Percolation, loop soups and stochastic domination
van de Brug, T.

2015

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
Summary

This thesis is on probability theory, in particular on percolation, loop soups and stochastic domination. It is based on the papers [8], [53], [7] and [52], which form the basis for Chapters 2–5, respectively. Chapter 1 contains an introduction.

In Chapter 2 we study stochastic domination of conditioned Bernoulli random vectors. We consider sequences of vectors X_n and Y_n that each consist of n independent Bernoulli random variables. We assume that X_n and Y_n each consist of M “blocks” such that the Bernoulli random variables in block i have success probability p_i and q_i, respectively, with $p_i \leq q_i$ for all i. Here M does not depend on n and the size of each block is essentially linear in n. We consider the conditional laws of X_n and Y_n, conditioned on the total number of successes being at least k_n, where k_n is also essentially linear in n. In general, the conditional law of X_n is not necessarily stochastically dominated by the conditional law of Y_n. We give a complete answer to the question with what maximal probability two such conditioned Bernoulli random vectors can be ordered in any coupling, when the length n of the vectors tends to infinity.

In Chapter 3 we study the random connection model, which is a model in continuum percolation (see [39]) defined as follows. Take a Poisson point process X on \mathbb{R}^d of density λ and connect each pair of points x and y in X with probability $g(|x-y|)$, independently of other pairs of points, independently of the point process X. Here g is a connection function, which is a non-increasing function from the positive reals to $[0, 1]$. We consider a sequence of random connection models X_n, where X_n is a Poisson point process on \mathbb{R}^d of density λ_n such that $\lambda_n/n^d \to \lambda > 0$. The points of X_n are connected according to the connection function g_n defined by $g_n(x) = g(nx)$, for some connection function g. Let I_n be the number of isolated points in the random connection model X_n in some bounded set K. The main result in [44] by Roy and Sarkar is a central limit theorem for I_n. Although the statement of this result is correct, the proof in [44] has errors. We explain what went wrong in the proof, and how this can be corrected. We also prove an extension to components larger than a single point in case the connection function has bounded support.

In Chapter 4 we study two variations on the fractal percolation model introduced by Mandelbrot [38]. The first variation is k-fractal percolation, defined as follows. Divide the d-dimensional unit cube in N^d equal subcubes and retain k of them in a uniform way while the others are removed. Then iterate the procedure inside the retained subcubes at all smaller scales. We prove that the (properly rescaled) percolation critical value of the model converges to the critical value of ordinary site percolation on a particular d-dimensional lattice as N tends to infinity. This is analo-
gous to the result of Falconer and Grimmett [24] that the critical value of Mandelbrot fractal percolation converges to the critical value of site percolation on the same d-dimensional lattice. The second model we study is fat fractal percolation. In this model subcubes are retained with probability p_n at iteration step n of the construction, where p_n is non-decreasing in n such that $\prod_n p_n > 0$. The Lebesgue measure of the limit set is positive a.s. given non-extinction. We prove that either the set of connected components larger than one point has Lebesgue measure zero a.s. or its complement in the limit set has Lebesgue measure zero a.s.

In Chapter 5 we study the random walk loop soup, which is a Poissonian collection of lattice loops. It has been extensively studied because of its connections to the discrete Gaussian free field [33], but was originally introduced by Lawler and Trujillo Ferreras [31] as a discrete version of the Brownian loop soup of Lawler and Werner [32], a conformally invariant Poissonian collection of planar loops with deep connections to conformal loop ensembles (CLE) [48] and the Schramm-Loewner evolution (SLE). Lawler and Trujillo Ferreras [31] showed that, roughly speaking, in the continuum scaling limit, “large” lattice loops from the random walk loop soup converge to “large” loops from the Brownian loop soup. Their results, however, do not extend to clusters of loops, which are interesting because the connection between Brownian loop soup and CLE goes via cluster boundaries. We study the scaling limit of clusters of “large” lattice loops, showing that they converge to Brownian loop soup clusters. In particular, our results imply that the collection of outer boundaries of outermost clusters composed of “large” lattice loops converges to CLE.