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Abstract

Background
The presence of antibodies to viral antigens in serum is generally considered a well-defined 

marker of past infection or vaccination. However, analyses of serological data that use a cut-off 

value to classify individuals as seropositive are prone to misclassification bias, in particular when 

studying infections with a weak serological response, such as the sexually transmitted human 

papillomavirus (HPV).

Methods
We analyzed the serological concentrations of HPV type 16 (HPV16) antibodies in the general 

Dutch population in 2006-07, prior to the introduction of mass vaccination against HPV. We used 

a two-component mixture model to represent persons who were seronegative or seropositive 

for HPV16. Component densities were assumed to be log-normally distributed, with parameters 

possibly dependent on sex. The age-dependent mixing proportions were smoothed using 

penalized splines to obtain a flexible seroprevalence profile.

Results
Our results suggest that HPV16 seropositivity is associated with higher antibody concentrations 

in women. Seroprevalence shows an increase starting from adolescence in men and women 

alike, coinciding with the age of sexual debut. Seroprevalence stabilizes in men around age 40 

years, whereas it has a decreasing trend from age 50 years onwards in women. Analyses that rely 

on a cut-off value to classify persons as seropositive yield substantially different seroprevalence 

profiles, leading to a qualitatively different interpretation of HPV16 infection dynamics.

Conclusions
Our results provide a benchmark for examining the effect of HPV16 vaccination in future serologi-

cal surveys. Our method may prove useful for estimating seroprevalence of other infections with 

a weak serological response.
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Introduction

Human papillomavirus (HPV) is one of the most prevalent sexually transmitted infections and 

the necessary cause for the development of cervical cancer, the second most common can-

cer among women worldwide.1 Many countries have implemented vaccination programs for 

females, specifically targeting HPV types 16 and 18, which are most commonly associated with 

cervical cancer.2 In 2009, vaccination of 12-year-old girls against HPV16 and HPV18 was added to 

the Dutch national immunization program. As development of cervical cancer after HPV infec-

tion takes more than 25 years on average,3 it will be a couple of decades before the effects of 

vaccination become apparent in a reduction of cervical cancer cases. Monitoring surrogate end-

points is required to infer effectiveness of vaccination sooner, and data from serological surveys 

might be a useful tool for observing changes in HPV infection dynamics. In the Netherlands, two 

population-based serological surveys have been carried out (in 1995-96 and in 2006-07) and a 

third survey is being scheduled for 2016. Knowledge of the pre-vaccine seroprevalence of HPV 

is necessary as it will serve as a benchmark for examining changes in infection dynamics from 

post-vaccine serological surveys.

The presence of antibodies to viral antigens in serum is generally considered a well-defined 

marker of past infection or vaccination. Serological cross-sectional studies have been used to es-

timate the prevalence and the force of infection,4 and they provide a tool to monitor the impact 

of mass vaccination.5 The analysis of serological data often relies on methods that use a fixed 

cut-off value to discriminate between seropositive and seronegative individuals. However, when 

test sensitivity and specificity are not known, such methods are prone to misclassification bias, 

especially when antibody concentrations of likely negative and likely positive persons overlap. In 

such cases, it is common practice to set a relatively high cut-off value to accurately identify true 

antibody-negative individuals, thus safeguarding test specificity.6

The usefulness of serosurveillance for monitoring HPV infection dynamics is presently ham-

pered by a limited understanding of the serological response to infection with HPV.7 This is partly 

because anogenital infection is exclusively intraepithelial with little or no viraemia, resulting in 

low antibody concentrations to the major capsid protein L1.8 Consequently, assays that measure 

L1 antibody concentrations are relatively insensitive, with a low signal to noise ratio, and there is 

no clear threshold to discriminate between seronegative and naturally infected seropositive indi-

viduals, complicating the analysis of HPV serological data. It is commonly held that not everyone 

who is infected with HPV will seroconvert; seroconversion rates based on a fixed cut-off value 

are estimated at around 50%-60% in women.9 Antibody concentrations may wane over time,10 

making HPV seroconversion an imperfect marker of past infection and hence complicating the a 

priori choice for the shape of the age-specific seroprevalence.

HPV seroprevalence figures in the Dutch population prior to vaccination were estimated using 

a fixed cut-off value to classify persons as seropositive or seronegative. As a result, estimates of se-

roprevalence among young children were relatively high, contradicting the sexual mode of HPV 

transmission, and differences between men and women were reported —in particular, a delay of 
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10 years in step-up of male seroprevalence— that cannot be explained by sexual behavior only.11, 

12 To improve our understanding of the sero-epidemiology of HPV, it is worthwhile to compare 

these estimates obtained by prior classification to an alternative that uses full information of the 

data and that adjusts for covariates such as sex, if necessary.

In this paper, we present novel methodology for estimating the age-specific seroprevalence 

directly from antibody titers or concentrations. We apply our method to estimate the pre-vaccine 

seroprevalence of HPV16, the most prevalent of all HPV types. Briefly, we model the concentra-

tion of HPV16 antibodies in the Dutch general population as a combination of concentrations 

from seropositive and seronegative individuals by a mixture model. We combine the mixture 

model with a flexible approach to model the age-dependent mixing proportions using penal-

ized splines (P-splines). Because not much is known of HPV serology, this allows us to estimate 

the seroprevalence without the need for a predefined shape. Possible differences in the sero-

logical response between men and women are investigated within this model framework, and 

seroprevalence profiles from the mixture model are compared with a method that uses a cut-off 

value to denote seropositivity.

Methods

Serological data
HPV-specific antibodies were measured in a cross-sectional population-based serological survey 

(Pienter 2),11 performed in the Netherlands in 2006-2007 before HPV vaccination was included in 

the national immunization program.13 A total of 7,179 randomly sampled participants, of whom 

3,304 men and 3,875 women between 0 and 79 years of age, provided a blood sample. HPV type-

specific IgG serum antibodies against L1 virus-like-particles were tested with a virus-like-particle-

based multiplex immunoassay. This non-neutralizing assay measures the antibody concentration 

of seven high-risk HPV types. The assay has a lower limit of detection for HPV16 of 0.08 Luminex 

units per milliliter (LU/ml). A cut-off value of 9 LU/ml for seropositivity was determined by a one-

sided 99% prediction interval using antibody concentrations from persons who are believed to 

be seronegative for HPV16, here taken to be children between 0 and 10 years of age.11

Mixture model
For each participant we used age, sex, and concentration of HPV-16 specific IgG antibodies. We 

modeled the log-transformed concentration of HPV16 antibodies by a mixture model with two 

components, representing people seronegative and seropositive for HPV16. Each individual 

i (i = 1 … n) with observed log-concentration yi, contributes to the likelihood: 

Pϕ(Ad = d, Y = 1)
= Pϕ(Ad = d|Y = 1)Pϕ(Y = 1)

=
∫ ∞

0

∫ ∞

0
Pϕ(Ad, ACN = CN, ACA = CA|Y = 1)Pϕ(Y = 1)dCNdCA

=
∫ ∞

0

∫ ∞

0
Pϕ(Ad, ACN = CN, ACA = CA|Y = 1)×
�

Pϕ(Y = 1|r = 1)P(r = 1) + Pϕ(Y = 1|r = 0)P(r = 0)
�

dCNdCA

=
∫ ∞

0

∫ ∞

0
Pϕ(Ad, ACN = CN, ACA = CA|Y = 1)CN<CA≤d,r=1+

P(r = 0)Pϕ(Ad = d, ACN = CN, ACA = CA|Y = 1)CN<CA≤d,r=0dCNdCA

Pϕ(Ad = d, Y = 1)

=
∫ d−1

0
P(r = 1)pscr,r=1(d)

d−1
∏

=CN

(1 − pscr,r=1()pdet)Pϕ(T2 = d − CN)P(ACN = CN)+

P(r = 0)pscr,r=0(d)Pϕ(T2 = d − CN)P(ACN = CN)dCN+
∫ d−2

0
P(r = 1)(1 − pscr,r=1(d − 1))

d−2
∏

=CN

(1 − pscr,r=1()pdet)Pϕ(T2 = d − 1 − CN)P(ACN = CN)+

(r = 0)(1 − pscr,r=0(d − 1))Pϕ(T2 = d − 1 − CN)P(ACN = CN)dCN (3)

Hoofdstuk 4

ƒ (y) = (1 − )ƒ0(y|μ0, σ0) + ƒ1(y|μ1, σ1),

 ∼ Bern(p)

logit(p) = sM()1[sex=M] + sF()1[sex=F] .

3
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with Ii = 0 if the person was assigned to the seronegative mixture component and Ii = 1 if the 

person belongs to the seropositive component. We assumed
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Here 1 denotes the indicator function which equals one if the statement in the subscript applies 

and zero otherwise. The component densities f0 and f1 are assumed to be normally distributed, 

independent of age but possibly dependent on the covariate sex:

ƒ0(y) ∼N
�

μM0 1[sex=M] + μF01[sex=F] , σ
M
0 1[sex=M] + σF01[sex=F]

�

,

ƒ1(y) ∼N
�

μM1 1[sex=M] + μF11[sex=F] , σ
M
1 1[sex=M] + σF11[sex=F]

�

.

sM() = BXβM + BZbM,

sF() = BXβF + BZbF.
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4
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μ−−18
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In case the observed log-concentration was left censored (below the detection limit of the 

serological assay), the contribution to the likelihood was assumed to be a cumulative Normal 

distribution. Because a survey on sexual health of youth in the Netherlands showed that sexual 

intercourse below age 12 years is rare,14 we assumed the concentration of 0-10 year olds to 

contribute to the seronegative component density only.

The terms sM (α) and sF (α) denote log-odds of seropositivity of men and women by age, respec-

tively. To obtain smooth functions of age, they were modeled by the mixed model representation 

of P-splines:15, 16

ƒ0(y) ∼N
�

μM0 1[sex=M] + μF01[sex=F] , σ
M
0 1[sex=M] + σF01[sex=F]

�

,

ƒ1(y) ∼N
�

μM1 1[sex=M] + μF11[sex=F] , σ
M
1 1[sex=M] + σF11[sex=F]

�

.

sM() = BXβM + BZbM,

sF() = BXβF + BZbF.

 ∼ Bern(p)

logit(p) = sM()1[sex=M] + sF()1[sex=F] .

Hoofdstuk 5

ƒ (y;p, μ,) =
4
∑

k=1

pkϕ(y;μk,k),

μ−− =
�

μ−−16
μ−−18

�

, −− =
�

(σ−−16 )
2 ρ−−σ−−16 σ

−−
18

ρ−−σ−−16 σ
−−
18 (σ−−18 )

2

�

μ+− =
�

μ+−16
μ+−18

�

, +− =
�

(σ+−16 )
2 ρ+−σ+−16 σ

+−
18

ρ+−σ+−16 σ
+−
18 (σ+−18 )

2

�

μ−+ =
�

μ−+16
μ−+18

�

, −+ =
�

(σ−+16 )
2 ρ−+σ−+16 σ

−+
18

ρ−+σ−+16 σ
−+
18 (σ−+18 )

2

�

μ++ =
�

μ++16
μ++18

�

, ++ =
�

(σ++16 )
2 ρ++σ++16 σ

++
18

ρ++σ++16 σ
++
18 (σ++18 )

2

�

�

μ+−16
μ+−18

�

=
�

μ−−16 + Δ+−16
μ+−18

�

,

�

μ−+16
μ−+18

�

=
�

μ−+16
μ−−18 + Δ−+18

�

,

�

μ++16
μ++18

�

=
�

μ−−16 + Δ++16
μ−−18 + Δ++18

�

,

4

Here B is a n × k cubic B-spline basis with k equally spaced knots, X is a k × d matrix such that Xβ 

is a polynomial of degree d-1, and Z = DT(DDT)-1 a k × (k-d) matrix, where D is a (k-d) × k difference 

matrix of order d. β is a vector of length d and b is a vector of length k-d. Within this setting, the 

degree of B-splines, the number of knots and the d-order difference penalties on coefficients of 

adjacent B-spline basis functions, are to be chosen. Given the setting of the P-spline model, the 

smoothing parameter that controls large values of d-order differences is automatically estimated. 

This parameter regulates the number of knots to an effective number needed to fit the model 

properly. Therefore, k can be any number, but it is preferred to overstate it in order not to underfit 

the model. The parameter d has some influence on the curvature of the spline, with a larger d 

resulting in a less curved line. In this study, we put knots on 15 equally distributed age groups and 

penalize second-order differences, i.e. k=15 and d=2.

Estimation procedure
Parameters were estimated in a Bayesian framework through Gibbs sampling, using JAGS.17 To 

avoid label switching, the μ’s were re-parameterized: μM
1 = μM

0 + ∆μM and μF
1 = μF

0 + ∆μF. As JAGS 
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works with precision τ instead of variance σ2, the former was estimated. To minimize the correla-

tion between β0 and β1, we subtracted 35 from all observed ages (roughly corresponding to the 

mean age of the people in our data set).

Non-informative normal priors were set on parameters µ0 and β. Non-informative gamma pri-

ors were set on the precision parameters. A normal prior was set on b with a gamma hyperprior 

on the precision of b. To ensure that Δµ is positive, non-informative half-normal distributions 

were set on the Δµ’s. We ran four parallel Markov chain Monte Carlo (MCMC) chains. For each 

chain 500 iterations were taken as burn-in time, and 12,500 iterations for sampling from the 

posterior distributions. To reduce autocorrelation we retained every 10th iteration, resulting in 

5,000 samples in total. Convergence of MCMC chains was inspected visually. The model and 

estimation method were tested on a simulated data set on which the model parameters were 

correctly estimated (not shown). The code is provided in the Appendix.

Sex-specific serological response
We investigated whether the component densities of the mixture model differed between men 

and women, by evaluating the following models:

1.	 Both component densities different for men and women;

2.	 Negative component density the same, positive component density different;

3.	 Negative component density different, positive component density the same;

4.	 Both component densities the same for men and women.

The models were evaluated by the deviance information criterion (DIC) which can be viewed as 

the Bayesian analogue of the Akaike information criterion (AIC).18 Models are penalized to have a 

higher DIC both by the deviance (the larger this is, the worse the fit) and by the effective number 

of model parameters (so favoring parsimony). The scenario with the lowest DIC is preferred. Note 

that there is not yet a satisfactory answer to the question what a noteworthy difference between 

two models is.19 As a rule of thumb, a difference of more than 7-10 points favors the model 

with the smallest DIC. A difference less than 2-5 points suggests little or no evidence to favor a 

particular model.18, 20

Model validation
To confirm whether the model provides a reasonable fit of the data, we plotted the empirical 

cumulative distribution function (CDF) with 95% confidence intervals of the HPV16 log-concen-

tration, together with the model-predicted CDF, per sex, per 5-year age group. For the model-

predicted CDF per age group, we used the estimated parameters μ0,μ1,σ0,σ1 and an average 

seroprevalence, calculated as the weighted mean of the age-specific seroprevalence.

Cut-off method to estimate seroprevalence
The mixture model relaxes the assumption of a fixed cut-off value to distinguish between serone-

gative and seropositive individuals. The effect of this relaxation was also evaluated by modeling 

the seroprevalence with a cut-off value of 9 LU/ml for individuals above 10 years of age. Individu-
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als were classified as seropositive if their HPV16 antibody concentration exceeded the cut-off 

value. The probability that a person i (i = 1,…,n) was seropositive is Bernoulli distributed;
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This is similar to the mixture model setting, except that no sex-specific cut-off values were 

considered. The smoothed prevalences sM(ai) and sF(ai) were again represented by P-splines tak-

ing 15 equally spaced knots and penalizing second order differences. Estimation was done within 

the statistical software R version 3.0.1 using the gam function of the mgcv package.21, 22

Sensitivity analysis
By means of sensitivity analysis we tested the influence of the assumption that 0-10 year olds are 

strictly seronegative. First, we re-estimated the model parameters in case only the 0-5 year olds 

are assumed strictly seronegative, and second, we ran the model without any prior assumptions 

on seronegativity. As infants might have acquired increased antibody levels from their moth-

ers,23 we also tested the influence of this age group by re-estimating the model parameters after 

excluding the youngest infants (age 0-0.5 years).

Results

The data provide substantial evidence that the seropositive component density differs between 

the sexes, as demonstrated by a clearly smaller DIC of models 1 and 2 compared with models 

3 and 4 (Table 1). The preferred models specify a sex-specific location of the seropositive com-

ponent density, whereas the variance of the seropositive component density is similar for men 

and women. Apparently, detection of HPV16-specific antibodies is performed with similar noise 

for men and women alike, but the humoral immune response to an HPV16 infection leads to a 

Table  1. Estimates of the seropositive and seronegative component densities of antibody concentrations to hu-
man papillomavirus type 16, according to four mixture models assessing the sex-specific serological response.

Model Seronegative component Seropositive component DIC pD

Men Women Men Women

1 N(-0.73,1.112) N(-0.63,1.172) N(1.74,1.472) N(2.70,1.382) 25618.8 22.4

2 N(-0.68,1.142) N(1.90,1.432) N(2.53,1.442) 25620.8 20.4

3 N(-0.68,1.132) N(-0.68,1.142) N(-2.19,1.472) 25640.0 20.0

4 N(-0.68,1.142) N(-2.19,1.482) 25635.7 17.9

DIC indicates deviance information criterion pD, effective number of parameters
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stronger signal in women than in men. There is some evidence that the seronegative component 

density should be sex-specific as well, but the difference between the DIC of model 1 and model 

2 is small. Moreover, model 1 and model 2 provide similar results, both in terms of parameter 

estimates (Table 1) as well as in estimated seroprevalence profiles (see Appendix Figure 1). We 

choose to continue with the results provided by model 2, as from a biological point of view we 

expect that the measurement error in seronegative individuals is independent of sex. In Ap-

pendix Table 1, 95% credible intervals of its parameter estimates are presented.

Figure 1A shows the mixture component densities for men and women according to model 2, 

together with the cut-off value used to denote seropositivity. Test specificity of the cut-off value 

of 9 LU/ml is calculated at 99% for both men and women, but test sensitivity is low – only 42% 

for men and 59% for women. Figure 1B shows the resulting HPV16 seroprevalence; a comparable 
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Figure 1. Results of the mixture model in which the seronegative component densities are the same but the 
seropositive component density is sex-specific. (A) Estimated seronegative and seropositive component densi-
ties for men and women. The dashed vertical line represents the cut-off value of 9LU/ml. (B) Seroprevalence of 
HPV16 for men and women with their 95% credible intervals (dashed lines).
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steep increase in seroprevalence in both men and women can be seen starting from adoles-

cence, coinciding with the age of sexual debut. Seroprevalence is stable or slightly increasing for 

men, whereas it decreases for women from age 50 years onwards.

Defining seropositivity on the basis of a fixed cut-off value leads to a lower seroprevalence 

as compared with the mixture model (Figure 2). The mixture model is estimated at around 20% 

seropositivity in women between age 30 and 50 years, whereas only about 12% of women have 

antibody concentrations above the cut-off value in these age groups. Furthermore, the step-up 

in seroprevalence is more gradual in men when using the cut-off value, whereas the seropreva-

lence for women retains a similar shape in the two methods.
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Figure 2. Comparison of the estimated seroprevalence using the mixture model and the cut-off value for men 
(A) and women (B). The dashed lines represent the 95% credible intervals.



76

Model validation
Figure 3 shows the empirical cumulative distribution function (CDF) of the HPV16 log-concentra-

tion together with the model-predicted CDF for women. The model-predicted CDF lies between 

the 95% confidence bounds of the empirical CDF. However, for 0-15 year old girls the model-

predicted CDF lies at the boundary of this region, favoring higher concentrations than those 

observed for some age groups and lower concentrations for others. In particular, children aged 

0-5 years have lower seronegative antibody concentrations than expected, while seronegative 

antibody concentrations among 5-10 year olds are higher than expected. In Appendix Figure 2 

we provide similar figures and conclusions for men.

Sensitivity analysis
Figure 4 presents the results of a sensitivity analysis on the assumption that 0-10 year olds are 

strictly seronegative. The scenario in which 0-5 year olds are assumed to inform only the sero-

negative component is close to the base-case scenario. A marginal increase in seropositivity is 

seen, but the seroprevalence profile as well as the estimated mixture densities are similar to the 

base-case scenario (Table 2). If no prior assumptions on seronegativity are made, a large increase 
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Figure 3. Model fit of the data for women. Gray lines denote the empirical cumulative distribution function 
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denotes the model-predicted cumulative distribution function (CDF).



Age-specific seroprevalence of HPV16  77

4

0.0

0.2

0.4

0.6

0.8

S
er

op
re

va
le

nc
e

Age

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

S
er

op
re

va
le

nc
e

0 -10 year olds seronegative
0 - 5 year olds seronegative
No assumption on seronegative

A. Men

B. Women

Figure 4. Sensitivity analysis of the assumption that 0-10 year olds are seronegative for men (A) and women (B). 
Black line is the baseline scenario (0-10 year olds seronegative), dark gray lines represent the scenario that 0-5 
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Table 2. Sensitivity analysis on the assumption of strict seronegativity in children.

Seronegative component Seropositive component

Men & Women Men Women

Assumption seronegativity

None N(-0.85,0.832) N(0.42,1.862) N(0.52,2.042) 

Age 0-5 years N(-0.72,1.102) N(1.78,1.442) N(2.26,1.522) 

Age 0-10 years N(-0.68,1.142) N(1.90,1.432) N(2.53,1.442) 

Maternal antibodies

Excluding age 0-0.5 years N(-0.71,1.102) N(1.76,1.472) N(2.69,1.372) 
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in seroprevalence is seen, and the seropositive and seronegative mixture densities have more 

overlap (Table  2). Consequently, test sensitivity of the cut-off value becomes extremely poor 

(16% for men and 21% for women), and the estimated seroprevalence becomes implausibly high 

(with 18% seropositives among children).

Maternal antibodies against HPV16, if present, did not have an influence on the results. The 

model excluding the 0-0.5 year olds estimated almost identical component densities (Table 2), as 

well as seroprevalence figures, as the base-case scenario.

Discussion

Sero-epidemiologic studies offer a rich source for understanding infection dynamics, especially 

when mass vaccination programs against particular pathogens are in place.4, 5 This study pres-

ents a new approach for estimating age-specific seroprevalence profiles directly from antibody 

concentrations, which is particularly useful when studying infections with a weak serological 

response. Moreover, our method allows for investigation of covariate effects on the serological 

response, which makes it a useful tool to obtain new insights into the sero-epidemiology of the 

pathogen under study. Our application of this approach to a pre-vaccination serological survey of 

HPV16 in the Netherlands provides strong evidence that HPV16 seropositivity is associated with 

higher antibody concentrations in women compared with men. The estimated seroprevalence 

figures provide a benchmark for examining the effect of HPV vaccination in future serological 

surveys.

Sex-specific cut-off values to discriminate between seropositive and seronegative persons are 

not commonly applied in the analysis of serological data. We know of just one study that used 

different cut-off values for men and women in the case of HPV16 serology.24 Nonetheless, given 

the anogenital nature of HPV16 infections, it makes sense that the humoral immune response 

would be sex-specific, as the infected epithelium differs between men and women.24, 25 For the 

virus, it is more difficult to infect the keratinized tissue of the penis than the soft tissue of the 

vagina or the anus. Recent publications suggest that the serological responses following an anal 

or vaginal HPV infection are quite similar, but that the serological response after a penile infection 

is much more subdued.26, 27 This may explain why, in a population-based study such as ours in 

which the large majority of men likely had only penile and no anal exposure to HPV16, lower 

antibody concentrations are observed in men.

Extrapolation of our model to include covariates other than sex is limited by data availability 

but straightforward in principle. Serosurveillance studies usually provide information on the 

joint occurrence of antibodies against a wide array of pathogens, and it would be interesting 

to investigate whether serological concentrations against HPV are modified by seropositivity 

against other sexually transmitted infections. For example, HIV infection is known to be a strong 

and independent determinant for HPV seropositivity,28 but it is not known whether HPV infec-

tion leads to higher antibody concentrations in HIV-infected relative to HIV-negative persons. 
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Likewise, infection with Chlamydia trachomatis is hypothesized to promote HPV persistence 

by shifting the immune system from a cellular response, required to clear viral infection, to a 

humoral response, associated with higher antibody concentrations.29 Unfortunately, antibody 

assays provide only partial information on the presence of C. trachomatis, and data on infection 

status are not routinely collected in population-based serosurveillance studies. Nevertheless, 

application of our model to other settings (e.g. sexually transmitted infections clinics) could help 

to clarify the possible interactions between sexually transmitted co-infections.

Serological data have been employed to calibrate HPV transmission models,30 often with little 

knowledge about the underlying form of the seroprevalence profile. A major strength of our 

approach is the adoption of a flexible framework to model seropositivity as function of age. 

Seroprevalence profiles have been modeled in several ways, with different assumptions about 

the contact network for transmission, the seroconversion process, waning of antibodies, etc. (see 

Hens et al.31 for a comprehensive overview). A variety of statistical models, ranging from fully 

parametric (e.g. the exponentially damped model32 or fractional polynomials33) to semi- or non-

parametric methods (e.g. (penalized) smoothing splines34) are available to capture age-specific 

patterns in serological data. These methods use only bivariate (seronegative/sero-positive) data 

and do not account for the misclassification bias that might occur. To our knowledge, we are 

the first to incorporate P-splines into a mixture model for serological data, which is attractive 

because it does not use an arbitrary cut-off, makes no global assumptions about the shape of 

the seroprevalence profile, and allows for rapid increases or decreases in age-dependent mixing 

proportions. A drawback of this procedure is the high dimensionality of the underlying B-spline 

basis, and finding optimal parameters is a computationally intensive process. Now that we have 

estimated the seroprevalence profile free of assumptions, it would be convenient to consider a 

parametric form that captures the characteristics of the smoothed seroprevalence as described 

by P-splines, but with only a few parameters. Alternatively, the mixture model could be extended 

to incorporate transmission model estimates of the proportion seropositive by age. Such an ap-

proach might be useful when changes in HPV16 seroprevalence over time are to be understood 

in terms of transmission dynamic models.

The HPV16 seroprevalence profile that we estimate for women agrees well with what has been 

observed in other Western countries, such as England and Australia.35, 25, 36 In these studies, as 

well as in our analysis, female seroprevalence peaked between age 20 and 50 years at around 

25%. However, seroprevalence profiles for men show mixed patterns. In England and the United 

States, HPV16 seroprevalence among men has previously been reported to increase with age 

but reaches only around 10% at the upper end – about a third of the level that we estimate. 

In Australia, male seroprevalence has been shown to have a pattern similar to that which we 

observed in women, with a peak seroprevalence at 15% and a declining trend after age 50 years. 

Comparing these studies with our results is difficult, because of population-specific differences 

in the epidemiology of HPV16 and differences in assay technology used across these studies. 

Nevertheless, all referenced studies used a fixed cut-off value to classify subjects as seropositive. 
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Therefore, misclassification of seropositive males might have played a role in the relatively low 

figures reported for men in almost all sero-epidemiological studies.

Seroprevalence estimates from the mixture model are higher than estimates obtained from 

prior classification of seropositive and seronegative individuals. This makes sense given the 

notion that test specificity is generally valued more than test sensitivity in the determination 

of a fixed cut-off value.6 Using the cut-off value to estimate the seroprevalence, one does not 

account for persons who are incorrectly classified seronegative, and the seroprevalence will be 

underestimated. The modelled sensitivity of the cut-off value (59% for women) corresponds to 

the female seroconversion rates reported in the literature (50%-60%).9 As these rates are based 

on data using a cut-off value to denote seropositivity, our results could be interpreted to mean 

that everyone seroconverts upon infection but that a fraction of the persons is misclassified. 

The next step is to incorporate infection dynamics to capture the relation between infection 

and seroconversion. For men, estimates on the basis of a cut-off value lead not only to a lower 

seroprevalence, but also to a delay in the step-up of seroprevalence as compared with women.11 

It seems that misclassification of seropositive men has an age-specific component, as the bias 

that arises from the use of a fixed cut-off value is most pronounced between 20 and 30 years of 

age. Apparently, HPV16-specific antibody concentrations are a bit lower in seropositive men at 

these ages. A possible explanation is that the humoral immune response of men is boosted upon 

repeated encounters with HPV16, leading to increased antibody concentrations over age.

There are additional age-dependent patterns in the data for which our model does not ac-

count. Results were shown to be highly dependent on the prior assumption that young children, 

aged 0-10 years, are strictly seronegative. Model validation showed that this assumption does not 

entirely capture the heterogeneity in antibody concentrations in this age group; children aged 

0-5 years have lower seronegative antibody concentrations than 5-10 year olds. If we relaxed the 

assumption of strict seronegativity to hold only for 0-5 year olds, both the seronegative and the 

seropositive mixture component densities shifted to slightly lower values. Apparently, antibody 

concentrations among 5-10 year olds are somewhat higher than among 0-5 year olds, but not 

as high as among adults. Possibly, the antibody assay cross-reacts with other HPV-types. The 

multiplex assay includes in total 7 high-risk HPV-types, all sexually transmittable, so cross-reaction 

with these types is unlikely among children. More probable is cross-reaction with non-sexually 

transmitted HPV types – such as those that cause skin warts, which are very prevalent among 

children.37 Note, however, that literature on this topic is equivocal.38 We estimated a large shift 

toward lower values for the seropositive density if no prior knowledge on the seronegative 

mixture component was provided. It seems that an unsupervised model tends to explain the 

observed heterogeneity in lower antibody concentrations first, which makes sense given that 

most observed concentrations are likely seronegative and even slight deviations from log-

normality are detected given the large sample size of our study. We could have accounted for 

more heterogeneity in the model, either by adding more mixture components or by allowing the 

mean and variance of the seropositive mixture density to depend on age. However, this might 

not improve comprehension of the results and could lead to selection of an over-fitted model. 
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The two-component mixture model, while not capable of capturing all data heterogeneity, gives 

a reasonable fit and allows for straightforward interpretation in terms of seroprevalence.

When monitoring changes in HPV infection dynamics in serological surveys conducted after 

introduction of the vaccination program, it would be interesting to extend the model to one in 

which multiple cross-sectional studies are analyzed to account for trends over time. Antibody 

concentrations among vaccinated persons are generally high compared with antibody levels 

induced by natural HPV infection.39 Our model provides a natural framework for distinguishing 

between naturally infected and vaccinated girls, by including vaccination status as a covariate in 

the seropositive component density. This is possible only if information about vaccination status is 

available on the individual level in future serological surveys – which is recommended, especially 

because the Netherlands have decided to replace the 3-dose HPV16/18 vaccine scheme with a 

2-dose scheme for vaccine-eligible cohorts from 2014 onwards.40 Serological surveys provide a 

means to monitor antibody levels in vaccinated cohorts, complementary to longitudinal analysis 

of antibody levels in vaccinated persons – which is particularly relevant since data on the long-

term immunogenicity of the 2-dose relative to the 3-dose HPV16/18 vaccine scheme is lacking.

To conclude, this study provides a new method to estimate seroprevalence as a function of 

age, without prior classification of seropositive individuals. It can be applied to infections with a 

weak serological response to infection or vaccination, as exemplified by an application to HPV16. 

We show that using a mixture model instead of a cut-off value to denote seropositivity may 

affect seroprevalence estimates and lead to a qualitatively different interpretation of infection 

dynamics.
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Appendix

R-code for estimating the mixture model parameters using JAGS

#
# Initialization
#

# Set working directory
setwd(“<path>”)

# Load packages
library(splines)
library(parallel)
library(rjags)

# Setup cluster
n.cores <- detectCores()
cl <- makeCluster(n.cores)

# JAGS function for parallel computing
jags.par <- function(X, data, inits, variable.names, n.iter, n.burnin, 
thin) {
 library(rjags)
 setwd(“<path>”)
 jags.mod <- jags.model(file = “model.txt”, data = data,
 inits = inits, n.chains = 1, n.adapt = 500, quiet = TRUE)
 update(jags.mod, n.iter = n.burnin)
 coda.samples(model = jags.mod, variable.names = variable.names,
 n.iter = n.iter, thin = thin)
}

# Mixed model P-spline setup function
PSplineSetup <- function(x, x.min = min(x), x.max = max(x),
 k = 15, spline.deg = 3, diff.ord = 2) {

 # B-spline basis
 dx <- (x.max-x.min)/(k-spline.deg)
 knots <- seq(x.min-spline.deg*dx, x.max+spline.deg*dx, by = dx)
 B <- spline.des(knots = knots, x = x, ord = spline.deg+1, outer.
ok = TRUE)$design

 # Difference operator matrix
 D <- diff(diag(k), diff = diff.ord)

 # Re-parameterize B and D into X (fixed effects) and Z (random effects)
 X <- B%*%outer(knots[1:k], 0:(diff.ord-1), “^”)
 Z <- B%*%t(D)%*%solve(tcrossprod(D))
 return(list(X = X, Z = Z, n = nrow(X), q = ncol(X), m = ncol(Z)))
}

#
# Simulate log.hpv16 data
# (similar to the real HPV16 data)
#
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# 8000 persons in total
n <- 8000
# About 50% is male (sex = 1)
p.M <- 0.5
# Component densities:
mu.M <- c(-1, 3); sigma.M <- c(1, 1.5)
mu.F <- c(-1, 5); sigma.F <- c(1, 1.5)
# Create dataframe
sim.data <- data.frame(
 age = sample(0:80, size = n, replace = TRUE),
 sex = sample(1:2, size = n, replace = TRUE, prob = c(p.M, 1-p.M)))
sim.data <- within(sim.data, {
 p.m <- SSlogis(age, Asym = 0.45, xmid = 20, scal = 3)
 p.f <- SSlogis(age, Asym = 0.25, xmid = 20, scal = 3)
 I.m <- rbinom(n, 1, p.m)
 I.f <- rbinom(n, 1, p.f)
 log.hpv16 <- ifelse(sex==1,
 (1-I.m)*rnorm(n, mu.M[1], sigma.M[1]) + I.m*rnorm(n, mu.M[2], 
sigma.M[2]),
 (1-I.f)*rnorm(n, mu.F[1], sigma.F[1]) + I.f*rnorm(n, mu.F[2], 
sigma.F[2]))
 rm(p.m, p.f, I.m, I.f)
})

# Detection limit of serological assay
lower.limit <- log(0.08)

# Data modifications
sim.data <- within(sim.data, {
 # Below detection limit: log.hpv16.cat = 0, above detection limit:
 # log.hpv16.cat = 1 (JAGS convention, see help dinterval)
 log.hpv16.cat <- ifelse(log.hpv16 <= lower.limit, 0, 1)

 # Below detection limit log.hpv16 = NA
 log.hpv16 <- ifelse(log.hpv16<=lower.limit, NA, log.hpv16)

 # Infection status: everyone under age 10 is 0 (=negative),
 # everyone older than 10 is NA (=to estimate)
 inf <- ifelse(age<10, 0, NA)
})

#
# P-spline setup
#

# Split datasets into males (“1”) and females (“2”)
sim.data.split <- with(sim.data, split(sim.data, f = sex))

# P-spline setup
psp.data.split <- lapply(
 X = sim.data.split,
 FUN = function(x) PSplineSetup(x = x$age-35, x.min = 0-35, x.max = 80-
35, k = 15))
# Predictions
psp.pred <- PSplineSetup(x = 0:80-35, x.min = 0-35, x.max = 80-35, 
k = 15)
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#
# Fit mixture model with JAGS
#

# Model
model.string <- “model {
 # Likelihood data males
 for (i in 1:n.P2.M) {
 y.P2.M[i] ~ dnorm(mu.M[inf.P2.M[i]+1], tau.M[inf.P2.M[i]+1])
 y.P2.M.cat[i] ~ dinterval(y.P2.M[i], lower.limit)
 inf.P2.M[i] ~ dbern(p.P2.M[i])
 logit(p.P2.M[i]) <- sum(X.P2.M[i, 1:q]*beta.P2.M[1:q]) +
 sum(Z.P2.M[i, 1:m]*b.P2.M[1:m])
 }
 # Likelihood data females
 for (i in 1:n.P2.F) {
 y.P2.F[i] ~ dnorm(mu.F[inf.P2.F[i]+1], tau.F[inf.P2.F[i]+1])
 y.P2.F.cat[i] ~ dinterval(y.P2.F[i], lower.limit)
 inf.P2.F[i] ~ dbern(p.P2.F[i])
 logit(p.P2.F[i]) <- sum(X.P2.F[i, 1:q]*beta.P2.F[1:q]) +
 sum(Z.P2.F[i, 1:m]*b.P2.F[1:m])
 }

 # Predictions
 for (i in 1:n.pred) {
 logit(p.pred.P2.M[i]) <- sum(X.pred[i, 1:q]*beta.P2.M[1:q]) +
 sum(Z.pred[i, 1:m]*b.P2.M[1:m])
 logit(p.pred.P2.F[i]) <- sum(X.pred[i, 1:q]*beta.P2.F[1:q]) +
 sum(Z.pred[i, 1:m]*b.P2.F[1:m])
 }

 # Prior random effects
 for (j in 1:m) {
 b.P2.M[j] ~ dnorm(0, tau.b.P2.M)
 b.P2.F[j] ~ dnorm(0, tau.b.P2.F)
 }

 # Hyperprior random effects
 tau.b.P2.M ~ dgamma(1, 0.01)
 tau.b.P2.F ~ dgamma(1, 0.01)

 # Prior fixed effects
 for (j in 1:q) {
 beta.P2.M[j] ~ dnorm(0, 0.01)
 beta.P2.F[j] ~ dnorm(0, 0.01)
 }

 # Prior Normal components
 # (assumed different between males and females for pos, equal for neg)
 mu.M[1] ~ dnorm(0, 0.01)
 mu.F[1] <- mu.M[1]
 mu.M[2] <- mu.M[1]+d.mu.M
 mu.F[2] <- mu.F[1]+d.mu.F
 d.mu.M ~ dnorm(0, 0.01)I(0, )
 d.mu.F ~ dnorm(0, 0.01)I(0, )
 tau.M[1] ~ dgamma(1, 0.01)
 tau.F[1] <- tau.M[1]
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 tau.M[2] ~ dgamma(1, 0.01)
 tau.F[2] ~ dgamma(1, 0.01)
}”

# Data
data.list <- list(
 n.P2.M = psp.data.split[[“1”]]$n,
 n.P2.F = psp.data.split[[“2”]]$n,
 q = psp.data.split[[“1”]]$q,
 m = psp.data.split[[“1”]]$m,
 y.P2.M = sim.data.split[[“1”]]$log.hpv16,
 y.P2.F = sim.data.split[[“2”]]$log.hpv16,
 y.P2.M.cat = sim.data.split[[“1”]]$log.hpv16.cat,
 y.P2.F.cat = sim.data.split[[“2”]]$log.hpv16.cat,
 lower.limit = lower.limit,
 inf.P2.M = sim.data.split[[“1”]]$inf,
 inf.P2.F = sim.data.split[[“2”]]$inf,
 X.P2.M = psp.data.split[[“1”]]$X,
 X.P2.F = psp.data.split[[“2”]]$X,
 Z.P2.M = psp.data.split[[“1”]]$Z,
 Z.P2.F = psp.data.split[[“2”]]$Z,
 n.pred = psp.pred$n,
 X.pred = psp.pred$X,
 Z.pred = psp.pred$Z)

# Inits
inits.fun <- function() with(data.list, list(
 y.P2.M = ifelse(is.na(y.P2.M), lower.limit-0.1, NA),
 y.P2.F = ifelse(is.na(y.P2.F), lower.limit-0.1, NA),
 b.P2.M = rep(0, m),
 b.P2.F = rep(0, m),
 tau.b.P2.M = 1,
 tau.b.P2.F = 1,
 beta.P2.M = rep(0, q),
 beta.P2.F = rep(0, q),
 mu.M = c(0, NA),
 d.mu.M = 3,
 tau.M = rep(1, 2),
 mu.F = c(0, NA),
 d.mu.F = 3,
 tau.F = c(1, 1),
 .RNG.name = “base::Wichmann-Hill”, .RNG.seed = sample(1:10000, 1)
))

# Run JAGS
writeLines(model.string, “model.txt”)
jags.model(file = “model.txt”, data = data.list,
 inits = inits.fun, n.chains = 1, n.adapt = 500)
clusterExport(cl, varlist = “data.list”)
post.mcmc <- as.mcmc.list(parSapply(cl, X = 1:4, FUN = jags.par, 
data = data.list,
 inits = inits.fun, n.iter = ceiling(50000/4), n.burnin = 500, thin = 10,
 variable.names = c(
 “tau.b.P2.M”, “tau.b.P2.F”,
 “beta.P2.M”, “beta.P2.F”,
 “mu.M”, “mu.F”,
 “tau.M”, “tau.F”,



88

 “p.pred.P2.M”, “p.pred.P2.F”,
 “deviance”, “b.P1.F”, “b.P2.F”
 )
))
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Supplementary figures and tables

Appendix Table 1. Parameter estimates and 95% credible intervals of model 2 (seronegative component den-
sity the same for men and women, seropositive component density gender-specific). Both the seronegative and 
seropositive component density are normally distributed with given mean and standard deviation (sd).

Men Seronegative component Seropositive component

Mean Sd Mean Sd

-0.68 (-0.72, -0.64) 1.14 (1.11, 1.17) 1.90 (1.34, 2.24) 1.43 (1.24, 1.72)

Women Seronegative component Seropositive component

Mean Sd Mean Sd

-0.68 (-0.72, -0.64) 1.14 (1.11, 1.17) 2.53 (2.21, 2.81) 1.44 (1.28, 1.63)
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Appendix Figure  1. Difference in seroprevalence when using Model 1 (both mixture component densities 
sex-specific) or Model 2 (only seropositive component density sex-specific). Left figure denotes male seropreva-
lence, right figure female seroprevalence.
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Appendix Figure 2. Model fit of the data for men. Gray lines denote the emperical cumulative distribution 
function and 95% confidence interval of the HPV16 log-concentration for men, per 5-year age group. The black 
line denotes the model-predicted cumulative distribution function.


