Contents

1 Introduction 1
 1.1 The Unsustainable ICT 1
 1.2 The Quest for Energy-Efficient Software 2
 1.3 Research Questions 4
 1.4 Research Methods 6
 1.5 Thesis at-a-Glance 7
 1.6 Outline of Thesis and Publications 7

2 Background: Software and Energy 13
 2.1 Profiling Software Power Consumption 13
 2.1.1 Study Design 14
 2.1.2 Results 23
 2.1.3 Discussion 29
 2.2 Software Energy Measurement and Modeling:
 State-of-the-art 30
 2.2.1 Software Energy Measurement 31
 2.2.2 Energy Modeling 32
 2.3 Conclusion 35

 3.1 Introduction 37
 3.2 Related Work 39
 3.3 Experiment Planning 44
 3.3.1 Variable Selection 44
 3.3.2 Hypotheses Formulation 47
 3.3.3 Instrumentation and Testbed 47
 3.4 Execution 49
 3.4.1 Preparation 49
 3.4.2 Data Collection and Analysis 50
 3.5 Threats to Validity 52
 3.5.1 Conclusion Validity 52
 3.5.2 Internal Validity 53
 3.5.3 Construct Validity 53
 3.5.4 External Validity 53
 3.6 Results 54
 3.6.1 Practice 1: Use Efficient Queries 54
 3.6.2 Practice 2: Put Application to Sleep 58
 3.7 Reflection 60
4 Energy Efficiency in Cloud Software Architectures - A Systematic Literature Review

4.1 Introduction

4.2 Review Protocol

4.2.1 Search Strategy

4.2.2 Study Selection

4.2.3 Data Extraction

4.2.4 Data Analysis

4.2.5 Traceability

4.3 Demographic Analysis

4.4 Energy Efficiency in Software Architectures

4.4.1 Strategies

4.4.2 Techniques

4.4.3 Components

4.5 Stakeholder Overview

4.6 Threats to Validity

4.7 Conclusions

5 A Catalog of Green Architectural Tactics for the Cloud

5.1 Introduction

5.2 Related Work

5.3 Energy Efficiency as a Quality Attribute

5.4 Green Architectural Tactics

5.4.1 Energy Monitoring

5.4.2 Self-Adaptation

5.4.3 Cloud Federation

5.5 Discussion

5.6 Next Steps: Tactics Evaluation

5.7 Conclusions

6 A Conceptual Framework for Energy-Efficient Software Engineering

6.1 Introduction

6.2 Reflection on Empirical Evidence

6.3 Conceptual Framework

6.4 Stakeholders

6.5 Strategies for Energy-Efficient Software

6.5.1 Energy Monitoring: use software energy models to drive improvements

6.5.2 Refactoring: identify and remove energy inefficiencies
6.5.3 Self-adaptation: energy efficiency by design 110
6.6 Conclusions ... 111

7 The GREENSWEP Approach for Software Energy Efficiency
Research ... 113
7.1 Introduction .. 113
7.2 The GREENSWEP Approach 114
 7.2.1 Background: Energy Hotspots 115
 7.2.2 1st stage: Hotspot Identification 116
 7.2.3 2nd stage: Hotspot Verification 118
7.3 Research Implications 118
7.4 Conclusions .. 120

8 Conclusions .. 121
8.1 Main Contributions .. 121
 8.1.1 RQ 1. What is the correlation between software and hardware energy consumption? 121
 8.1.2 RQ 2. What is the impact of using best practices for software energy efficiency? 122
 8.1.3 RQ 3. How can software architectural solutions realize energy efficiency? 123
 8.1.4 RQ 4. Can we provide strategies to improve software energy efficiency? 123
 8.1.5 Answering the Main Research Question: lessons learned ... 123
8.2 Future work .. 124

Summary .. 127

Samenvatting .. 129