Ramsey-comb spectroscopy
Morgenweg, J.

2014

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
CONTENTS

CHAPTER 1: INTRODUCTION 1
 1.1 Ramsey spectroscopy or the girl on the swing 1
 1.2 Coherent pulse trains from optical frequency combs 3
 1.2.1 More power for challenging spectroscopy targets 3
 1.3 Less can be more: Ramsey-comb spectroscopy 4
 1.4 Short outline of this thesis 6

CHAPTER 2: PRELIMINARY: ELECTROMAGNETIC WAVES,
FREQUENCY COMBS AND PULSE AMPLIFICATION 7
 2.1 Electromagnetic waves in (non)linear media 7
 2.2 Pulse propagation in time and space 9
 2.2.1 Carrier-envelope phase and group velocity dispersion 11
 2.2.2 A practical example: Temporal broadening of a Gaussian pulse 12
 2.3 Pulse pairs and pulse trains 14
 2.4 Frequency combs 16
 2.4.1 On the technical realization of optical frequency combs 17
 2.5 Phase-coherent optical parametric amplification 18
 2.5.1 Numerical solutions to the coupled-wave equations 21
 2.6 Amplification in laser gain media 22
 2.6.1 Gain and saturation in short-pulse amplification 22
 2.6.2 Grazing-incidence amplifiers 24

CHAPTER 3: THE DOUBLE-PULSE PUMP AMPLIFIER SYSTEM 27
 3.1 The master oscillator 28
 3.1.1 Laser gain material and diode pumping 28
 3.1.2 The laser cavity 29
 3.1.3 Repetition-rate control 30
 3.2 Tailored pulse sequences from an 880 nm pumped Nd:YVO₄ bounce amplifier 31
 3.2.1 Introduction 31
 3.2.2 Experimental setup 32
3.2.3 Amplifier performance and modeling 34
3.2.4 Conclusion 37

3.3 A 1.8 mJ, picosecond Nd:YVO₄ bounce-amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy 38
3.3.1 Introduction 38
3.3.2 Experimental setup 38
3.3.3 Results and discussion 41
3.3.4 Conclusion 43

3.4 Post-amplification to the 100 millijoule-level 44
3.4.1 Flashlamp-pumped amplifier in ring geometry . 44
3.4.2 Amplification with diode-pumped modules . . 45

Chapter 4: Multi-delay, phase-coherent pulse pair generation for precision Ramsey-comb spectroscopy

4.1 Introduction 49
4.2 Setup 51
4.2.1 Overview of the experimental system 51
4.2.2 The Ti:sapphire frequency comb 53
4.2.3 Electronic synchronization scheme 54
4.2.4 The parametric amplifier 55
4.2.5 The phase-measurement setup 56

4.3 Numerical simulations of a narrowband OPCPA system 58
4.3.1 Cross- and self-phase modulation 60

4.4 Analysis of the pump pulse pair . 62
4.4.1 Temporal gain shaping 62
4.4.2 Spatial gain shaping 64
4.4.3 Wavefront differences 64

4.5 Phase-measurements of the amplified frequency comb pulses 65
4.5.1 Phase shifts at different pulse delays 65
4.5.2 Phase-shift scaling with amplified pulse ratio . 67
4.5.3 Spatial dependence of the phase shift 68

4.6 Conclusion 69

Chapter 5: Ramsey-comb spectroscopy with intense ultrashort laser pulses

5.1 Introduction 71
5.2 Principle of Ramsey-comb spectroscopy 72
Chapter 6: Ramsey-comb spectroscopy: Theory and signal analysis

6.1 Introduction
6.2 Analytical framework
 6.2.1 Quantum-interference excitation with laser pulse pairs
 6.2.2 Combining Ramsey signals from different macro delays: Ramsey-comb spectroscopy
 6.2.3 Extension to multiple transitions
 6.2.4 Constant phase shifts
 6.2.5 Time-dependent phase shifts
 6.2.6 Spectral line-broadening mechanisms
6.3 Fitting of the Ramsey-comb signals
 6.3.1 Frequency-domain approach
 6.3.2 Time-domain approach
 6.3.3 Numerical simulations of the time-domain fitting algorithm
6.4 Conclusion

Chapter 7: Outlook

7.1 Upgrades of the current system
7.2 Future spectroscopy targets
 7.2.1 Molecular hydrogen
 7.2.2 The helium ion

Appendix A: Fourier transforms

A.1 Definition of the Fourier transform
A.2 Lists of common Fourier transforms and relationships

Appendix B: Quantum interference excitation

B.1 Single-pulse excitation