All praises and thanks be to GOD, who alone, created the heavens and the earth and originated the peace and the light. He increases in creation what He wills. Verily, GOD is able to do all things.
To Mousa and Setareh
This research was financed by the National Research School Combination Catalysis Controlled by Chemical Design (NRSC-Catalysis).

The picture in the front cover illustrates the two conformations α and β of Cinchona thiourea catalyst complexed to the solvent molecules (dimethylformamide), which have rather different VCD spectra shown in red and black respectively. Conformation β complexed to the solvent molecules not only reduces the whole energy profile of the reaction, but causes more discrimination (than conformation α) between the transition barriers of the R and S configurations in the C-C coupling step of the Henry reaction.
Contents

1 General Introduction
1.1 Chirality ... 1
1.2 Chiral synthesis 4
1.3 Chiral spectroscopic techniques 12
1.4 Overview of this thesis 17

2 The concept of potential energy surface
2.1 Introduction .. 19
2.2 Potential energy surface 20
2.3 Geometry optimization and verifying stationary points 21

3 Solvent induced enhancement of the enantioselectivity of cinchona thiourea
3.1 Introduction .. 25
3.2 Computational details 27
3.3 Cinchona thiourea: molecular structure and conformers 28
3.4 Solvent complexation and conformational preferences 31
3.5 Reaction barriers for the two enantiomers 34
3.6 Conclusions .. 42

4 VCD study of conformational behavior of flexible catalysts in solution
4.1 Introduction .. 43
4.2 Experimental details 43
4.3 Computational details 44
4.4 Quinidine derivatives 44
Contents

4.5 Cinchona thiourea ... 59
4.6 Summary ... 64

5 Large amplitude motions of solvent molecules: dibromo-
naphthalene-diol in DMSO 67
5.1 Introduction ... 67
5.2 Computational details ... 69
5.3 Spectra and conformations 69
5.4 Geometrical degrees of freedom and large amplitude motions 71
5.5 Results and discussion .. 75
5.6 Continuum solvation (COSMO) of the solute-solvent complex 83
5.7 Analysis of the normal modes 87
5.8 Conclusions ... 93

6 Signatures of counter-ion association and hydrogen bonding in VCD
spectra 95
6.1 Introduction ... 95
6.2 Computational Details ... 96
6.3 Molecular structures .. 96
6.4 Effects of Cl⁻ association on the vibrational modes: sign changes and
giant enhancements ... 98
6.5 Comparison with experiment 104
6.6 Conclusions ... 106

7 On the equivalence of conformational and enantiomeric changes of
atomic configuration for VCD signs 109
7.1 Introduction ... 109
7.2 Computational details ... 110
7.3 Chiral and achiral modes 110
7.4 Conformational versus enantiomeric changes in atomic configuration
around a chiral carbon .. 116
7.5 VCD sign change due to change of conformation and its relation to
enantiomeric sign change .. 122
7.6 Summary ... 127

8 Summary .. 129

9 Samenvatting ... 135

Bibliography ... 141
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>148</td>
</tr>
</tbody>
</table>