References

Ackerman F, DeCanio SJ, Howarth RB, Sheeran K (2009) Limitations of integrated assessment models of climate change. Clim Change 95(3-4), 297-315
Andrews DWK, Ploberger W (1994) Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6), 1383-1414
Baillie RT (1996) Long memory processes and fractional integration in
econometrics. J Econom 73, 5-59
University Press
relationships in econometrics through static models: some Monte Carlo evidence.
OBES 48, 253-277
cointegration in a single-equation framework. J Time Ser Anal 19, 267-283
Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-
Barredo JI (2010) No upward trend in normalised windstorm losses in Europe:
350-366
Barthel F, Neumayer E (2012) A trend analysis of normalized insured damage from
number of smooth breaks. J Time Ser Anal 27, 381-409
Beenstock M, Reingewertz Y, Paldor N (2012) Polynomial cointegration tests of
anthropogenic impact on global warming. Earth Syst Dynam Discuss 3, 561-596
World Scientific Publishing Company
Bierens HJ (2000) Nonparametric nonlinear cointrending analysis, with an application
to interest and inflation in the United States. JBES 18, 323-337
Boswijk HP (1994) Testing for an unstable root in conditional and structural error
correction models. J Econom 63, 37-60
Botzen WJW (2013) Managing extreme climate change risks through insurance
| Natural resource and environmental economics | Cambridge University Press
Box GEP, Tiao GC (1975) Intervention analysis with applications to economic and environmental problems. J Amer Statistical Assoc 70, 70-79
Campbell YJ, Mankiw GN (1987) Permanent and transitory components in macroeconomic fluctuations, Am Econ Rev 77(2), 111-117


Dell M, Jones BF, Olken BA (2012) Temperature shocks and economic growth: Evidence from the last half century. AEJ Macro 4(3), 66-95


Diebold FX (2007) Elements of Forecasting. Thomson South-Western, Mason, OH, USA.


Glahn HR, Lowry DA (1972) The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteor 11, 1203-1211
Gobierno de la República de Argentina (2008) 2da Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Available at: http://unfccc.int/resource/docs/natc/argnc2s.pdf
Gómez V, Maravall A (1996) Programs TRAMO and SEATS; Instructions for the user (with some updates), Working Paper 9628, Research Department, Banco de España
Granger CWJ, Joyeux R (1980) An introduction to long-memory models and
fractional differencing. J Time Ser Anal 1, 15-29
Gregory JM, Forster PM (2008) Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. 113, D23105
Grübler A, O’Neill B, Riahi K et al. (2007) Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol Forecast Soc 74(7), 980-1029
Guerrero VM (2007) Pronósticos restringidos con modelos de series de tiempo múltiples y su aplicación para evaluar metas de política macroeconómica en México. Estudios Económicos 22(2), 241-311


Harvey DI, Mills TC (2001) Modelling global temperature trends using cointegration and smooth transitions. SMIJ 1:143-159


Horowitz J (2009) The Income-Temperature Relationship in a Cross-Section of Countries and its Implications for Predicting the Effects of Global Warming. Environ Resour Econ 44(4), 475-493
IPCC (2013a) Climate Change 2013: The Physical Science Basis. Contribution of


Palutikof, P.J. van der Linden and C.E. Hanson, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA


Ivanov MA, Evtimov SN (2010) 1963: The break point of the Northern Hemisphere temperature trend during the twentieth century. Int J Climatol 30(11), 1738-1746


Johansen S, Juselius K (1990) Maximum likelihood estimation and inference on cointegration with applications to the demand for money. OBES 52, 169-210
Klein WH, Lewis BM, Enger I (1959) Objective prediction of five-day mean temperature during winter. J Meteor, 16, 672–682
Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Comm 2, 178
Kremers JJ, Ericsson NR, Dolado JJ (1992) The power of cointegration tests. OBES 54, 325-348
Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models, Biometrika, 65, 297–303
Lontzek TS Narita D (2011) Risk-averse mitigation decisions in an unpredictable climate system. Scan J Econ 113(4), 937-958
Cambridge, UK: Cambridge University Press. 524 pp


Min, 2006a: ECHOG_A42_20C3M_RUN1: 1st member of 20C3M simulations for IPCC AR4. World Data Center for Climate. CERA-DB "ECHOG_A42_20C3M_RUN1" http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=ECHOG_A42_20C3M_RUN1


Min, 2006c: ECHOG_A44_20C3M_RUN3: 3rd member of 20C3M simulations for IPCC AR4. World Data Center for Climate. CERA-DB


Ng S, Perron P (1995) Unit root tests in ARMA models with data dependent methods for the selection of the truncation lag. JASA 90, 268-281
Ng S, Perron P (2001) Lag length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519-1554


Perron P (1990) Testing for a unit root in a time series regression with a changing mean. JBES 8, 153-162


Perron P, Qu Z (2007) A simple modification to improve the finite sample properties of Ng and Perron's unit root tests. Econ Lett 94,12-19


Monet Econ 56, 749-765
Perron P, Yabu T (2009a) Testing for shifts in trend with an integrated or stationary noise component. JBES 27, 369-396
Pitock AB, Jones RN, Mitchell CD (2001) Probabilities will help us plan for climate change. Nature 413, 249
Qu Z (2011) A test against spurious long memory. JBES 29, 423-438


Roy A, Fuller WA (2001) Estimation for autoregressive processes with a root near one. JBES 19, 482-493


Schneider SH (2002) Can we estimate the likelihood of climatic changes at 2100?: An editorial comment: Why this editorial? Clim Change 52(4), 441-451
Schwartz SE (2012) Determination of Earth’s Transient and Equilibrium Climate Sensitivities from Observations Over the Twentieth Century: Strong Dependence on Assumed Forcing Surv Geophys 33, 745–777
order integrated systems. Econometrica 61, 783-820

Stocker T (2011) Introduction to climate modelling; Advances in geophysical and environmental mechanics and mathematics: Berlin, Springer-Verlag, 179 pp


Tol RSJ (2014) Correction and Update: The Economic Effects of Climate Change. J. Econ. Perspect. 28(2), 221-26


UNFCCC (2008a) Compendium on methods and tools to evaluate impacts of, and vulnerability to, climate change. 228 pp


Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109, 784-812


Wang X, Brown PM, Zhang Y, Song L (2011a) Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568. PLoS ONE 6(7), e22740


Weitzman ML (2009). On modeling and interpreting the economics of catastrophic climate change. Rev Econom Stat 91(1), 1-19


Zheng X, Basher RE (1999) Structural time series models and trend detection in
global and regional temperature series. J Clim 12, 2347-2358


Zivot E, Andrews D (1992) Further evidence on the great crash, the oil price shock, and the unit root hypothesis. JBES 10, 251–270
