) + geographicRTT + deltaRTT ;

If the current network is WiFi we assume that the RTT from the phone to the router
is negligible, if the mobile device is connected with a cellular network we estimate
the RTT to the edge of the Internet based on the network type, based on RTTs we
determined through experiments and from the literature [49]).

2.8.6 Connection Setup Time

The time it takes to set up a connection from the mobile device varies and depends
on the current state of the radios. To conserve energy, radios have di�erent power
states. For example, in Figure 2.23 the state machine for 3G using AT&T’s timings
is shown. If the radio is in standby state then it will take 2 seconds for a connection
to be established. After the connection has been established data can be transferred
and the radio will remain in full power state. Then if all data transfers are done, the
radio remains 5 seconds in full power and then goes back to the low power state, from

49

2



Smart O�oading Cuckoo

Figure 2.23: Typical 3G wireless radio state machine. Image from: [2]

this state it takes less time to go to full power than from standby, but also the energy
consumption is higher. If no data will be transferred in the low power state for 12
seconds, the mobile device switches back to standby. The timer values that trigger the
state changes are determined by the network operator and may vary between di�erent
network operators. Mobile phones, however, can apply fast dormancy techniques as
discussed in detail in Deng [30] to reduce the energy cost of using the radio.

In order to properly determine the connection setup time we need to know the
state of the radio. To this end Android provides both the ConnectivityManager, which
we can use to retrieve the NetworkInfo object describing the current connection as well
as the TelephonyManager that can be queried for the data state and data activity. From
the NetworkInfo object we can retrieve the detailed state of the network connection.
If the TelephonyManager’s method getDataActivity is in a state that it uploads or
downloads, then we know that we do not have to expect connection setup time. Also
if the method invocation is close enough to a previous o�oad, we know that the
data link is active. However, if none of the above cases applies, there is no simple
way to determine the radio state on Android. Querying logcat (Androids general
logging system) output for network related events in some cases might provide more
information, but ideally the Android APIs should expose this piece of information.

Next to connection setup time because of hardware, the Cuckoo framework also
introduces connection setup overhead for running the decision algorithm and setting
up the connections. Setting up a connection (i.e. creating a socket connection) costs a
round trip to the server.

2.8.7 Execution Time Model

If we take the estimates from the previous sections together we can construct a
model that will enable the decision making between local execution and computation
o�oading. It will do so when:

tremote < tlocal

where:

� tlocal = weight / weighthist;local * thist;local
� tremote = weight / weighthist;remote * thist;remote

+ 2 * rtt
+ bandwidthup * inputsize
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+ bandwidthdown * returnsize
+ hardware_connection_setup

We evaluate this model and its assumptions in Sections 2.10.3 and 2.10.4.

2.8.8 Energy Estimation

Starting from the above model for time prediction, we can extend it to energy estima-
tion. However, where we can easily perform timing measurements on a mobile device
to build up a history that we can use for predictions, the Android platform itself is
lacking interfaces for �ne-grained energy measurements. The only public interface
for energy consumption is the BatteryManager, that can be queried for the battery
level, and the battery voltage level. Although the API allows for a precise scale for the
battery level, in practice this scale only has 100 di�erent values to allow for a battery
percentage in the user interface. This is too coarse-grained to measure the energy
consumed by a single compute intensive operation.

Next to the BatteryManager the Android platform internally contains a phone
speci�c power pro�le. This pro�le � for instance used for the system application that
lists the top energy consuming applications and processes� is not publicly available,
but can be accessed using re�ection with the following code:

i n t id = ( Integer ) Class . forName ( "com . android . i n t e r n a l . R$xml " ) . getField ( " -
power_profi le " ) . getInt ( nul l ) ;

XmlResourceParser parser = context . getResources ( ) . getXml ( id )

Despite its name, the power pro�le does not list the power consumption (Watt),
but rather lists the current (Ampere) of several components. We are interested in
power consumption to compute � together with time measurements � the energy
usage (Joule). Although we do not know the voltage (Volt) to convert current to power
consumption, we can � under the assumption that all current values are normalized
to a �xed voltage � use the current values as if they were power consumption values
in an energy equation.

An example of such a power pro�le xml �le is shown below:

<?xml vers ion=" 1.0 " encoding=" utf �8" ?>

<device name=" Android ">
< !�� All values are in mA except as noted ��>
<item name=" none ">0</ item>
<item name=" screen . on ">100</ item> < !�� min b r i t e ��>
<item name=" bluetooth . a c t i v e ">142</ item>
<item name=" bluetooth . on ">0.3</ item>
<item name=" bluetooth . at ">35690</ item> < !�� TBD ��>
<item name=" screen . f u l l ">160</ item> < !�� 360 max on calendar ��>
<item name=" w i f i . on ">4</ item>
<item name=" w i f i . a c t i v e ">120</ item>
<item name=" w i f i . scan ">220</ item>
<item name=" dsp . audio ">88</ item>
<item name=" dsp . video ">88</ item>
<item name=" radio . a c t i v e ">300</ item>
<item name=" gps . on ">170</ item>
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<item name=" b a t t e r y . capac i ty ">1390</ item>
<item name=" radio . scanning ">70</ item> < !�� TBD ��>
<array name=" radio . on "> < !�� 1 entry per s i g n a l s t rength bin , TBD ��>

<value>3</ value>
<value>3</ value>

</ array>
<array name=" cpu . speeds ">

<value>245000</ value>
<value>384000</ value>
<value>460800</ value>
<value>499200</ value>
<value>576000</ value>
<value>614400</ value>
<value>652800</ value>
<value>691200</ value>
<value>768000</ value>
<value>806400</ value>
<value>844800</ value>
<value>998400</ value>

</ array>
< !�� Power consumption in suspend ��>
<item name=" cpu . i d l e ">2.8</ item>
< !�� Power consumption at d i f f e r e n t speeds ��>
<array name=" cpu . a c t i v e ">

<value>66.6</ value>
<value>84</ value>
<value>90.8</ value>
<value>96</ value>
<value>105</ value>
<value>111.5</ value>
<value>117.3</ value>
<value>123.6</ value>
<value>134.5</ value>
<value>141.8</ value>
<value>148.5</ value>
<value>168.4</ value>

</ array>
</ device>

In deciding between local and remote execution from an energy usage perspective,
we have to decide to what extent energy usage is related to the compute intensive
operation. For instance, if the user will keep the screen on to wait for the result of
the compute intensive operation, we should take into account the energy spent on
the screen during the operation. However, if the task is a background operation we
should not include this. Since Cuckoo by itself cannot determine which components
should be considered to be part of the total energy usage of the compute intensive
task, it o�ers the developer the possibility to specify this. By default it assumes that
the energy usage of the screen should be taken into account.

Without the screen energy usage the energy model will be:

eremote < elocal

where:

� elocal = tlocal * pcpu;max
� eremote = pnetwork;active * tcommunication

+ pcpu;idle * tremote_execution
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If the screen energy usage should be taken into account, we extend the model
with the following, under the assumption that the screen brightness does not change
during the compute intensive operation:

� elocal = elocal + tlocal * pscreen;brightness
� eremote = eremote + tremote * pscreen;brightness

We can read the current brightness on Android with the following code, which
returns a value between 0 and 255:

Settings . System . getInt ( getContentResolver ( ) , Settings . System . -
SCREEN_BRIGHTNESS ) ;

From the brightness and the values screen.on and screen.full from the power
pro�le, we can compute the power consumption:

pscreen;brightness = pscreen:on + (brightness=255) * (pscreen:f ull - pscreen:on)

For some display techniques used in mobile devices, such as OLED, the colors
displayed on the screen also impact the power consumption [21]. For instance, the
darker the content the less power is consumed. Because of the additional complexity
of incorporating the expected displayed colors in the model and the fact that LCD
screens still dominate the smartphone market, Cuckoo’s Oracle does not have a special
extension for devices with OLED screens.

We need to further extend the energy model to deal with the tail energy of the
3G connection for remote execution. All radio energy consumed after the receiving
the last byte from the o�oading transmission, but before any new transmission, be it
o�oading or something else, should be added to the energy usage for o�oading. This
includes the time spent in full power state � radio.active � and in low power state �
about 50% of radio.active [2].

After each remote execution with 3G we determine whether any data is transmitted
in either of the active power states with Android’s TrafficManager. We use this
information to keep a history record for each method that we use to estimate new tail
energy costs.

If the network used for transmission is 3G, the following extension applies to the
model:

eremote = eremote + min(ttail;hist ; thigh_power ) * pradio:active
+ max(min(ttail;hist � thigh_power ; tlow_power );0) * pradio:active / 2

As we described in the Connection Setup Time section, the time that the radio
will spend in high power state and in low power state depend on the settings of the
network provider. In our model we assume this data to be available and constant.

2.8.9 Bootstrapping

Whenever a new resource becomes known to Cuckoo, by default it will not have
any historical data available. Therefore there will be situations in which for the new
resources the Oracle cannot decide whether it is bene�cial to o�oad or not, when
none of the available resources have been used before. Also if some resources have
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been used and others are new, one of the new resources is possibly a better choice
than any of the already known resources.

To deal with this situation the Oracle will rather than a yes/no answer, return two
lists with resource descriptions upon completion. The �rst list contains all resources
for which Cuckoo knows that o�oading is bene�cial for the given strategy and method,
we call this the lbenef icial . This list is sorted with the most bene�cial resource �rst.
Note that if the strategy is �speed�, �energy� or a combination of them, lbenef icial can
be empty if local execution is preferred. The second list, lunknown contains all resources
that have not yet been used for the given method.

Depending on the sizes of both lists the following happens. If both lists are
empty, that means no resources are known to Cuckoo, Cuckoo will execute the local
implementation. If the lbenef icial is non-empty, Cuckoo will try to o�oad to the �rst
resource, and if that fails try the next, until remote execution succeeds or there are no
resources left or the maximum number of resources have been tried. At that moment
Cuckoo will fall back to the local implementation. If lbenef icial is empty, but lunknown is
not, Cuckoo will pick a resource from lunknown and try this resource in parallel with
the local execution.

In all cases where Cuckoo will try to o�oad to a resource and there are resources in
lunknown, Cuckoo instructs the selected resource to execute the remote implementation,
and in parallel o�oad the same execution from the remote resource to all other
unknown resources. The resulting initial historic data is sent back to Cuckoo and can
be used for future executions. We use this forwarding approach to minimize the data
tra�c and thus the execution time and energy cost of bootstrapping on the mobile
device.

2.8.10 From Yes/No to Probability

Whereas in the previous sections we only focused on answering the question whether
we should o�oad or not, in this section we go a step further and explore the use of
statistical variation of the components in the model. Since we are using historical data
for some components (e.g. execution time, bandwidth in case of WiFi) and know that
other components have signi�cant variation (e.g. cell based RTT and bandwidth), we
can re�ne our o�oading question to include a probability. Rather than the question
should we o�oad, Cuckoo answers the question what is the probability that o�oading
is better than local execution.

With this re�nement, users can specify to use o�oading in a more conservative
way. They can for instance tell Cuckoo to only o�oad when there is a 95% or higher
probability that o�oading is better. Also, remote resources that have a higher average
but a lower variation can have a higher success probability and will therefore be
preferred over resources with a lower average but a higher variation. Figure 2.24
illustrates such a situation, where both remote resource R1 and R2 have lower averages
than the local implementation and are thus candidate for o�oading. Without using
statistical variation Cuckoo prefers resource R1 over R2, because of its lower average.
However, the probability that R2 is less than Local is higher than the probability that
R1 is less than Local and therefore taking the variation into account Cuckoo will prefer
R2.
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Figure 2.24: Illustration of two remote resources and a local device. The average for both resources is lower
than the local device, but due to the variation the probability for o�oading to be a win is higher for the
remote resource with the higher average.

Cuckoo’s statistical model approximates reality by making several assumptions
to simplify the computation of the �nal probability. The �nal probability is built up
from several components, each with their own distribution and to make it possible to
add up these distributions we try to approximate the intermediate distributions with
normal distributions. The assumptions are the following:

� Execution time and 3G tail energy have a normal distribution. In reality execution
time has a �xed lower bound, it cannot be faster than that, and an open upper
bound making it non-normal. 3G tail energy is computed out of two components
(power high, and power low) and the assumed normally distributed time spent
in the tail phase, this also results in a non-normal distribution.

� The maximum of two bandwidth distributions is equal to the distribution with the
highest mean. In theory distributions can overlap and the maximum of two
distributions has the shape of the union of the areas under both lines. We
assume that in practice the distributions are so far from each other that the
overlap is minimal, hence taking the distribution with the highest mean is a
good approximation of the resulting distribution.

� The RTT has a normal distribution. We assume the following mobility model: A
person on average stays where he is, thus the mean RTT is the sum of the edge
latency and geographic latency. However he can move with a certain maximum
speed, such that the standard deviation of the distribution can be set such that
95% of the values is within the maximum delta that a person can have moved.

� We can approximate the inverse Gaussian distribution of the transfer time with a
normal distribution. We derive the distribution with the following parameters:
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averageTime = numberOfBytes / averageBandwidth ;
stdevTime = stdevBandwidth / averageBandwidth * averageTime ;

� If we do not know whether there is 3G hardware setup time, we assume a normal
distribution with mean 1 second and variance 1 second. This is a poor man’s
approach which should be made unnecessary if Android would provide the
appropriate APIs to determine the radio state of the 3G antenna.

� WiFi bandwidth has a logarithmic relation with the message size. We therefore do
linear regression on the logarithm of the message size (x-value) and data size
(y-value) to derive a formula to estimate the mean and variance for new data
sizes.

2.9 Other Cuckoo Components

A complete overview of the components in the Cuckoo framework is shown in Figure
2.25. So far we have discussed Cuckoo’s builders and the Eclipse plugin (Figure
2.25-1), as well as the client code that is invoked at runtime (Figure 2.25-3) including
the o�oading Oracle, Cuckoo however contains two other components that we discuss
in this section.

2.9.1 Cuckoo Server

An application which uses Cuckoo for computation o�oading, can o�oad its com-
putation to any resource running a Java Virtual machine, either being machines in
a commercial cloud such as Amazon EC2 [35] or private resources such as laptops,
desktops, home servers or local clusters. The Cuckoo framework contains a simple
Java application, the server (Figure 2.25-4), that can be run on such a resource to enable
it to be used for computation o�oading. The server does nothing by itself, however,
services available on a phone can be installed onto it. With the server component we
satisfy the deployment requirement that we learned from the eyeDentify case study
(see Section 2.3.4), that enables Cuckoo to deploy code to an already running server
(E1).

The client and server communicate with Java ObjectStreams on top of Socket-
Streams. The server can handle the following requests:

� Request Type: installService
Parameters: Fully Quali�ed Service Name, Jar Files.
Action: Copies �les to the server’s service directory.

� Request Type: initializeService
Parameters: Fully Quali�ed Service Name
Action: Dynamically loads and initializes an installed service from the service
directory

� Request Type: invokeMethod
Parameters: Fully Quali�ed Service Name, Method Name, Method Parameters,
Forward Resources
Action: Invokes a method on an initialized Service, returns the result
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Figure 2.25: Components of the Cuckoo Framework. Cuckoo’s plugin for Eclipse including the builders is
located on the developer’s machine. The smartphone hosts a Resource Manager app, where all information
about Cuckoo Servers running on remote resources is stored. Furthermore all applications developed with
Cuckoo include the Cuckoo runtime consisting of the Oracle and communication components.

2.9.2 Cuckoo Resource Manager

Another component of the Cuckoo framework is a Resource Manager application
(Figure 2.25-2) that runs on the smartphone. In order to make a remote resource
known to a phone, the remote resource has to register its address to this Resource
Manager using a side channel. If a resource has a display, starting a server will result
in showing a two dimensional barcode � a QR code [88] � on the resources’ screen.
This QR code contains the address of the server, the up and downstream bandwidth
of the server to the Internet, and the list of BSSIDs that are considered to be in the
LAN of the server. Smartphones are typically equipped with a camera and can scan
this QR code using a special resource manager application (see Figure 2.26). If the
resource does not have a visual output, a resource description �le can be copied from
the resource to the phone to register the resource. When the resource is known to the
Resource Manager application, it can be used repeatedly for any application that uses
the Cuckoo computation o�oading framework.

A Cuckoo server can be shared with multiple clients. For instance a family home
server can be used to enhance the computation of each of the family’s mobile devices.
Since the supported services are stateless, multiple invocations cannot interfere with
each other. Users can exchange remote resources by simply choosing share in the Re-
source Manager, which then will show the QR-code containing the server description,
while another person uses the camera of the phone to scan the QR-code.
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Figure 2.26: A screenshot of the resource manager collecting the address of a remote resource. From now
on this resource is known to the smartphone and will be used by any application that uses Cuckoo for
computation o�oading.

2.10 Evaluation

In this section we will evaluate the Cuckoo computation o�oading framework from
di�erent perspectives. With two real world smartphone applications that contain
heavy weight computation we show how an application is built with Cuckoo. Next to
building an application, we focus on when running such an application what overhead
Cuckoo introduces. Finally, we evaluate how close to reality the components of the
models for decision making are and how good the quality of the resulting decision is.

2.10.1 Building a Cuckoo App

We have two example applications that contain heavy weight processing which we use
to evaluate how Cuckoo simpli�es the creation of a computation o�oading app.

Our �rst evaluation application is eyeDentify that we also used in our cyber foraging
case study in Section 2.3. The key algorithm in eyeDentify is an algorithm that
converts an image into a feature vector, a mathematical representation of the image
that can be compared to other feature vectors. This algorithm is both compute and
memory intensive and therefore suitable for computation o�oading. There are several
parameters of the algorithm that in�uence the computation time and the memory
footprint. For instance, a larger input image will result in a bigger memory footprint
and a larger computation time. Other parameters can be tuned to reduce the memory
and computation requirements, while also reducing the quality of the feature vector
and thereby the quality of the object recognition.

In Section 2.3 we have shown that it is possible to perform object recognition on a
T-Mobile G-1 smartphone, with a 528 MHz processor and 16 MB available application
memory within a reasonable time, however, the algorithm used can take at most 128
x 96 pixel images as input, with the algorithm parameters set to poor quality object
recognition. By o�oading the computation needed for this algorithm to compute
nodes, we have shown that we can speed up the computation with a factor of 60,
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package interdroid . eyedentify ;

import ibis . dog . shared . FeatureVector ;

i n t e r f a c e FeatureVectorServiceInterface {
FeatureVector getFeatureVector ( in byte [ ] jpegData ) ;

}

Figure 2.27: The AIDL interface de�nition of the service that converts an image into a feature vector. The
eyeDentify application has a local and a remote implementation of this interface, where the only di�erences
between the implementation are the value of accuracy parameters of the algorithm.

reduce the battery consumption with a factor of 40 and increase the quality of the
recognition. These numbers, however, are the result from a relatively slow smartphone
and a collection of remote resources that work together to execute the remote job. In
this section we present the results of a more modern smartphone (the Nexus 4) and a
single remote resource.

We have rewritten eyeDentify to use the Cuckoo computation o�oading frame-
work. First, we speci�ed an interface in AIDL for a service that hosts the algorithm
that converts an image into a feature vector (see Figure 2.27). Then we implemented
the local service with parameters that are suitable for local computation. We then
added the Cuckoo nature to our Eclipse project. Cuckoo modi�ed the stub/proxy
pair and generated a dummy remote implementation and we replaced the dummy
implementation simply with the same implementation as for the local one and then
changed the algorithm parameters, so that the remote implementation would perform
higher quality object recognition on larger images. Writing the weight and returnSize
methods was trivial. The weight method returns the number of pixels in the source
image and the returnSize is of a �xed size (no matter the size of the source image, the
corresponding feature vector is the same length). Cuckoo then generated the jar �le
for the remote service and the application was ready to be deployed on a smartphone.

At runtime this application can always perform object recognition, even when
no network connection is available, in contrast to, for instance, Googles own object
recognition application Goggles that only works when connected to the cloud. How-
ever, if a network connection is available, then eyeDentify can use remote resources to
speed up the recognition and reduce the energy consumption, while providing higher
quality object recognition. Another advantage is that the client and server code of
eyeDentify are bundled and will for ever remain compatible with each other, whereas
a service such as Goggles only runs as long as Google keeps the project alive.

Refactoring eyeDentify into a computation o�oading app was extremely easy,
because apart from the algorithm parameters the local and remote implementations
were identical. As a developer we only had to write the AIDL, the Android service
with the local implementation, the weight method and the return size method and
copy the local implementation code to the right place in the remote implementation
generated by Cuckoo.

Next to eyeDentify, the second example application that we will consider is a dis-
tributed augmented reality game, called PhotoShoot [57], with which we participated
in the second worldwide Android Developers Challenge [4] and �nished at the 6th
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Figure 2.28: A screenshot of PhotoShoot - The Duel, a distributed augmented reality smartphone game in
which two players �ght a virtual duel in the real world. Both players have 60 seconds and six bullets to
shoot at each other. They shoot with virtual bullets, photographs of the smartphones’ camera, and use face
detection to evaluate whether shots are hit.

place in the category ’Games: Arcade & Action’. This innovative game is a two-player
duel that takes place in the real world. Players have 60 seconds and 6 virtual bullets
to shoot at each other with the camera on their smartphone (see Figure 2.28). Face
detection, a major compute and memory intensive operation, will determine whether
a shot is a hit or not. The �rst player that hits the other player will win the duel.

The Android framework comes with a face detection algorithm, allowing for a
local implementation to detect faces in an image. Depending on the hardware and
the image size this algorithm can take up a long time to execute. For instance, face
detection on a 3.2 MP (2048x1536 pixels) image on a Nexus One takes more than 8
seconds, well beyond what is acceptable for the game dynamics: the duel lasts for 60
seconds and players are supposed to be able to �re at least six shots. Furthermore,
players are not allowed to shoot while a previous shot is being analyzed and therefore
players with a slower phone will have a disadvantage during the game.

We have modi�ed PhotoShoot, by refactoring the face detection into a service
(speci�ed by the AIDL in Figure 2.30), so that it can use computation o�oading using
the Cuckoo framework.

We used a di�erent face detection algorithm for the remote implementation to
demonstrate that o�oading does not only result in faster execution, but can also
give more precise results. The remote implementation is based on the Open Source
Computer Vision library (OpenCV [78]) and can, next to frontal faces, also detect
pro�le faces, and will therefore give more accurate results (see Figure 2.29).

Similar to eyeDentify, turning PhotoShoot into a computation o�oading app was
simple and straightforward. In addition to eyeDentify we did a complete di�erent
remote implementation, but Cuckoo helped us to focus on the implementation of the
�ndFaces method, rather than having to deal with implementing the communication
between the smartphone and a remote machine.

We ran several experiments to compute the execution time per pixel for di�erent
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Figure 2.29: Comparison of the local and remote implementation of the face detection service on several test
images from [98]. The local version (top row) uses the face detection algorithm provided by the Android
framework, while the remote version (bottom row) is able to use a much more powerful algorithm, which
for instance can also detect pro�le images. Since the remote implementation runs multiple detectors over
the image, some faces are detected several times.

package interdroid . photoshoot ;

import interdroid . photoshoot . Face ;

// cuckoo . s t r a t e g y=speed
i n t e r f a c e FaceDetectorInterface {

List<Face> findFaces ( in byte [ ] jpegData , i n t width , i n t height , i n t  -
maxFaces ) ;

}

f l o a t weight_findFaces ( in byte [ ] jpegData , i n t width , i n t height , i n t  -
maxFaces ) {
return width * height ;

}

long returnSize_findFaces ( in byte [ ] jpegData , i n t width , i n t height , i n t  -
maxFaces ) {
return 100;

}

Figure 2.30: The interface of the face detection service in AIDL. The services will search for a maximum
number of faces in the provided image and returns a list of Face objects that it has found. The local
implementation will use the face detection library available on Android, which can only detect frontal
faces, while the remote implementation uses the OpenCV library, which can also detect pro�le faces.

image sizes. For each image size we take the average execution time of 15 executions
and divide this by the number of pixels of the input image. This data is interesting,
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Table 2.9: Scalability of Face Detection
image size MegaPixel ms./pixel
512 x 384 0.20 0.00236
768 x 576 0.44 0.00247
896 x 672 0.60 0.00252

1024 x 768 0.79 0.00254
1280 x 960 1.23 0.00258

1536 x 1152 1.77 0.00256
2048 x 1536 3.15 0.00260
2500 x 1875 4.69 0.00257

because it shows how the execution time scales with the input image. This scaling
behavior can be used to de�ne the weight_ method that allows Cuckoo to improve
the estimate of future executions of the same method with di�erent input. From the
data in Table 2.9 we can see that the execution time of the algorithm scales with the
number of pixels � the ms. per pixel is fairly constant �, which allows for a simple
implementation of the weight_ method (see Figure 2.30).

Implementing the return size method was also simple. Although the return size of
the algorithm is unknown beforehand � its type is a list of all the found faces � from
the application knowledge we know that it will very likely contain just a few faces.
The size of a List containing a single face is about 100 bytes, which we hardcoded in
the returnSize_ method.

Together eyeDentify and PhotoShoot show that Cuckoo can be used to easily build
computation o�oading apps, that automatically have code bundling and support for
di�erence between local and remote implementations.

2.10.2 Cuckoo Run Time Overhead

Although one of the goals of the Cuckoo framework is to speed up computation inten-
sive operations, the Cuckoo framework itself introduces overhead at run time. We can
split up this overhead in two components: overhead introduced by the programming
model, and overhead introduced by running the smart o�oading algorithm.

Programming Model Overhead

The programming model enforces compute intensive operations to be run in an
Android service, which causes overhead due to switching from the component that
invokes the compute intensive operation to the service.

To quantify this overhead we ran an experiment with the Face Detection algorithm
used in the PhotoShoot application. In this experiment we determine the execution
time overhead of using an Android Service for the face detection. We vary the image
size of the input image and measure the execution time of the algorithm inside and
outside the service. We take the average execution time of 15 executions and then
subtract the execution time measured inside the service � the raw compute time �
from the execution time measured outside the service. The resulting values show the
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Table 2.10: Android Service Overhead of Face Detection
image size MegaPixel inside ms. outside ms. overhead %
512 x 384 0.20 464 469 1.06
768 x 576 0.44 1092 1103 0.95
896 x 672 0.60 1516 1533 1.05

1024 x 768 0.79 1998 2040 2.11
1280 x 960 1.23 3166 3213 1.50

1536 x 1152 1.77 4535 4592 1.24
2048 x 1536 3.15 8171 8209 0.47
2500 x 1875 4.69 12036 12073 0.31

overhead caused by refactoring the algorithm into a service. Table 2.10 shows the
results and we can conclude that the overhead is minimal, ranging from 0.31% to
2.11%.

Decision Algorithm Overhead

In this section we do a performance breakdown of the time Cuckoo’s Oracle takes to
make the decision whether or not to o�oad. This process includes reading historic data
from persistent storage, gathering contextual information and computing statistics.

To minimize the time spent in the Oracle’s decision process, the Oracle tries to fail
early. If there is no active network, no remote resources or no history, the Oracle can
return immediately. Also, when halfway computing the remote cost, the average of
o�oading is already higher than the local average the Oracle returns immediately for
that resource.

The time that it takes when the Oracle succeeds in �nding suitable o�oad resources
is the sum of some one time operations and some operations that scale with the number
of remote resources that are known to Cuckoo’s Resource Manager.

Using Android’s TraceView utility [110] we determine that when only one resource
is known, the following subtasks consume the most time (see also Figure 2.31):

� retrieving resources from the Resource Manager
� determining the network context state
� determining the last known location
� computing the cumulative probability

The location will be reused for 6 hours as long as the VM remains active. During
this time window the cost of determining the location is nearly zero.

Out of the above tasks only the computation of the cumulative probability is not a
one time operation and scales with the number of resources. To show the impact of
the number of resources on the decision time, we perform a scalability experiment in
which we vary the number of resources. Because some parts of the algorithm are only
executed once, we measure both the �rst and the subsequent execution times. We
perform this experiment on the Nexus One and Nexus 4, so that we can also see the
impact of the device/chipset. Although we expect that in real life scenarios a user will
not have more than a handful of remote resources to choose from, we test up to 128
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Figure 2.31: Percentage of total time spent on sub tasks of the decision task. The category other consists of
all tasks which contribute less than 5% to the total. Error bars show the standard deviation.

remote resources. In this experiment none of the early failures happen and therefore
it shows a worst case cost.

The results of this experiment are shown in Figure 2.32 and show that with a
small number of remote resources (< 8) the overhead is below 100 ms in all cases. In
the worst case, that is a �rst time execution with 128 resources on the Nexus One
the overhead increases to just over 500 ms. The acceptability of it depends on the
length of the compute intensive operation and the possible gains of o�oading. A
simple solution to keep the decision algorithm execution time minimal is to pre select
a small set of candidate resources out of the total collection of resources based on
some criteria. Such a solution can easily be added to Cuckoo’s Oracle if in the real
world the number of resources is higher than our expectations.

2.10.3 Smart O�oading Model

In this section we evaluate the models that we derived in Section 2.8.7 and Section
2.8.8 to predict execution time and energy usage. We quantify to what extent the
components out of which the models are built up approximate reality through a series
of experiments. In Section 2.10.4 we put the components together and evaluate the
smart o�oading algorithm as a whole.

Execution Time is Predictable

Cuckoo estimates execution time by taking the average of previous executions and
applying the weight of the current invocation. It thereby assumes that executing
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Figure 2.32: Execution time of the decision algorithm while varying the number of resources. Both axis
have a logarithmic scale.

the same method multiple times leads to equal execution times. However, in real world
scenarios Dynamic Frequency Scaling, unpredictable concurrent processes (such as
the Garbage Collector), and JIT compilation may impact the execution time of a
particular method, leading to variation in execution times. To quantify the impact of
this interference, we performed several micro benchmarks.

In our �rst experiment we analyze the impact of Dynamic Frequency Scaling only.
In this experiment we use the compute intensive operation from eyeDentify, that is
computing a feature vector, with such parameters that it results in an execution time
around 1 second, which we consider a lower bound for compute intensive operation
to be suitable to bene�t from computation o�oading. We then repeatedly execute
this method to avoid any impact of the JIT compiler in the warm-up phase. After
that, we let the application sleep until the processor is in its lowest frequency scale, a
cold start. The execution directly after the sleep will be maximally a�ected by DFS.
We compare the execution time of this execution against the execution time of a
subsequent execution, where the processor is in its highest frequency scale, a warm
start. The results of this experiment are shown in Figure 2.33.

With a similar experiment we tested the impact of JIT compilation. In this ex-
periment we �rst execute another compute intensive method, to make sure that the
processor is in its highest frequency scale, to prevent any impact of DFS. Then we
invoke the compute intensive method for the �rst time and measure the execution
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Figure 2.33: Variation in execution times on di�erent devices caused by DFS and JIT. Because the G1 has no
JIT compiler the execution time with both JIT and DFS delay has been omitted.

time. After that we repeat the compute intensive method, which now is compiled and
available in the JIT cache. The results of this experiment are shown in Figure 2.33.

Finally, we performed an experiment in which we determined the combined
impact of DFS and JIT. For this experiment we verify that the processor is in its lowest
frequency scale and that the Virtual Machine is started fresh. The resulting execution
times compared to the reference execution times give a maximum di�erence that can
occur due to DFS and JIT.

From the experiments we conclude that there is no JIT impact on the G1. This is
in line with our expectation, since the G1 runs Android 1.6, an old Android version
that does not have a JIT compiler. For the other devices the maximum JIT impact is
between 2.3% and 5.5% of the reference execution time. Additional research should
investigate how the impact of JIT compilation can best be incorporated in a decision
model, and whether the additional decision computing weighs up against the potential
better decisions. For the current model we consider the JIT impact low enough to not
signi�cantly disrupt the decision making.

Where we present the JIT impact as a percentage, the impact of DFS should rather
be expressed as a constant value, because it is the overhead of the processor going from
lowest frequency scale to highest frequency scale. Once it is in its highest frequency
scale, any remaining processing will take as long as for the reference execution. On
the G1 the di�erence between DFS and the reference execution is very small with just
14 ms, because the number of frequency scales on the G1 that were in use was just
two, with the lower frequency 246 MHz and the higher frequency 384 MHz, a much
smaller di�erence than for the other devices, where the number of frequency scales is
12 and the di�erence between highest and lowest frequency scale is about an order of
magnitude.

To con�rm our assumption that the overhead of switching to highest frequency
scale is constant, we performed a similar experiment as the above DFS experiment,
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Figure 2.34: The CPU frequency on the Cardhu at the beginning of executing a compute intensive task. The
execution starts at time 0.

but then with a longer computation. From this experiment we indeed found that the
overhead is constant. On the Nexus 7, running Android 4.2.1 it is around 80 ms. With
yet another experiment on the Cardhu we measured the CPU frequency over time at
the beginning of the compute intensive task. Figure 2.34 shows the results for both a
warm and a cold start. With the warm start the frequency is stable at 1.3 GHz, but
with the cold start it takes about 200 ms to reach the single core maximum frequency
(1.4 GHz, which after a short time goes down to the multicore maximum frequency of
1.3 GHz), which is in line with the average delay of 96 ms we found in the experiments
of Figure 2.33.

In order to compensate for the DFS e�ects in the execution time estimate, it is
needed to check the CPU frequency during the estimation. This can be done by
reading the world-readable �le:

/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

This �le is available on every Android device. Reading this �le is a cheap operation
that typically takes less than 7 ms, even on old devices such as the G1. Depending on
the detected frequency scale, the DFS overhead can be determined from a lookup table
and added to the estimated execution time based on the highest frequency at decision
time and subtracted when the measured execution time is stored in the history.

Concurrent processes (among which the Garbage Collector) can also lengthen the
measured execution time of a compute intensive method. This is not a problem when
the concurrent processes are related to the execution of the compute intensive task
and occur deterministically and therefore are predictable. However, if the concurrent
processes occur at unpredictable moments, such as handling an incoming push noti�-
cation, it is unclear whether the delay caused by such a process should be included
in estimates for new executions. By using the average of all historic executions, the
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decision model in Cuckoo reduces the impact of unpredictable concurrent processes.
There will be individual cases where the Oracle makes the wrong decision, but on
average the o�oading model makes the right decision, if the history is large enough,
due to the Law of Large Numbers.

If the history is small and the �rst statistics stored to the history are a�ected by
unpredictable concurrent processes, then this can lead to always favoring remote
execution. Subsequently, no new statistics for the local execution will be generated
and future decisions will continuously favor remote execution. Currently, Cuckoo does
not take any measures to prevent this situation to happen, since from our experiments
on our own devices we found that the chance that a concurrent process interferes with
the compute intensive task is neglectable. However, other devices with a di�erent set
of applications and di�erent con�guration of those applications may have a higher
chance on concurrent processes interference.

To compensate for the problem of having a small history, applications could
exchange history (through crowd sourcing), or build up a su�ciently large history
through parallel execution (both local and remote), before switching to decision mode
(either local or remote). Building a larger history has the disadvantage of wasting
energy in parallel execution.

Network is Predictable

Next to execution time, Cuckoo also assumes that the network properties, bandwidth
and round trip time, are predictable based on the network type, the phone type, the
contract, historical values or a combination of the former. In this section we show the
di�erence in network properties by type for the following situations:

� 2.5G (GPRS) Cellular Network
� 3G (UMTS/HSPA) Cellular Network
� WiFi over Local Area Network to remote resource
� WiFi over Wide Area Network to remote resource
We do not perform experiments with other cellular networks, such as CDMA and

LTE, because they are not available to us. Most bandwidth values in this section are
expressed in bytes per millisecond, since these are the units that Cuckoo uses for data
size and time. To transform bytes per millisecond to bits per second (bps) one has
to multiply by 8,000. For each bandwidth sample we perform 10 measurements and
take the average value. We piggyback the RTT measurements with the bandwidth
measurements and therefore the RTT samples are averages of 10 times the number of
message sizes of the bandwidth experiments. For the network benchmarks we use a
Nexus One running Android 2.3.6. Furthermore, we keep the phone at a �xed location
during the experiments.

GPRS benchmark

In our �rst experiment we measure the GPRS bandwidth. GPRS connections are
known to be relatively low bandwidth and high latency connections. The achieved
bandwidth for GPRS depends on a number of factors:

� the distance to the cell tower and the resulting channel encoding scheme. Closer
to the cell tower needs a less robust scheme and can achieve higher bandwidth.
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Figure 2.35: The perceived bandwidth for GPRS with di�erent data sizes. Error bars are for standard
deviation.

� the TDMA time slots that are assigned by the operator. The more slots the higher
the bandwidth.

� the GPRS class of the device, which determines the maximum number of slots
that can be used for uploading and downloading.

� the nature of the current network activity, which will determine how the slots
are divided between upload and download.

To the best of our knowledge it is not possible to retrieve the channel encoding
scheme, the GPRS class of the device and the TDMA time slots assigned by the operator
with the Android APIs. Both the GPRS class and the number of TDMA slots can be
assumed to be static and therefore a look up table can be created including all known
devices with their GPRS classes and network operators with their number of TDMA
slots.

The Nexus One device that we use in our experiments is a GPRS device class 10,
resulting in a maximum number of upload channels of 2 and download channels
4, with a total number of channels 5. Thus, it can use both download 3 + upload 2
and download 4 + upload 1. Further, we assume the network operator indeed can
provide 5 slots. Therefore based on the lightest channel encoding scheme of 20 kbps,
the maximum upload speed is 2 * 20 = 40 kbps, which is equivalent to 5 bytes/ms
and the maximum download speed is 4 * 20 = 80 kbps (10 bytes/ms).

To verify to what extent the actual achieved bandwidth can be reached we deter-
mine the bandwidth both on the phone and the remote resource for di�erent message
sizes. We found that there can be signi�cant di�erences in the measured timings
between the sender and the receiver, where the receiving side has a higher value.
Investigation shows that this di�erence is caused by bu�ering, where the send call
returns, but the data has not been transmitted to the destination, but rather is copied
to a bu�er on the source. At the sending side both Java Bu�eredOutputStreams and
sockets have bu�ers to improve performance.
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Figure 2.36: The perceived bandwidth for 3G with di�erent data sizes. Error bars are for standard deviation.

Because of the above reasons we decide to consider the time measured at the
receiving side as being the closest to the real consumed transfer time. This is the time
between the arrival of the �rst byte and the last byte.

The results of the GPRS bandwidth experiment are shown in Figure 2.35 and show
that the bandwidth indeed does not exceed its theoretical maximum, but achieves
about 50% of the maximum. We also see that for short messages, that is messages
below 4 kB, the download bandwidth is considerably lower, most likely because of a
lower number of channels in use. We therefore set the prediction in Cuckoo for GPRS
from the theoretical maximum to 50% of the maximum and, if the message size is
smaller than 4 kB for the downlink, to 30% of the maximum.

3G benchmark

We perform a similar experiment with a 3G (UMTS/HSPA) network. The limits of the
data plan we use are 14 Mbps down and 3.6 Mbps up. However, the Nexus One can
maximally achieve 7.2 Mbps (900 bytes/ms) down and 2 Mbps (250 bytes/ms) up.
The results (see Figure 2.36) show that the practically achieved bandwidth is again
much lower than the theoretical maximum, about one third for the download and not
even one �fth for the upload.

For small message sizes (< 8 KB) the measured bandwidth is much higher than in
reality because reading from the Bu�eredInputStream takes only a few milliseconds if
all data already resides in the bu�er. By default this InputStream bu�er is 8 KB, and
if we lower the bu�er size, then the measured values of the smaller messages become
similar to the other ones. However, for performance reasons we keep a su�ciently
large bu�er size.

Since Cuckoo does not store the measured values for the 3G bandwidth, the error
in measuring does not impact future predictions. Based on the current data we can
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Figure 2.37: The perceived bandwidth for WiFi over WAN with di�erent data sizes. Error bars are for
standard deviation.

derive a logarithmic formula for future download predictions above 8 KB:
bandwidthdown>8KB = 62:438 � ln(bytes)� 37:048 bytes/ms
whereas we keep a constant for the upload prediction and the download prediction

below 8 KB:
bandwidthdown<8KB = 95 bytes/ms
bandwidthup = 36 bytes/ms
Estimates based on other combinations of phones, data plans, and mobility models

can be generated likewise.

WiFi benchmarks

Third is our experiment over a Wide Area Network with WiFi. In this setup the phone
is connected to a WiFi access point that is connected to the Internet with ADSL. The up
and download speed6 of the ADSL connection are 12.21 Mbps down (1526 bytes/ms)
and 0.81 Mbps up (101 bytes/ms).

Figure 2.37 shows the results of this experiment. Like with the 3G experiments,
the download bandwidth for small messages is much higher than in reality because of
the bu�ering.

Whereas we see that the upload speed is stable and close to the maximum of this
connection, the download speed is increasing with the message size. Although we
expect the output of a typical o�oad invocation to be well below 1 MB, we increased
the download message size to �nd out with which message size the bandwidth no
longer increases. We found that this happens around message sizes of about 8 MB,
where we reach just over 1300 bytes/ms.

6measured with the speedtest tool, see: http://www.speedtest.net
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Figure 2.38: The perceived bandwidth for WiFi over LAN with di�erent data sizes. Error bars are for
standard deviation.

Based on the current data we derive a logarithmic formula for future download
predictions above 8 KB:

bandwidthdown>8KB = 126:14 � ln(bytes)� 101:93 bytes/ms

whereas we keep a constant for the upload prediction and the download prediction
below 8 KB:

bandwidthdown<8KB = 210 bytes/ms

bandwidthup = 95 bytes/ms

The �nal bandwidth experiment is again with the WiFi radio, but in this exper-
iment the remote resource and the wireless access point are in the same LAN. The
results of this experiment are show in Figure 2.38. Compared to the previous WAN
experiment, both the upload and download bandwidth are much higher with lower
message sizes. For larger message sizes the download bandwidth of the LAN is similar
to what we achieved over the ADSL line, however the upload speed is much higher.
We also determined the maximum bandwidth for WiFi over the LAN and found that
the download stalls at about 2600 bytes/ms with 4 MB messages, whereas the upload
stalls at about 1700 bytes/ms at 6 MB messages. This is well below the theoretical
maximum during the experiments, which is according to the reported link speed 72
Mbps (9000 bytes/ms), and likely to be caused by the phone’s hardware.

Based on the data for this experiment we derive two logarithmic formulas for
future upload predictions and download predictions above 8 KB:

bandwidthdown>8KB = 223:04ln(bytes) + 1004:4 bytes/ms

bandwidthup = 113:02ln(bytes) + 698:53 bytes/ms

whereas we keep a constant for the download prediction below 8 KB:

bandwidthdown<8KB = 1425 bytes/ms
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Figure 2.39: The delta between total time and sum of components, before and after keeping the WiFi radio
active.

During the network benchmarks over the WiFi network we encountered di�erences
up to 300 ms. between the total time that the o�oading takes and the sum of the
components on which the estimate is based, which are the latency, the transfer time
and the remote execution time. This indicates that we are missing a component in the
estimate. Based on initial experiments we form the hypothesis that this time is caused
by the WiFi radio switching back to a low power state in which it only periodically
tries to receive new data. To test this hypothesis we execute an experiment in which we
vary the remote execution time and keep track of the delta � the di�erence between the
measured total time and the sum of measured times for the individual components.

The results of this experiment are shown in Figure 2.39 and show a saw tooth
shaped pattern, which matches our hypothesis. When the remote execution time (and
thus the total invocation time) is short, up to about 200 ms., the delta is neglectable.
However, starting from 200 ms. the sawtooth pattern appears, indicating that the
WiFi radio �rst sleeps an interval of about 50 ms., and then with a larger interval of
approximately 300 ms.

To verify that our hypothesis, supported by the data of our experiment, indeed is
true, we changed Cuckoo in such a way that it keeps the WiFi radio active by pinging
the remote resource with an interval below 200 ms. We then performed a second
experiment with the new version, and this indeed removed the existence of the deltas.
This does not only improve measurements, but also the speed of o�oading. Based on
this observation we extend Cuckoo with a WiFi wake strategy property, which can be
one of the following:

� awake: keeps the WiFi radio awake, should be used when speed is important
� sleep: lets the WiFi radio sleep, should be used when energy usage is important
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Figure 2.40: The round trip times for the di�erent networks. Error bars are for standard deviation.

� jit: tries to wake the WiFi radio just in time, that is two standard deviations
before the average execution time based on the estimate, which if the execution
time has a normal distribution should be on time for 97.5% of the cases.

� default: chooses awake when o�oad strategy is speed and sleep when o�oad
strategy is energy.

In conclusion we see that we can predict bandwidth if we not only take network
type into account, but also data size. For the 3G and WiFi networks we should also
de�ne special cases for when the data size is less than our bu�er size (Cuckoo uses 8
KB bu�ers).

RTT benchmark

Figure 2.40 shows the round trip times and their standard deviations for the di�erent
networks. The GPRS, the 3G and the WiFi over WAN tests have been performed from
a location about 50 km away from the remote resource, which according to the round
trip time algorithm in Section 2.8.5 accounts for about 5 ms of geographic latency.
Network connections over cell based networks not only have a lower bandwidth, as
we showed in the previous experiments, but also higher round trip times, and more
variance in the round trip times. The variance for both GPRS and 3G is almost equal.

Energy Usage is Predictable

In this section we present the results of various benchmarks that we run to validate
the energy model described in Section 2.8.8. All the experiments run on the Nvidia
Tegra3 Developer’s Tablet (Cardhu), because of its support for �ne grained energy
measurements. The Cardhu, however, has no realistic values in its power pro�le, and
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Table 2.11: Reported and Measured Screen Values in mA.
device inch screen.on per inch2 screen.full per inch2 ratio

Nexus One 3.7 100 17.03 160 27.26 1.6
Galaxy S1 4.0 49 7.11 260 37.74 5.31
Galaxy SA 4.0 75 10.88 201 29.17 2.68
Galaxy S2 4.3 71 8.98 380 48.04 5.35
Acer S500 4.3 90 11.37 240 30.34 2.67

DroidRAZR 4.3 260 32.87 590 74.59 2.3
Nexus 4 4.7 42.4 4.48 211.6 22.38 5.0

Galaxy S3 4.8 71 7.16 380 38.30 5.35
Nexus 7 7.0 256 12.23 318 13.52 1.24

Acer A500 10.1 200 4.59 250 5.74 1.25
Cardhu 10.1 380 (3.2V) 7.55 500 11.48 1.32

therefore we cannot directly verify whether measured values are in line with reported
values.

In our �rst experiment we measure the current and voltage of individual compo-
nents on the Cardhu to see whether the reported current of the power pro�les on
various other devices is in line with what we measure on the Cardhu.

We consider the following components:

� Screen (low and high brightness)
� CPU (idle and high)
� WiFi (while transferring)

Table 2.11 shows the screen results of the measurements for the Cardhu together
with the reported values from the power pro�les of several reference devices which do
have a valid power pro�le. The Cardhu has a 10" display, and therefore it is expected
that it shows larger values for the screen than smaller devices. Whereas the voltage
can di�er among components, we only encountered a lower voltage (3.2V) on the
display rail (screen.on), whereas all other rails of interest have a voltage of 3.7V. If
all values are normalized to 3.7V, the screen.on value would be 329 mA instead of
380 mA. When also normalized to screen area the measured current is bigger than in
consumer products, but not unrealistic. We therefore believe that the screen values
from the power pro�le can be used in the energy estimation process. Also, the ratio
between the current of the screen when low and when at full brightness on the Cardhu
is in line with other models, especially the larger tablets (Nexus 7 and Acer A500).

Next we compare the measured current for computing and idling with the power
pro�les of other devices (see Table 2.12). Especially the Nexus 7 and HTC One X
values are interesting to compare with the Cardhu, because all three devices host a
Tegra3 processor and are expected to show similar values. We found that for idling
the Cardhu does not consume any energy on the CPU rail, because the quad core is
entirely shut o�, only the power saving core is active, but that one is on a di�erent
rail and can not be measured individually. When a normal core is running at its
maximum frequency, which on the Cardhu is 40% higher than on the Nexus 7, the
measured value is well above the values on the Nexus, but this can be explained with
the di�erence in clock speed. Compared to the HTC One X the values are closer and
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Table 2.12: Reported and Measured CPU and WiFi values in mA.
device cpu.idle cpu.high max frequency wi�.active

Nexus One 2.8 168.4 1.0 GHz 120
Galaxy S1 1.4 259 1.0 GHz 120
Galaxy SA 2 577 1.2 GHz 83
Galaxy S2 4 577 1.2 GHz 96
Acer S500 1.5 515 1.5 GHz 125

DroidRAZR 6 235 1.2 GHz 90
HTC One X 0.1 253.3 1.7 GHz 0.1

Nexus 4 3.5 239.7 1.5 GHz 62.09
Nexus 7 3.8 148 1.0 GHz 31

Acer A500 20 100 1.0 GHz 3
Cardhu 0 270 1.4 GHz 102

thus we conclude that the values from the power pro�le for computing and idling are
also in a realistic range.

Finally when we consider the network transfer cost, we �nd that in our measure-
ments there is no constant additional cost for having the radio active, but rather
periodic bursts of higher current. We average the current over the transferring time
to reduce it to a single value and this again is in line with the power pro�les of our
reference devices. We cannot connect the Cardhu to the 3G network and therefore
we cannot validate the power pro�le values with respect to measured values from the
Cardhu.

During the CPU experiments with the Cardhu we also found that there is a tail
e�ect for computing, where heavy processing is �nished, but the CPU remains in a
high power consuming state for a while (see Figure 2.41). Depending on what the
application will do after the compute intensive task this energy consumption should
be (partially) attributed to the compute intensive task when executed locally. We leave
extending the model to include tail compute costs as future work.

Further, in the energy model we assume that the power consumption of the screen
scales linearly with the brightness level. To verify the validity of this assumption we
run a brightness benchmark on the Cardhu, where we can precisely read the power
consumption for the display and the backlight rail. The sum of these is the total power
spent on the display. The brightness benchmark runs for 10 seconds per brightness
level with a sample interval of 10 Hz for collecting the display and backlight power
consumption values, resulting in 100 values per brightness level. The results of this
experiment are shown in Figure 2.42 and con�rm the linear relation between screen
brightness and power consumption.

We also performed an experiment to study the impact of the WiFi wake strate-
gies discussed in Section 2.10.3. In this experiment we determine the total power
consumption on the Cardhu device, where the screen brightness is set to the lowest
value. For the JIT strategy the standard deviation is set to 10% of the execution time.
The results of this experiment are shown in Figure 2.43. From these results we see
that indeed the awake strategy consumes more energy than the sleep strategy, due
to keeping the WiFi connection active, compared to the total this is about 7% more,
whereas the JIT strategy only consumes 2.5% more.
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Figure 2.41: Tail energy cost for computing. The timespan indicated by the dashed line is the run time of
the compute intensive task. Once the compute intensive task is done, for more than 2 seconds there is still
additional energy spent.
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Figure 2.42: The power consumption of the screen when varying the brightness level on the Cardhu.

Finally, we test the hypothesis that summing the cost of the components is a good
approximation of the total energy consumption. In this experiment we �nd that just
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Figure 2.43: The additional power consumption percentage and standard deviation as percentage. The
sleep strategy consumes the least power, but has a longer execution time. JIT and awake have the same
execution time, where JIT consumes less power, but has the risk of waking the WiFi radio too late.

summing the CPU, network and screen cost is not su�cient to describe the total
energy costs. Several other components also consume energy, but are not explicitly
described. On the Cardhu we have about 0.8W, out of a total in the order of 2-5W, of
unattributed power. This is power spent on the DRAM (0.2W), on ’core’ components
(0.4W), Tegra 3.3V (< 0.1W), Tegra 1.8V (< 0.1W), other 1.8V (< 0.1W) and otherPMU
(< 0.1W).

As these values are not described in the power pro�le and can be very device
speci�c, for each piece of hardware experiments should be done to investigate how
to properly estimate this unattributed power and how this should be used in the
estimation formulas.

2.10.4 Decision Correctness

Cuckoo’s Oracle estimates the probability that remote computation is either faster
or uses less energy than local computation. Based on this probability and the user
de�ned threshold for o�oading (by default 0.5, meaning the remote execution is
the better choice) Cuckoo will o�oad a method invocation. In order to verify the
correctness of this probability and the resulting decision we perform another set of
benchmarks.

For these benchmarks we take eyeDentify with its object recognition as the real
world application and use WiFi (LAN and WAN), 3G, and GPRS as networks. We
focus on execution times, rather than energy usage, because energy measurements are
not possible in all situations with the equipment we have.
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In our �rst experiment, we gathered the local and remote execution times for
di�erent image sizes and quality parameters for the Nexus 4 and a remote resource
(MacBook Pro, 2.3 GHz i7) along with the input and return sizes of the invocations.
From these values we compute the minimal bandwidth needed to make o�oading
bene�cial, taking into account the round trip times and bandwidth and the additional
hardware setup cost if the 3G radio is passive. The results are presented in Table 2.13.

If the quality and image size settings are identical for local and remote execution,
then we see that o�oading over WiFi with strategy speed is bene�cial, unless really
small image sizes are used. For the cell based networks we discriminate between
3G in active state (without the hardware setup cost), in sleep state and GPRS. With
GPRS it is only bene�cial to o�oad when there is su�cient computation, however for
eyeDentify the computation scales with the data size, so only for larger images (256
x 192 and 512 x 384) o�oading is a good choice. For 3G it depends on whether the
radio is already in an active state. If so, then for most cases o�oading is bene�cial. If
not, then only the larger images with more computation should be o�oaded.

From this experiment we also see that in many cases it is very clear whether or
not to o�oad. Therefore we performed additional measurements where we bring the
execution times closer to each other. We start each benchmark with an empty history
and execute the algorithm in 50 rounds. In each round we let the Oracle compute the
probability that o�oading is bene�cial and then execute the algorithm both locally
and remotely to verify the probability. For each pair of execution times in a single
round we note whether local or remote was the better choice. This ultimately leads to
a percentage of wins for o�oading, which ideally should be close to the probability

Table 2.13: This table shows when o�oading for eyeDentify is bene�cial with identical quality parameters.
Cells with a dash (-) indicate that the remote time excluding the transfer is already higher than the local
execution time. Cells with a darker background indicate that for these settings local execution is preferred.
Stars indicate recognition quality, see Table 2.1, units are bytes/ms.

WiFi-LAN WiFi-WAN 3G-active 3G-passive GPRS
minimal

bandwidth . 500 95 36 36 2.5
needed
32 x 24 ? - - - - -

?? 22.98 28.34 46.77 - -
? ? ? 7.49 7.90 8.71 - 21.28

64 x 48 ? 76.83 171.83 - - -
?? 11.39 12.34 14.35 - 257.09
? ? ? 4.08 4.18 4.36 239.26 5.81

128 x 96 ? 20.40 22.40 26.84 - -
?? 6.16 6.32 6.62 - 9.08
? ? ? 2.64 2.67 2.72 4.53 3.02

256 x 192 ? 6.49 6.57 6.71 13.25 7.67
?? 2.37 2.38 2.40 2.91 2.51
? ? ? 1.17 1.17 1.18 1.28 1.20

512 x 384 ? 2.24 2.24 2.25 2.32 2.27
?? .77 .77 .77 .78 .77
? ? ? 0.41 0.41 0.41 0.41 0.41
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given by the Oracle after 50 rounds.

For each network we vary the runtime of either the local or the remote implemen-
tation in such a way that we have probabilities ranging from < 0.01 and > 0.99, so
that we have situations in which local and remote execution times are close to each
other. Such cases especially allow us to verify whether the probability that the Oracle
computes matches reality.

Figure 2.44 shows the results of these experiments. For both WiFi over the wide
area network and the local network Cuckoo’s Oracle computes probabilities that are
very close to reality. For GPRS and especially 3G the lines are further apart. Cuckoo’s
Oracle underestimates the chance that o�oading wins when in reality the chance that
o�oading wins is greater than 50%, thereby being too conservative. Then, when the
lines intersect for GPRS at about 30% and for 3G at 50%, the Oracle switches from
underestimating to overestimating. However, the overestimate of the chance that
o�oading wins only has impact in cases where a user con�gures Cuckoo such that
it will decide for o�oading even if it is not bene�cial in the long run (i.e. chance for
o�oading being better than local is smaller than 50%). Those cases, however, do not
make sense in real world scenarios.

Further, the slope of the Oracle’s estimate for 3G is much more �at than the real
world values. This is caused by the uncertainty about the state of the 3G radio as
mentioned in Sections 2.8.6 and 2.8.10.

The probability computed by the Oracle is based on a comparison of two distribu-
tions, the one for local execution and the one for remote execution. Cuckoo assumes
that these are normal distributions. In Figure 2.46 we visualize the distributions
according to the real data and according to the normal distribution derived by the
Oracle, for o�oading using the various networks and for the local execution. Given
the overlap of the distributions we argue that is reasonable to use normal distributions
to approximate the real distributions.

Finally we compute how much the Oracle’s decision di�ers from the optimal
decision. We determine the optimal decision by selecting the best choice for each
round after execution, whereas the Oracle always gives advice before execution. Figure
2.45 shows that the lines of the optimal decision and the Oracle’s decision largely
overlap, or are very close to each other. This means that although the estimated
probability in some cases deviates from the reality, the resulting decision of the Oracle
is close to reality.
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Figure 2.44: Oracle’s Estimated Probability vs. Real World Probability while varying the remote implemen-
tation time. For GPRS, instead of adding time to the remote implementation, time is added to the local
implementation, hence the negative values for remote implementation time.
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Figure 2.45: Average Execution Time based on Oracle’s Decision vs. Optimal Decision and Worst Decision.
For GPRS, instead of adding time to the remote implementation, time is added to the local implementation,
hence the negative values for remote implementation time.

81

2



Evaluation Cuckoo

!"

!#!!$"

!#!!%"

!#!!&"

!#!!'"

!#!!("

!#!!)"

'%!!" ''!!" ')!!" '*!!" (!!!" (%!!"

!"
#$

%
$&

'&
()

*

+,-./0#1*2&3-*4356*

7&5("&$/0#1*48#.%'6*

+,-."/0123045678" 973:-."/0123045678"

!"

!#!!$"

!#!!%"

!#!&'"

!#!&("

!#!'"

&$!!" &$)!" &)!!" &))!" &(!!" &()!" &*!!" &*)!" &%!!"

!"
#$

%
$&

'&
()

*

+,-./0#1*2&3-*4356*

7&5("&$/0#1*48&9&:*;<=6*

+,-."/0123045678" 973:-."/0123045678"

!"

!#!!$"

!#!!%"

!#!!&"

!#!!'"

!#!("

!#!($"

())!" (&)!" (*)!" (')!" (+)!" $!)!" $()!" $$)!"

!"
#$

%
$&

'&
()

*

+,-./0#1*2&3-*4356*

7&5("&$/0#1*48&9&:*8;<6*

,-./"01234156789" :84;./"01234156789"

!"

!#!!!$"

!#!!!%"

!#!!!&"

!#!!'("

!#!!')"

*+!!" &+!!" '!+!!" ''+!!" '(+!!" '$+!!" '++!!" ')+!!"

!"
#$

%
$&

'&
()

*

+,-./0#1*2&3-*4356*

7&5("&$/0#1*48!9:6*

,-./"01234156789" :84;./"01234156789"

!"

!#!!!$"

!#!!!%"

!#!!!&"

!#!!'("

!#!!')"

!#!!'*"

!" '!!!" (!!!" $!!!" +!!!" )!!!" %!!!"

!"
#$

%
$&

'&
()

*

+,-./0#1*2&3-*4356*

7&5("&$/0#1*4896*

,-./"01234156789" :84;./"01234156789"

Figure 2.46: Comparison of the real distribution of probabilities of execution times and the derived normal
distribution by the Oracle for the various network types.
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2.11 Related Work

Computation o�oading is a technique that dates back to the era of dumb clients
that used mainframes for computation and is strongly related to the well known
techniques Remote Procedure Calls (RPC) introduced in the 80’s by Birrell and Nelson
[17] and its object oriented equivalent Remote Method Invocation (RMI), probably
best known from its Java implementation[118].

Just after the introduction of RPC, Eager et al. [34] introduced the term load sharing.
Whereas computation o�oading only considers executing code remotely to reduce the
load on the originating machine, load sharing tries to improve the performance of an
entire distributed system by smoothing out periods of high congestion on individual
nodes. To de�ne a load sharing policy one should de�ne a transfer policy, which
indicates what parts can be considered for remote execution, and a location policy,
which de�nes where this code will be executed.

RPC and RMI allow procedures or methods to be called from one machine and
be executed on another machine. Calls on the local machine are invoked on a local
stub rather than the real function. This stub marshals the call parameters and sends
a request to execute the function on a remote machine. This request is received by
the remote stub which in turn invokes the real function and sends back the result to
the client stub, which returns the result to the caller, just like it would have done if it
were the real function. The stubs in RPC and RMI are generated at compile time.

Whereas RPC and RMI are language dependent, CORBA[115] uses an implementa-
tion language independent Interface De�nition Langauge (IDL) to specify remote calls.
Such an IDL can be mapped to a speci�c implementation language and thereby allows
applications written in heterogeneous languages to invoke remote calls on each other.
For instance, Java clients can make remote calls on C servers.

CORBA, RPC and RMI are the most well known examples of machines that use
other machines to execute part of the work, however, they are in fact a sub class of the
general �eld of computation migration[48] where computation is brought to the data, in
contrast to data migration where data is brought to a compute resource. CORBA, as well
as both RPC and RMI operate at the granularity of functions. However, other systems
have been presented that operate on the level of processes (process migration[32, 87]),
threads (thread migration[95, 112, 123]), objects (object migration[85]), system calls
(e.g. Remote System Calls in the Condor Project[108]), or more recently entire virtual
machines (Cloud Computing, IaaS[35]).

Building upon RMI, JavaParty[85] introduced a single class modi�er ’remote’
to annotate o�oadable code through object migration where entire Java objects can
explicitly be sent to other nodes in a distributed environment. Targeting clusters of
workstations, JavaParty used localization to transfer remote objects closer to code using
it, to avoid network communication. JavaParty requires much less code restructuring
to transform a sequential program into a distributed program compared to sockets and
direct RMI implementations. At compile time JavaParty uses a preprocessor before
using the normal compilers (i.e. the Java and RMI compiler).

The Coign[50] system automatically transforms binary applications using the
Microsoft Component Model (COM) into distributed applications at runtime. It
provides a runtime that pro�les the actual execution patterns of binaries and using
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graph cutting algorithms it partitions the application such that it will best �t the
execution environment. It thereby assumes that de�ning which calls should be remote
and which calls should be local is best done by a runtime system, and not by the
programmer.

In contrast with the Coign system, Pangaea[104] uses static code analysis to refactor
a local application into a distributed application. This has the advantage that running
the application does not have the overhead of pro�ling and decision making. However
adapting to new execution environments needs recompilation.

With the introduction of personal computers, the need for computation o�oading
decreased, but with the introduction of todays’ portable devices, a new need for
remote compute power emerged, which was already noted by Mark Weiser[116] at
the very beginning of mobile computing as we know it today.

From here on we give an overview of what has been proposed by others with
respect to computation o�oading for smartphones and how that relates to the Cuckoo
framework.

An excellent overview of the developments in the area of computation o�oading is
provided by Kumar et al. [61], in which the authors categorize the scienti�c research
on o�oading over the last 15 years in three categories: Feasibility and Importance,
Decision, and Infrastructures. According to this categorization, the case studies we
performed in the beginning of this chapter fall under the Feasibility and Importance
category, justifying the need for computation o�oading (i.e. should we use o�oading),
whereas the remainder of this chapter addresses both the Decision category (i.e. when
do we o�oad) and the Infrastructure category (i.e. how do we o�oad).

In the early days of the portable handheld devices and before the popularity
of the commercial cloud, Satyanarayanan [96] proposed a computation o�oading
model called cyber foraging, in which portable resource constrained devices can o�oad
computation to more powerful remote resources called surrogates. Important in cyber
foraging are the discovery of surrogates, the trust relation between the client and
the surrogates, load balancing on the surrogates, scalability and seamlessness. Yang
et al. [119] describe an o�oading infrastructure based on cyber foraging that, like
Cuckoo, uses a Java stub/proxy model, but then for the HP iPaq platform. Cyber
foraging adopts the idea to use physically nearby surrogates that can be automatically
discovered and subsequently used to deploy parts of the application onto. However,
our framework di�ers from cyber foraging in that we require remote resources to be
discovered in advance and already run a generic Cuckoo server. And rather than using
physical nearby devices, Cuckoo expects users to add their accessible devices (laptops,
desktops, home servers, or even cloud resources).

The use of a special interface de�nition language in combination with stubs and
proxies has been described by Kotz et al. [59]. The described AIDL � Agent Interface
De�nition Language, not to be confused with [6] � de�nes an interface of a particular
server agent that can subsequently be invoked by client agents. Whereas the AIDL is
used to match clients and servers, we use it in Cuckoo to generate an abstraction that
can have multiple implementations.

From the �eld of security Chun and Maniatis [24] propose another architecture,
called CloneCloud, that can o�oad computation, such as virus scans and taint checking
to a clone of the smartphone in the cloud. An implementation of their proposed
architecture should support the following types of augmented execution:
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� primary functionality outsourcing: o�oading of expensive computation
� background augmentation: o�oading of background processes
� mainline augmentation: o�oading light weight computation, for heavy weight

analysis (taint checking, debugging, pro�ling).
� hardware augmentation: o�oading of computation because of hardware limita-

tions of the smartphone
� augmentation through multiplicity: parallel execution of o�oaded computation,

for computation speedup or speculative execution.

The Cuckoo framework implements all the proposed execution types in its single
programming model. It does not run a complete clone of the smartphone at the remote
cloud resource, as proposed by Chun et al, but rather runs a temporary clone limited
to only the service that the application is using, thereby avoiding the costly process of
keeping the smartphone synchronized with an application clone in the cloud.

Another o�oading model, called AlfredO, which is based on the modular software
framework OSGi, is proposed in [43]. They contribute partitioning algorithms to
optimize the distribution of OSGi software modules between the phone and remote
resources and evaluate their system with a home interior design application. AlfredO
and other systems that employ automatic partitioning of an application [28, 50, 104,
107, 109, 119], will use the same modules on the phone as on the remote resource, and
therefore it is not possible to di�erentiate between local and remote implementations
for instance to take advantage of specialized compute languages, as is possible with
Cuckoo. It also makes it impossible to use �delity adaption, i.e. trading quality
for speed for a local implementation, as described by Balan [14] and Noble and
Satyanarayanan [77]. A noteable exception is the Chroma system [15], which does
automatic partitioning, but allows developers to provide rules (tactics) that can include
desired �delity. Another di�erence with automatic partitioning systems is that Cuckoo
will aid developers in structuring code in such a way that its design is suitable for
o�oading. For instance, recently Zhang et al. [122] propose a system that can add
computation o�oading to existing APKs. Their automatic partitioning system, similar
to J-Orchestra [109] analyzes byte code and determines whether a class is suitable for
o�oading (Moveable) or not (Anchored). A class will be anchored if it contains code
that must be executed locally, because it accesses local resources, such as sensors or
user interface. Because developers design their classes without computation o�oading
in mind, compute intensive operations may very well be located in classes that also
contain anchored code and therefore will remain anchored. Any development time
approach does not su�er from this problem.

Nonetheless, we believe that the research on automatic partitioning is very useful
and can also be used at development time to provide developers with feedback during
development on which parts of their application are currently suitable to be o�oaded.
A development environment such as Eclipse can then for instance color code methods
or classes to indicate whether they can be o�oaded. If a developer knows that a
particular operation will be compute intensive, but is currently marked as anchored,
he can try to restructure the application to make it moveable.

In Kumar and Lu [60] and Kumar et al. [61] the authors describe a simple cost/ben-
e�t model for o�oading with respect to energy usage. This model takes into account
the speed of both the smartphone and the remote cloud resource, the number of
bytes that need to be transfered, the network bandwidth, the energy consumption
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of the smartphone in idle, computing and communicating state. These models are
mainly interesting from a theoretical point of view. We can for instance conclude that
computation o�oading is useful if an application has a high number of operations, if
the server is very fast, if the data exchange is very small, or if the bandwidth is high,
but it is not useful for a practical infrastructure. For instance, they assume that the
number of instructions can be known beforehand, the number of local instructions is
identical to the number of remote instructions and the number of bytes that need to
be communicated are known beforehand. The assumptions do not hold for Cuckoo,
since the remote implementation might be di�erent from the local implementation
and since the number of bytes that will be received by the smartphone after a remote
method execution can be unknown beforehand. Rather than this simpli�ed theoretical
model, Cuckoo incorporates a more extensive and practical model to decide whether
or not to o�oad computation.

Next to computation o�oading systems, where computation components are trans-
fered from a smartphone to the remote resource, there exist many applications that
are separated into a light weight client and a heavy weight server hosted in the cloud.
Examples of such applications are the music search service Shazam [103] and image
search service Goggles [44]. The remote parts of these services typically have to
interact with very large databases and therefore are not suitable to be bundled with
the client application. The drawback of unbundled services is that the application
provider has to provide the remote service, which will include hosting and mainte-
nance costs. Furthermore, since these services are typically commercial, users might
not want to hand over input data, because of privacy concerns. With an o�oading
system, like Cuckoo, users will run their heavy weight computations on their private
machines, or machines that they trust.

In case studies about computation o�oading we found that the applications that
bene�t from computation o�oading exist in the following domains:

� image processing: object recognition (see Section 2.3), high dynamic range
photography (see Section 2.4), OCR [119], barcode analysis [54]

� audio processing: speech recognition [45]
� text processing: machine translation [119]
� arti�cial intelligence for games: chess [60]
� 3D rendering: 3D home interior design [43], 3D racing game [122]
� security: taint analysis and virus scans [24, 86]

The Cuckoo framework supports the development of applications from these domains
in a simple and developer friendly environment.

Several other solutions, complementary to computation o�oading, have been
proposed at di�erent abstraction levels to reduce the pressure on the energy usage.
At the hardware level, manufacturers build processors that can switch to lower fre-
quencies to save energy. Techniques to harvest energy from surrounding sources, such
as movement, light and wireless signals, have been proposed to charge the battery
during operation [84]. Furthermore, some modern smartphone operating systems
have been tuned to be more energy e�cient. Finally, the users of smartphones have
developed habits to turn o� sensors or radios when they are not needed.
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2.12 Conclusions

In this chapter we have presented Cuckoo, a framework for computation o�oading
for smartphones, a technique which can be used to reduce the energy consumption
on smartphones and increase the speed of compute intensive operations. With the
Cuckoo computation o�oading framework we ful�ll our �rst Research Goal:

Create a framework for computation o�oading that simpli�es the development of
compute intensive applications.

The Cuckoo framework consists of build tools, the Cuckoo Runtime, a Resource
Manager app and a Cuckoo Server app. The build tools automatically generate,
rewrite and package code if computation o�oading is added to an application. It
simpli�es this process by o�ering GUI access to a plugin of the Eclipse development
tool. The Cuckoo runtime system automatically handles o�oading and can make
smart decisions based on history, context and heuristics to determine whether a
method invocation should be o�oaded. It allows developers to �ne tune the decision
making process, through the use of application speci�c knowledge. With the Resource
Manager a user can collect remote resources on which the Cuckoo Server runs.

Cuckoo provides a simple programming model, familiar to developers, that allows
for a single interface with a local and a remote implementation. The implementations
may di�er from each other, such that developers can optimally make use of available
specialized compute languages. Furthermore, the abstraction level minimizes the
communication needed between smartphone and remote resource.

Evaluating Cuckoo with two example apps shows that Cuckoo indeed simpli�es
the development of computation o�oading applications, while the run time overhead
is small, and the quality of the decision taken by Cuckoo’s Oracle about whether or
not to o�oad is high.
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3.1 Introduction

For two decades researchers have held out context awareness as uniquely positioned
to make computational devices smarter and more ubiquitous. Weiser’s well known
vision[116] of devices that melt into the background relies on devices that understand
the location and situation in which they �nd themselves, and can behave in intelligent
ways based on this information. Much research has been conducted in the intervening
20 years on how to make use of context in applications, while hardware technologies
have dramatically changed the landscape of what is possible today.

Foremost amongst the developments of the last two decades is the rise of the smart-
phone as a general purpose computing device. Arguably beginning with the Apple
iPhone, but certainly continuing with a diversity of Android powered devices, the
smartphone has exploded onto the computing landscape. The plethora of smartphone
devices contain advanced processors, multiple networking technologies and advanced
sensing capabilities that researchers of two decades ago only dreamed of[97].

Currently, mobile platforms o�er low level access to these on board sensors through
various interfaces. Though these interfaces enable the creation of context aware
applications, we agree with Ravindranath et al. [91] that the current situation su�ers
from both

� poor abstractions: instead, the focus of programmers should be to construct high
level context expressions

� poor programming support: with current tools, writing a context aware appli-
cation requires expertise in sensor data gathering, processing, and expression
evaluation.

Furthermore, we note that most sensing applications are based on sensing input
from the mobile device itself and provide output on the very same device � we
call these apps standalone sensing apps. However, there is another class of sensing
applications that uses � next to their own sensing input � sensing input from remote
sources to provide output. An example of such an application is a friend alerter app,
that warns friends when they are physically close to each other. In addition there
is yet another class of applications that does not require any local sensing input at
all, but just provides output for sensing input from external devices. An example
of an application is this category is a rain alerter application that gathers rain fall
information from an external device. We call applications in these additional two
classes distributed sensing apps.

Creating such distributed sensing applications is even more complicated than
creating standalone sensing applications, because of the additional e�ort required to
deal with the fundamental issues of distributed programming, such as connectivity,
availability and time synchronization.

In order to simplify the development of distributed sensing applications, we pose
the following main research question in this chapter:
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Can we improve the abstractions and programming support for developers of distributed
context aware applications through a framework for distributed sensing?

To answer this question we build upon our earlier work on the SWAN (Sensing
with Android Nodes) framework that addresses the problems of poor abstractions and
poor programming support for standalone sensing applications.

The main contributions of our enhancing this work to also support distributed
sensing applications are:

� Support for Communication O�oading sensors: These are sensors that gather
their data from an Internet source. Rather than polling the source from the
mobile device, sensors can poll the source from a cloud resource and only when
updates are found, forward these to the mobile device using push messages. This
has the advantage that updates can be found faster, the data, compute and energy
cost on the mobile device is lower and updates that happen during the time
that the mobile device is not connected can later on still be used. We provide
support for Communication O�oading sensors through a sub framework that
simpli�es the development of sensors using the principle of Communication
O�oading through code generation and provides components needed to deploy
these sensors.

� Support for Cross Device Expressions: By adding a location to the sensor ex-
pressions in the Domain Speci�c Language of SWAN, SWAN-Song, it is possible
to target sensors on other devices. This allows the construction of contextual
expression that cover context on multiple devices and thereby improves the ex-
pressivity of SWAN drastically. In the earlier work on SWAN it was not possible
to formulate expressions that would gather sensor data from di�erent devices
and would be evaluated in a distributed way.

The standalone version of the SWAN framework has been developed by both
the author and his fellow PhD Student, dr. Nick Palmer, and is covered in full in
the PhD thesis of dr. Nick Palmer entitled �Smartphones: A Platform For Disaster
Management� [79] and the joint paper �SWAN-Song: a �exible context expression
language for smartphones� [82].

Standalone SWAN itself is an extension and reimplementation of the initial
work[114] that the Master’s student Bart van Wissen did under the joined super-
vision of dr. Nick Palmer and the author.

The remainder of this chapter is organized as follows. After we present the related
work in Section 3.2, we summarize our earlier work on Standalone SWAN as necessary
background in Section 3.3 and then focus on Distributed SWAN in the remaining
sections (Section 3.4 - 3.6). Section 3.5 focuses on using distributed computing
to enhance the performance of Network Sensors, while Section 3.6 introduces the
abstractions needed to retrieve sensor data from other devices through cross-device
expressions. We conclude in Section 3.7.

3.2 Related Work

A great deal of work has been done on using the collection of sensor data to derive and
understand the context in which a computer, and by extension its user, are situated.
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Prior attempts at mobile middleware for sensor and context monitoring, such as
CASS[39], or systems for �smart spaces"[90], adopted centralized designs, which
require networks that always work. Unfortunately, such approaches are not suitable
for smartphones, due to the always-changing and sometimes unavailable networks on
such devices.

Context Weaver[25], developed at IBM in 2004, is a framework that simpli�es
writing of context-aware applications. It lets applications access context information
through a simple, uniform interface. Applications access data not by naming the
provider of the data, but by describing the kind of data they need, after which the
system will respond with a suitable provider. An important aspect of Context Weaver
is that when a provider fails, Context Weaver automatically tries to �nd another
provider of the same kind of data. Note also that Context Weaver only considers
current values of context, instead of o�ering any way to view history.

Context Weaver distinguishes active providers, which push information into the
system as it becomes available, and passive providers that require polling. Both
passive and active providers always have a current value. For active providers, this
is the value that was most recently generated, and for passive providers, the value is
read on demand.

Applications select a provider based on a provider query, which is a description of
what kind of information is needed. Based on this description, Context Weaver selects
the best suitable provider and returns this to the application. Multiple providers can
be of the same �kind" but have very di�erent implementations. For example, there
may be multiple providers for �location" information, but one may use GPS and the
other may be based on RFID badge readers.

Combining information through composers allows applications to listen for up-
dates not only on raw data sources, but also on complex expressions that combine
values of multiple sources. Context Weaver takes care of evaluating those expressions
at the appropriate times, freeing the application programmer from having to deal
with the coordination of asynchronous events. Composer-speci�cation expressions
are written in iQL, a query language designed for Context Weaver, and are compiled
into the form stored by Context Weaver.

WildCAT[29] is a Java toolkit/framework whose goal is to ease the creation of
context-aware applications for application-programmers. It is composed of an API for
programmers to access context information both synchronously and asynchronously.

WildCAT uses a string-based expression model. In WildCAT, the context is made
of several domains, which can each have their own implementation. Each domain is
modeled as a tree of named resources, which are described by simple key/value pairs.

WildCAT pushes events to the application when new resources or attributes are
added or removed, when their values change, and when expressions change. For
expressions, strings like �geo://location/room#temperature > 30" (which speci�es the
temperature in a speci�c room is above 30) can be used. These can include not only
standard comparison, arithmetic and boolean operators, but also functions, some of
which are prede�ned.

This framework also distinguishes active and passive sensors. Active sensors
can have listeners associated with them. There is no notion of quality of service
management for the sensors, they can only be started or stopped. Passive sensors have
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a sampler and a schedule associated with them. The framework’s sensor manager uses
a daemon to invoke the sampler regularly, according to its scheduling policy. The
sampler returns the current state of the part of context it is observing.

FRAP[113] is another context framework targeted at the construction of pervasive
(multi-player) games. In FRAP, a central server keeps track of all context information
of the clients, which have to be connected to the server. FRAP uses WildCAT2[29] to
store context information and thus is also not appropriate for mobile platforms.

An additional body of research, which is important to consider, has focused
on wireless sensor networks[13, 67, 72]. While such networks represent resource-
constrained platforms, they are far di�erent from smartphones because they are so
much more constrained than these modern devices.

Additionally, much research has been done about reasoning on context using
semantic web technologies[16, 63, 93], which, to us, do not seem to be a natural �t for
the time-series data inherent to sensing. Thus, we feel that the smartphone platform
requires a di�erent approach to the problems of collecting, storing and making use of
contextual information.

More recent work, such as MobiCon[64], have taken a more phone-centric ap-
proach, which we feel is required for this platform. MobiCon uses the CMQ (Con-
text Monitoring Query), as provided by SeeMon[55], language to express contextual
queries, it consists of a context processor that continuously evaluates the CMQ queries,
a resource coordinator that coordinates the context processor, a sensor broker and
a sensor manager that together deal with the retrieval of the actual sensor values
from the given sensors. As described in the original SeeMon paper[55], an index can
be created out of a set of CMQ queries which in turn can be used to group queries
and reduce evaluation time, because queries can partially overlap. Furthermore an
Essential Sensor Set (ESS) can be derived, so that only the determining sensors need
to be monitored.

Next to CMQ, other systems also introduced speci�c languages to query contextual
state. Kobe is a language introduced by Chu et al. [23], AnonySense[26] introduces the
domain speci�c language AnonyTL and Ravindranath et al. [91] propose a language
called CITA with two special modi�ers for time series (WITHIN and FOR).

Finally, of note are two closed-source applications for Android-powered mobile
phones which help users to use context to make their phone smarter. The �rst is
Locale1, which allows users to change various settings of the phone based on sensors.

Context is logically grouped into situations, and setting changes are triggered
based on situations. Situations are stacked and so the �default" situation holds the
default setting. This can cause confusion with users because if a situation speci�es a
setting, for example ring tone A, if the �default" situation does not have a ring tone
setting then when the ring tone is changed to A it will never be changed back. Also of
interest is that it is only possible to create situations composed of conjunctions. Thus
all situations must be created by the user using distinct normal form.

Also of interest is that Locale uses a plugin architecture to allow sensors to be pro-
vided by other applications using Android’s intent framework. Locale is responsible
for calling the other application to retrieve the sensor data of the plugin. Thus Locale

1http://www.twofourtyfouram.com/
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does not use any push based sensors, only allowing for the pull model. Locale is also
not a generic framework as it can only be used to change settings.

The second commercial application is Tasker2, which comes with many built-in
context sensors, and allows users to launch various changes when a set of conditions
are met. Unlike Locale, activities can be more than just changing settings on the
phone. Tasker can also �re intents to send an SMS or start an application. Similar to
Locale, Tasker also represents all conditions in distinct normal form. Tasker supports
Locale plug ins as well but it is unknown if the application uses asynchronous sensors
internally. Tasker also o�ers the ability to �re an event when a condition becomes true
and another task when the condition becomes false again. This resolves the problem
we found in Locale with the requirement to have a default setting, at the expense of
making Tasker more complex to con�gure since one must create a do and undo task.

3.3 Background

3.3.1 Standalone SWAN

SWAN is a framework for mobile sensing applications targeted at the Android plat-
form. SWAN is designed to provide powerful abstractions and tools for programming
sensing applications. The main component through which SWAN reaches this goal is a
domain speci�c language, named SWAN-Song (see Figure 3.1, as part of the API), that
enables the construction of context expressions, a very simple yet powerful abstraction
that lets the application developer focus on how to deal with context on a high level.
It enables a general system to o�er a generic expression evaluation system that can be
shared among applications, in which the complexity of data processing and expression
evaluation is hidden.

From a data gathering perspective, SWAN exposes a service provider interface (see
Figure 3.1, the Sensor SPI) by which data can be fed into the system, through SWAN
sensors, small pieces of code that gather data from a particular source, be it a physical
sensor on the phone, a nearby sensor connected through Bluetooth, resources like
the calendar and mail inbox, a higher level sensor, such as a fall sensor[120], or even
sources located on the Internet. Out of the box SWAN contains 20+ of such sensors,
and it also supports plug-ins for 3rd party sensors.

The SWAN framework contains several applications that simplify the creation of
context aware applications, both at development time and at run time. A sensor maker
tool eases the work of adding 3rd party sensors. At run time the expression creator
app, and sensor con�guration applications are available, so that if user con�guration
of an expression or a sensor is required, the app developer does not have to write
additional User Interface code. Furthermore, once expressions are registered to SWAN,
the Expression Viewer app becomes available providing insight in what resources
SWAN uses for which expression.

SWAN supports a wide range of contextual applications types following the classi-
�cation given by Chalmers[22]:

� Context Display, where context information is displayed to the user;
2http://tasker.dinglish.net/
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Figure 3.1: Design of SWAN

� Contextual Augmentation, where contextual data is associated with data of
primary importance to the user;

� Context Triggered Actions, which consists of �ve subcategories: Context Trig-
gered Actions, where an action is taken based on context; Context Aware Con�gu-
ration, which recon�gures an application based on the context it is in; Context
Mediation, where the services provided or data requested is modi�ed based
on context; Context Adaptation of the Environment, where the environment is
modi�ed based on the context of the user; and �nally, Context Aware Presentation,
where the way information is displayed or the user is noti�ed changes based on
the context, which is strongly related to user preferences or policy.

These categories are similar to those presented by Abowd et al[3, 31], who iden-
tify, presentation of information and services to the user; automatic execution of a
service; and tagging of context to information for later retrieval as the three classes of
applications.

Figure 3.1 shows that whereas Context Augmentation applications interface di-
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Figure 3.2: Categorization of the various expressions within SWAN-Song.

rectly with persistent contextual data storage from the RAVEN data management
framework [70, 81, 83], Context Display and Context Triggered Actions applications
retrieve contextual data from SWAN through the SWAN API. This e�ectively means
that these applications register SWAN-Song expressions, which are subsequently eval-
uated by the Evaluation Engine that ultimately gathers the required contextual data
from the sensors.

3.3.2 SWAN-Song

SWAN-Song is the domain speci�c language of the SWAN framework. SWAN-Song
provides an abstraction of context much like other domain speci�c context languages
such as SeeMon’s CMQ[55] and AnonySense’s AnonyTL[26], where complex context
expressions can be built using logic operators and comparators.

SWAN-Song extends the expressivity of these languages by adding support for
con�guration, math operators, and history windowing, i.e. look at a series of values
in a history window rather than only the current value, similar to the WITHIN and
FOR operators found in CITA[91]. In doing that SWAN-Song goes beyond what is
available in CITA because SWAN-Song allows such a series of readings to be used in a
comparison where various history reduction modes, such as MIN, MAX, etc., are used
to specify how the series should be compared.

Because values remain in a history window for an extended period of time, an
expression evaluation engine that implements monitoring of SWAN-Song expressions
can employ smart evaluation strategies to reduce both the processing for evaluation
as well as the cost of sensing itself.

SWAN-Song is a form of zeroth-order logic, which allows the description of a
particular combination of contextual information using sensor based expression
predicates, which can be combined using math, comparison, and logic operators, and
a speci�cation of a history window and history reduction operator.

Expressions that, once evaluated, result in a series of values or a single numerical
or textual values are categorized as Value Expressions and �t well for Context Display
applications, in contrast to Tri State Expressions of which evaluations always result in
a single tri state value: TRUE, FALSE or UNDEFINED, which naturally can be used as a
trigger for Context Triggered Actions applications. A detailed categorization of all
expressions within SWAN-Song is shown in Figure 3.2.
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Value Expressions

The category of Value Expressions consists of Constant Expressions, Sensor Expressions
and Math Expressions.

At the core of SWAN-Song there are the Sensor Expressions, which give access to
the values of various sensors. In SWAN-Song a single sensor is allowed to produce
multiple context types. For instance, a GPS sensor produces not only longitude and
latitude, but also speed and altitude. Furthermore, Sensor Expressions support the
possibility to con�gure sensor properties, such as the sample interval. Third, SWAN-
Song Sensor Expressions explicitly allow for time windowing. In contrast to only
considering the current value of a sensor, SWAN-Song Sensor Expressions allow for
the de�nition of a history window (e.g. the last 5 minutes). The result of such an
expression is by nature a series of values. Additionally, SWAN-Song allows a Sensor
Expression to specify a history reduction operator that de�nes how the series of values
are dealt with further on in the expression.

Formally, a Sensor Expression is made up of two required components and three
optional components. Required are a sensor entity and a value path. Optional
components are a list of one or more con�guration parameters, a history window and
a history reduction mode.

Sensor Expression = [entity]:[path]?[configuration]{[mode],[window]}

An example of a Sensor Expressions is the following:

wifi:level?bssid=’b8:f6:b1:12:9d:77’&discovery_interval=5000{MAX,10m}

The �rst component (wifi) is the sensor entity that de�nes what sensor the expres-
sion references. The second is the value path (level) which speci�es the value within
a given sensor. Next there is an optional list of con�guration options for the sensor
represented as a series of key value pairs separated by an &. These options can be used
to specify sensor speci�c con�guration information, which varies on a per sensor and
per expression basis (?bssid=’b8:f6:b1:12:9d:77’&discovery_interval=5000).

A Sensor Expression has an implicit time window on the values it considers when
the expression is evaluated. The default windowing is over the last second, however
expressions may specify a di�erent window by appending a time in brackets along
with the sensor predicate (10m).

Because of this windowing of sensor values, Sensor Expressions represent an array
of time-stamped values. When the user wants to know if the screen was on in the
last 5 minutes, this could be represented by the expression: screen:on {5m} == true.
Since the screen may have been on and o� in that interval it is unclear if this is true or
false. To solve this issue, SWAN-Song includes a history reduction mode (ANY). The
default mode is ANY, which selects any value that makes the comparison true as the
value of the sensor. This parameter is placed within the brackets after the expression,
along with the history length if present. ANY and ALL are logically equivalent to CITA’s
WITHIN and FOR. With this system it is easy to ask questions like has the screen been
constantly on for the last 5 minutes simply by changing the reduction strategy to ALL
giving the expression: screen:on {5m, ALL}. Next to ANY and ALL, the system o�ers
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modes for value paths that are numeric in the form of MIN, MAX, MEAN, and MEDIAN,
which will select or calculate the appropriate value.

In addition to Sensor Expressions, SWAN-Song supports Constant Expressions of
various types including numeric, string and boolean values, of use in more complex
expressions.

Constant Expression = [constant value]

And �nally SWAN-Song allows new Value Expressions to be constructed out of
two Value Expressions and a math operator.

Math Expression = [Value Expression] [Math Operator] [Value Expression]

The following expression gives an example:

2 * movement:x{MAX, 1000} + movement:y{MIN,1000}

This expression consists of a Constant Expression (2) and a Sensor Expression
(movement :x{MAX, 1000}) that together with the multiply operator form a Math
Expression. This Math Expression in combination with the other Sensor Expression
(movement :y{MIN, 1000}) and the plus operator forms another Math Expression,
which is the root of this expression’s tree.

Tri State Expressions

Through comparing two Value Expressions in a Comparison Expression one can get into
higher level Tri State Expressions, these are Expressions that once evaluated result
in a single TRUE, FALSE or UNDEFINED value, rather than a series of arbitrary values.
The language includes common comparison operators including ==, >=, >, <=, < and
!=, and also string operators like regex for performing a regular expression match
on strings, as well as contains, startsWith, and endsWith. Comparison Expressions
can formally be described as follows:

Comparison Expression = [Value Expr.] [Comparator] [Value Expr.]

Similarly to what is available in other languages, SWAN-Song supports the logic
operators binary AND and OR and unary negation allowing complex Logic Expressions
to be constructed.

Logic Expr. = [Tri State Expr.] [Logic Operator] [Tri State Expr.]

An example that includes comparators, history reduction operators, math operators
and logic operators is shown below and detects the battery running down quickly by
a background service:
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screen:on {ALL, 1h} == false && (battery:level {MAX, 1h} -
battery:level {MIN, 1h}) > 25

Like CMQ, SWAN-Song is a tri-state language, in that all expressions evaluate to
TRUE, FALSE or UNDEFINED. This third state is important, since an expression written
for one device may reference sensors which are not available on another device, or the
user may have forced a particular sensor to be o�, for instance turning o� Bluetooth to
save battery. Reporting a true or false value for an expression involving such a sensor
would be incorrect. Thus SWAN-Song is designed to handle the uncertainty inherent
to operating on real devices. The UNDEFINED state allows SWAN-Song to avoid giving
misleading results when the value of an expression is not known, perhaps due to
missing sensor data.

Smart Evaluation in Expression Evaluation Engine

The properties of SWAN-Song allow for two important optimizations in the evaluation
engine for Tri State Expressions: (1) reduction of evaluation by deferring re-evaluation
and (2) disabling sensors for a while, both of which are implemented in the evaluation
engine of SWAN and described below. A detailed speci�cation of these optimizations
can be found in [82].

Where normally every new reading triggers re-evaluation of an expression, SWAN
uses the fact that in some cases it is possible to know a priori that the new reading
will not a�ect the result of the expression. For instance, if one looks for an expression
to exceed a particular threshold and it is known that one of our readings that does
exceed this threshold remains in the history window for a while, evaluation of this
expression can be deferred until this reading is no longer in the history window. In
SWAN the time until which evaluation can be deferred after a particular evaluation, is
called the defer until time, or in short defer until.

It is possible to go a step further in optimizing and not only minimize evaluation
of sensor readings, but also stop gathering sensor data when possible. Such a situation
is more complicated than the defer until situations. It requires a logic expression
for which one of its sub expressions has a defer until that is larger than the history
window of the other expression. Furthermore, this sub expression should determine
the outcome of the logic expression (i.e. it evaluated in TRUE for an OR expression, or
FALSE for an AND expression). In SWAN this optimization to reduce sensing is called
Sleep And Be Ready, since sensors can be put to sleep during a situation as described
above, but also need to be ready (have a full history window) when the situation ends.

3.3.3 Google Cloud Messaging

For distributed sensing we need a means to communicate between devices. To this
end we describe the Google Cloud Messaging (GCM) framework [41]. Google Cloud
Messaging allows push messages to be sent to mobile devices running Android. It
is the successor to Google’s Cloud to Device Messaging (C2DM) framework that had
the same purpose and was released to be used for third party application developers
along the release of Android 2.2 in May 2010 and deprecated since the introduction
of GCM in 2012. When C2DM was used only by Googles own applications, and not
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accessible for third party developers, we independently developed a system to deliver
equivalent functionality, the Ibis Push Framework [58]. Although we used the Ibis
Push Framework and C2DM in our earlier work, we switched to GCM once it became
available, because C2DM became deprecated and because it is better to use a single
push framework on a mobile device than multiple push frameworks next to each
other. Every push framework has overhead costs to maintain connectivity to be able to
receive push messages. GCM is present by default on Android devices and integrates
well in the Android eco system. It also o�ers features to deal with situations when a
push message cannot be delivered due to disconnectedness of the mobile device.

GCM allows push messages to be sent from any source to the Google servers. The
Google servers in turn deliver the push message to the appropriate Android devices.
Because all push messages go through the Google servers, each application that wants
to receive push messages on a speci�c device needs to obtain a registration identi�er
(registration id), so that the message can be routed to that application on the device.

To obtain such a registration id, one �rst has to register an application through
a web form with Google. Then both a sender id and an API key are generated for the
application. The sender id in turn can be used in a request issued from the Android
device to the GCM servers to obtain the registration id. The Android application
itself needs to communicate this registration id to the application that sends the push
messages, which then can send push messages to the GCM servers. These messages to
the GCM servers need to include the API key of the application. Note that it is possible
that an application acts as both a sender and a receiver of GCM push messages. Non
Android applications, such as web applications are able to send push messages, but
not to receive them.

GCM push messages can contain up to 4 kB of data. Once GCM push messages
have arrived at the GCM servers, GCM tries to deliver the message and queues it for
as long as the time to live value of the message, when it cannot be delivered. GCM
push messages can collapse each other, that is they can replace earlier messages that
have not yet been delivered to the Android device. Also GCM allows con�guration of
whether messages have to be queued when the receiving device is in idle state.

3.4 Distributed Sensing

In the background section we have outlined Standalone SWAN, a framework that
eases the development of sensing applications and provides powerful abstractions
and rich programming support for application developers. As the name indicates,
Standalone SWAN focuses on sensing and processing data on a single � standalone �
mobile device, without the help of additional compute resources.

However, next to their sensing capabilities, mobile devices are also very capable in
communicating with other devices. Other devices can for instance aid in sensing the
data as well as in processing this sensor data. We refer to such a situation, in which
multiple devices cooperate to provide the necessary sensing and processing for an
application, as distributed sensing.

Existing solutions that incorporate distributed sensing, mainly focus on using
mobile devices as data gathering points only and stream the data to a server that in
the end does the sensor data processing [20, 102].
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This model �ts well for non-mobile analytics applications, e.g. scientists that
want to analyze sensor data from multiple mobile devices together. It can also serve
a particular business model in which users e�ectively pays by giving away their
data. However, for other situations it introduces relatively high cost in terms of data
transmission and/or energy consumption to transfer data to the central server, while
ignoring the processing power of the involved mobile devices. This is especially true
for applications that after sensing and processing sensor data perform their actions on
the mobile device itself, because then the data also needs to be sent back to the device.

In contrast to the aforementioned existing solutions, and driven by the use case
scenario where sensing applications gather input and also provide output on mobile
devices, we do not ignore the processing power of the mobile devices. We believe that
a phone centric approach to distributed sensing, where all of the participating mobile
devices not only perform a part of the total sensing, but also do a part of sensor data
processing, is a better approach for such a scenario.

Such an approach allows sensor data to remain local in some cases, thereby prevent-
ing the high communication cost of sending all sensor data blindly to a remote server.
Furthermore, if processing is done on mobile devices there is no strict requirement
anymore to maintain an external server for sensor data processing. There is no need to
worry about the scalability of such a server, since processing scales by nature, the more
users use distributed sensing, the more devices participate and the more compute
power is available. From a developer’s perspective, the burden to write and deploy a
distributed sensing app is also lower, since the developer only has to program for the
mobile device and there is no additional e�ort and cost for deploying a server side of
the application. For this reason, we maintain one of Standalone SWAN’s requirements,
which states that we �Adopt a Phone Centric model�.

Nonetheless we argue that there are two cases in which the use of external non-
mobile resources can improve the overall application performance. First of all, if the
sensor data processing becomes a very compute intensive task, this task may be a
candidate for computation o�oading as described in Chapter 2. However, because of
the relatively low computation rate per sensor data item in our own applications that
use the SWAN framework, we have not found cases that are suitable for computation
o�oading. Secondly, in contrast to improving sensor data processing, external non-
mobile resources can also aid in sensing, in case the data is sensed from the network.

Using an external resource for sensing is not trivial and therefore this leads to the
following research question: How can we improve the programming support for Network
Sensors through distributed sensing? In the next section we answer this question by
providing a sub framework within the SWAN framework for Network Sensors that
can make use of distributed sensing.

In addition, we note that mobile devices can communicate with each other and
as a result are able to exchange sensed data. Standalone SWAN does not provide any
support to provide expressions that involve sensor data from other mobile devices.
Therefore we add another research question: How can we enrich the sensing abstractions
in SWAN to support cross device expressions?. In Section 3.6 we detail how such an
extension can be realized.

From here we refer to the combination of Standalone SWAN together with the
sub framework for Network Sensors and the extension for cross device expressions as
Distributed SWAN.
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3.5 Communication O�oading for Networked Sensors

Some of the SWAN Sensors can be categorized as Network Sensors. They typically
monitor a speci�c web resource and feed changes into the SWAN Service. To �nd
out whether certain information has been changed on the World Wide Web � inher-
ently a pull-based architecture � these sensors have to repeatedly pull a website to
detect changes. Repeatedly pulling information � polling � from sources with an
unpredictable update behavior has disadvantages. It will either cause unnecessary
communication, in the case that information has not changed between two polls, or
cause information on the device to be out of date, in case the information has changed,
but no new poll has happened yet. Thus, setting the polling rate involves a trade o�
between energy e�ciency on the one hand and accuracy on the other hand.

To avoid having this trade o�, we introduced a new mechanism, Communica-
tion O�oading [58], that minimizes energy cost, while it maximizes the accuracy of
monitoring applications. With this mechanism, communication intensive polling is
o�loaded to cloud resources, while communication between cloud and smartphone is
done only when necessary with push communication.

Another advantage of running the polling on a cloud resource is that cloud re-
sources are typically permanently connected to the World Wide Web, whereas the
mobile devices on which SWAN runs by nature will experience periods of disconnect-
edness to the World Wide Web. That means that updates that happen during such
a period of disconnection cannot be discovered with polling, but can be discovered
with communication o�oading. Depending on the nature of the application and the
sensor this can be a great bene�t. For instance, an application that uses a rain sensor
to see whether it rained over a certain period at a particular place to remember the
user to water the plants, might miss the fact that it rained if during that moment the
users phone was out of battery or could not establish an Internet connection.

Whereas in our earlier work[58] we used communication o�oading mainly for
homescreen widgets3, the principle is also very applicable to networked sensors. In this
section we discuss how communication o�oading works and how we extended SWAN
to support communication o�oading for networked sensors.

3.5.1 Pull versus Push

A naive energy reducing measure for networked sensors is to reduce the polling rate of
the sensor. This will reduce the number of web requests and therefore the consumed
energy. However, reducing the polling rate will also a�ect the accuracy. Information
updates will be discovered later. Thus, using polling there exists a trade o� between
energy usage and accuracy of the information displayed.

Networked sensors pull information from web resources and then, when the data
is locally available, inspect whether this data contains new information. If so, the
application updates its state accordingly.

Note that, if the data on the web resource did not change during the polling
interval, the energy spent on retrieving data from the resource does not a�ect the

3http://developer.android.com/guide/topics/appwidgets/index.html
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application’s state and is thus e�ectively wasted. This energy waste is unavoidable for
phone based polling solutions, since in contrast to polling, information updates are
irregular and unpredictable.

To prevent this energy waste, the phone ideally should communicate with the
server only when data has changed. This can be done using a server based technique
called push noti�cations. Then the server informs clients when speci�c data has
changed (see Figure 3.3-ii). Push noti�cations are an excellent solution to have energy
e�cient applications on mobile phones that show web information.

Implementing push noti�cations, however, requires server code modi�cations. For
example if the sensor retrieves its data from a weather web site, the weather web site
should be modi�ed. In many cases the sensor developer does not have the rights to
alter code on the web server.

3.5.2 Our Proposal: Cloud Based Push

We propose a new alternative mechanism for networked sensors that exploits the
energy e�ciency of push noti�cations, but does not require any server code to be changed
and thus can be used by third party sensor developers.

We propose to add an intermediate cloud layer in between the networked sensor
on the phone and the code on the server. This intermediate layer consists of a small
application that runs on a cloud resource. This cloud application communicates with
the phone using the energy e�cient push noti�cation messages (see Figure 3.3-iii),
while it uses polling at a high rate to retrieve updates from the web resource. Then,
the energy is spent on the cloud, where energy is relatively cheap and abundant, while
accurate information is available on the phone. There is no need to alter the code on
the web server, instead a little extra code is put on a cloud resource. We call such
an architecture Cloud Based Push, to underline the di�erence with existing server
initiated push noti�cation systems.

3.5.3 Communication O�oading Sensor Framework

Although SWAN does not forbid individual sensor developers to make use of the
principle of communication o�oading through a Cloud Based Push architecture,
implementing such a sensor raises several questions for a developer:

� How do we �nd and connect to cloud resources that can be used for communica-
tion o�oading?

� Where do we store the polling code that should run in the cloud?
� How do we get the polling code to the cloud resource and start and stop it?
� Does the sensor remain usable without the presence of a cloud resource?
� What do we do when we detect an update in the cloud, but the mobile device is

disconnected?
By providing a sub framework for sensors that use communication o�oading

within the SWAN framework we can answer the above questions and simplify the
development of such sensors.

To this end we reuse the Resource Manager from the Cuckoo computation o�oad-
ing framework (see Chapter 2) to discover cloud resources. Furthermore, we extend
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Figure 3.3: Examples of Di�erent Phone-Web Interactions. At the points (a), (b) and (c) the web resource
updates its information. If the polling mechanism is used (i), updates are received on the phone after some
delay � the time between (a) and (2), (c) and (4). Some updates are not received at all, e.g. (b). Using server
based push noti�cations (ii), these situations will not happen. Cloud based push noti�cations (iii) use an
intermediate cloud resource, that can poll the web resource at a much higher frequency and will therefore
have a much shorter delay and is less likely to miss updates. Furthermore, the cloud based push mechanism
moves energy expensive polling to the cloud.

the Cuckoo Server to also accept the installation of networked sensors and provide an
interface so that these sensors can be started and stopped. Since we cannot depend on
the sensor user having remote resources, we pose as an additional requirement that
any networked sensor that is suitable for communication o�oading also can be run as
traditional polling sensor when no resource is available. In addition and in line with
the Cuckoo framework we store the polling code in the installable �le (APK) that is
stored on the mobile device. From this �le we can extract the polling code and with
dynamic class loading, load the code at any Cuckoo Server.

Furthermore, we use the Google Cloud Messaging (GCM) framework [41] to send
the push messages from the Cuckoo Server to the mobile device.

Finally, we provide an abstract Cuckoo Sensor base class and a Cuckoo Poller
interface for networked sensors to simplify the programming of the a Communication
O�oading Sensor. The Cuckoo Sensor base class hides all the complexity of discover-
ing resources, installing the sensor code onto the resources and starting and stopping
monitoring on the remote resource as well as receiving the push messages from the re-
mote resource and putting the new values into SWAN. The complexity is then put into
the base class itself that the real sensor should extend. This base class also includes
a decision point whether communication o�oading can be used or local polling is
preferred. Rather than the complex o�oading decision for computation o�oading,
this decision is only based on whether or not remote resources are available.

Except for two methods that provide the GCM Sender Id and API key (as discussed
in Section 3.3.3) all code of the Cuckoo Sensor will be generated from a JSON speci-
�cation (see Figure 3.4) using SWAN’s Sensor Maker tool. What is left then for the
sensor programmer is to implement the two methods of the CuckooPoller interface:
one that indicates the polling rate based on whether communication o�oading is used,
and another one that actually executes a single poll (see Figure 3.5).

Once an update is detected the Cuckoo Server sends a push message back to the
mobile device. This messaged is received by a broadcast listener registered by the
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{ "name" : " ra in " ,
" cuckoo " : " true " ,
" namespace " : " i n t e r d r o i d . swan . cuckoo_rain_sensor " ,
" doc " : "A sensor for expected ra in in the Netherlands " ,
" author " : " r o e l o f &l t ; rkemp@cs . vu . nl&gt ; " ,
" c o n f i g s " : [

{ "name" : " l a t " ,
" c l a s s " : " Edi tTextPreference " ,
" type " : " S t r i n g " ,
" android : inputType " : "number" ,
" android : t i t l e " : " Lat i tude " ,
" android : summary" : " Set Lat i tude " ,
" android : d i a l o g T i t l e " : " Enter Lat i tude " } ,

{ "name" : " lon " ,
" c l a s s " : " Edi tTextPreference " ,
" type " : " S t r i n g " ,
" android : inputType " : "number" ,
" android : t i t l e " : " Longitude " ,
" android : summary" : " Set Longitude " ,
" android : d i a l o g T i t l e " : " Enter Longitude " } ,

{ "name" : "window" ,
" c l a s s " : " Edi tTextPreference " ,
" type " : " S t r i n g " ,
" android : inputType " : " t e x t " ,
" android : t i t l e " : " Time ( hh :mm) " ,
" android : summary" : " Set Time ( hh :mm) " ,
" android : d i a l o g T i t l e " : " Enter Time ( hh :mm) " } ,

] ,
" valuePaths " : [ { "name" : " expected " , " type " : " i n t " } ] ,
" uni t s " : [ { "name" : " expected " , " unit " : "mm" } ] ,

}

Figure 3.4: JSON �le of the rain sensor used with the Sensor Maker tool to generate the SWAN sensor code.
Line 2 indicates that we want to use Cuckoo Communication O�oading for this sensor.

generated Sensor class. This broadcast listener extracts the value from the message
and feeds it into the SWAN framework.

3.5.4 Evaluation

We created several sensors with the Communication O�oading sub framework in
SWAN (see Table 3.1), which can be installed as third-party sensors along SWAN’s
default sensors. The JSON speci�cation of the sensors and their actual implementation
are available online4 and give an indication of how simple it is to write communication
o�oading sensors for various data sources.

We used the Sensor Maker Tool to generate a large portion of the Android projects
for each sensor. The code that remained to be implemented by ourselves focused
on the actual gathering of the data. For the Server Sensor we repeatedly connect to
a web server and check the HTTP response code (like 200 OK, 404 NOT FOUND,
etc.). The Rain Sensor uses the buienradar API5, that can give an indication of the

4see: https://github.com/interdroid/swan-*-sensor, where * can be rain, train, server, alarm, news
5see: http://gratisweerdata.buienradar.nl/
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public c l a s s RainPoller implements CuckooPoller {

publ ic Map<String , Object> poll ( String valuePath , Map<String , Object>  -
configuration ) {

// c r e a t e r e s u l t o b j e c t
Map<String , Object> result = new HashMap<String , Object ( ) ;
// r e t r i e v e ra in l e v e l from web
i n t rainLevel = getRainLevelFromWWW ( configuration ) ;
result . put ( valuePath , rainLevel ) ;
return result ;

}

publ ic long getInterval ( Map<String , Object> configuration , boolean  -
remote ) {
i f ( remote ) {

return SECOND ; // every second
} e l s e {

return TEN_MINUTES ; // every 10 min .
}

}
}

Figure 3.5: Example of implementation for RainPoller

Table 3.1: O�oading Sensors
Sensor Value Path Con�guration Data Source Data
Server status server URL any HTTP server HTTP status code
Rain level latitude, longitude, buienradar.nl expected rain

minutes ahead in mm
Train delay departure station, ns.nl delay in minutes

destination
Alarm recent region, type alarmeringen.nl recent emergency

services messages
News recent category nu.nl recent news

headlines

predicted rain fall in the next two hours per 5 minute intervals in mm per hour, for a
location speci�ed with latitude and longitude. The Train Sensor fetches live departure
times per station for Dutch railway stations from the easy to parse mobile website6. It
reports delays in minutes with respect to the normal departure times to the SWAN
framework. Alarmeringen.nl provides an RSS feed of Dutch emergency incidents that
can be �ltered on type (police, paramedic, �re brigade, rescue brigade and trauma
helicopter) and region within the Netherlands. Based on this information we created
the Alarm Sensor, that updates with the title of every reported incident. From another
RSS feed7 we derived a News Sensor, that scans the headlines of the news �ltered by
category.

6see: http://mobile.ns.nl/actvertrektijden.action?from=<station name>
7see: http://nu.nl/feeds/rss/<category>.rss
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Table 3.2: Alarm Experiment Con�guration
Sensor Alarm
Con�guration region=Utrecht&type=ambulance
Device Nexus 7
OS Android 4.2.2
Polling Rate 10 seconds
Duration 10 hours 4 minutes
Number of Updates 65
Update Rate 0.108 updates/minute

Theoretically communication o�oading will not perform worse than phone based
polling considering all following metrics: found updates, arrival delay, data usage,
processing time, energy usage. Only when every phone based poll results in an
update, and all data in the poll is relevant phone based polling will perform as good
as communication o�oading. However in real world situations the above scenario is
very unlikely to happen.

Although one can expect communication o�oading to outperform phone base
polling, quantifying how communication o�oading performs against phone based
polling is di�cult, because it covers a very wide parameter space. Not only does it
matter which sensor is used, it also matters what data that sensor produces during the
experiment. For instance testing the rain sensor on a dry day will give better results
for communication o�oading, than on a rainy day where many updates happen. Also
the polling rate for the phone based polling in�uences the quanti�ed results of any
experiment. A high polling rate shows most likely a higher number of found updates,
a lower arrival delay, but increased data, processing power and energy usage.

From the above sensors we selected the Alarm Sensor to perform real world
experiments to quantify the bene�ts of communication o�oading over phone based
polling in a particular scenario. In this scenario we initially poll the data source
intensively (every 10 seconds) from the Nexus 7, starting with a full battery and until
the battery drops below the 33%, which results in a period of about 10 hours8. During
this period we collect a data set of polls.

For each poll we determine whether it results in a new sensor reading, how much
data is transferred and how much time the poll took on the mobile device. From this
data we can infer the average update rate for the data source and what would have
happened if the sensor would have polled with a lower polling rate. We can compute
how many updates would have been missed with a lower polling rate and also how
much later updates arrive.

Table 3.2 and 3.3 show the con�guration and results of this experiment. In a time
period of 10 hours and 4 minutes we encountered 65 updates, which gives an average
update rate of 0.108 updates per minute, or in other words, about one update per 9
minute and 17 seconds on average or about 56 polls per update. On average each poll
consumed 19 kB of data and took 292 ms of processing time.

We then repeated the experiment using communication o�oading. To make an
exact comparison, the code running on the remote machine retrieved its updates not

8the experiment is performed over WiFi, with the screen turned on at the lowest brightness level
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Table 3.3: Alarm Experiment Results
Polling O�oading Factor

Total Data Size 64.5 MB 103.5 kB 638x
Avg. Data Per Poll 18.79 kB -
Avg. Data Per Update 1 MB 1.6 kB
Total Processing Time 17 min 6 sec 3.7 sec 277x
Avg. Processing Time Per Poll 292 ms -
Avg. Processing Time Per Update 15.8 sec 57 ms

from the original web source, which could lead to a new update pattern, but from the
trace �le collected by the polling experiment. In this way both experiments encounter
the same number of updates at the same moments in time. As shown in Table 3.3,
the data consumed and processing time spent for communication o�oading on the
mobile device is dramatically smaller than with polling (data 638x and processing
277x).

There are two side notes to make for these numbers related to the fact that the
push mechanism is an integral part of the Android framework. Push messages are
sent from the Google servers to the Google Play Services application on the phone.
From this application the data is forwarded to the appropriate target application on
the phone.

The �rst side note is that we cannot start measuring the processing time at the
moment the push message arrives at the phone, but only when it arrives at our
application. This means that the measured processing time therefore is a slight
underestimate.

Secondly, part of the data tra�c is used for keeping the push connection between
the Play Services app and the Google servers active. This is a one-time cost and if
multiple applications use the push connection, the cost of keeping the connection
alive should be distributed over these applications. In our experiment our sensor was
the only application actively using the push connection and therefore we included the
data tra�c for keeping the connection alive in the total. However, in other situations
where there are multiple applications sharing the same connection, this data would
be an overestimate.

Nonetheless, the numbers we gathered with these experiments clearly show that
communication o�oading in this scenario is a superior alternative to polling from a
resource consumption perspective on the mobile device, especially if one compares
data consumption. Communication o�oading bene�ts not only from the fact that data
is only sent to the phone at the necessary moment, but also that only the necessary
amount of data is sent. In the above alarm sensor, the push messages do not contain
the entire RSS feed, but just the title of the most recent event that happened.

Next to using communication o�oading as an alternative for polling, we can also
reduce the polling rate to achieve lower resource consumption on the phone. However,
lowering the polling rate will also reduce the sensing quality as we show with the
following experiments.

Rather than running new experiments with di�erent polling rates, we use the trace
of the above experiment to simulate experiments with lower polling rates. This way
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Figure 3.6: Missed and found updates with di�erent polling intervals in the experiment with the Alarm
Sensor.
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Figure 3.7: Total Compute Time and Total Data Size with di�erent polling rates in the experiment with the
Alarm Sensor.

the actual update pattern of the data source � which can di�er from time to time �
does not interfere.

In the simulated experiments we increase the polling interval to see the impact on
the data usage, the total compute time and the accuracy, that is how much later the
found updates arrive and how many of the possible updates are actually found and
how many are missed.

Figure 3.6 shows that the higher we set the polling interval the more updates are
not detected by the sensor. In contrast, from Figure 3.7 we can see that the higher
we set the polling interval the lower the data consumption and the lower the total
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Figure 3.8: Delay in seconds versus the polling interval.
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Figure 3.9: Time in minutes that the device last longer if the polling rate (in polls per hour) is smaller,
compared to polling with 360 polls/hour (once every 10 seconds).

compute time. The delay shown in Figure 3.8 is the time in milliseconds that it takes
from the moment that the update happens until the sensor �nds out about the update.
Note that the delay can only be computed for the found updates, not for the missed
ones. The delay typically grows linearly with the polling interval, and shows spikes
when the polling interval is such that the number of found updates alters, since the
delay is averaged over the number of updates.

Not only does a higher polling rate cause more computation and communication,
it also naturally leads to a higher energy usage because of the increased computation
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and communication. We performed additional experiments to quantify the impact on
the battery. In these experiments we used the Nexus 7 mobile device and charged it
fully. Then we started polling until the battery reports that is charged for only 33%.
During this experiment we kept other variables such as the screen energy usage and
the network in use stable as much as possible. We repeated this experiment with
various polling rates, ranging from polling very often (once every 10 seconds, or in
other words 360 polls/hour) to polling infrequently only once every hour. Figure 3.9
shows how many more minutes the Nexus 7 lasts until its battery is drained from
100% to 33% compared to polling with a rate of once every 10 seconds. From this
�gure, we indeed see that a lower polling rate leads to the device lasting for a longer
time.

From the above experiments and simulations, we conclude that, for on device
polling, indeed the trade o� exists between, on the one hand, fast and complete
updates and, on the other hand, data, energy and compute time that is spent. By
o�oading polling to the cloud the impact of this trade o� does no longer hold for the
mobile device. Still polling at a high rate consumes more data, compute cycles and
energy, but with communication o�oading this is spent on a remote resource, which
does not impact the mobile user, while the bene�ts (high accuracy and low delay) of
polling with a high rate are available to the mobile user.

3.6 Cross Device Expressions

In this section we describe Cross Device Expressions. This category of expressions
consists of all expressions, for which at least one location is di�erent from the location
where the expression is registered. For example, if an expression registerd on the
smartphone of person A can access the location sensor on the smartphone of person B.
Extending SWAN to support such cross-device expressions drastically increases the
expressivity of the SWAN-Song expressions. With this addition it is possible to write
expressions for applications that do not only take the context of the host mobile device
into account, but also contextual information on other devices. Simple examples of
such expressions are:

� if the distance between the host device and the mobile device of a friend is
within a certain threshold, then give an alarm

� if the heart rates between a group of runners di�ers by more than a certain
threshold, then show a message that the group should be split

� if the calendar of the partner indicates no occupancy and the partner is not
making a phone call, but does have the screen on, then initiate a video call

In contrast to communication o�oading where we expect the o�oad resource to
have a server running that listens on a particular socket, with cross device sensors we
count on SWAN being installed on the other mobile device. This has the advantage that
we cannot only sense on the remote device, but also execute part of the evaluation on
the remote device enabling. This is di�erent from systems that gather sensor data from
multiple mobile devices on a central server, do the processing on the central server
and eventually send back processing results to the participating mobile devices. Such
an approach results in sending large amounts of sensor data, while processing close to
the data source � as we do in SWAN � drastically reduces the required communication.
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In extending SWAN to support cross device expressions we have to study the
following questions:

� How do we communicate between devices for registration of cross device expres-
sions and evaluation results?

� How do we deal with network latency and disconnectedness?
� How can devices �nd and name each other?
� How do we distribute the evaluation of cross device expressions over the involved

devices to consume the least resources?
� What components should be added to SWAN to provide high quality support

for cross device expressions?

3.6.1 Cross Device Communication

For cross device expressions we have several actions that involve communication
between the participating devices. For registering and unregistering expressions as
well as evaluating expressions, devices should interact by sending messages to each
other. Ideally this communication should be:

� reliable: messages should not get lost
� inexpensive: sending and receiving messages should not have a high cost (data,

time, energy)
� fast: messages should arrive with minimal latency
� available: no matter what interface devices use, when it is possible to deliver

messages it should be able.

Driven by the above goals, we chose from the available communication mechanisms
on mobile devices, to use push messaging to implement the cross device communication
for the following reasons. Android’s push framework (Google Cloud Messaging,
GCM) automatically deals with redelivery if devices are not reachable, it reuses an
already existing and therefore inexpensive connection to listen for incoming messages.
Furthermore it does not impose additional requirements, such as that the devices
should be physically close to each other (Bluetooth, NFC, WiFi Direct) or that there
is no NAT or �rewalls that block tra�c (most cellular networks), and neither does it
require us to listen for network changes to restart listening for incoming messages.

Upon a registration or unregistration of an expression with a cross device part, a
push message is sent to the matching device. This message also contains the return
address from the sending address. Whenever the matching device �nds an update
that it needs to send back to the registrant it uses this address to send back a push
message.

The disadvantage of using GCM is that it needs Internet connectivity to function.
Although two devices that are physically close to each other can communicate through,
for instance, Bluetooth or WiFi Direct, if one of them lacks Internet connectivity, push
messages sent with GCM cannot be exchanged, which reduces availability. Depending
on the state of the participating devices, the GCM servers can fail to deliver a message
and will retry with an exponential back-o� algorithm, which can lead to messages
that arrive much later than they were sent, which reduces the fast arrival of messages.
A hybrid approach where next to GCM other alternatives like Bluetooth and WiFi
Direct can be used, can in some cases increase the speed of communication and also
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the availability, but certainly increases the cost with respect to listening to potential
incoming messages. Future work should investigate the trade o�s between speed,
availability, cost and reliability of communication for cross device expressions.

3.6.2 Cross Device Naming

To be able to register cross device expressions, there should be a naming mechanism
that can uniquely identify a participating device in a cross device expression. An-
droid’s push framework � Google Cloud Messaging (GCM) � already provides such
a mechanism. Each application on a device that registers with GCM to be able to
receive push messages receives a registration id. This registration id is intended to
be used in application code and not to be shown to users. Therefore SWAN allows
users to set a user friendly name, with which their device can be referenced. Once a
device has a registration id and a user friendly name it is ready to pair with another
device, that is exchanging the registration id and user friendly name. Internally each
mobile device keeps a registry of known devices. If a new device is discovered, it gets
added to the registry, but only if no device with the given name is known, to ensure
that there are no name clashes on a device, where a user friendly name can map to
multiple registration ids.

3.6.3 Cross Device SWAN Components

Cross Device Expressions are di�erent from normal expressions in the sense that
they have additional information about the location where the expression should be
evaluated. To support such Cross Device Expressions we need to adapt the following
SWAN components:

� SWAN-Song: SWAN’s DSL should now include location
� Evaluation Engine: The evaluation engine should be able to receive expressions

not only from the API, but also from remote devices. It should also be able to
send evaluation results both to local apps and remote devices.

� Sensor Con�guration Activities: User-con�gured expressions through the con-
�guration activities should also support picking a location.

Furthermore, we need to provide new functionality to SWAN to enable users to
pair their devices. To this end we should make a remote device management app, that
we name SWAN-Lake.

Extending SWAN-Song

We extended SWAN-Song to support location by modifying its grammar and the
matching Java classes. While every type of expression should have a location indicating
on which device it will be evaluated, we only require setting this location explicitly for
SensorValueExpressions. For ConstantValueExpressions the location is implicitly set
to location independent, and for all other expression types the location is by default
inferred at registration time, but can be speci�ed. SWAN has the following prede�ned
locations, de�ned in the Expression class:

� LOCATION_SELF: the expression should be evaluated on the device itself
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� LOCATION_INDEPENDENT: it does not matter where the expression is evalu-
ated

All other locations should either contain the user friendly name that can be resolved
to a GCM registration id using the Registry, or a direct GCM registration pre�xed by
the following String: �regid:�.

The introduction of location changes the grammar for SWAN-Song to:

Sensor Expression = [location]@[entity]:[path]?[configuration]
{[mode],[window]}

Math Expression = [Value Expression] [location]@[Math Operator]
[Value Expression]

Comparison Expression = [Value Expression] [location]@[Comparator]
[Value Expression]

Logic Expression = [TriState Expression] [location]@
[Logic Operator] [TriState Expression]

Extending the Evaluation Engine

We extended the Evaluation Engine to also support receiving registrations for expres-
sions coming from another device. As we described above, such registrations are sent
using push messages with the GCM framework. Before the register message is sent
all locations in the expression will be resolved to registration ids using the Registry
and all references to the destination device will be changed with LOCATION_SELF.
Resolving is done on the registering device, because a sub expression that runs on
another device can contain sub expressions that run on a third device. If this third
device is known to the initial device, but not the second device, resolving on the
second device would fail.

Once a push message is received on a device, the GCM framework sends out a
Broadcast Intent that can be received by Broadcast Receiver that has a matching Intent
Filter.

The Evaluation Engine receives such a message in its receiver and then forwards
the message to the service. In the service the registration will be executed, but the id
of this expression will be altered by the Engine to include the return registration id
and a special marker String that marks this expression as remote expression. Once
the expression gets evaluated and a new value is ready to be sent by the Evaluation
Engine, it checks whether the id of that expression contains the marker String, and
if so, it extracts the registration id and sends a push message to this registration id,
that is the subscribing device. Once this message arrives at the subscribing device it
potentially initiates re-evaluation of the parent expression.

SWAN-Lake: Remote Device Management App

In order to be able to register expressions to other devices, these other devices must
�rst be paired to the application that hosts the application. This pairing is done in
a separate application that is included in the SWAN Framework: SWAN-Lake (see
Figure 3.10 left). SWAN-Lake allows users to enable their own device to participate
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Figure 3.10: Screenshots of the Swan-Lake application (left and middle) which provides an overview of
connected devices, and allows for NFC sharing using Android Beam and a Sensor Con�guration Activity
(right) including the option to choose a location.

in Cross Device expressions and request a registration id from the GCM Framework
and also set a user friendly name for their device. Once both a registration id and
a user friendly name are set, the device is ready to be paired with other devices.
While the exchange of <registration id, name> pairs can be implemented using
any side channel, we chose to implement SWAN-Lake pairing with NFC. NFC enables
communication when two devices are physically close to each other. Pairing fails when
the user friendly name is already known at the receiving side (see Figure 3.10 middle).
The sending side can then change its user friendly name and pairing can be repeated.

SWAN-Lake has a toggle with which cross device expressions can temporarily be
turned o� for privacy or performance reasons. Also the noti�cation icon of SWAN
changes when remote expressions are registered, to make the user aware of the fact
that apps from other devices are sensing through the user’s mobile device.

Extending Con�guration Activities

The user interfaces of the SWAN sensor con�guration activities should also take the
location of the resulting SensorValueExpression into account. We added a location
preference to the default preferences of the AbstractCon�gurationActivity that all the
sensor con�guration activities extend. This default location preference in turn binds
to the Registry and shows the user friendly names of all known devices, including the
�self� location if the expression should be executed on the device itself (see Figure 3.10
right).
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3.6.4 Expression Evaluation and Network Latency

In distributed computing there is a natural tension between consistency, availabil-
ity and partition tolerance, which is formulated in the CAP theorem (or Brewer’s
theorem)[19, 42] that states that not all three features can be guaranteed simultane-
ously in a distributed system. In evaluating expressions in the Evaluation Engine we
have similar tensions between the following features:

� Freshness: evaluation results are based on recent (fresh) sensing data
� Correctness: all results of the evaluation engine are correct
� Completeness: all potential results are found
First there is a tension between freshness and completeness in the Evaluation

Engine when we consider a high load of registered expressions.
Whenever a sensor produces a new reading, this sensor reading has a timestamp,

and will arrive after some delta at the Evaluation Engine. At tproduce sensor produces
its reading. At tarrival a noti�cation about this reading arrives at the Evaluation Engine.
The Engine determines whether this reading causes a new evaluation that occurs at
tevaluation.

With Standalone SWAN the time between tproduce and tarrival is small and therefore
neglectable. However the time between tarrival and tevaluation can be signi�cant due to
queuing. This happens when the Evaluation Engine is evaluating other expressions
�rst. The potential di�erence between tarrival and tevaluation raises the question against
which timestamp the Engine should evaluate the expression.

The advantage of evaluating against tarrival is that the Engine does not miss any
state change that can occur (favor completeness). The disadvantage is that if the rate
with which new readings come in is higher than the maximum evaluation rate of the
engine, the engine increasingly gets behind in evaluating (reducing freshness), which
only can be compensated when the evaluation rate becomes higher than the reading
production rate. Applications thus get guaranteed complete, but potentially out of
date data.

In contrast, when the Engine evaluates against tevaluation it is guaranteed that
applications get fresh data, but the Engine potentially misses some state changes
that happen. Any timestamp in between tarrival and tevaluation increases or decreases
freshness and completeness, depending on how close to the extremes it is. Thus there
is a trade o� between completeness of the state changes and how fresh state changes
are when they arrive in the application. In Standalone SWAN we favor freshness
over completeness, because we believe that this is more important for the majority of
applications.

A similar tension between freshness on the one hand and completeness � and
now also correctness � on the other hand exists in Distributed SWAN. Whenever
an evaluation is triggered that depends on a sub expression that is evaluated on a
di�erent location, it can either (i) delay the evaluation until it knows for sure what the
value of the sub expression is, thereby guaranteeing correctness and completeness but
reducing the freshness, or (ii) opportunistically assume that the currently known value
is still valid and deliver fresh results, which might be incorrect. Such an opportunistic
approach can also lead to events not being detected at all.

Figure 3.11 shows a distributed evaluation scenario with two sub expressions A
and B. These expressions can be combined into a logical expression with logic operator
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Figure 3.11: Example evaluation scenario for distributed expression with two sub expressions A and B.

AND or OR. Consider that this logical expression is evaluated on the same device as
sub expression B. In this example A updates from TRUE to FALSE at timestamp t0,
B also updates later on at t1 and after that the update from A arrives at B (t2). Note
that we use the timestamps as issued by the involved devices. Thereby we rely on
common clock synchronization techniques on mobile devices, such as the network
timing protocol (NTP, [69]), synchronization using the timestamps of the GPS signal
or from cell towers. In this case we need to have real timestamps rather than logical
timestamps[62], which only indicate the order of events.

At t1 the Evaluation Engine on device B can decide to immediately execute eval-
uation based on the currently known values (i.e. approach (ii)), this will result into
TRUE both with operators AND and OR. Only for operator AND this will trigger a
state change from FALSE to TRUE. Note that this is an incorrect value. Only at t2 the
new value of A will be received and re-evaluation will generate a new state change
from TRUE to FALSE. When the operator is OR, the expression remains TRUE for the
entire execution which showcases that also events are missed: this expression has a
period between t0 and t1 where it should evaluate to FALSE.

In contrast, the Evaluation Engine can also wait at t1 until it knows for sure what
value A had at that time (i.e. approach (i)). Although at t2 a new value for A arrives,
this event only causes an update to applications for t0, where the values for both A
and B are known. Only when an update timestamped after t1 arrives, the Engine can
evaluate the update triggered by the state change of B.

Srivastava and Widom [105] discuss an approach based on heartbeats in which
evaluation is delayed and correctness and completeness is achieved. However, in Dis-
tributed SWAN we favor freshness of the updates over correctness and completeness,
because there is no upper bound on what the latency for push messages is9.

In case the receiving device is o�ine for a while, updates will be kept on the GCM
servers. Eventually these updates will be delivered when the device reconnects to the
GCM service.

In Distributed SWAN we want to avoid that this triggers evaluations that are not
interesting to the application anymore since they happened too far away in the past.
Rather, we want to provide the subscribed application with the newest state of the
expression as fast as possible.

9To give the reader an idea about typical values of sending a push message from one device to another,
we experimentally determined the lower bound to be around 70 ms. and the average around 120 ms., both
when using a WiFi connection.
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Figure 3.12: Expression tree belonging to expression: self@movement:total{5000, MAX}>15.0 ||
other@movement:total{5000, MAX}>15.0

For using Distributed SWAN, developers should be aware that this in some cases
leads to incorrect (wrong updates), delayed or incomplete (missing updates) results,
especially when it can be expected that the transmission delay is larger than the
history windows of the expression. In such a case, updates arrive too late to have any
impact on the evaluation of the cross device expression.

3.6.5 Distributing Cross Device Expressions

When we have complex cross device expressions � these are anything but a constant
or sensor value expression � and developers have not speci�ed the evaluation location
of the expression, there are multiple ways of distributing such an expression over
the participating devices. In this section we outline how SWAN determines the
distribution of cross device expressions with the following goals in mind:

� Minimize communication. Communication is expensive and therefore should
be avoided when possible.

� Minimize evaluation latency. Minimize the time between an event happening
and the detection of that event through evaluation.

Consider for example the following expression, that checks whether a device itself
or another device is being moved based on the accelerometer:

self@movement:total{5000, MAX}>15.0 || other@movement:total
{5000, MAX}>15.0

The root of this expression is a Logic Expression with two Comparison Expressions
which both have a Sensor Value Expression and a Constant Value Expression as
children. The expression is registered on the device with location ’self’. Figure 3.12
shows a graphical representation of the expression tree.

We can distribute the evaluation of this expression over the two involved devices
in several ways as shown in Figure 3.13. For some of these distributions we can easily
determine that such a distribution generates more network communication than
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Figure 3.13: Possible distribution schemes for the expression from Figure 3.12. The dashed line indicates
network communication. The light colored circles indicate evaluation on device ’self’, the darker colored
circles indicate evaluation on device ’other’.

others. Sending all individual values from device ’other’ to device ’self’ (Figure 3.13,
top-left), where device ’self’ evaluates the Comparison expression against the Constant
expression generates more network tra�c than if device ’other’ would evaluate the
Comparison expression (Figure 3.13, top right).

For the Logic expression it is harder to determine which of the two devices should
evaluate this, because if device ’other’ switches more often from TRUE to FALSE than
device ’self’ it is better to evaluate the Logic expression on device ’other’ to reduce
communication, and vice versa. If both Comparison expressions change with the
same rate, it is better to evaluate it on device ’self’ to prevent the �nal outcome of the
expression to be sent over the network (see di�erence between Figure 3.13 bottom-left
and bottom-right).

Also from a latency point of view, evaluating the Logic expression at the ’self’
device can potentially give a faster evaluation. This can be the case if the ’self’ part of
the Logic expression evaluates in TRUE. Then short cutting can be applied and there
is no need for the delayed results from the ’other’ part. This example shows that to
choose a good distribution of an expression in some cases generic rules apply, but in
other cases additional information, such as change rate, is needed to make a good
distribution.

Location Rules

We determined that in the following situations choosing the best location for evaluat-
ing an expression can be de�ned in a generic rule, because it results in less or equal
communication as any of the alternative locations. The �rst situation is when both
sub expressions have the same location, the rule is de�ned as follows:
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Rule 1: If both child expressions are evaluated on the same location, then also the parent
expression should be evaluated on that location.

This rule holds in all cases, because update rate of a parent expression cannot be
larger than the update rate of its children. The update rate will be of equal size if
the parent is a Math expression, since every new evaluation for the children will also
generate an evaluation of the parent, or smaller if the parent is a Tristate expression.
Theoretically a Tristate expression could update as often as its children, but in practice
this situation is very rare. It would mean that the expression is upon each evaluation
of its children will change from TRUE to FALSE or vice versa.

A second situation is when one of the sub expressions is a constant. Comparing
against a constant can be done on any device and therefore we de�ne our second rule
as follows:

Rule 2: If one of the child expressions is a location independent expression (i.e. it is a
constant), then the parent expression should be evaluated on the location of the other child
expression.

Since location independent expressions can be evaluated anywhere, evaluating an
expression of which one of the child expressions is a location independent expres-
sion can best be done on the same location as the other child expression, because
this possibly reduces the need to communicate, while it cannot trigger additional
communication.

The remaining situation is a situation in which both child expressions have a
di�erent location. In such a case it is notoriously hard to make a good decision where
the parent expression should be evaluated, and it might even change during the time
the expression is registered. SWAN applies the following location rules in such a
situation:

Rule 3: If one of the child expressions is a local expression (i.e. its location is ’self’),
then the parent expression should also be evaluated locally.

Rule 4: If none of the child expressions is a local expression, then the parent expression
is evaluated on the location of the �rst (left) child.

Developers can prevent SWAN from employing the above rules by explicitly
de�ning the location of an expression when it is created.

Expression Aggregation

For a group of applications that use cross device expressions, it is a natural conse-
quence that on all devices that participate in the cross device expression the same
application is run.

Consider for example the application where a group of friends registers an ex-
pression whether they all are within a certain distance from their favorite pub and
have empty calendars. If all members of the group register this expression, all mobile
devices will distribute a single expression over the group, resulting in each devices
evaluating as many expressions as group members. Depending on the implementation
of the sensor in use, this can also result in each device multiple times next to each
other sensing the same data source.
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Figure 3.14: Screenshots of the Baby Monitor app. On the left hand the con�guration is shown. The right
side shows Android’s noti�cation screen, with a noti�cation caused by the Baby Monitor app.

To prevent this situation to occur, we implemented expression aggregation, where
we do not re-register already registered expressions, but rather keep a list of associated
expression ids. Upon an update of the expression, the Evaluation Engine informs all
listeners for the di�erent ids. For each unregister we remove the item from the list
and when the list is empty the expression is really unregistered.

Although this optimization is added for cross device expressions, it will also make
SWAN more e�cient for multiple applications on the same device that register the
same expression.

3.6.6 Evaluation

In this section we show that the expressivity of cross device expressions in Distributed
SWAN indeed allows for simpli�ed development of useful distributed sensing ap-
plications. To this end we describe various applications that can be built with the
Distributed SWAN Framework, together with the cross device expressions they use
and a short description of the purpose of the application.

Example App: Baby Monitor

Description: The Baby Monitor app will alert the user when the baby in another
room wakes up (see Figure 3.14). Depending on the user’s preferences it will show a
noti�cation and also play a sound. This app requires multiple devices: one device that
is put in the baby’s room and acts as a sensing device, and at least one other device of
one of the parents that shows the noti�cations. It is also possible that both parents use
the app at the same time. Detecting whether the baby wakes up is done by monitoring
the sound level of the microphone. Whenever the average sound level over the last 5
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Figure 3.15: Screenshots of the Step Ahead App. The homescreen widget tells the user �rst that he is
behind, and later on, after the user did some steps, that he is ahead.

seconds is considerably higher (as set by the parent) than the average sound level over
the last minute, we consider the baby to be woken up. Also when the battery of the
device in the baby’s room is low, a noti�cation is shown on the parents devices.

Expressions:

awake = " baby@sound : db? audio_source=MIC{MEAN, 5 s } � baby@sound : db? -
audio_source=MIC{MEAN, 1m} > threshold "

battery low = " baby@battery : l e v e l < 10 "

Example App: Step Ahead

Description: The Step Ahead app allows two persons to compete daily on the number
of steps they take, to provide a stimulus to live a healthy life. To this end, Step Ahead
provides a homescreen widget that shows who of the two has taken the most steps at
the moment (see Figure 3.15). Not only does this application provide a homescreen
widget, it also adds a sensor to the SWAN framework: the step sensor. To reduce the
number of push messages sent across the participating devices, the step sensor allows
its update behavior to be con�gured. Developers can specify the minimum number of
steps between updates, as well as the minimum amount of time between updates. The
Step Ahead application takes advantage of this by providing a low minimum time
between updates for detecting local steps, and a higher amount of time for steps from
the other device.
Expression:

ahead = " se l f@step : today ? min_steps=1&min_time=1000 > other@step : today ? -
min_steps=1&min_time=60000 "
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Figure 3.16: Screenshots of the Context Actions App.
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Example App: Context Actions

Description: Among the most popular context applications today are several user
con�gurable Context Triggered Actions applications. In such an application, end
users can de�ne an action to be started in a speci�c situation. Well known examples
are Locale, Tasker, and AutomateIt. On top of SWAN we made a similar application
that we call Context Actions. This app allows users to create an expression and specify
actions that should run when the expression changes state.

Figure 3.16-a shows the expression listing and composition screen of Context
Actions. In this part of the application, the user can add new SensorValueExpressions
and ConstantValueExpressions to the list. Adding a SensorValueExpression (pressing
the highlighted button in Figure 3.16-a) brings the user �rst to a list of available sensors
(Figure 3.16-b), which can be retrieved from SWAN, and when one of the sensors is
selected, the con�guration activity of that sensor is shown (Figure 3.16-c), so that the
user can select the details, such as the location and the valuepath, and con�gure the
sensor before use. SensorValueExpressions and ConstantValueExpressions (Figure
3.16-d) can be combined into higher level expressions (Figure 3.16-e and f), ultimately
leading to TriStateExpressions. Subsequently, the user can use the TriStateExpressions
to trigger actions (by pressing the highlighted button, see Figure 3.16-g) for each of
the TRUE, FALSE and UNDEFINED states (see Figure 3.16-h and i).

The Context Actions app allows third party applications to provide such actions.
When the user selects a TriStateExpression as trigger, Context Actions runs a package
manager discovery to �nd all actions that can be used to respond on the trigger. To
this end Context Actions uses Android’s Intent mechanism. Intents are messages that
can be sent to the Android system and that will be delivered to other components that
have matching Intent Filters. Context Actions uses Android’s Package Manager to �nd
all components that support the �interdroid.swan.contextactions.ACTION� action in
their intent �lter and provides a list of these actions to the user. Examples of such
actions are playing a sound, showing a noti�cation, starting an app, sending an email,
deleting some �les, taking a picture, initiating a phone call, etc.

To showcase the use of the Context Actions app, we provide a scenario derived
from our own life situation with various combinations of expressions and actions. All
expressions can be created with the Context Actions app and the currently available
sensors in the SWAN framework. For readability we have split some of the trigger
expressions, those that have the actions attached to it, into sub expressions.

John awakens; he smells co�ee10. A few minutes ago his smartphone woke him up, 15
minutes later than on a regular working day, because his train is delayed (i). While he
eats breakfast he looks outside at the weather and it looks nice. Nonetheless, after a few
minutes, his smartphone says �Don’t forget your umbrella, you might need it� (ii). He
�nishes breakfast, takes his umbrella and leaves home to catch the delayed train.

(i)
// sub express ions
minute = 60000
working_day = " self@time : day_of_week > 1 && self@time : day_of_week <  -

7 "

10Indeed, just like Sal did in [116].
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train_leaving_in_20_minutes = " self@time : current >= ( s e l f @ t r a i n : -
departure ? from= ’AMF’& to = ’ASDZ’&time = ’8:40 ’ � (20 * minute ) ) "

// t r i g g e r express ion
trigger = " working_day && train_leaving_in_20_minutes "

(ii)
// sub express ions
at_home = " s e l f @ w i f i : s s i d {ANY, 1m} == ’ JohnsWiFi ’ "
awake = " self@movement : t o t a l {MAX, 1h } > 20.0 "
morning = " self@time : hour_of_day < 12 "
raining_here = " s e l f @ r a i n : expected ? l a t = . . . & lon = . . . & window=10min > 0 "
raining_work = " s e l f @ r a i n : expected ? l a t = . . . & lon = . . . & window=1hr > 0 "
raining_commute = " ra ining_here | | raining_work "
// t r i g g e r express ion
trigger = " working_day && morning && at_home && awake &&  -

raining_commute "

When he enters the train his smartphone shows a noti�cation that his friend Luke is
in the same train (iii). He immediately sends a message to Luke to �nd out his location
in the train. When they �nd each other they chat for a while about the rumors about the
new phone that is coming out soon. When Luke has to leave the train, John continues and
constructs a new alert that when the news about this new phone is available on the news
web site, and he is not in a meeting with his boss, his phone will show a noti�cation and
load the news article (iv).

(iii)
// sub express ions
self_at_train = " s e l f @ w i f i : s s i d {ANY, 1m} == ’ TrainWiFi ’ "
luke_at_train = " luke@wifi : s s i d {ANY, 1m} == ’ TrainWiFi ’ "
// t r i g g e r express ion
trigger = " s e l f _ a t _ t r a i n && l u k e _ a t _ t r a i n "

(iv)
// sub express ions
news_item = " self@news : recent ? category = ’ tech ’ conta ins ’ Nexus X ’ "
meeting_with_boss = " se l f@calendar : busy == ’ true ’ && boss@calendar : -

busy == ’ true ’ && sel f@bluetooth : name {ANY, 1m} == ’ Boss ’ "
// t r i g g e r express ion
trigger = " news_item && ! meeting_with_boss "

When John arrives at the station close to work, he exits the train and uses his umbrella,
because it is raining. He walks to work and starts working. A few hours later he checks
his email and sees that his smartphone has sent him an email telling him that he missed
three phone calls from his wife (v). He quickly gets his smartphone from his bag and indeed
his wife has called, but the sound level was automatically set to very low to not disturb
colleagues (vi). Normally this is not a problem because John puts his phone on his desk,
but today he forgot to take it out of the bag. He calls back his wife and they discuss which
babysitter they ask for the evening. In the afternoon an accident happens in the street
where John’s family lives, fortunately John’s wife is not close to their home and therefore the
occurrence of this accident does not start any alert (vii).
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(v)
// sub express ions
wife_called = " s e l f @ c a l l : phone_number == 1234567890 "
not_on_desk = " se l f@screen : i s_screen_on {ALL, 30m} == ’ f a l s e ’ | |  -

s e l f @ l i g h t : lux {MAX, 30m} < 100 "
// t r i g g e r express ion
trigger = " wi fe_ca l l ed && not_on_desk "

(vi)
trigger = " s e l f @ w i f i : s s i d {ANY, 15m} == ’WorkWiFi ’ "

(vii)
// sub express ions
alert_in_street = " self@alarm : recent ? region = ’ Utrecht ’ conta ins ’ -

Coppello ’ "
wife_close_to_home = " wife@smart_location : within ? l a t = . . . & lon = . . . & -

range=500&max_speed=30{ANY, 30m} == ’ true ’ "
// t r i g g e r express ion
trigger = " a l e r t _ i n _ s t r e e t && wife_close_to_home "

When John is done working, he leaves the o�ce and his wife automatically gets a
noti�cation on her phone, so she can start preparing dinner (viii). After a delicious dinner
John’s smartphone shows another alert (ix). His brother has left home to pick him up to play
football. John walks down to the point where his brother will pick him up. In the meantime
the babysitter has arrived and John’s wife goes out running. She starts her favorite running
app and immediately she gets a noti�cation that her friend is also running and that she is
only a few streets away (x). She calls her and together they do their running exercises.

(viii)
trigger = " ! ( john@smart_location : within ? l a t = . . . & lon = . . . & range=1000& -

max_speed=3 == ’ true ’ ) "

(ix)
trigger = " ! ( brother@smart_locat ion : within ? l a t = . . . & lon = . . . & range -

=2000&max_speed=30 == ’ true ’ ) "

(x)
// sub express ions
running_app_started = " s e l f @ i n t e n t : a c t i v i t y conta ins ’com . endomondo . -

android ’ "
friend_is_close = " s e l f @ l o c a t i o n ? provider=pass ive � f r i end@locat ion ? -

min_time=10000 < 1000 "
// t r i g g e r express ion
trigger = " running_app_started && f r i e n d _ i s _ c l o s e "

Although John’s wife trusts the babysitter, she feels more comfortable if she knows
whether the kids are sleeping well. To this end she has put the family’s tablet in the kids
room to monitor the sound level (xi). When both John and his wife are home, just before
they go to bed John’s phone shows another noti�cation (xii). It really needs to get charged,
because it doesn’t have enough to make it to the o�ce next day.
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(xi) see Example App: Baby Monitor

(xii)
// sub express ions
battery_low = " s e l f @ b a t t e r y : l e v e l < 25 "
battery_plugged = " s e l f @ b a t t e r y : plugged == ’ f a l s e ’ "
active = " self@movement : t o t a l {MAX, 2m} > 20 "
bed_time = " self@time : hour_of_day >= 10 "
// t r i g g e r express ion
trigger = " battery_low && ! battery_plugged && a c t i v e && bed_time "

Together the three apps � Baby Monitor, Step Ahead, Context Actions � that we
have described in this section show that Distributed SWAN allows various applications
to be constructed, from simple ones such as the Baby Monitor and Step Ahead app, to
complex ones, like Context Actions, that give users very powerful means to leverage
the sensing power of the smartphone for their daily use.

3.7 Conclusions

In this chapter we have presented extensions to the SWAN framework, which we
created to simplify the development of distributed sensing applications on mobile
devices thereby ful�lling our second Research Goal:

Create a framework for distributed sensing that simpli�es the development of context
aware applications.

We detailed the design of an initial version of SWAN, called Standalone SWAN,
that support the development of di�erent types of contextual applications. SWAN
consists of SWAN Sensors that can feed arbitrary timestamped data into the system,
an Evaluation Engine that can do processing on the sensor data, which ultimately
informs a third party application that makes use of the SWAN Framework.

The data of the SWAN Sensors can come from the hardware sensors on the mobile
device, connected sensors, such as Bluetooth heart rate sensors, networked sensors,
data sensors or user input sensors. The framework allows for third party sensors to be
added and provides a useful tool that can generate a large part of the required code
based on a JSON speci�cation.

Context presentation applications can register Value Expressions that either relay the
raw data from the sensors to the application or perform mathematical operations on
the sensor data before it is passed to the application. In addition, Context triggered
action applications can register Tri State Expressions to trigger certain actions when
such an expression changes state between TRUE, FALSE or UNDEFINED.

Expressions can be de�ned as Java Objects, but also as Strings in a special domain
speci�c language, called SWAN-Song. This language is structured in such a way that
the Evaluation Engine can apply processing optimizations to minimize the time spent
on evaluation and sensing, through the defer until and sleep and be ready optimizations.

While Standalone SWAN already provided powerful abstractions and good pro-
gramming support, we extended Standalone SWAN with distributed sensing into
Distributed SWAN. Distributed SWAN eases the development of Network Sensors
that now can use external resources to monitor the network through communication
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o�oading, thereby improving the sensing accuracy � lower delays, and more updates
found � while also reducing the sensing cost on the mobile device � communication
cost and processing cost.

We o�er a sub framework in the SWAN framework that aids developers in writing
Network Sensors. This sub network reuses the code bundling concept from Cuckoo
(see Chapter 2), as well as its server application and mobile resource manager app.
Using this framework the network sensor remains runnable. Local, when no network
resource is present, or otherwise o�oaded. The polling code that runs in the cloud can
be controlled from the mobile device and we use Google’s Cloud Messaging system
to send back messages once an update has been detected. GCM has also support for
resubmitting messages when the device is not connected.

Furthermore, Distributed SWAN improves the context abstractions for developers
by allowing applications to take contextual information of other mobile devices
into account through cross device expressions. Multiple mobile devices that run SWAN
applications communicate through push messages, thereby using the GCM registration
id as names. A separate application, named SWAN-Lake, manages all known SWAN
devices and provides human-friendly names for them. It also allows users to pair their
devices. SWAN takes an opportunistic approach to evaluating cross device expressions,
where it assumes remote sensor data to be valid until replaced by a newer value.
SWAN-Song, the domain speci�c language of SWAN, incorporates extensions for cross
device expressions and also the Evaluation Engine and Con�guration Activities for the
sensors were adapted to support cross device expressions. Limited by the number of
currently implemented sensors and our own imagination we provided a few examples
that showcase how easy a sensing application can be built using the SWAN framework,
however we believe that the framework is applicable way beyond these apps.
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4. Discussion

4.1 Conclusion

In this thesis we described two frameworks for distributed smartphone computing, one
for applications with compute intensive tasks and another one for applications that
take contextual sensor information into account. Both frameworks provide a com-
mon structure for the development of distributed smartphone applications, thereby
extending the possible distribution model options for distributed smartphone appli-
cations. Both frameworks have in common that they put the smartphone application
at the center and only make use of other resources when applicable. This contrasts
with the traditional approach for smartphone computing in the above areas, where a
centralized web server is part of the distributed environment. The frameworks that
we described do not need such a centralized component.

In Chapter 2 we described the Cuckoo computation o�oading framework. Com-
putation o�oading can be used to transfer compute intensive tasks to other resources.
Transferring tasks away from the mobile device has the potential advantage to save on
energy usage and/or computation time. Also the other resource might be capable of
performing the task better (i.e. with a higher quality).

From two case studies, eyeDentify and HDR we derived the requirements for
the Cuckoo framework. We found that the framework should have a fall-back im-
plementation that can be executed on the device itself in cases of disconnectedness,
and also that the framework should allow this local implementation to be di�erent
from the remote implementation. Furthermore, we require the framework to make
smart decisions, based on the current context of the device, the history of previous
executions, and the parameters of the current execution.

The resulting framework is created for the Android framework and exploits An-
droid’s activity/service inter process communication, by intercepting calls to a service
at runtime. These calls pass through Cuckoo’s Oracle which decides based on the
above requirements whether or not to o�oad. At build time Cuckoo uses code genera-
tion and code rewriting and integrates into the default Android build process of the
recommended Android IDE, Eclipse, through a plug in. Transforming an application
into a computation o�oading application is simpli�ed to a single mouse click fol-
lowed by creating an implementation for remote resources. The latter can be as simple
as copy-pasting the local implementation. In addition Cuckoo o�ers developers the
means to �ne tune the o�oading decision process, by o�ering methods for method
weights, return size prediction and energy estimation.

Not only does the framework help creating and running the application on the
mobile device, it also comes with an o�oading server that can be started on virtually
any remote resource. To help users manage their remote resources and to enable
Cuckoo’s runtime to discover such resources, Cuckoo also has a separate resource
manager application.

Evaluation of Cuckoo showed that the build tools drastically simplify the creation
of computation o�oading applications and that the runtime overhead is low enough,
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such that computation o�oading indeed can lead to less energy usage or lower
execution times. The components that together form the input on which Cuckoo’s
Oracle makes its decision prove to be good enough to lead to high quality decisions.

In Chapter 3 we discuss the SWAN framework. SWAN simpli�es the development
of applications that use input from sensors. Application developers can use SWAN’s
domain speci�c language SWAN-Song to create complex context expressions that in
turn can be registered to the SWAN Evaluation Engine. This Evaluation Engine takes
care of e�ciently evaluating all the expressions of all applications on a device that
use sensor data. It informs the applications that registered the expressions only when
the expression value changes. The application itself is then responsible of acting upon
such a change.

SWAN supports a wide variety of sensors, from the on device sensors such as the
accelerometer, to external sensors over Bluetooth, to network sensors that get their
data from the web, to data sensors that inspect data sources on the device, such as the
calendar. It is possible for third-party applications to add sensors to the framework.
These sensors in turn can be used by yet other applications. The SWAN framework
also has a sensor maker tool, which can, based on an JSON input �le, generate a large
portion of code needed for a new sensor.

Furthermore, the framework has built in user interface components for con�gura-
tion of sensors and expressions, which can be reused by third party app developers.

We constructed a sub framework, especially targeted at network sensors that
exploits the technique of communication o�oading and further structures the de-
velopment of those sensors, and in addition also makes these sensors much less
communication intensive at runtime by o�oading polling to a remote resource. This
remote resource will notify the device once an update has been detected through a
push message.

To broaden what can be expressed in the context expression abstraction we ex-
panded the SWAN-Song language to add a location to each sensor predicate. This
resulted in cross device expressions, expressions that take not only the local context,
but also context on other devices into account. We do not forward all sensor data to a
central server or directly to the device that registered the expression, but make use
of the processing power of the involved devices and execute the evaluation of cross
device expressions in a distributed way.

We believe that through developing the Cuckoo and SWAN framework, we have
contributed both new insights as well as very practical tools that make structured
realization of truly smart applications more viable.

4.2 Future Research Directions

Although we have put our best e�ort in providing complete frameworks, it is inherent
to research to limit the scope. Furthermore, sometimes we were limited by software
and/or hardware to do the research that we wanted to do. In this section we outline
future research directions that can build upon the existing research.
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Security

In our research we assume not only a benevolent developer, but also a benevolent
user and execution environment. Unfortunately, this is not true in the real world.
Therefore future research should be done in how to secure both the Cuckoo and SWAN
frameworks.

For example for computation o�oading, there are risks that attackers eavesdrop
on the communication between the phone and the remote resource, or use the remote
resource without permission, that they make it impossible for the mobile device to
reach the remote resource, that they pretend to be a remote resource and return cor-
rupted information, etc. Much of these risks can be solved with standard cryptography
techniques. However, these techniques will also impact the o�oading decision model,
as for instance authentication and authorization might introduce additional round
trips between phone and resource. Furthermore encrypting and decrypting data adds
to data size and compute time.

In the distributed sensing framework, similar risks appear as attackers can inject,
alter or remove data that is communicated between the multiple devices. Again,
standard cryptography techniques can likely be applied to overcome these issues.

In addition, for privacy reasons, users should be able to grant and revoke access to
other users for sensors that can be accessed with cross device expressions.

Measuring Energy

Energy is a precious resource on today’s mobile devices. One of the biggest complaints
of users is that their smartphone’s battery does not last as long as they would like. As
the daily usage of smartphones is still increasing, it is very important for application
developers to develop their applications to consume as little energy as possible. To
this end it would be really useful if energy could be measured on �ne-grained scale
and per component, much like time can be measured by applications. Although
the Cardhu developers tablet that we used throughout this thesis o�ers some of this
functionality, it would be very useful if there was hardware and software support to
measure energy on every device and also a methodology that is used throughout the
community to measure energy usage.

Re�ning O�oading Models

While the current models for o�oading already show very encouraging results, fu-
ture research can investigate its applicability on a wide variety of devices, networks
and other variables. Also the impact of using fourth generation mobile networks on
the computation o�oading models should be studied. These networks have promis-
ing characteristics in terms of much lower latency and higher bandwidth than 3G
connections.

Another direction of research could be to simplify the o�oading models, to mini-
mize the e�ort that leads to correct advices from the Oracle.
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O�oading to the Phone

During our research the compute power of mobile devices increased tremendously.
This, in combination with the recent introduction of new less powerful wearable
devices, such as Google’s project Glass and several wrist watches, can make the phone
a potential o�oad target instead of an o�oad source. Rather than using IP-based
networks o�oading is likely to use networks such as NFC and Bluetooth, with entirely
di�erent characteristics than the networks we use in Cuckoo. Future research should
study whether o�oading from these wearable devices to the mobile device is an
attractive option.

Another reason for a smartphone to become an o�oading target is to construct
thin web servers that o�oad much of the needed computation to generate a web page
to the smartphone that requests the web page. Current techniques such as JavaScript
and HTML5 can already be used in such a way, however, a dynamic environment that
takes the context of the smartphone into account can at runtime decide what work to
o�oad to the phone and what to execute on the server, much like is done in Cuckoo.

Quantifying Expression Cost

The SWAN framework conveniently allows developers to de�ne context expressions.
However, there is currently no feedback to a developer about what the implications
of registering an expression are. Depending on which sensors the expression refers
to, how these sensors are con�gured, the likelihood of the sensors producing certain
values and how sub expressions are linked together, the continuous evaluation of such
an expression can consume much resources (energy and CPU time).

By analyzing the expression both at construction time and during the time it is
registered, SWAN could provide developers and even application users feedback
about how energy consumptive and how processing consumptive the expression is.
We believe that an Expression Viewer application, that shows this information, can be
of help to both developers and users, much like the current Android system settings
application that shows which applications consumed how much of the battery.

Furthermore, we believe that a graphical user interface tool (such as an Eclipse
plug in) can assist developers during the development to create, analyze and test
expressions with simulated sensor values.

Simplifying Sensor Development

Although the current sensor maker tool already drastically simpli�es the creation
of new sensors, future work could focus on creating an Eclipse Project Wizard from
the current sensor maker tool code. This would further simplify the creation of new
sensors, since developers no longer have to write a correct JSON �le, but rather �ll in
forms of a UI based wizard.

Predictable Sensors

Currently, SWAN assumes sensors to produce unpredictable values. However there
can be sensors that produce values that are somehow predictable. For example, a step
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sensor counting the number of steps taken will always produce an increasing value.
Or, a sensor that is con�gured with a speci�c sample interval, will not produce new
readings between two samples. Knowledge about sensor behavior can lead to smarter
evaluation strategies. We therefore propose that future research should investigate
a categorization of sensors based on the predictability of the sensor values and the
update rate, and that sensors expose this information to the Evaluation Engine, such
that it can employ smarter evaluation strategies.

Expression Evaluation Strategies

The current evaluation strategy does neither discriminate between expressions, nor
alter expressions. Both techniques can potentially help to deal with the situation
when the evaluation demand is larger than the processing power. If expressions
have priorities, then the higher priority expressions can get preference in the queue
over lower priority expressions, to maintain a constant evaluation rate for the high
priority expressions. Altering expressions can be another technique that for instance
temporarily down sizes the sample rate of sensors to reduce the evaluation demand.

Extending SWAN-Song

The SWAN-Song language could be extended with new functionality to support a
broader range of contextual expressions. Future research should investigate whether
new constructs are needed in the language. For instance, next to the current history
reduction operators such as MIN, MAX, MEAN, etc. one could think of modi�ers that
reduce non boolean values to a boolean value, such as ASCENDING and DESCEND-
ING. Another extension that is worth investigating is to not only indicate the starting
point of the history window, but also the ending point (which is currently set to the
current time).

For cross device expressions it is worthwhile to investigate the use of group location
identi�ers. Instead of referring to a sensor on a single remote device, with a group
location identi�er one could refer to all values of this sensor in the entire group. For
example, something like:

group@heartrate:bpm{MEAN, 10s} < 100
However, the semantics of the above expression are still unclear. It could mean

that for each member of the group the average heart rate over the last ten seconds
must be below 100 bpm, or that for at least one member of the group the average
heart rate must be below 100 bpm, but also that the average heartbeat of the entire
group over the last 10 seconds must be below 100 bpm. Future research can study
what new concepts need to be added to the language to provide the right means to
express all variants described above. For instance, an interesting addition would be
to be able to specify that the expression evaluates in TRUE if it is true for a speci�c
percentage of the group.

Extended Evaluation through User Studies and More Applications

Since both frameworks are intended to be used by developers, future research could
perform user studies with developers for qualitative and quantitative analysis how the

133

4



Future Research Directions Discussion

frameworks simplify the app development process. Potential data items to measure
are the required number of lines of code for an implementation, the time it takes to de-
velop the app, the quality of the app (number of bugs, but also the energy consumption
and execution time characteristics) all done with and without the framework.

Also writing more and larger applications with the frameworks is likely to high-
light new limitations of the frameworks and will give insight in how to better structure
the development of the applications.
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Samenvatting
In dit proefschrift met de titel �Programmeerraamwerken voor gedistribueerde berekenin-
gen met smartphones� beschrijven we twee raamwerken voor gedistribueerde smart-
phone toepassingen. Een van de raamwerken is bedoeld voor applicaties met reken-
intensieve taken, het andere raamwerk voor applicaties die afhankelijk zijn van
contextuele informatie van sensors. Beide raamwerken hebben gemeen dat zij de
smartphone als apparaat in het centrum plaatsen en alleen van andere rekenbronnen
gebruik maken wanneer dit zinvol is, in tegenstelling tot de traditionele aanpak van
smartphone computing in de eerdergenoemde gebieden, waar een centrale webserver
deel is van de gedistribueerde omgeving. De raamwerken die in dit proefschrift
beschreven worden vereisen niet zo’n centrale webserver.

Het raamwerk dat wij gemaakt hebben voor applicaties met rekenintensieve taken
is genaamd Cuckoo. Cuckoo gebruikt het principe van computation o�oading (het
uitbesteden van rekentaken aan andere apparaten). Het verplaatsen van taken van
een mobiel apparaat naar een externe rekenbron heeft het mogelijke voordeel dat
energieverbruik en/of rekentijd gereduceerd kan worden. In aanvulling hierop kan
het zijn dat de andere rekenbron de taak beter kan uitvoeren, bijvoorbeeld met een
hogere kwaliteit.

Door twee case studies, met de applicaties eyeDentify en HDR fotogra�e, hebben
we vereisten afgeleid voor het Cuckoo raamwerk. Deze vereisten zijn dat het raamwerk
een implementatie die op het apparaat zelf uit te voeren is moet toestaan waarop
teruggevallen kan worden in gevallen waar er geen connectiviteit is, en ook dat het
raamwerk toe moet staan dat deze lokale implementatie anders is dan de implemen-
tatie voor externe bronnen. Verder vereisen we dat het raamwerk slimme beslissingen
kan nemen, gebaseerd op de huidige context van het apparaat, de resultaten van
eerdere uitvoering van rekentaken en de parameters van de huidige rekentaak.

Het resulterende raamwerk is gemaakt voor Android en maakt gebruik van An-
droids activity/service inter-proces-communicatie, door het onderscheppen van aan-
roepen naar een service tijdens het uitvoeren. Deze aanroepen gaan door Cuckoo’s
orakel-component heen, die gebaseerd op de eerder beschreven vereisten een besluit
neemt om wel of niet de rekentaken uit te besteden. Tijdens het bouwen van de
applicatie met rekenintensieve taken gebruikt Cuckoo code generatie- en code her-
schrijftechnieken. Deze integreren met het standaard bouwproces van Android in
de aanbevolen bouwomgeving Eclipse, door middel van een plugin. Het veranderen
van een applicatie naar een o�oad-applicatie is versimpeld tot het uitvoeren van een
enkele muisklik gevolgd door het maken van een implementatie van de rekeninten-
sieve taak die uitgevoerd kan worden op een externe rekenbron. Dit laatste kan zo
eenvoudig zijn als het kopieren en plakken van de reeds aanwezige implementatie die
lokaal kan worden uitgevoerd. In aanvulling hierop biedt Cuckoo ontwikkelaars de
mogelijkheden om het o�oadproces tot in detail aan te passen, door het aanbieden van
methodes waarin het gewicht van een bepaalde methode kan worden aangegeven, de
verwachte resultaatgrootte en welke factoren van belang zijn voor het energieverbruik.

Het raamwerk helpt niet alleen bij het creºren van de applicatie en het uitvoeren
op een mobiel apparaat. Er is ook een serverapplicatie aanwezig in het raamwerk dat
op vrijwel elke rekenbron kan worden gestart. Er is een aparte beheerapplicatie in het
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raamwerk om gebruikers te helpen om hun rekenbronnen te beheren en om Cuckoo
in staat te stellen deze rekenbronnen te ontdekken.

Evaluatie van Cuckoo heeft laten zien dat het maken van een computation o�oad-
ing applicatie drastisch wordt gesimpli�ceerd en dat de overheadkosten tijdens het
uitvoeren van zo een applicatie laag genoeg zijn om de techniek van computation
o�oading er toe te laten leiden dat er daadwerkelijk minder energie wordt verbruikt
of dat de applicatie sneller wordt uitgevoerd. De componenten die samen de invoer
vormen waarop het orakel van Cuckoo zijn keuzes baseert zijn goed genoeg om tot
beslissingen te komen met hoge kwaliteit.

Naast het raamwerk voor applicaties met rekenintensieve taken beschrijven we
in dit proefschrift ook het SWAN raamwerk. SWAN simpli�ceert het ontwikkelen
van applicaties die sensorinvoer gebruiken. Applicatieontwikkelaars kunnen de
domeinspeci�eke taal, SWAN-Song, uit het SWAN raamwerk gebruiken om complexe
contextuele expressies te construeren die tijdens het uitvoeren van de applicatie
geregistreerd kunnen worden bij de evaluatiecomponent van het SWAN raamwerk.
Deze evaluatiecomponent zorgt ervoor dat alle expressies van alle applicaties e�ciºnt
worden geevalueerd op het mobiele apparaat. Het informeert de applicaties die deze
expressies hebben geregistreerd alleen wanneer de expressie verandert van waarde.
De applicatie zelf is daarna verantwoordelijk om een actie aan de verandering te
koppelen.

SWAN ondersteunt een wijdse verscheidenheid aan sensoren, variºrend van sen-
soren die aanwezig zijn op het mobiele apparaat, zoals een versnellingsmeter, tot
externe sensoren die met Bluetooth gekoppeld kunnen worden, netwerksensoren die
hun data van het internet halen en sensoren die hun data van databronnen op het
mobiele apparaat zelf halen, zoals bijvoorbeeld uit de kalender. Het is mogelijk voor
applicaties buiten het SWAN raamwerk om sensors toe te voegen aan het raamwerk.
Verder heeft het SWAN raamwerk een sensormaker hulpmiddel, dat op basis van een
speci�catie met JSON, een groot gedeelte van de benodigde code voor een nieuwe
sensor genereert.

Verder heeft het raamwerk ingebouwde gebruikers-interface componenten waarmee
sensoren kunnen worden gecon�gureerd en expressies geconstrueerd. Deze compo-
nenten kunnen hergebruikt worden om te worden geïntegreerd in applicaties van
derden.

We hebben binnen het SWAN raamwerk een sub-raamwerk gemaakt, speciaal
gericht op netwerksensoren. Dit raamwerk maakt gebruik van de communicatie
o�oading techniek en versimpelt het maken van een netwerksensor nog verder. In
toevoeging hierop zorgt dit raamwerk ervoor dat de sensor veel minder communi-
catie uit hoeft te voeren doordat het herhaaldelijk opvragen van een databron wordt
uitbesteed aan een externe rekenbron. Deze rekenbron zal het mobiele apparaat
alleen informeren door middel van een push-bericht wanneer er daadwerkelijk een
verandering is waargenomen in de databron.

Om de expressiviteit van hetgeen uitgedrukt kan worden als contextuele expressie
te vergroten hebben we de SWAN-Song taal uitgebreid, zodanig dat er een locatie
wordt toegevoegd voor elk sensorpredicaat. Dit resulteerde in cross-device expressies,
expressies die niet alleen lokale contextuele informatie in beschouwing kunnen nemen,
maar ook contextuele informatie aanwezig op andere apparaten. In plaats van het
opsturen van alle sensordata van verschillende apparaten naar een centrale server, of
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het direct doorsturen van sensordata van apparaat naar apparaat, maken we gebruik
van de rekenkracht van de betrokken apparaten om zo het evalueren van een cross-
device expressie gedistribueerd uit te kunnen voeren.

We zijn er van overtuigd dat door het ontwikkelen van de Cuckoo en SWAN
raamwerken we zowel nieuwe kennis als praktische hulpmiddelen hebben bijgedragen
die het realiseren van werkelijk slimme applicaties meer haalbaar maken.
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