A sizable share of unemployment can be attributed to frictions in the labor market. The simultaneous existence of vacancies and job seekers proves that job search requires effort and time. To improve the efficiency of this process, many countries offer active labor market policies. Evaluating how these programs affect job prospects of job seekers is crucial for effective policy making and forms the basis of this thesis.

Chapter 2 compares different methods to assess the effect of such programs on job finding of participants. Chapter 3 describes a field experiment to investigate how job search strategies and labor market outcomes are affected by the provision of detailed labor market statistics. Chapter 4 examines the possibility that activation programs affect non-participating job seekers through general equilibrium effects. Chapter 5 has a slightly different focus and studies the relation between childcare subsidies and female labor supply.

Paul Muller (1986) obtained his Bachelor degree in economics from the University of Amsterdam in 2008. He followed the MPhil program at the Tinbergen Institute and wrote his Ph.D. thesis at the Vrije Universiteit in Amsterdam. He is currently working as a postdoctoral researcher at the University of Gothenburg.
Labor market policies and job search
This book is no. 635 of the Tinbergen Institute Research Series, established through cooperation between Thela Thesis and the Tinbergen Institute. A list of books which already appeared in the series can be found in the back.
LABOR MARKET POLICIES AND JOB SEARCH

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. V. Subramaniam,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Economische Wetenschappen en Bedrijfskunde
op dinsdag 19 januari 2016 om 13.45 uur
in de aula van de universiteit,
De Boelelaan 1105

door Paul Muller

egenomen te Groningen
promotoren: prof.dr. B. van der Klaauw
prof.dr. P.A. Gautier
Acknowledgements

Acknowledgments for this thesis should, without a doubt, start by thanking my advisers Pieter Gautier and Bas van der Klaauw. Over the course of four years, I have become aware that your supervision has been extraordinary. You’ve been extremely accessible and always offered a very relaxed style of guiding me through the process of producing papers. You were critical when necessary, but mostly very supportive. Your encouragement to visit conferences and present my work even at an early stage has proven very beneficial. Finally you have been a great help and support during the job market in the final year. And maybe equally important, you have broad interests and were just a lot of fun to be around during coffee breaks, lunches, dinners or even football matches. This thesis would never have reached this stage without your commitment.

The 5th chapter of this thesis is the result of a fruitful collaboration at the CPB. I am grateful to my co-authors Egbert Jongen and Leon Bettendorf for making me feel at home when staying at the CPB. I think we were a good team, and I learned a lot from you. The experience of doing research which was close to the policy making process has been very valuable.

For the 3rd chapter I am highly indebted to Philipp Kircher and Michèle Belot. I am grateful for your invitation to come to the University of Edinburgh for an academic visit. During my series of visits of in total 9 months, you made sure I felt welcome both at the department and in Edinburgh. Setting up the experiment has been a difficult, but ultimately very rewarding experience. Both of you have been inspirational and your excitement about research has been a major factor in my decision to continue working in the academic world. The study would not have been possible without the cooperation from the Job Centres, which is gratefully acknowledged. I would also like to thank everyone at the economics department for being so welcoming, in particular Ludo, Jan, Steven, Nick and Mike. Furthermore, the lab team did an amazing job at organizing the study, while also being great company to spend the many session days with. Finally I am thankful to Davide, my flatmate in Edinburgh, for mixing the working
hours with very enjoyable Italian dinners as well as the occasional football match or swing dancing session.

I am thankful to Michael Rosholm and Michael Svarer for their willingness to collaborate on a project using data from their experiment in Denmark, which led to the 4th chapter of this thesis. The project leading to chapter 2 would not have been possible without the support of the UWV, which granted us access to their dataset on Dutch UI benefit receivers. I am thankful to Arjan Heyma for agreeing to jointly exploit this dataset.

To my office mates at the VU (in the first 3 years), Łukasz and Lisette, I owe a lot. I need to thank you for countless interesting or less interesting discussions, gossips and polish lessons. Most importantly, you became great friends and you made coming to the VU each morning a pleasure rather than an obligation. To Dennis, you turned out to be the perfect friend at work. We have lots in common and shared many excitements as well as doubts about academic research, while our boxing sessions were a great relief after (sometime frustrating) working days. I am very glad that you agreed to be my paranymph. I am sad to leave the economics department of the VU, as it has always been a great pleasure to be there. The atmosphere is so relaxed, while at the same time encouraging and stimulating. I would like to thank all colleagues, and in particular Xiaoming, Sandra, Nahom, Maarten, Gosia, Nynke, Sabien, José Luis, Jochem, Sándor and Luca.

I am thankful to Hessel Oosterbeek and Erik Plug for sparking my interest in the search for causal effects through their master's course and for stimulating me to enroll in the Mphil program of the Tinbergen Institute. I would like to thank the reading committee for taking their time to go through this entire thesis and providing useful feedback. José Luis has provided invaluable advice during the search for an academic position in the last year. The introduction of this thesis benefited a lot from feedback from Sandra. Thanks to Sietske for her help with finding a front cover picture.

Rogier, thanks for being such a great friend ever since the time I moved to Amsterdam, and for now agreeing to be my paranymph. I have greatly appreciated the many hours I spend with Bastian in the first years at the Tinbergen Institute, either studying or in the gym, and later on the many interesting discussions we had about research and other things. Furthermore, I’d like to thank all my friends in Amsterdam, Zwolle and other places for providing so many great and necessary distractions from work. To my family, Marten, Carla, Arjan, Sietske, Thom and Eric, I am grateful for your unconditional support and interest in what I have been working on.
Pursuing a PhD has been a great choice for one final reason. Nadine, we started out as colleagues, but the last few years we have shared so many experiences. You are a wonderfully kind and enthusiastic person and your curiosity and openness to everything in life is unsurpassed. I feel lucky and grateful to spend our lives together and to start a new adventure with you in Sweden.
Contents

1 Introduction

2 Comparing methods to evaluate the effects of job search assistance
 2.1 Introduction ... 5
 2.2 Literature ... 8
 2.3 Institutional setting and the policy discontinuity 9
 2.4 Data ... 11
 2.5 Treatment effects ... 16
 2.5.1 Defining the treatment effect 16
 2.5.2 Identification ... 20
 2.5.3 Business cycle, seasonalities and cohort composition 21
 2.6 Quasi-experimental analysis 24
 2.6.1 Intention-to-treat effect 25
 2.6.2 Average treatment effect 27
 2.6.3 Common trend assumption 29
 2.7 Non-experimental analysis 30
 2.7.1 Matching .. 30
 2.7.2 Timing of events model 34
 2.8 Discussion ... 37
 2.9 Conclusion .. 39

3 Providing advice to job seekers at low cost: An experimental study on online advice
 3.1 Introduction .. 41
 3.2 Related Literature .. 47
 3.3 Institutional Setting .. 50
 3.4 Experimental Design .. 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1 Parameter values</td>
<td>127</td>
</tr>
<tr>
<td>4.6.2 Increasing the intensity of the activation program</td>
<td>130</td>
</tr>
<tr>
<td>4.6.3 Robustness checks</td>
<td>133</td>
</tr>
<tr>
<td>4.7 Conclusion</td>
<td>138</td>
</tr>
<tr>
<td>4.8 Appendix</td>
<td>140</td>
</tr>
<tr>
<td>4.8.1 Empirical analyses with restricted comparison counties</td>
<td>140</td>
</tr>
<tr>
<td>4.8.2 Equilibrium search model with Bertrand competition</td>
<td>140</td>
</tr>
<tr>
<td>5 Childcare subsidies and labor supply - Evidence from a large Dutch reform</td>
<td>145</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>145</td>
</tr>
<tr>
<td>5.2 The reform</td>
<td>148</td>
</tr>
<tr>
<td>5.3 Methodology</td>
<td>156</td>
</tr>
<tr>
<td>5.4 Data</td>
<td>158</td>
</tr>
<tr>
<td>5.5 Estimation results</td>
<td>162</td>
</tr>
<tr>
<td>5.5.1 Participation rate</td>
<td>162</td>
</tr>
<tr>
<td>5.5.2 Hours worked per week</td>
<td>165</td>
</tr>
<tr>
<td>5.5.3 Results for men</td>
<td>168</td>
</tr>
<tr>
<td>5.6 Discussion</td>
<td>169</td>
</tr>
<tr>
<td>5.7 Conclusion</td>
<td>173</td>
</tr>
<tr>
<td>6 Summary and Conclusions</td>
<td>177</td>
</tr>
<tr>
<td>Bibliography</td>
<td>181</td>
</tr>
<tr>
<td>Samenvatting (Dutch summary)</td>
<td>193</td>
</tr>
</tbody>
</table>
A sizeable share of unemployment can be attributed to frictions in the labor market. The simultaneous existence of vacancies and job seekers proves that job search requires effort and time. Vacancies need to be identified, applications have to be written, candidates have to be selected. Government policies, in particular unemployment insurance and activation programs, play a large role in this process. Unemployment insurance insures workers against the lack of income during periods of unemployment, though it may also create a moral hazard problem by lowering the incentives to search for a job. Incentive schemes consisting of decreasing benefits over time, job search effort monitoring and sanctions, are commonly used policies to solve this problem. To improve the efficiency of the matching process, many countries also offer active labor market policies (ALMP), such as job search assistance, training programs, schooling or subsidized employment. In most developed countries, such programs represent a large share of the government’s budget: around 0.5% of GDP (OECD (2010)). Many different types of programs have been suggested or implemented such that a large range of options exist for policy makers. Reliable estimates of the benefits of these programs are therefore necessary.

The literature investigating the effects of ALMP’s is large and has reached some consensus on the effectiveness of particular programs (see the meta-analysis by Card et al. (2010)). Such evaluation studies have to deal with the fact that participants in a program are typically a very selective group. Participants are either selected by case workers, or they select themselves by volunteering because they are highly motivated to
find a job. In both cases, they differ from the average job seeker in many dimensions. For example, if they are selected by case workers, they are probably less able or motivated to find employment than the average job seeker. This leads to a bias if one would estimate the effect of the program by comparing participants and non-participants. Controlling for many observable characteristics could solve the problem, though it is impossible to determine whether no unobserved differences remain.

In chapter 2 of this thesis, evaluation methods for job search assistance programs are compared to assess the magnitude of the selection problem. First, the effect of an intensive activation program in the Netherlands on job finding is estimated using a discontinuity in the provision of the program. The discontinuity provides exogenous variation in the provision of the program, such that it can be used as a natural experiment to identify how the program affects job finding. The results are then compared to non-experimental estimates (using cross sectional data) to assess to what extent selection based on unobservable characteristics affects the estimates of program impacts. First, the study finds that the activation program was ineffective in guiding job seekers to work. Results even suggest that, in the short-run, the program reduces job finding. Second, the non-experimental estimates underestimate the effect significantly: they suggest that the program reduces job finding even in the long-run. The difference in findings implies that program participants have, on average, ‘worse’ unobserved characteristics than the average job seeker, leading to worse job finding prospects. This difference remains even after correcting for a large set of observed characteristics.

While many studies have estimated the effects of ALMP’s on job finding (or on the quality of the new job), a number of other angles have received relatively little attention. Mostly because of the lack of necessary data, little is known about the job search strategies of unemployed individuals. Moreover, how job search strategies change as a result of job search assistance programs has hardly been investigated. Job seekers may start sending out more applications. The quality of applications may improve. Job seekers might be induced to search in a broader set of occupations or focus on one specific one. Job seekers may simply dislike participating in a program and as a result they might search more or become less picky (lower their reservation wage) in order to be able to leave the program. This mechanism is often referred to as the ‘threat effect’. The mechanisms behind changes in job finding rates have remained somewhat of a black box. While rich administrative data is nowadays available on unemployment duration, employment histories and job finding, it is difficult to observe unsuccessful applications.
Chapter 3 focuses on job search strategies of unemployed workers. It reports results from a controlled experiment in which job seekers were followed for 12 weeks, while spending a minimum of 30 minutes per week searching for jobs in the behavioral lab of the University of Edinburgh. The designed job search engine recorded all job search details and in addition performed a weekly survey to obtain many background characteristics as well as information on other channels of job search. A randomized trial among the participants presented half of the participants with an alternative search interface, which provided information on suitable occupations based on their preferred occupation. It also presented geographical information on labor market tightness. The setup of the study allows to observe job search strategies in great detail: which criteria are used when performing an online search, which vacancies are saved as interesting, which are applied to, which lead to a job interview. The results of the study show that providing information is beneficial for job seekers that search “narrow” in terms of occupations and have been unemployed for more than two and a half months. For this group the intervention led to a broader search strategy in terms of occupations, and increased the number of job interviews. Since the intervention is relatively cheap (especially compared to frequent meetings with a case worker or training programs), the finding of a positive effect is particularly interesting from a policy perspective. The rich set of information resulting from this study shall be used in the future to address other questions related to job search strategies as well.

One could argue that the effect of a program on job finding is all that matters, and the mechanism is of second order importance. That this is not the case, is demonstrated in chapter 4 of this thesis, which evaluates a job search assistance program that was offered in two regions in Denmark. Conventional evaluation studies have shown that participants of this program found jobs quicker than non-participants (Graversen and van Ours (2008), Rosholm (2008)). However, since it is unknown how the program increases the job finding rate, we cannot conclude that the program increases welfare. The higher job finding rate could result from different mechanisms: more applications, better applications, an improvement of skills (productivity), a decrease of the reservation wage or an increase in job seekers abilities to find vacancies that suit best their skills and preferences. Some of these mechanisms may imply that the increased job finding of participants comes at the expense of other job seekers. For example, if those that follow the program double their number of applications, they will find jobs quicker, but this is likely to reduce job finding of other job seekers.
Whether such externalities occur, is investigated in chapter 4. Using a difference-in-differences approach we compare randomly selected participants in the job search assistance program with randomly selected non-participating job seekers in the same region, but also with job seekers in other regions. We find that while participants are more successful in finding jobs after the introduction of the program, the non-participants in the same region were less successful. Crowding out seems to be important: the success of the participants comes at the expense of the non-participants. The second part of the chapter uses these findings to estimate a structural search model to simulate the policy relevant outcomes when the program would rolled out on a large scale. These results suggest that if all job seekers would participate in the program, there would be no effect on job finding. Therefore, a large scale roll-out of the program would reduce welfare.

The 5th chapter of this thesis looks at a different type of labor market policy: it investigates whether childcare subsidies incentivize mothers with young children to increase their labor supply. Childcare subsidies were increased substantially in the Netherlands in 2005 and they were also extended to home care. For most families, this led to a sizeable decrease in the costs of childcare, thereby increasing the returns to employment. This policy reform is exploited to estimate the labor supply response of mothers with young children. We find that the participation rate of mothers increased slightly (the extensive margin), while a larger effect is found for the number of hours worked per week (the intensive margin). The magnitude of the increase is small compared to the budgetary impulse: we compute that the cost in terms of extra subsidies of each additional full-time job is around 90,000 Euro.

Chapter 6 concludes, and provides a summary of all chapters.
Comparing methods to evaluate the effects of job search assistance

2.1 Introduction

In 2002 the Dutch market for job search assistance programs was privatized, implying that the unemployment insurance (UI) administration buys services of private companies to help benefits recipients in their job search. Due to the economic crisis the demand for programs increased sharply in 2009 and early 2010. This caused budgetary problems in March 2010 and the government refused to extend the budget. As a result, the purchase of new programs was terminated within a period of two weeks. During the remainder of the year, new UI benefits recipients could not enroll in these programs anymore. In this paper we exploit this policy discontinuity to evaluate the effects of the programs on job finding. We then estimate the same effects using non-experimental methods and assess their performance using the quasi-experimental estimates as a benchmark.

The main challenge faced when evaluating activation programs is selective participation (Heckman et al. (1999), Abbring and Heckman (2007)). As shown in a meta-analysis by Card et al. (2010), over 50% of the evaluation studies use longitudinal data and

1This chapter is based on Muller et al. (2015)
2. Comparing methods

compare a treatment group with a control group, where the control group is typically formed by matching on observable characteristics. Over one-third of the studies use duration models. Less than 10% of the studies use an experimental design. In his seminal study, LaLonde (1986) shows that non-experimental estimators produce results that do not concur with those from experimental evidence. In an extension Dehejia and Wahba (1999) test the performance of matching estimators, finding that those are closer to the experimental evidence. Their findings are however disputed by Smith and Todd (2005), who evaluate the same program and show that the findings are not robust to different specifications and to the use of different samples and different sets of covariates. They refer to Heckman et al. (1997) who argue that matching estimators can only replicate experimental findings if three requirements are fulfilled. First, the same data source for treated and control group should be used (in particular the outcome variable should be measured in the same way). Second, treated and control individuals should be active in the same local labor market. Third, the data should contain a rich set of variables that affect both program participation and labor market outcomes. Smith and Todd (2005) state that each of these requirements is likely to be violated in the evaluations by LaLonde (1986) and Dehejia and Wahba (1999). However, since the 1970's data quality has improved, as well as statistical methods.

We build on this literature by performing a similar comparison of methods, using a recent, rich administrative dataset. Our main contribution is twofold. First, since our quasi-experimental estimates are identified from a large scale policy discontinuity in 2010 in the Netherlands, the setting is particularly suitable for such a comparison. Our data fulfills the criteria mentioned by Smith and Todd (2005). The administrative dataset allows the use of high-quality information on a rich set of variables, including individual characteristics, pre-unemployment labor market variables, current unemployment spell characteristics and any assistance provided by the UI administration and private providers. As the policy discontinuity was nationwide, the sample size is substantial. Since the policy discontinuity occurred recently, programs and labor market conditions are similar to those currently in many countries. Second, for the non-experimental analysis we not only apply a range of matching estimators, but also estimate the timing-of-events model. This allows us to compare both approaches to our baseline estimates and assess which performs best.

We exploit the policy discontinuity to non-parametrically estimate how program participation affects job finding. The variation in program provision due to the quasi-experiment is large. Within a month, the weekly number of new program participants
dropped from 1300 to less than 80 and remained below 50 for the remainder of the year. We estimate the treatment effect on the treated by comparing the job finding rates of cohorts entering unemployment at different points in time, though relatively short after each other. Since they reach the discontinuity at different unemployment durations they are affected differentially. This identifies the effect of the programs. Seasonal differences in the labor market are controlled for using cohorts from the previous year. Our results show that after starting a program, the job finding rate is reduced significantly for several months (i.e. lock-in effect). After half a year it increases, up to a zero difference in job finding after 12 to 18 months.

We compare these results to several matching estimators (inverse probability weighting, propensity score matching, regression adjustment and nearest neighbor matching). Results are very similar across the four matching estimators. All show a significant negative effect of program participation directly after entry in the program. Even though the negative effect decreases in magnitude over time, all estimators remain significantly negative after 18 months. Next, we estimate a timing-of-events model (Abbring and Van den Berg (2003)), which controls for selection on unobservables by adding more structure on the model. In particular it jointly models the hazard rate to employment and the hazard rate to program participation. Using this model we estimate that the program reduces the job finding rate in the first six months, while it slightly increases the job finding rate at longer durations. Overall this leads to a negative effect on employment in the first 14 months, and a zero effect afterwards.

To summarize, all methods find a negative effect in the first couple of months, while only the quasi-experimental estimates and the timing-of-events model find that the effect in the medium run is zero. The fact that the matching estimator underestimates the effect suggests that program participants are a selective group with relatively unfavorable unobservable characteristics.

The remainder of the paper is structured as follows. We briefly discuss the literature on the evaluation of active labor market programs in Section 2.2, and describe the institutional setting and the budgetary problems which led to the policy discontinuity in Section 2.3. An overview of the data is provided in Section 2.4. In Section 2.5 we define the treatment effects and discuss how they are identified from the policy discontinuity. In Section 2.7 we present the quasi-experimental estimation results, while Section 2.7 contains the non-experimental estimation methods and results. Section 2.8 compares the results from the different methods and provides a discussion. Section 2.9 concludes.
2.2 Literature

There is a large literature studying the effectiveness of active labor market programs. Reviews provided by Kluve (2010) and Card et al. (2010) show that there is some consensus on the effects of different types of programs on post-unemployment outcomes such as employment, wages and job stability. For example, job search assistance is found to be more likely to have positive effects on job finding than alternatives such as public sector employment programs. The surveys emphasize that different methodologies are used, but find little evidence that empirical results are related to the methodological approach.

Card et al. (2010) report that only 9% of the evaluation studies in their meta-analysis use an experimental approach. For example, Dolton and O’Neill (2002) use random delays in program participation to assess the effect of a job search assistance program in the UK. Van den Berg and Van der Klaauw (2006) analyse a randomized experiment of counseling and monitoring, to show that the program merely shifts job search effort from the informal to the formal search channel. Graversen and van Ours (2008) evaluate an intensive activation program in Denmark, using a randomized experiment. Card et al. (2011) show estimates of the effect of a training program offered to a random sample of applicants in the Dominican Republic. Behaghel et al. (2014) perform a large controlled experiment, randomizing job seekers across publicly and privately provided counseling programs.

Randomized experiments are typically expensive and have practical and ethical complications. Alternatively, quasi-experimental approaches are often used. Van den Berg et al. (2014) discuss the use of regression discontinuity with duration data and apply their approach to the introduction of the New Deal for the Young People in the UK. Van der Klaauw and Van Ours (2013) analyze the effect of both an employment bonus and sanctions, exploiting policies changes in the bonus levels. Cockx and Dejemeppe (2012) use a regression discontinuity approach to estimate the effect of extra job search monitoring in Belgium.

Many studies use non-experimental methods such as matching. For example, Brodaty et al. (2002) apply a matching estimator to estimate the effect of activation programs for long-term unemployed workers in France. Sianesi (2004) investigates different effects of active labor market programs in Sweden and Lechner et al. (2011) looks at long-run effects of training programs in Germany. Some other studies applied
the timing-of-events model (Abbring and Van den Berg (2003)). For example, this model is used to evaluate the effect of benefit sanctions in the Netherlands (Van den Berg et al. (2004) and Abbring et al. (2005)) and to evaluate a training program in France by Crépon et al. (2012).

Some studies compared outcomes of different methods. LaLonde (1986), Dehejia and Wahba (1999) and Smith and Todd (2005) show how the difference between experimental and non-experimental estimates can be substantial, using data from a job training program in the US. More recently, Lalive et al. (2008) evaluate the effect of activation programs in Switzerland. They find that matching estimators and estimates from a timing-of-events model lead to different results. Mueser et al. (2007) use a wide set of matching estimators to estimate the earnings effect of job training programs in the US. They find that a combination of difference-in-differences and matching performs best, and produces results that are similar to estimates from a randomized experiment (Orr et al. (1996)). Kastoryano and Van der Klaauw (2011) evaluate job search assistance provided in the Netherlands. They compare different methods for dynamic treatment evaluation (discrete and continuous) and find that results are similar. Biewen et al. (2014) provide estimates of the effect of training programs. They show that results are very sensitive to data features and methodological choices.

2.3 Institutional setting and the policy discontinuity

In this section we briefly describe the institutional setting and the policy discontinuity in program provision.

In the Netherlands unemployment insurance (UI) is organized at the nationwide level. The UI administration (UWV) pays benefits to all eligible workers. Since October 2006 the eligibility criteria are as follows (see Van der Klaauw and de Groot (2014) for an extensive discussion). A worker should have involuntary lost at least half of her working hours with a minimum of five hours per week. The worker should have worked for at least 26 weeks out of the last 36 weeks. Fulfillment of this "weeks condition" provides a eligibility to benefits for three months. During the first two months benefits are 75% of the previous wage, capped at a daily maximum. From the third month onward it is 70% of the previous wage. If the worker has worked at least four out of the last five years, the benefits eligibility period is extended with one month for each additional year of employment. The maximum UI benefits duration is 38 months.
A UI benefits recipient is required to register at the public employment office, and to search for work actively. The latter requires making at least one job application each week. Case workers at the UI administration provide basic job search assistance through individual meetings, and offer some additional assistance programs. Benefit recipients are obliged to accept any suitable job offer. Case workers are responsible for monitoring these obligations. In general, the intensity of meetings is low though (only in case the case worker suspects that a recipient is unable to find work without assistance a meeting is scheduled). In 2009, case workers had the possibility of assigning an individual to a range of programs aiming at increasing the job finding rate, if she judged that the benefits recipient required more than the usual guidance. A large diversity of programs existed, including job search assistance, vacancy referral, training in writing application letters and CV’s, wage subsidies, subsidized employment in the public sector and schooling. Some of these were provided internally by the UI administration, while others were purchased externally from private companies. Our analysis focuses on the externally provided programs. These can be broadly classified as (with relative frequency in parentheses) job search assistance programs (56%), training or schooling (31%), subsidized employment (2%) and other programs (11%). Though some guidelines existed, case workers had a large degree of discretion in deciding about program assignment.

The lack of centralized program assignment together with an increased inflow in unemployment due to the recession caused that many more individuals were assigned to these programs in 2009 and early 2010 than the budget allowed. Therefore the entire budget had been exhausted by March 2010. The authorities declared that no new programs should be purchased from that moment onward. Assistance offered internally by the UI administration continued without change. In Section 2.4 we show that indeed the number of new program entrants dropped to almost zero in March 2010 and remained very low for the rest of 2010.

2 During the first six months a suitable job is defined as a job at the same level as the previous job, between six and 12 months it can be a job below this level, and after 12 months any job is suitable and should be accepted.

3 This was declared by the minister of social affairs, in a letter to parliament on March 15. An exception was made for a small number of specially targeted programs (mostly for long-term unemployed workers).
2.4 Data

We use a large administrative dataset provided by the UI administration, containing all individuals who started collecting UI benefits between April 2008 and September 2010 in the Netherlands. The dataset contains 608,998 observations (each UI spell is considered an observation, though for some individuals there are multiple spells).

We select a sample of individuals with a high propensity to participate in the external programs. These are native males, aged 40 to 60 years, with a low unemployment history (at most two unemployment spells in the past 3 years) and belonging to the upper 60% of the income distribution in our data. This reduces the sample to 116,866 observations. The advantage of restricting the sample is twofold. First, the policy discontinuity affects this group strongest, which strengthens the first stage of the analysis. Second, the estimates will be more precise when using a homogeneous sample.

For each spell we observe the day of starting receiving UI benefits and, if the spell is not right censored, the last day and the reason for the end of the benefit payments. Right censoring occurs on January 1st, 2012, when our data was constructed, so for each individual we can observe at least 16 months of benefits receipt. The dataset contains a detailed description of all activation programs (both internally and externally provided) in which benefits recipients participated in. Furthermore individual characteristics and pre-unemployment labor market outcomes are included in the dataset.

Figure 1 shows how the monthly number of individuals entering UI evolves over time. Due to the economic crisis, there is a substantial increase in the inflow from December 2008 onward. In particular the inflow increased from about 2000 to 5000 per month and remained high until the end of 2009. From 2010 onward the inflow decreased somewhat. Table 1 presents summary statistics for the full sample, as well as for three subgroups defined by their month of inflow into unemployment. Column (1) shows that for the full sample the median duration of unemployment is 245 days (around eight months). Almost 60% of those exiting UI find work, while 15% reaches

4The original dataset contains 671,743 unemployment spells. We exclude 35,671 spells from individuals previously employed in a government sector and 17,577 from individuals older than 60 years. Next, we drop 533 spells from individuals working more than 60 hours or less than 12 hours in their previous job and 151 spells from individuals who were eligible for a so-called 'education and development fund'. Finally we exclude 8518 spells with a duration of zero days and 290 spells from individuals with inconsistent or missing data (such as a negative unemployment duration). These are often individuals for whom the application to benefits was later denied.

5For example, using a homogeneous sample improves the performance of the matching estimators that we applied in Section 2.7.1 (Imbens (2014)).
2. Comparing methods

Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th>Inflow cohort UI:</th>
<th>Full sample</th>
<th>April 2008</th>
<th>April 2009</th>
<th>April 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment duration (median, days)</td>
<td>245</td>
<td>175</td>
<td>280</td>
<td>275</td>
</tr>
<tr>
<td>Reason for exit (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work</td>
<td>57.2</td>
<td>52.3</td>
<td>52.5</td>
<td>62.2</td>
</tr>
<tr>
<td>End of entitlement period</td>
<td>15.4</td>
<td>21.5</td>
<td>19.1</td>
<td>8.3</td>
</tr>
<tr>
<td>Sickness/Disability</td>
<td>6.7</td>
<td>6.2</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>12.9</td>
<td>12.2</td>
<td>12.8</td>
<td>12.6</td>
</tr>
<tr>
<td>Other</td>
<td>7.8</td>
<td>7.8</td>
<td>8.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Participation external program (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any program</td>
<td>18.7</td>
<td>24.0</td>
<td>32.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Job search assistance</td>
<td>11.0</td>
<td>17.1</td>
<td>21.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Training</td>
<td>6.0</td>
<td>7.3</td>
<td>9.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Subsidized employment</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Other</td>
<td>4.9</td>
<td>4.4</td>
<td>7.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Participation internal program (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any program</td>
<td>36.8</td>
<td>13.5</td>
<td>40.8</td>
<td>39.2</td>
</tr>
<tr>
<td>Job search assistance</td>
<td>11.6</td>
<td>1.7</td>
<td>12.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Subsidized employment</td>
<td>3.2</td>
<td>1.1</td>
<td>3.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Tests</td>
<td>9.7</td>
<td>1.9</td>
<td>10.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Workshop entrepreneurship</td>
<td>4.4</td>
<td>2.3</td>
<td>6.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Other</td>
<td>19.7</td>
<td>9.1</td>
<td>23.4</td>
<td>19.6</td>
</tr>
<tr>
<td>Gender (% males)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Immigrant (%)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Previous hourly wage (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Middle</td>
<td>57.4</td>
<td>53.8</td>
<td>58.3</td>
<td>53.1</td>
</tr>
<tr>
<td>High</td>
<td>42.6</td>
<td>46.2</td>
<td>41.7</td>
<td>46.9</td>
</tr>
<tr>
<td>Age</td>
<td>48.7</td>
<td>49.0</td>
<td>48.6</td>
<td>48.9</td>
</tr>
<tr>
<td>Unemployment size (hours)</td>
<td>37.2</td>
<td>37.1</td>
<td>37.4</td>
<td>37.3</td>
</tr>
<tr>
<td>UI history last 3 year (%)</td>
<td>29.2</td>
<td>33.8</td>
<td>28.8</td>
<td>23.3</td>
</tr>
<tr>
<td>Education (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>22.8</td>
<td>20.0</td>
<td>21.6</td>
<td>20.5</td>
</tr>
<tr>
<td>Middle</td>
<td>46.5</td>
<td>43.0</td>
<td>45.7</td>
<td>47.1</td>
</tr>
<tr>
<td>High</td>
<td>30.7</td>
<td>37.1</td>
<td>32.7</td>
<td>32.4</td>
</tr>
<tr>
<td>Observations</td>
<td>116,866</td>
<td>1774</td>
<td>4441</td>
<td>4505</td>
</tr>
</tbody>
</table>

Job search assistance contains 'IRO', 'Jobhunting' and 'Application letter'. Training contains 'Short Training' and 'Schooling'. Subsidized employment contains 'Learn-work positions'. Biased downwards, because participation in internal programs was rarely recorded before 2009. Used to select the sample.
the end of their benefits entitlement period. Almost 7% leave unemployment due to sickness or disability, the rest leave for other reasons (mostly right-censoring) or the reason for exit is unknown. Exits due to reaching the end of ones entitlement period and exits due to sickness or disability are unlikely to be affected by program participation (and are in any case not outcomes of interest). Therefore we focus on exits to work and exits due to unknown reasons (these may often include situations in which workers generate some income from other sources than employment).

In the full sample about 19% participate in one of the externally provided programs. Two-thirds of these programs focus on job search assistance, a third involve some sort of training, while only a very small fraction are subsidized employment. About 37% of all individuals participate in an internal program, of which the majority is either some test (such as a competencies test) or job search assistance.

The dataset contains a large set of individual characteristics, including gender, age, immigrant status, education level, previous hourly wage, unemployment size,
occupation in previous job, unemployment history, region and industry. In the lower panel of Table 1 mean values are presented for some characteristics. The average individual is almost full-time unemployed (37.2 hours) and 29% have experienced some period of unemployment in the three years before entering UI.

In columns (2), (3) and (4) the same statistics are presented for three subgroups of individuals entering unemployment in April 2008, April 2009 and April 2010, respectively. The impact of the policy discontinuity in March 2010 becomes clear from the share of the April 2010 group that participates in an external program. It drops to almost zero. To illustrate the impact of the discontinuity in March 2010, we show the number of external programs started per month in Figure 2. The dashed line indicates the moment of the policy change in March 2010. The number of program entrants drops to almost zero in April 2010. Separate graphs for each type of program can be found in the appendix of Muller et al. (2015) and show that the discontinuity occurs for each type of program.

The calendar date of entry in UI determines how the policy change affected individuals. Figure 3 shows for the different inflow cohorts the weekly probability
of starting an external program. Each cohort reaches the policy discontinuity at a different moment in their UI spell. This is illustrated by the fact that each subsequent cohort experiences the drop in the program entry hazard one month earlier in their unemployment duration. The cohort of March 2010 has a probability of entering an external program close to zero. Figure 3 also shows that participation in some program is, in general, not restricted to a certain duration, though the hazard is increasing during the unemployment spell. Before the policy discontinuity the hazards of the different cohorts are very similar, indicating that there have not been other major policy changes.

A concern might be that case workers have responded to the inability to assign unemployed workers to external programs. However, resources for the internal program remained unaffected around March 2010, limiting the scope for scaling up internal programs. The number of started internal programs per month is shown in Figure 4.

6The graph shows a smoothed version of the estimated hazard rate into the first external program of each individual.
Internal programs are only recorded from 2009 onward. The policy discontinuity of March 2010 is indicated by the dashed line. There is no indication of a response around the date of the policy discontinuity. Separate graphs by type of program are provided in the appendix of Muller et al. (2015). The hazard rates into an internal program for different cohorts are shown in Figure 5. The hazard rates are very similar, supporting the assumption that internal program provision was unaffected by the policy change.\(^7\)

A further concern might be that even though the number of internal programs was not changed, case workers may have reacted to the unavailability of external programs by shifting their internal programs to these individuals that might otherwise have participated in external programs. This would imply that the policy does not change external program participation to no participation, but, for some individuals, changes it to internal program participation.

To investigate whether such a shift of internal program targeting indeed occurred, we present mean values of characteristics of individuals enrolling in an internal program per month in Figure 6. Mean age and weekly hours of unemployment are shown in panel (a) of Figure 6, unemployment and disability history and education level are shown in panel (b), the previous hourly wage is shown in panel (c) and the share of nine industry categories is shown in panel (d). None of the graphs indicate any kind of discontinuity around March 2010. This suggests that case workers did not shift internal programs to individuals who would otherwise enroll in an external program. The effect of enrollment in an external program should thus be interpreted as the effect conditional on the allocation of internal programs.

2.5 Treatment effects

In this section we define the relevant treatment effects and discuss how they are identified from the policy discontinuity.

2.5.1 Defining the treatment effect

Recall that only a small share of all unemployed workers enters an external program during their unemployment spell. Due to the selectivity of treatment participation,
the composition of the program participants differs from the non-participants. We are interested in the treatment effect for this specific subsample. Therefore we focus on the average treatment effect on the treated (ATET), which is defined in the literature as the mean difference between potential outcomes under treatment and non-treatment, for those that receive treatment (see for example Heckman et al. (1999)).

Our key outcome of interest is duration until employment, which is a random variable denoted by $T > 0$. Define $Y_t = \mathbb{1}(T > t)$, a variable equal to one if the individual is still unemployed in period t, and zero otherwise. Define S to be a random variable denoting the duration at which program participation starts (with realized value s). Potential unemployment duration depends on program participation. The dynamic nature of duration data implies that even for a single program many different treatment effects arise. The program can start at different durations, while the effect can be measured at different points in time (see for an extensive discussion of dynamic treatment effects Abbring and Heckman (2007)). We can define potential outcomes when treated as:
The potential outcome under no treatment can be defined as:

\[Y_{0,t}^* = \lim_{s \to \infty} Y_{1,t}^* \]

Note that this definition implicitly makes the so-called no-anticipation assumption (Abbring and Van den Berg (2003)). It assumes that program participation at duration \(s \) only affects potential outcomes at duration \(t > s \), that is after the program starts. If individuals could anticipate program participation prior to \(s \), they could change their job search behavior and this violates the assumption. This is unlikely for the programs we discuss in this paper. Programs are assigned by caseworkers on an individual basis.
There are no strict criteria for participation and each period only a small fraction of the unemployed workers can enroll, so it is impossible for job seekers to know in advance when they will enter the program. In the remainder of the paper we assume that the no-anticipation assumption holds.

Individuals leave unemployment after different durations, such that the composition of the survivors changes over time. This issue, known as dynamic selection, necessitates defining the subgroup for which the treatment effect is defined (see Van den Berg et al. (2014)). First, we are interested in the average treatment effect on individuals that received treatment, such that we condition on $S = s$. Second, the effect is defined on individuals that survived up to duration s, such that we also condition on $T > s$. This effect is defined by Van den Berg et al. (2014) as the average treatment effect on the
treated survivors at time t ($\text{ATTS}(s, t)$), with as arguments the timing of treatment and the time at which the outcome is measured.

$$\text{ATTS}(s, t|S = s) = E\left[Y_{1, t}^*(s) - Y_{0, t}^*| T > s, S = s\right] \quad (2.1)$$

This is the treatment effect that we will focus on in the analysis.

2.5.2 Identification

Estimating the ATTS (equation (2.1)) without making parametric assumptions is generally not possible from observational data (Abbring and Van den Berg (2005)). A policy discontinuity provides exogenous variation which may allow to estimate the ATTS (Van den Berg et al. (2014)). Consider two cohorts of entrants in unemployment. The first enters unemployment at some point in time, with the time until the policy change equal to t_1. The second cohort enters unemployment later, but still before the policy change. For this cohort the time until the policy change equals $t_2 < t_1$. This is illustrated in Figure 7. The two cohorts face the same policy of potential program assignment for t_2 time periods, implying that dynamic selection is the same up to this point. After t_2, the first cohort faces another period of potential program assignment, with length $t_1 - t_2$, while the second cohort is excluded from program participation. As a result, we can compare the outflow to employment in the two cohorts, for those individuals that survived up to t_2 and did not enroll in a program prior to t_2.

To assign differences in job finding between these groups to program participation, two assumptions should hold. First, the policy discontinuity should be unanticipated by unemployed workers and case workers. Anticipation of the policy discontinuity is problematic, as behavior of job seekers or case workers may be affected in the period just before March 2010. The policy change we are investigating however has the advantage that it was unexpected. The UI administration only realized late that there was no longer budget for these programs and expected that the Ministry of Social Affairs would extend the budget. Enrollment in the external programs stopped immediately after an extension of the budget was rejected. Since not even the UI administration was expecting the change, we can safely assume that job seekers and case workers did not anticipate it either. The second assumption is that there should be no differences between the two cohorts in factors that affect job finding, other than the difference in program assignment. We discuss this assumption below.
2.5. Treatment effects

2.5.3 Business cycle, seasonalities and cohort composition

Even if two cohorts are compared that enter unemployment relatively shortly after each other, changes in the labor market conditions may lead to differences in outcomes. We discuss how this may affect our estimates, and how we correct for this. Figure 8 presents the unemployment rate and the inflow and outflow of unemployment. The two vertical full lines indicate the observation period that is used in the analysis. The vertical dashed line indicates the policy discontinuity. In the period before the policy discontinuity, 2009 and the beginning of 2010, unemployment was rising. During 2010 it decreased slightly, while in 2011 it started increasing again. In the short-run, seasonalities are the main source of fluctuations in unemployment. Also inflow into and outflow from UI are relatively stable around the policy discontinuity, except for short-run fluctuations. Such fluctuations in labor market conditions may affect outcomes in two ways. First, they affect the composition of the inflow into unemployment. For example, the financial crisis may cause that different types of workers become unemployed. A changing composition may also affect aggregate outflow probabilities. Second, labor market conditions affect outflow probabilities directly, as it is often more difficult to find employment when unemployment is high.

To correct for differences in composition we exploit the set of covariates in the data. In particular, we use weights to make each cohort in composition of observed characteristics comparable to the March 2010 cohort. As characteristics we use three previous hourly wage categories, an indicator for having been unemployed in the past
three years, an indicator for being married or cohabiting, age categories, an indicator for being part-time unemployed (less than 34 hours per week)8 and three education categories. Interacting these covariates we obtain 288 groups. Define the share of group \(g\) in cohort \(c\) by \(\alpha_{c,g}\). The weight assigned to an observation belonging to group \(g\) in cohort \(c\) is defined by:

\[
\omega_{c,g} = \frac{\alpha_{\text{mar2010},g}}{\alpha_{c,g}}
\]

We define the survivor functions that will be estimated in the analysis, as the weighted average of the survivor functions of each cohort-group:

\[
\hat{F}_c(t) = \sum_g \omega_{c,g} \hat{F}_{c,g}
\]

However, the results are robust against using weights.

The direct effect of the business cycle and seasonal effects on employment probabilities requires some more discussion. To formalize these factors, consider the following

8Since this is based on the previous job, it captures the part-time and full-time employment.
simple model. Assume that the hazard rate to employment \((h) \) for cohort \(c \) depends on the duration of unemployment \((t) \), the effect of the business cycle \((b_c) \), the effect of seasonalties \((l_c) \) and the effect of entry into a program at time \(s \), which is \(\gamma(s) \). To correct for business cycle effects when identifying the effect of program participation, we need to make some assumptions about the hazard. We assume that the business cycle, seasonalties and treatment have an additive effect on the baseline hazard, where each of these impacts may vary by unemployment duration \(t \). Note that this is very flexible as we do not assume anything on how these factors vary by duration. The duration dependence of the hazard is denoted by \(\lambda(t) \), which is common for all cohorts.

The hazard rate is given by

\[
h(t, s, c) = \lambda(t) + b_c(t) + l_c(t) + \gamma(s, t)
\]

(2.3)

From the hazard rate we can construct the survival function.

\[
\tilde{F}_c(t) = \exp\left(-\int_0^t h(u) \, du\right)
\]

\[
= \exp\left(-\int_0^t \lambda(u) \, du - \int_0^t b_c(u) \, du - \int_0^t l_c(u) \, du - \int_s^t \gamma(u) \, du\right)
\]

Taking the logarithm of the survival function we have:

\[
\log \tilde{F}_c(t) = -\int_0^t \lambda(u) \, du - \int_0^t b_c(u) \, du - \int_0^t l_c(u) \, du - \int_s^t \gamma(u) \, du
\]

\[
\equiv \Delta(t) + B_c(t) + L_c(t) + \Gamma(s, t)
\]

This implies that the business cycle, seasonalties and program participation have additive impacts on the log of the survival function. Seasonalities are by definition those factors that are common across different years, such that \(L_c(t) = L_{c-12}(t) \), for all \(c \). The difference in log survivor functions of two cohorts identifies the treatment effect plus the difference in seasonal and business cycle effects. For example, comparing the January 2010 cohort with the October 2009 cohort we get:

\[
\mu^1(t) = \log \tilde{F}_{jan10}(t) - \log \tilde{F}_{oct09}(t)
\]

\[
= \Gamma(s, t) + \left[L_{jan10}(t) - L_{oct09}(t) \right] + \left[B_{jan10}(t) - B_{oct09}(t) \right]
\]

(2.4)

If we condition both survivor functions on survival up to \(t_2 \) (in this case \(t_2 = \) two months), the January 2010 cohort never enters a program, while a share of the October 2009 cohort enters a program. The term \(\Gamma(s, t) \) measures the effect of program participation of a
share of a cohort, and can thus be interpreted as an intention-to-treat effect. Below we discuss how this relates to the ATTS (equation 2.1). The size of the bias due to the remaining terms, \((L_{\text{Jan}10}(t) - L_{\text{Oct}09}(t))\) and \((B_{\text{Jan}10}(t) - B_{\text{Oct}09}(t))\), depends on the length of the time interval between the two cohorts, and the volatility of the labor market.

We can possibly improve on this estimator by applying an approach somewhat related to a difference-in-differences estimator. By subtracting the same cohort difference from a year earlier, we eliminate the seasonal effects, at the cost of adding extra business cycle effects:

\[
\mu^2(t) = \left[\log \bar{F}_{\text{Jan}10}(t) - \log \bar{F}_{\text{Oct}09}(t) \right] - \left[\log \bar{F}_{\text{Jan}09}(t) - \log \bar{F}_{\text{Oct}08}(t) \right] = \Gamma(t) + \left[B_{\text{Jan}10}(t) - B_{\text{Oct}09}(t) \right] + \left[B_{\text{Jan}09}(t) - B_{\text{Oct}08}(t) \right] \tag{2.5}
\]

Whether this is preferable over \(\mu^1(t)\) depends on the relative sizes of the business cycle and seasonal effects. Figure 8 suggests that, if the interval is sufficiently small, seasonal effects are larger than business cycle effects. Given a small interval such as three months, business cycle effects may be small enough to ignore, such that \(\mu^2\) is a satisfactory estimator of \(\Gamma(t)\). Note that this estimator is an extension of the approach suggested by Van den Berg et al. (2014). They propose exploiting a policy discontinuity to estimate effects on a duration variable. We add to this approach by taking double differences.

The estimators \(\mu^1(t)\) and \(\mu^2(t)\) estimate intention-to-treat effects, since not all unemployed workers in the earlier cohort enter a program. The average treatment effect on the treated survivors follows from dividing the intention to treat effect by the difference in the share of each cohorts that enrolls in the program. Define \(\bar{F}_{\text{treat}}\) as the survivor function for treatment, where an exit is defined to be the start of the first program. The ATTS estimator is given by:

\[
\overline{\text{ATTS}}(t_2, t) = \frac{\mu^1(t)}{\log \bar{F}_{\text{Jan}10}(t) - \log \bar{F}_{\text{Oct}09}(t)} \tag{2.6}
\]

And similar for \(\mu^2(t)\).

2.6 Quasi-experimental analysis

We start by defining which cohorts to compare. A cohort contains all individuals entering unemployment within one particular month. The time interval between

cohorts should be small to minimize business cycle and seasonal effects, but the trade-off is that more time between cohorts increases the difference in exposure to potential program participation. We use cohorts three months apart. Second, to exploit the policy discontinuity, the cohorts should not enter unemployment too long before March 2010. Therefore, we use the cohorts of October 2009 until January 2010, facing between five and two months of potential program participation, respectively. Each cohort will be compared to the cohort entering unemployment three months earlier. The survivor function of each cohort is presented in Figure 9. Around 50% of the UI benefits recipients find work within 12 months, while after two years around 65% has found work.

2.6.1 Intention-to-treat effect

We first take the difference between the log of the survivor function and the log of the survivor function of the cohort entering unemployment three months earlier ($\mu_1(t)$). This compares the outflow of a cohort from in which no one enrolls in the program to outflow of a cohort in which a share enrolls in the program. As discussed in subsection 2.5.2, we condition on survival and no-treatment up to the duration at which the later cohort reaches the policy discontinuity. So when comparing January 2010 with October 2009, only individuals are included with an unemployment duration of at least three months and who do not start an external program in the first two months. The differences up to a duration of 18 months after inflow in unemployment are presented in panel (a) of Figure 10. We find a negative effect on job finding during the first few months after program participation of around 4%-points in three of the four estimates. After about 10-12 months the negative effect disappears and all estimates are close to zero.

These estimates are based on simple differences between cohorts, thus not taking fluctuations in labor market conditions into account. By subtracting the same differences from a year earlier, we correct for cohort differences that are constant across years (such as seasonalities). Estimates from such a “difference-in-differences” approach

\[\exp(\mu_1) - 1 \]

\[\bar{F} \]

which is the effect on the actual survival function. So the graph can be interpreted as the effect on the probability of finding employment. The same transformation is made in subsequent graphs.
Figure 9: Survivor functions by month of inflow

Figure 10: Intention-to-treat effect estimates, conditional on $T > t_2, S > t_2$

(a) $\mu^1(t)$

(b) $\mu^2(t)$

$(\mu^2(t))$ are presented in panel (b) of Figure 10.11 Again we find a negative effect on job finding in the first months. At longer durations, the estimates diverge somewhat. In the appendix of Muller et al. (2015) each line is presented with a 95% confidence interval (standard errors are computed using bootstrapping). The early negative effect is always significantly different from zero, while none of the estimates at longer durations are

11When estimating $\mu^2(t)$ we only present estimates up to the duration at which the cohorts from a year earlier reach the policy discontinuity, which is between 15 and 18 months. Estimates at longer durations are biased as the earlier cohorts are affected by the policy discontinuity as well.
2.6. Quasi-experimental analysis

significantly different from zero. Note that each comparison measures the effect of additional treatment at a slightly different duration. For example, the January 2010-October 2009 comparison measures the effect of additional treatment in the 4th-6th month of unemployment, while the December 2009-September 2009 comparison measures the effect of additional treatment in the 5th-7th month of unemployment.

The results show a pattern that is quite consistent across different cohort comparisons and across the two estimators. Job finding is significantly reduced in the early months, while the difference disappears after 6-12 months. This finding is in line with the lock-in effect often found in the literature (see for example Lechner and Wunsch (2009)). The lock-in effect implies that when a program starts, participants shift attention from job search to the program which reduces their job finding rate. This negative effect disappears after some months, but we do not find any (positive) effects at longer durations.

2.6.2 Average treatment effect

The above findings are intention-to-treat effects. To estimate the average effect of treatment on individual employment probabilities they need to be scaled by the differences in treatment intensity. We divide each estimate by the difference in program participation of the cohorts that are being compared (as defined in equation (2.6)). The difference in program participation occurs during a three months period in which the later cohort reached the policy discontinuity but the earlier cohort did not. We estimate the difference in program participation by the difference between the survivor functions for program participation (as defined in subsection 2.5.3). For example, when comparing the January 2010 cohort with the October 2009 cohort, the difference in program participation is given by

\[\bar{F}_{treatment}^{Jan10}(t|T, S > 2 \text{ months}) - \bar{F}_{treatment}^{Oct09}(t|T, S > 2 \text{ months}) \] (2.7)

And similar for the other cohorts that are compared. These estimates are presented in panel (a) of Figure 11. We find a clear increase as soon as the first cohort reaches March 2010. The difference increases for approximately three months, after which the comparison cohort reaches March 2010. From that point onward, both cohorts receive no treatment, and the difference remains stable. The difference is between 15 and 20%-points. The difference in program participation can also be computed using the same
“difference-in-differences” approach as in $\mu^2(t)$. Such estimates are presented in panel (b) of Figure 11. Due to differencing with cohorts from a year earlier, the differences are less smooth, though the main pattern remains. Confidence intervals are presented in the appendix of Muller et al. (2015). All differences are highly significant.

The results of dividing the estimates from panel (a) in Figure 10 by the treatment difference are presented in panel (a) of Figure 12. The pattern does not differ much from that of the intention-to-treat effects. Program participation reduces the job finding probability during the first two-three months by about 40%-point, while after ten months employment probabilities are similar again and there is no significant effect. The double differencing estimates ($\mu^2(t)$) are presented in panel (b) of Figure 12. The pattern is quite similar. There is a negative effect on the job finding probability of 40%-point directly after program participation starts, which decreases in magnitude over time towards a zero effect after about eight months (confidence interval are presented in the appendix of Muller et al. (2015)).

Since the policy discontinuity reduced program participation to zero, these estimates can be interpreted as average treatment effects on the treated, rather than local average treatment effects. Alternatively, if the policy discontinuity only had reduced program participation (but not to zero), our approach would have estimated the treatment effect on those individuals that would have participated before the policy discontinuity but not afterwards. In the terminology of instrumental variables, these are the “compliers”. The fact that the policy discontinuity reduced program participation to zero, implies that there are no “always-takers”, and the local average treatment effect equals the average treatment effect.
2.6. Quasi-experimental analysis

Figure 12: Average treatment effect, conditioned on $T > t_2, S > t_2$

(a) based on $\mu_1(t)$

(b) based on $\mu_2(t)$

2.6.3 Common trend assumption

The assumption that the business cycle terms in (2.5) are negligible has some similarities with the common trend assumption in a difference-in-differences estimator. It requires that in the absence of the policy discontinuity, the difference in employment rate between the January and November cohort would have been the same in 2009/2010 as a year earlier in 2009/2008. This is by definition untestable. However, we can get an indication of the plausibility of the assumption, by investigating the survivor functions over the first months of each cohort, so before exposure to the policy discontinuity. All estimators condition on survival up to t_2, but we can use information on job finding before t_2 to get some indication about the validity of our common trend assumption. To have a sufficient number of pre-discontinuity months in the latest cohort, we focus on the comparisons of December 2009, November 2009 and October 2009. Basically, we estimate $\mu_2(t)$ for $t \leq t_2$, without conditioning on survival up to a certain duration.

Estimates are presented in Figure 13 for December 2009 - September 2009, November 2009 - August 2009 and October 2009 - July 2009, including 95% confidence intervals, computed using bootstrapping. We find that all estimates are significantly negative, though small in magnitude. This implies that the treatment effect estimates are biased downwards somewhat, and thus provide lower bounds of the effect. Obviously our approach does not fully control for business cycle variation in job finding rates.
2.7 Non-experimental analysis

The administrative dataset contains a rich set of covariates. In this section we investigate whether the quasi-experimental estimates from the previous section can be reproduced when, instead of exploiting the policy discontinuity, we correct for observable differences between treated and non-treated individuals. We apply a matching estimator in subsection 2.7.1 and estimate the timing-of-events model in subsection 2.7.2.

2.7.1 Matching

Matching methods typically denote a set of estimators to compute counterfactual outcomes in the absence of randomized assignment to treatment (Imbens and Wooldridge (2009), Abadie and Imbens (2011)) and date back to Rosenbaum and Rubin (1983). The approach relies on two main assumptions. First, selection into treatment is on observables only:

\[Y^*_0(s), Y^*_1(s) \perp S \mid X \] (2.8)

Also referred to as the unconfoundedness assumption, it implies that after conditioning on a set of observed characteristics, assignment to treatment is independent of the potential outcomes. If selection into treatment is on observable characteristics only, a counterfactual outcome can be constructed using different methods that correct for the differences in observed characteristics. Matching is closely related to a simple OLS framework which can also correct for differences in observable characteristics and relies on a similar unconfoundedness condition. However, in an OLS regression this assumption is combined with strong functional form assumptions (covariates enter the
model additively and linearly), such that the model is much more restrictive (Imbens (2014)).

If treatment selection occurs also on non-observables, matching estimators yield biased results. The bias of matching estimators depends on the degree of selection that is captured by observed characteristics. Including a rich set of covariates is thus crucial. It is often argued that employment histories are particularly important, because they are strong predictors of future labor market outcomes as well as program participation (see, for example, Card and Sullivan (1988), Heckman et al. (1999), Gerfin and Lechner (2002), Lechner et al. (2011)). Our administrative data set allows the use of a rich set of covariates. We include individual characteristics (age, education level, marital status, region), employment history variables (previous hourly wage, unemployment history, previous industry) and current unemployment spell variables (unemployment size in hours, a sickness or disability dummy, maximum UI eligibility). We thus include a set of covariates that is as rich as usually available in evaluations of active labor market programs. Still, excluding that selection also depends on unobserved characteristics remains a strong assumption.

The second condition for applying matching is that there is a common support in the distribution of the covariates between program participants and non-participants. The common support assumption states:

\[0 < \Pr(S < \infty | X = x) < 1 \quad \forall x \]

It implies that, in order to match program participants with non-participants who are similar with respect to covariates, a complete overlap in the distribution of these covariates is required between the two groups. A way of investigating whether this assumption is likely to hold is to estimate a propensity score model and plot the density of predicted values for treated and non-treated individuals. The overlap assumption is likely to be violated in case there is little overlap in the two densities, or if there is a lot of mass close to zero or one in one of the groups (Busso et al. (2009)). In the appendix of Muller et al. (2015) the predicted propensity scores for treated and non-treated individuals are presented, after estimating a logit model for the likelihood of being treated. The plot suggests that there is sufficient overlap: both densities have most mass between 0.05 and 0.3 and there is hardly any mass close to zero or one. Furthermore, there are no (combinations of) individual characteristics that perfectly predict program participation.
The matching approach implies that we use variation in program participation within a particular cohort, as opposed to comparing different cohorts. We start by defining the treatment and the cohorts we use in the analysis. The sample should overlap with that used in the previous section, such that the distribution of individual characteristics and labor market conditions are the same. Therefore, we include individuals entering unemployment between October 2009 and January 2010, which are the same cohorts used for the quasi-experimental estimates. In order to estimate the same treatment effect as in our non-experimental analysis, we define treatment as being selected for program participation between three and five months and exclude all individual that leave unemployment before three months or those that start a program before three month. This makes again a no-anticipation assumption (as discussed in Section 2.5). This corresponds to the effect that we measure in the January 2010 - October 2009 comparison in Figure 12. All other individuals are classified as belonging to the control group, however we censor their observation if they start a program after five months. In the next section we provide the details of this approach, which is similar to that used by Lalive et al. (2008). From the perspective of assessing the performance of the matching approach, the estimates should not be based on a sample in which treatment assignment is affected by the policy discontinuity. The sample that we use might be slightly affected. The impact on the estimates should be small though, because we censor all control group observations when they start a program. As a robustness check we show that using a sample consisting of the same monthly cohorts from 2008 instead of 2009 gives very similar estimates.

Standard static matching estimators require excluding individuals who start treatment after five months from the pool of potential controls. If they would be included, it would change the interpretation of the estimate into the effect of early treatment relative to later treatment, which is not the parameter we are interested in (e.g. Sianesi (2004)). Excluding these observations is problematic as well, as it creates a selective control group. To address this problem we take the following approach. First, we use a logistic model to predict for each individuals the propensity score, classifying those that start treatment in three to five months as the treated group, and all others as the control group.12

Next, we estimate for both the treated and the matched control group the Kaplan-Meier survival functions, using as weights the inverse of the predicted propensity score.

12All individuals leaving unemployment before three months or starting treatment before three months are excluded, which was also done in the quasi-experimental approach.
Figure 14: Average treatment effect on the treated (with 95% confidence intervals): Matching estimator using Kaplan-Meier survival functions

(a) Oct 2009 - Jan 2010

(b) Oct 2008 - Jan 2009

scores. All control group observations that start treatment after five months are censored at the start of their program. This way, we include all potential control observations, avoiding bias due to dynamic selection. The difference between the survival functions provides an estimate of the average treatment effect on the treated. Standard errors are again computed using bootstrapping. The estimates, including a 95% confidence interval are presented in panel (a) of Figure 14. The estimates of the effect of program participation on the job finding probability are significantly negative at any duration, though the negative effect becomes smaller over time. At an unemployment duration of five months, those that started treatment during three-to-five months have an almost 20%-points lower probability of having found employment. This difference decreases to 10%-points after 18 months of unemployment.

As an alternative, we use a dataset including individuals entering unemployment one year earlier. Those are unaffected by the policy discontinuity, however they may face different labor market conditions. Estimates are presented in panel (b) of Figure 14. The results are very similar, showing the same negative effect which decreases in magnitude over time. Standard errors are slightly larger, which is due to the fact that more control group individuals enter the program after five months and have to be censored at that point.

For control group individuals the weights are given by \(\hat{p}(X_i) \), the predicted probability of being treated. For treated individuals the weights are given by \(1 - \hat{p}(X_i) \).
We conclude that the estimates are quite robust to the choice of the sample. Each shows a negative estimate of the program effect, which is almost 20%-points after five months of unemployment, and decreases in magnitude to a negative effect of 5-10%-points after 18 months of unemployment.

2.7.2 Timing of events model

Matching requires little functional form assumptions, but relies on the conditional independence assumption (defined in (2.8)). The timing-of-events model (Abbring and Van den Berg (2003)) relaxes the conditional independence assumption, at the cost of imposing stronger functional form assumptions. It has become popular in the literature on dynamic treatment evaluation (see for example Abbring et al. (2005), Van den Berg et al. (2004), Lalive et al. (2005) and Van der Klaauw and Van Ours (2013)). In this subsection we estimate this model to assess whether it can reproduce the findings from the quasi-experimental approach.

The timing-of-events model specifies jointly job finding and entry in the program using continuous-time duration models. To control for unobserved characteristics the unobserved heterogeneity terms in both hazard rates are allowed to be correlated. Identification relies on a mixed proportional structure of both hazard rates. Like both earlier approaches (quasi-experimental and matching) also the timing-of-events model makes the no-anticipation assumption. Note that it does not rule out that the treatment probability differs between individuals and that individuals are aware of this. Some job seekers may have a high probability of program assignment and know this. Only the exact timing of the program start should be unanticipated.

Consider an individual entering unemployment at calendar date \(\tau \). Her baseline job finding rate depends on the number of days of unemployment \(t \) and is denoted by \(w_\nu(t) \). Calendar time fixed effects are captured by the function \(q_\nu(t_0 + t) \). The hazard rate further depends on observed characteristics \(x \) and unobserved characteristics \(v_\nu \). After starting a program, the hazard rate is shifted by the treatment effect \(\delta \). Since the treatment is likely to affect the hazard differently over duration, we include a flexible specification with a set of effects, \(\delta_n I_{t \in (s_n, s_{n+1})} \). For values of \(t \) between \(s_n \) and \(s_{n+1} \), the indicator function \(I_{t \in (s_n, s_{n+1})} \) equals one. The effect of program participation starts
directly after the start of the program \((s_1 = s)\). We allow different effects for the first six months \((s_2 = 6)\) and the period after six months. The job finding hazard rate is given by:

\[
h_e(t|x, \tau_0, s, v_T) = w_e(t)q_e(\tau_0 + t)\exp\left[x\beta_e + \sum_{n} \delta_n I_{t \in (s_n, s_{n+1})}\right] v_e
\]

(2.9)

Estimation of equation (2.9) yields a biased estimate of the treatment effects if program participation is (even conditional on the observed characteristics) non-random. In that case program participation is correlated with the unobserved determinants of unemployment duration \(v_e\). To account for this, program participation is modeled jointly, also using a mixed proportional hazard rate:

\[
h_a(t|x, \tau_0, v_a) = w_a(t)q_a(\tau_0 + t)\exp(x\beta_a) v_a
\]

(2.10)

With all notation similar to equation (2.9). The unobserved term \(v_a\) is allowed to be correlated with \(v_e\), with joint discrete distribution \(g(v_e, v_a)\). We take \(g(v_e, v_a)\) to be a bivariate discrete distribution with an unrestricted number of mass points indexed by \(k\). The corresponding probabilities are:

\[
p_k = P(v_e = v^k_e, v_a = v^k_a) \quad \forall k
\]

Estimation results show that using \(k = 2\) is already sufficiently flexible. Increasing the number mass points leads to zero probability for these excess mass points. We parameterize the duration dependence pattern of the hazards \((w_T(t), w_S(s))\) with a piecewise constant function:

\[
w_j(t) = \sum_{m=1}^{M} \pi_m I_{t_{m-1} \leq t < t_m}
\]

Where \(I_{t_{m-1} \leq t < t_m}\) is an indicator for duration being between \(t_{m-1}\) and \(t_m\) and \(\pi_m\) the function value. This function is very flexible, as by increasing the number of intervals \(m\) it can approximate any pattern arbitrarily well. We use the following intervals (in months): 0-2, 2-4, 4-6, 6-9, 9-12, 12-18, 18-24, 24-48.

Calendar time effects are also modeled by a piecewise constant function, where each interval is taken to be a quarter-of-a-year.\(^{14}\) Estimation of the parameters is performed by maximizing the log-likelihood, in which right-censoring is straightforwardly taken into account. The model is estimated using the full dataset of 116,866 observations.

\(^{14}\)We normalize the function value for the first interval to one in each of the four piecewise constant functions.
The estimates of the treatment effects are presented in Table 2.15 The effect of program participation is estimated to have a large, significantly negative effect on the job finding rate in the first two months ($\delta_{0-2\text{ months}}$), with the coefficient equal to -0.42. In the third and fourth month the effect is still significantly negative, but smaller in magnitude (-0.12). After six months ($\delta_{\geq 6\text{ months}}$) program participation has a small, significantly positive effect on the probability of finding a job. To interpret the magnitude of these effects, we transform them into an effect on the probability of being employed at some duration t since being unemployed. This can be done by computing the survivor function for an average individual (we take the mean value of each individual characteristic in the sample), entering unemployment in December 2009. We simulate the survivor based on the estimated model twice. Once imposing that the individual never participates in a program, the second time imposing program participation after two months of unemployment. Both survivor functions (up to a duration of two years) are presented in panel (a) of Figure 15, including one standard error bounds. Standard errors are computed using the delta method. Participating in a program after two months of unemployment lowers the probability of being employed subsequently, in accordance with the negative effect estimate. The difference between the survivors is presented in panel (b) of Figure 15. The effect is significantly negative directly after the program starts, and increases in magnitude up to a 5%-points difference after six months. Afterwards the effect decreases in magnitude and as standard errors increase it is no longer significantly different from zero after about 14 months.

15Full estimation results are presented in the appendix of Muller et al. (2015). Most covariates have the expected sign and are highly significant. The oldest age group has a lower job finding rate, as do lower educated individuals. Being (partially) disabled, sick or having an unemployment history also reduces the job finding rate. Furthermore we find that the job finding rate decreases steadily over unemployment duration. As expected there are some fluctuations in the job finding rate related to the calendar time. In column (3) the coefficients of the treatment hazard are presented (equation (2.10)).
2.8 Discussion

We have estimated the impact of an external activation program on the exit rate to work using three approaches. First exploiting the policy change with a non-parametric estimator, second using a matching estimator, and third using the timing-of-events model. In this section we compare the results and discuss the differences in outcomes.

In Section 2.6, we presented the results of our preferred specification in panel (b) of Figure 12. The program effects are identified from the discontinuous drop in program provision in March 2010. For the aim of simplicity when comparing the different methods we focus on one set of estimates, which are those obtained from comparing the cohorts of January 2010 and October 2009. The effect should be interpreted as the effect of participating in a program after three to six months of unemployment on the probability of employment. In Section 2.7.1, we presented results using matching estimators. We focus on the inverse probability weighting estimator (Figure 14, panel (a)). In Section 2.7.2 we estimated the timing of events model and obtained an estimate of the program participation effect. The simulated survivor functions provide an estimate of the effect of program participation on the employment probability.

In panel (a) of Figure 16 each of the three estimates are presented in one graph. Since each method measures the same effect, the estimates should be similar if the assumptions of the estimators are fulfilled. On the contrary, we find differences in the results. The quasi-experimental approach suggests a negative impact on job finding in the first three months after the program starts and a zero effect on job
finding afterwards. The matching estimates are always negative, though decreasing in magnitude as duration since treatment increases. Timing-of-events suggests a negative effect on job finding in the first nine months after the program starts, which decreases in magnitude towards a zero effect after a year.

So we find that the timing-of-events method is qualitatively similar to the quasi-experimental method: both find a negative effect at short duration, and a zero effect at longer duration. The matching estimator differs as it suggests that the negative effect remains even at the medium to long run.

Since the estimators are based on different models and are not independent, it is not clear from the confidence intervals whether these differences are significant. To test for significant differences, we bootstrap the difference between the estimators. We draw subsamples from our sample (with replacement), and use these to estimate both the quasi-experimental estimate and the matching estimate. The difference between the estimators, including a 95% confidence interval, is presented in panel (b) of Figure 16. We find that the two methods provide significantly different results in the very short run (three to five months) and the medium to long run (after 11 months). In the very short run matching gives a smaller negative effect, while in the medium to long run it gives a negative effect while the quasi-experimental estimate gives a zero effect. This suggests that the set of variables used in the matching estimator is insufficient to adequately correct for the selection into treatment. Furthermore, the fact that the matching estimator underestimates the effect suggests that program participants are a selective group with relatively unfavorable unobservable characteristics.
2.9 Conclusion

Several methods are available when evaluating activation programs for unemployed job seekers. In this paper we compare estimates from two methods, using estimates exploiting a policy discontinuity as benchmark. These benchmark estimates rely on exogenous variation in program participation, caused by budgetary problems of the UI administration. We find that program participation reduces outflow to work in the first couple of months after enrollment in the program with up to 40%-points, and has no effect on job finding later on (10-18 months). These results are consistent with a substantial lock-in effect often found in the literature.

We find that the matching and timing-of-events methods lead to slightly different results. Both reproduce the negative short-run effect. However, the matching estimators remain negative even after 18 months. The timing-of-events model estimate converges to zero after 16 months. The discrepancy between the results suggests that even though our data contain a very rich set of individual characteristics, there may still be additional relevant unobserved characteristics.

It should be emphasized that our findings are based on a specific type of individuals (those that were most likely to participate in the program), which we selected to increase homogeneity of the sample as well as maximize the treated share before the policy discontinuity. Both factors improve the estimators that we apply. This group has relatively favorable characteristics though (native males with above average wages and below average unemployment histories), which may affect the effect that we find. Our findings can therefore not be generalized to the full population. Since this paper focuses on the comparison of methods rather than estimating the average effect of the program on the full population, we opted for restricting our sample in this manner.

We conclude that, especially in the case of activation programs, where selectivity in participation is a large issue, even a large set of observed characteristics may not suffice to correct for the bias. Some studies have used even richer data sets including “soft” variables. For example Caliendo et al. (2014) include variables such as personality traits, attitudes, expectations, and job search behavior and find that these play a significant role in the selection of program participants. A useful next step would be to compare non-experimental methods that include such information with (quasi-)experimental evidence.
Chapter 3

Providing advice to job seekers at low cost: An experimental study on on-line advice

3.1 Introduction

Getting the unemployed back into work is an important policy agenda and a mandate for most employment agencies. In most countries, a main tool to achieve this is to impose requirements on benefit recipients to accept jobs beyond their occupation of previous employment, at least after a few months. But little is said about how they should obtain such jobs, and how one might advise them in the process. Despite a substantial literature on the evaluation of active labor market policies, most studies confound advice with monitoring and sanctions. In his famous meta-study on active labor market policies, there is substantial variation and disagreement of optimal policy across countries.

16 This chapter is based on Belot et al. (2015)
17 In an OECD paper, Venn (2012) outlines that the requirement to accept jobs from other occupations beyond the occupation of previous employment is one of the three main demands placed on the job search of benefit recipients (the others are geographical distance, and job search requirements during training). Countries differ by the length of time that benefit recipients can reject offers outside their occupation of previous employment: never (Australia, Denmark, Germany, Hungary, Ireland, Japan, New Zealand, Norway); no explicit time but dependent on previous work history (Canada, Czech Republic, Italy, Luxembourg, Poland, Slovak Republic, Sweden, Switzerland); less than six months (Austria, Estonia, Finland, France, Israel, Slovenia, United Kingdom, USA); more than six months (Belgium, Bulgaria, Cyprus, Malta, Netherlands, Spain); forever (Greece, Korea, Lithuania, Romania, Turkey). Like other labor market policies, there is substantial variation and disagreement of optimal policy across countries.
labor market policies, Card et al. (2010) merge “job search assistance or sanctions for failing to search” into one category.18 Ashenfelter et al. (2005a) assert a common problem that experimental designs “combine both work search verification and a system designed to teach workers how to search for jobs” and it is not clear which element is responsible for their documented success. Only few studies, reviewed in the literature section, have tried to fill the gap since, relying mostly on a mixture of labor-intensive counseling services.

Our study aims to contribute by providing a randomized study that offers targeted occupational advice to individual job seekers in a highly controlled and replicable low-cost environment. To our knowledge our study is the first to use the expanding area of online search to provide advice by re-designing the jobs search process on the web.

Internet-based job search is by now the predominant way of searching for jobs.19 We asked professional programmers to set up two search platforms for internet-based job search. One “standard” platform where job seekers themselves decide which keywords and occupations to search for, similar to interfaces used on Universal Jobmatch (the official job search platform provided by the UK Department of Work and Pensions) and other commercial job search websites. The second “alternative” recommendation platform asks job seekers about the occupation they are looking for - which can coincide with the occupation of previous employment - and provides them with two lists containing the most related occupations. The first is based on common occupational transitions that similar people make and the second contains occupations for which skill requirements are similar. Job seekers can then simply hit the search button and are presented with all jobs in their geographic area that fall in any of these occupations. They can also take a look at maps to see where jobs are easier to find.

The benefits of such an intervention are that it provides job search advice in a highly controlled manner based on readily available statistical information, entails only advice and no element of coercion (participants were free to continue with the “standard” interface if they wanted to), and constitutes a low-cost intervention. It allows us to tackle two questions. First, whether our implementation of advice changes how broad

18See the clarification in Card et al. (2009), p. 6.

19Kuhn and Mansour (2014) document the wide use of the internet. Searchers who use the internet nowadays seem to be more effective than those who do not, contrary to findings at the turn of the millennium where this path was still relatively new and used by only a minority. In the UK where our study is based, roughly two thirds of job seekers (67\%) and two thirds (64\%) of employers now use the internet for search and recruiting (ONS (2013), Pollard et al. (2012)). In Germany, 2/3 of all vacancies that unemployed job seekers find are found through the internet (IAB (2010)).
people search, where we define broadness as the average distance between occupational classification codes of the vacancies that are considered. If it does, it allows us to investigate the second question whether the induced increase in occupational breadth increases job prospects. This is hard to assess without experimental variation because people who search broadly tend to differ also in other dimensions.

We report our overall impact on the treatment group relative to the control group. We also compare treatment and control in particular subgroups of obvious interest: our study has more scope to affect people who search narrowly prior to our intervention, and differential effects by duration of unemployment seem to be a major policy concern as mentioned in the introductory paragraph. Overall, we find that our intervention does expose job seekers to jobs from a broader set of occupations. And the number of job interviews increases, mainly in jobs outside the job seeker’s core occupation. This is driven predominantly by job seekers who otherwise search narrowly (compared to similarly narrow searchers in the control group). Among these, the effects are driven by those with above-median unemployment duration (more than 80 days). We take this as indication that increasing the breadth of search increases job prospects, and targeted job search assistance can be beneficial. It might not benefit everyone, though, and there is some (insignificant) indication that it might discourage those who otherwise already search broadly. We focus on job interviews as the number of jobs found are too limited to allow statistical inference.

In terms of detail of our setup, a crucial obstacle in this type of experimental research is the two-sided nature of job markets: While one might rely on a limited number of job seekers for initial investigation, a realistic job search environment relies crucially on access to a large number of up-to-date vacancies. For this we convinced the largest UK job search platform, Universal Jobmatch run by the Department of Work and Pensions, to allow us access rights to its database of all live vacancies. Job seekers were recruited in Edinburgh and we transformed the experimental laboratory into a job search facility.

20 The distance between two occupation codes is defined as zero when they are identical, 1 if they differ at the last digit, 2 if they differ at the second-to-last digit, up to 4 when they differ in all four digits. Alternative measures of broadness such as the Gini-Simpson index on a particular occupational digit provide similar qualitative results, independent of the digit we are using.

21 Attrition from one week to the next is low in our study, ranging from 2% to 4% per week, but is of the same order of magnitude as the reported job findings, which are also low in the current economic climate. Since we do not know whether attrition is driven by those who find jobs and do not report back or those who simply drop out, inference is extremely difficult. In any case the numbers are too small to attribute statistical significance.
3. Online jobsearch

resembling those in “Employability Hubs” which provide computer access to job seekers throughout the city. Participants were asked to search for jobs via our search platform from computers within our computer laboratory once a week for a duration of 12 weeks. The advantage of this “field-in-the-lab” approach is tight control along three dimensions: it ensures that job seekers indeed have access to a computer; any problems or questions with our new experimental platform can be immediately handled; and participants’ identities can be verified. The downside is a capacity restriction of 300 participants. As a twelve week panel this is a large number for experimental work but limited relative to usual labor market survey data. As a first experimental study on web-search design and advice we opted for more control and lower numbers.

All participants searched only with the “standard” interface for the first three weeks, which provides a baseline on how occupationally “broad” participants search in the absence of our intervention. Half of the participants continue with this interface throughout the study, while the other half was offered to try an “alternative” interface after the initial three weeks. The change was not previously announced, apart from a general introductory statement to all participants that included the possibility to alter the search engine over time. Instead of individual queries, our alternative interface asks individuals about desired occupation and geographic region, and then provides them at two clicks of a button with a list of alternative occupations (first click) and all vacancies that are within any of these occupations in the desired area (second click). This provides advice in a simple and intuitive way that can be applied to all individuals independent of their cognitive abilities. Obviously there is still room for the individual to make choices, both regarding which of the suggested jobs to consider in more detail and to apply for, as well as which desired occupation to name (which can be changed) and whether to deselect some proposed occupations. But the process is much more guided than the standard process where job seekers themselves have to come up with search terms.

There are two reasons to worry that the “recommendation” interface might have little effect. First, using it is not mandatory. Participants can opt to continue searching with the standard interface and, thus, they have to be willing to use the recommendation.

22Employability Hubs exist in several locations in Edinburgh through the cooperation Joined Up For Jobs comprising various non-for-profit organisations funded by the City of Edinburgh. They provide computer rooms for job seekers around Edinburgh. They also provide other advice services. While our setup is akin to their computer rooms, we never mentioned any connection while recruiting and we made clear that we do not provide any actual job search advice.
interface. All our results are reported independently of whether they use the interface or not (intention to treat) since all participants used the interface at least once and might have learned things that carry over even into their standard search activities. Nevertheless, low participation might lead to limited effects. Second, the information is taken from readily available sources and, therefore, might already be known to the participants or to their advisers at the job centre.

Yet we do find that our intervention is effective in increasing the breadth of search and the number of job interviews, as mentioned earlier. We collect information both on search success when searching in our computer facilities and on success through other search channels. There is no crowding out between them. Both job interviews due to search within our computer lab increase as well as interviews obtained through other search channels, albeit only the sum is statistically significant. When we condition on those who search narrowly in the first three weeks, each of these measures of interviews increase significantly, indicating that the information that we provide on our interface affects their search positively not just exclusively on our platform. This is also the group for which we increase the occupational broadness of vacancy listings per week most relative to their peers in the control group (though we seem to decrease the geographical area they consider, possibly because they are now exposed to more suggestions within closer geographic proximity). Also the occupational broadness of the jobs to which they apply increases, although insignificantly, and their number of applications increases significantly. The increase in the number of job interviews is particularly strong for those who search occupationally narrow and have above median unemployment duration.

While it is straightforward why our information intervention has more scope to broaden the perspective for individuals who otherwise search narrowly, it might be less obvious why our effects are larger for those individuals with slightly longer unemployment duration. A simple learning theory - which we advance theoretically in a later section - can rationally account for this behaviour. If individuals who lost their jobs deem it quite likely that they will obtain a job again in the same profession, searching for jobs in this occupation might dominate search in alternative occupations (i.e., they search narrowly). If the perceived difference between occupations is large, the alternative occupations remain dominated even after we provide positive information on some of them. After a few months, unsuccessful individuals learn that their chances in their occupation of previous employment are lower than expected, and the perceived difference with other occupations shrinks. Now alternative suggestions can render the
endorsed occupations attractive enough to be considered. Our intervention induces search over a larger set of occupations and increases the number of interviews. One can contrast this with the impact on individuals who already search broadly because they find many occupations roughly equally attractive. They can rationally infer that the occupations that we do not endorse are less suitable, and they stop applying there to conserve search effort. Their broadness declines, but effects on job interviews are theoretically ambiguous because search effort decreases but is better targeted. In the data it is indeed the case that initially broad individuals in the treatment group become occupationally narrower than comparable peers in the control group, but effects on job finding are insignificant.

Our findings suggest concrete policy recommendations: targeted web-based advice might be helpful to job seekers. This is particularly interesting because interventions such as the one we evaluate have essentially zero marginal costs, and could be rolled out on large scale without much burden on the unemployment assistance system.23

Clearly these results need to be viewed with caution. Evidence on job finding probabilities are not conclusive given our limited sample size. Even if these were conclusive, a true cost-benefit analysis would need to take into account whether additional jobs are of similar quality (e.g. pay similarly and can be retained for similar amounts of time). Such analysis is desirable, but requires a larger sample size with longer follow-up, ideally based on access to administrative data. Larger roll-out in different geographic areas would also be needed to uncover any general equilibrium effects, which could reduce the effectiveness if improved search by some job seekers negatively affects others, or could boost the effectiveness if firms react to more efficient search with more job creation. We hope that future research in conjunction with conventional large-scale operators of job search platforms will marry the benefits of our approach with their large sample sizes.

The subsequent section reviews the related literature. Section 3.3 outlines the institutional environment. Section 3.4 describes the experimental design, Section 3.5 the basics of our sample, and Section 3.6 our empirical analysis and findings. Section

23 The study itself cost roughly £100000, of which the largest part was compensation to participants, costs of programming, and salaries for research assistants. Designing the “recommendation” platform only cost a fraction, and once this is programmed, rolling it out more broadly would have no further marginal cost of an existing platform such as Universal Jobmatch. Obviously, for researchers without an existing client base, the marginal cost of attracting an additional participant to the study/website in the first place is nontrivial.
3.7 uses a simple model to illustrate the forces that might underlie our findings, and the final section concludes.

3.2 Related Literature

The idea that search over different occupations is important in the job search process has a long tradition both in the applied micro and in the macro-labor literature. But as argued in the introductory paragraph, there are few experimental studies that focus exclusively on providing advice, which limits our knowledge on the effectiveness of information interventions in the labor market.

Prior to our study the main focus of experimental investigation has been the provision of counseling services by traditional government agencies and by new entrants from the private sector. Behaghel et al. (2014) and Krug and Stephan (2013) provide evidence from France and Germany that public counselling services are effective and outperform private sector service provision, while Bennemark et al. (2009) finds similar overall effectiveness of the private and public counseling services in Sweden with differential performance among specific subgroups. There are indications that more advice would also be beneficial in the UK. General equilibrium effects are

25 Ashenfelter et al. (2005a) apply indirect inference to ascertain the effectiveness of job search advice. They start by citing experimental studies from the US by Meyer (1995) which have been successful but entailed monitoring/sanctions as well as advice. Ashenfelter et al. (2005a) then provide evidence from other interventions that monitoring/sanctions are ineffective in isolation. Indirect inference then attributes the effectiveness of the first set of interventions to the advice. Yet subsequent research on the effects of sanctions found conflicting evidence: e.g., Micklewright and Nagy (2010) and Van den Berg and Van der Klaauw (2006) also find only limited effects of increased monitoring, while other studies such as Van der Klaauw and Van Ours (2013), Lalive et al. (2005) and Svarer (2011) find strong effects.

26 Fieldwork by the UK government’s Behavioral Insights Team finds indications “that many claimants’ first contact with the job centre focused entirely on claiming benefits, and not on finding work” (Gallagher et al. 2015). This opens up the possibility that advice can indeed improve the search outcomes even here. Gallagher et al. (2015) themselves undertake a randomized trial. This trial includes many elements including advice but also monitoring/sanctions: it re-focuses the initial meeting on search planning, introduces goal-setting and monitoring, and includes resilience building through creative writing. They
investigated in Crepon et al. (2013), who analyze a large scale rollout of private sector counseling in France. While they cannot demonstrate such effects with statistical significance, the point estimates on the effectiveness of counselling services reduces to zero when general equilibrium effects are accounted for. The upshot of these studies is their scale and the access to administrative data to assess their effects. The downside is the large costs that range from several hundred to a few thousand Euro per treated individual, and the "black box" of how advice is actually provided to individuals and how it affects their job search. This complicates replication in other settings. Our study can be viewed as complementary. It involves nearly zero marginal cost, the type of advice is clearly focused on occupational information, it is standardized, its internet-based nature makes it easy to replicate, and the detailed data on actual job search allow us to study the effects not only on outcomes but also on the search process. Yet we have a small and geographically confined set of participants and limited outcome measures.

Contemporaneously, Altmann et al. (2015) analyze the effects of a brochure that they sent to a large number of randomly selected job seekers in Germany, containing a paragraph of information and motivation on each of the following dimensions: i) labor market conditions, ii) duration dependence, iii) effects of unemployment on life satisfaction, and iv) importance of social ties. For this bundle, they find no significant effect overall, but for those at risk of long-term unemployment they find a positive effect between 8 months and a year after the brochure was sent. In our intervention we find effects overall but also especially for individuals with longer unemployment duration, even though we assess the intervention much closer in time to the actual information provision. Their study has low costs of provision, is easily replicable, treated a large sample, and has administrative data to assess success. On the other hand, it is not clear which of the varied elements in the brochure drives the results, there are no intermediate measures on how it affects the job search process, and the advice is generic to all job seekers rather than specific to the occupations they are looking for.

Our study is also complementary to a few recent studies which study data from commercial online job boards. It commenced with pioneering work on employer find positive effects of their intervention, but cannot attribute it to the various elements. The resembles findings by Launov and Waelde (2013) that attribute the success of German labor market reforms to service restructuring (again both advice and sanctions) rather than benefit reductions. Another study for the UK conducted by Blundell et al. (2004) evaluates the "New Deal for the Young Unemployed". It provided job search assistance but it also included other elements, most notably a wage subsidy to unemployed youth.
behavior by Kuhn and Shen (2013b), but recent studies cited below shift attention to job search behavior which is also the focus of our study. Their great advantage is the large amount of data that is available. They have not investigated the role of advice, though, nor can they rely on experimental variation. Another downside is a lack of information about which other channels job seekers are using to search for jobs and why they are leaving the site. We improve on the latter dimensions through our randomized design and the collection of data on other search channels, albeit at the cost of a comparatively small sample size.

Kudlyak et al. (2014) analyze U.S. data from Snagajob.com and find that job search is stratified by educational attainment but that job seekers lower their aspirations over time. Using the same data source, Faberman and Kudlyak (2014) investigate whether the declining hazard rate of finding a job is driven by declining search effort. They find little evidence for this. The data lacks some basic information such as employment/unemployment status and reason for leaving the site, but they document some patterns related to our study: Occupational job search is highly concentrated and absent any exogenous intervention it broadens only slowly over time, with 60% of applications going to the modal occupation in week 2 and still 55% going to the modal occupation after six months.

Marinescu and Rathelot (2014) investigate the role of differences in market tightness as a driver of aggregate unemployment. They discipline the geographic broadness of search by using U.S search data from Careerbuilder.com. They concur with earlier work that differences in market tightness are not a large source of unemployment. This holds even in a robustness check that also allows for occupational segregation at the 2-digit code level. In their dataset search is rather concentrated, with the majority of applications aimed at jobs within 25km distance and 82% of applications staying in the same city (Core-Based Statistical Area), even if some 10% go to distances beyond 25km.

27 Kuhn and Shen (2013b) investigate explicit gender discrimination in an environment where this is legal by looking at online data from Chinese job boards, and documents that many job advertisements are explicitly gender-specific. Helleseter et al. (2014) extend this analysis to additional datasets from China and Mexico. Kuhn and Shen (2013a) document for a Chinese website that firms are reluctant to hire overqualified workers.

28 Information on other search channels might be important if one is worried that effects on any one search channel might simply be shifts away from other search channels. Van den Berg and Van der Klaauw (2006) highlight this as the main reason for the ineffectiveness of monitoring the search activities of job seekers, since it mainly shifts activities out of hard-to-observe search channels like contacting family and friends into easy-to-observe search channels such as writing formal job applications. For our non-coercive information intervention we do not find such crowding out.
Using the same data source, Marinescu (2014) investigates equilibrium effects of unemployment insurance by exploiting state-level variation of unemployment benefits. The level of benefits affects the number of applications, but effects on the number of vacancies and overall unemployment are limited. Marinescu and Wolthoff (2014) document that job titles are an important explanatory variable for attracting applications in Careerbuilder.com, that they are informative above and beyond wage and occupational information, and that controlling for job titles is important to understand the remaining role of wages in the job matching process. As mentioned, none of these studies involve a randomized design.

To our knowledge, this is the first paper that undertakes job-search platform design and evaluates it. The randomized setup allows for clear inference. While the rise in electronic search will render such studies more and more relevant, the only other study of search platform design that we are aware of is Dinerstein et al. (2014), who study a change at the online consumer platform Ebay which changed the presentation of its search results to order it more by price relative to other characteristics. This lead to a decline in prices, which is assessed in a consumer search framework. While similar in broad spirit of search design, the studies obviously differ substantially in focus.

3.3 Institutional Setting

We describe briefly the institutional settings relevant for job seekers in the UK during the study. Once unemployed, a job seeker can apply for benefits (Job Seekers Allowance, JSA), by visiting their local job centre. If they have contributed sufficiently through previous employment, they are eligible for contribution-based JSA, which is £56.25 per week for those aged up to age 24, and £72 per week for those aged 25 and older. These benefits last for a maximum of 6 months. Afterwards - or in the absence of sufficient contributions - income-based JSA applies, with identical weekly benefits but with extra requirements. The amount is reduced if they have other sources of income, if they have savings or if their partner has income. Once receiving JSA, the recipient is not eligible for income assistance, however they may receive other benefits such as housing benefits.

29 These numbers are based on Figure 5 in the 2013 working paper. Neither paper provides numbers on the breadth of occupational search. The “distaste” for geographical distance backed out in this work for the US is lower than that backed out by Manning and Petrongolo (2011) from more conventional labor market data in the UK, suggesting that labor markets in the UK are even more local.
3.3. Institutional Setting

JSA recipients should be available and actively looking for a job. In practice, this implies committing to agreements made with a work coach at the job centre, such as meeting the coach regularly, applying to suggested vacancies, participating in suggested training. The work coach can impose sanctions on benefit payments in case of non-compliance to any of the criteria.

In Figure 17 we present aggregate labor market statistics. In particular, figure (a) show the unemployment rate in the UK and Edinburgh since 2011. The vertical line indicates the start of our study. The unemployment rate in Edinburgh is slightly lower than the UK average, and is rather stable between 2011 and 2014. These statistics are based on the Labour Force Survey and may therefore be less precise. Therefore we present the number of JSA claimants in the Edinburgh and the UK in panel (b), which is an administrative figure and should be strongly correlated with unemployment. We find that the number of JSA claimants is decreasing monotonically between 2012 and 2015, and that the Edinburgh and UK figures follow a very similar path. The number of JSA claimants in Edinburgh during our study is approximately 9,000, such that the 150 participants per wave in our study are about 2% of the stock. The monthly flow of new JSA claimants in Edinburgh during the study is around 1,800 (not shown in the graph).

Figure 17: Aggregate labor market statistics

(a) Unemployment rate
(b) JSA claimants
3.4 Experimental Design

3.4.1 Basic setup

We conducted the study in the computer facilities of the School of Economics at the University of Edinburgh over the course of the academic year 2013-14. Unemployed job seekers were invited to search for jobs in our computer laboratory once a week for a period of 12 weeks, or until they found a job. The study consisted of two waves: wave 1 started in September 2013 and wave 2 started in January 2014. We conducted sessions at six different time slots, on Mondays or Tuesdays at 10 am, 1 pm or 3:30 pm. Participants chose a slot at the time of recruitment and were asked to keep the same time slot for the twelve consecutive weeks.

Participants were asked to search for jobs using our job search engine (described later in this section) for a minimum of 30 minutes. After this period they could continue to search or use the computers for other purposes such as writing emails, updating their CV, or applying for jobs. They could stay in our facility for up to two hours. We emphasized that no additional job search support or coaching would be offered.

All participants received a compensation of £11 per session attended (corresponding to the government authorized compensation for meal and travel expenses) and we provided an additional £50 clothing voucher for job market attire for participating in 4 sessions in a row.

3.4.2 Recruitment Procedure and Experimental Sample

We recruited job seekers in the area of Edinburgh. The eligibility criteria for participating to the study were: being unemployed, searching for a job for less than 12 weeks (a

30 The 30 minute minimum was chosen as a trade-off between on the one hand minimizing the effect of participation on the natural amount of job search, while on the other hand ensuring that we obtained enough information. Given that participants spent around 12 hours a week on job search, a minimum of half an hour per week is unlikely to be a binding constraint on weekly job search, while it was a sufficient duration for us to collect data. Furthermore, similar to our lab participants, the participants in the online survey (who did not come to the lab and had no restrictions on how much to search) also indicate that they search 12 hours per week on average. Among this group, only in 5% of the cases the reported weekly search time is smaller than 30 minutes. In the study, the median time spent in the laboratory was 46 minutes. We made sure that participants understood that this is not an expectation of their weekly search time, and that they should feel free to search more and on different channels.

31 All forms of compensation effectively consisted of subsidies, i.e. they had no effect on the allowances the job seekers were entitled to. The nature and level of the compensation were discussed with the local job centres to be in accordance with the UK regulations of job seeker allowances.
3.4. Experimental Design

<table>
<thead>
<tr>
<th>Recruitment channel participants:</th>
<th>Full sample</th>
<th>Wave 1</th>
<th>Wave2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job centres</td>
<td>86%</td>
<td>83%</td>
<td>89%</td>
</tr>
<tr>
<td>Gumtree or other</td>
<td>14%</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>Sign up rate jobcentre for lab study<sup>a</sup></td>
<td>43%</td>
<td>39%</td>
<td>47%<sup>c</sup></td>
</tr>
<tr>
<td>Show up rate lab study</td>
<td>45%</td>
<td>43%</td>
<td>46%</td>
</tr>
<tr>
<td>Sign up rate jobcentre for online study<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show up rate online study<sup>b</sup></td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
</tbody>
</table>

^a Of those people that were willing to talk to us about the study, this is the share that signed up for the study. ^b About a fourth of those that signed up for the online study had a non-existing email address, which partly explains the low show up rate. ^c Based on only one day of recruitment (see footnote 35).

We imposed no further restrictions in terms of nationality, gender, age or ethnicity.

We obtained the collaboration of several local public unemployment agencies (Jobcentres) to recruit job seekers on their premises. Their counsellors were informed of our study and were asked to advertise the study. We also placed posters and advertisements at various public places in Edinburgh (including libraries and cafes) and posted a classified ad on a popular on-line platform (not limited to job advertisements) called Gumtree. In Table 3 sign up and show up rates are presented. Of all participants, 86% were recruited in the Jobcentres. Most of the other participants were recruited through our ad on Gumtree. We approached all visitors at the Jobcentres during two weeks.³³ Out of those we could talk to and who did not indicate ineligibility, 43% percent signed up. Out of everyone that signed up, 45% showed up in the first week and participated in the study. These figures display no statistically significant difference between the two waves of the study.

We also conducted an online study, in which job seekers were asked to complete a weekly survey about their job search. These participants did not attend any sessions, but simply completed the survey for 12 consecutive weeks. This provides us with

³²We do drop the observations on one participant from our sample because this participant had been unemployed for over 30 years and was therefore an extraordinary outlier in our sample.

³³Since most Job Seekers Allowance recipients were required to meet with a case worker once every two weeks at the Jobcentre, we were able to approach a large share of all job seekers.
Online job search descriptive statistics about job search behavior of job seekers in Edinburgh and it allows us to compare the online participants with the lab participants. These participants received a £20 clothing voucher for each 4 weeks in which they completed the survey. The online participants were recruited in a similar manner as the lab participants, which means most of them signed up at the Jobcentres. The sign up rate at the Jobcentres was slightly higher for the online survey (58%), however out of those that signed up, only 21% completed the first survey. This was partly caused by the fact that about one-fourth of the email addresses that were provided was not active.

In section 3.5.1 we discuss in more detail the representativeness of the sample, by comparing the online and the lab participants with population statistics.

3.4.3 Study Procedure

Participants were asked to register in a dedicated office at the beginning of each session. At the first session, they received a unique username and password and were told to sit at one of the computer desks in the computer laboratory. The computer laboratory was the experimental laboratory located at the School of Economics at the University of Edinburgh with panels separating desks to minimize interactions between job seekers. They received a document describing the study as well as a consent form that we collected before the start of the initial session (the form can be found in the Online Appendix of Belot et al. (2015)). We handed out instructions on how to use the interface, which we also read aloud (the instructions can be found in the Online Appendix of Belot et al. (2015)). We always had assistance in the laboratory to answer questions. We clarified that we were unable to provide any specific help for their job search, and explicitly asked them to search as they normally would.

Once they logged in, they were automatically directed to our own website. They were first asked to fill in a survey. The initial survey asked about basic demographics.

34 Participants were informed of only one of the two studies, either the on-site study or the online study. The did not self-select into one or the other.

35 We asked the recruiters to write down the number of people they talked to and the number that signed up. Unfortunately these have not been separated for the online study and the lab study. In the first wave there were different recruiters for the two studies, such that we can compute the sign up shares separately. In the second wave we asked assistants to spend parts of their time per day exclusively on the lab study and parts exclusively on the online study, so we only have sign-ups for the total number. One day was an exception, as recruitment was done only for the lab study on this day, such that we can report a separate percentage based on this day.

36 www.jobsearchstudy.ed.ac.uk
employment and unemployment histories as well as beliefs and perceptions about employment prospects. From week 2 onwards, they only had to complete a short weekly survey asking about job search activities and outcomes. For vacancies saved in their search in our facility we asked about the status (applied, interviewed, job offered). We asked similar questions about their search through other channels than our study. The weekly survey also asked participants to indicate the extent to which they had personal, financial or health concerns (on a scale from 1 to 10). The complete survey questionnaires can be found in the Online Appendix of Belot et al. (2015).

After completing the survey, the participants were re-directed towards our search engine and could start searching. A timer located on top of the screen indicated how much time they had been searching. Once the 30 minutes were over, they could end the session. They would then see a list of all the vacancies they had saved and were offered the option of printing these saved vacancies. This list of printed vacancies could be used as evidence of required job search activity at the Jobcentre. It was, however, up to the job seekers to decide whether they wanted to provide that evidence or not. We also received no additional information about the search activities or search outcomes from the Jobcentres. We only received information from the job seekers themselves. This absence of linkage was important to ensure that job seekers did not feel that their search activity in our laboratory was monitored by the employment agency. They could then leave the facilities and receive their weekly compensation.37 Those who stayed could either keep searching with our job search engine or use the computer for other purposes (such as updating their CV, applying on-line or using other job search engines). We did not keep track of these other activities. Once participants left the facility, they could still access our website from home, for example in order to apply for the jobs they had found.

3.4.4 Experimental Treatments

We introduce experimental variation through changes in the job search engine. All participants started using a "standard" search interface. Then from week four onwards half of the participants were allocated an “alternative” search interface which provided recommendations of alternative occupations in which they could search for jobs. We

37 Participants were of course allowed to leave at any point in time but they were only eligible to receive the weekly compensation if they had spent 30 minutes searching for jobs using our search engine.
now explain in more detail how each of these interfaces work, and how we assigned them.

The Standard Interface

We designed a job search engine in collaboration with the computer applications team at the University of Edinburgh. It was designed to replicate the search options available at the most popular search engines in the UK (such as monster.com and Universal Jobmatch), but allowing us to record precise information about how people search for jobs (what criteria they use, how many searches they perform, what vacancies they click on and what vacancies they save), as well as collecting weekly information (via the weekly survey) about outcomes of applications and search activities outside the laboratory.

The search engine uses a database of real job vacancies, which is identical to those provided on the government website Universal Jobmatch. This is the largest in the UK in terms of the number of vacancies. This is a crucial aspect in the setup of the study, because results can only be trusted to resemble natural job search if participants use the lab sessions for their actual job search. The large set of available vacancies combined with our carefully designed job search engine assures that the setting was as realistic as possible. Panel (a) of Figure 18 shows the number of posted vacancies available through our search engine in Edinburgh and in the UK for each week of the study (the vertical line indicates the start of wave 2). Each week there are between 800 and 1600 new vacancies posted in the Edinburgh. Furthermore, there is strong correlation between vacancy posting in Edinburgh and the UK. In panel (b) the total number of active vacancies in the UK is shown over the second half of 2013 and 2014. As a comparison the total number of active vacancies in the database used in the study in both waves is shown. It suggests that the database contains over 80% of all UK vacancies, which is a very extensive coverage compared to other online platforms. It is well-known that not all vacancies on online job search platforms are genuine, so the

38 Panel (b) is based on data from our study and data from the Vacancy Survey of the Office of National Statistics (ONS), dataset “Claimant Count and Vacancies - Vacancies”, url: www.ons.gov.uk/ons/rel/lms/labour-market-statistics/march-2015/table-vacs01.xls
39 For comparison, the largest US jobsearch platform has 35% of the official vacancies; see Marinescu (2014), Marinescu and Wolthoff (2014) and Marinescu and Rathelot (2014). The size difference might be due to the fact that the UK platform is run by the UK government.
3.4. Experimental Design

Figure 18: Number of vacancies

(a) Posted vacancies in our study

(b) Active vacancies in our study and in UK

actual number might be somewhat lower.40 We introduced ourselves a small number of “fake” vacancies (about 2% of the database) for a separate research question (addressed in a separate paper). Participants were fully informed about this. They were told that “we introduced a number of vacancies (about 2% of the database) for research purposes to learn whether they would find these vacancies attractive and would consider applying to them if they were available”.41 This small number is unlikely to affect job search, and there is no indication of differential effects by treatment group.42

When using the standard interface, participants can search using various criteria (keywords, occupations, location, salary, preferred hours), but do not have to specify all of these. Once they have defined their search criteria, they can press the search button at the bottom of the screen and a list of vacancies fitting their criteria will appear. The

40 For Universal Jobmatch evidence has been reported on fake vacancies covering 2% of the stock posted by a single account (Channel 4 (2014)) and speculations of higher total numbers of fake jobs circulate (Computer Business Review (2014)). Fishing for CV’s and potential scams are common on many sites, including Careerbuilder.com (The New York Times (2009a)) and Craigslist, whose chief executive, Jim Buckmaster, is reported to say that “it is virtually impossible to keep every scam from traversing an Internet site that 50 million people are using each month” (The New York Times (2009b)).

41 Participants were asked for consent to this small percentage of research vacancies. They were informed about the true nature of such vacancies if they expressed interest in the vacancy before any actual application costs were incurred, so any impact was minimized. We exploit this experimental variation in vacancy postings in a separate paper.

42 In an exit survey the vast majority of participants (86%) said that this did not affect their search behavior, and this percentage is not statistically different in the treatment and control group (p-value 0.99). This is likely due to the very low numbers of fake vacancies and to the fact that fake advertisements are common in any case to online job search sites (see footnote 40) and that this is mentioned to job seekers in many search guidelines (see e.g. Joyce (2015)).
information appearing on the listing is the posting date, the title of the job, the company name, the salary (if specified) and the location. They can then click on each individual vacancy to reveal more information. Next, they can either choose to “save the job” (if interested in applying) or “do not save the job” (if not interested). If they choose not to save the job, they are asked to indicate why they are not interested in the job from a list of possible answers.

As in most job search engines, they can modify their search criteria at any point and launch a new search. Participants had access to their profile and saved vacancies at any point in time outside the laboratory, using their login details. They could also use the search engine outside the laboratory. We recorded all search activity taking place outside the lab. This is however only a very small share compared to the search activities performed in the lab.

The Alternative Interface

We designed an alternative interface again in collaboration with the Applications team at the University of Edinburgh. This interface aims to reduce informational frictions and to expose job seekers to the set of vacancies that is likely to be relevant to them. The interface consists of two alterations. First, based on their profile it suggests possible occupations job seekers may be suited for. Second, it provides visual information on the tightness of the labor market for broad occupational categories in regions in Scotland. Furthermore, the search engine was somewhat restricted in the criteria that could be specified (it only allows to use occupation and radius as search criteria).

When using the alternative interface, participants were asked to specify their preferred occupation. They could change their preferred occupation at any time over the course of the study. The preferred occupation was then matched to a list of possibly suitable occupations using two different methodologies. The first uses information from the British Household Panel Survey and from the national statistical database of Denmark (because of larger sample size). The databases follow workers over time and record in what occupation they are employed. We then match the indicated preferred occupation to the most common occupations to which people employed in the preferred occupation transition to.

43 The name of the database is IDA - Integrated Database for Labour Market Research administered by Statistics Denmark. We are grateful to Fayne Goes for providing us with the information.

44 For each occupation we created a list of the 3 to 5 most common transitions; at least 3 if available and at most 5 if more than 5 were available. These consist of occupations that are in both datasets in
3.4. Experimental Design

The second methodology uses information on transferable skills across occupations from the US based website O*net, which is an online “career exploration” tool sponsored by the US department of Labor, Employment & Training Administration. For each occupation, they suggest up to 10 related occupations that require similar skills. We retrieved the related occupations and presented the ones related to the preferred occupation as specified by the participant.

Once participants have specified their preferred occupation, they could then click “Save and Start Searching” and were taken to a new screen where a list of suggested occupations was displayed. The occupations were listed in two columns: The left column suggests occupations based on the first methodology (based on labor market transitions). The right column suggests occupations based on the second methodology (O*net related occupations). Participants were fully informed of the process by which these suggestions came about, and could select or unselect the occupations they wanted to include or exclude in their search. By default all were selected. If they then click the “search” button, the program searches through the same underlying vacancy data as in the control group but selects all vacancies that fit any of the selected occupations.45

We also provided information about how competitive the labor market is for a given set of occupations. We constructed “heat maps” that use recent labor market statistics for Scotland and indicate visually (with a colored scheme) where jobs may be easier to get (because there are many jobs relative to the number of interested job seekers). These maps were created for each broad occupational category (two-digit SOC codes).46 Participants could access the heat maps by clicking on the button “heat map” which was available for each of the suggested occupations based on labor market transitions.

45 Occupations in O*net have a different coding and description and have a much finer categorization than the three-digit occupational code available in the British Household Panel Survey (BHPS) and in Universal Jobmatch vacancy data. We therefore asked participants twice for their preferred occupation, once in O*net form and BHPS form. The query on the underlying database relies on keyword search, taking the selected occupations as keywords, to circumvent problems of differential coding.

46 These heat maps are based on statistics provided by the Office for National Statistics, (NOMIS, claimant count, by occupations and county, see https://www.nomisweb.co.uk/). We created the heat maps at the two-digit level because data was only available on this level. Clearly, this implies that the same map is offered for many different 4-digit occupations, and job seekers might see the same map several times. Obviously a commercial job search site could give much richer information on the number of vacancies posted in a geographic area and the number of people looking for particular occupations in particular areas. An example of one of the heat maps is can be found in the Online Appendix of Belot et al. (2015).
So they could check them for each broad category before actually performing a search, not for each particular vacancy.

Participants in the treatment group received a written and verbal instruction of the alternative interface (see Online Appendix of Belot et al. (2015)), including how the alternative recommendations were constructed, in the fourth week of the study before starting their search. For them, the new interface became the default option when logging on. It should be noted, though, that it was made clear to participants that using the new interface was not mandatory. Rather, they could switch back to the previous interface by clicking a button on the screen indicating “use old interface”. If they switched back to the old interface, they could carry on searching as in the previous weeks. They could switch back and forth between new and old interface. This ensures that we are not restricting choice, but rather offer advice.

Randomization

From week 4 onwards, we changed the search interface to the alternative interface for a subset of our sample. Participants were randomized into control (no change in interface) and treatment group (alternative interface) based on their allocated time slot. We randomized each time slot into treatment and control over the two waves, to avoid any correlation between treatment status and a particular time slot. Table 4 illustrates the randomization.

Table 4: Randomization scheme

<table>
<thead>
<tr>
<th>Time</th>
<th>Wave 1</th>
<th>Wave 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 10 am</td>
<td>Control</td>
<td>Treatment</td>
</tr>
<tr>
<td>Monday 1 pm</td>
<td>Treatment</td>
<td>Control</td>
</tr>
<tr>
<td>Monday 3:30 pm</td>
<td>Control</td>
<td>Treatment</td>
</tr>
<tr>
<td>Tuesday 10 am</td>
<td>Treatment</td>
<td>Control</td>
</tr>
<tr>
<td>Tuesday 1 pm</td>
<td>Control</td>
<td>Treatment</td>
</tr>
<tr>
<td>Tuesday 3:30 pm</td>
<td>Treatment</td>
<td>Control</td>
</tr>
</tbody>
</table>
3.5 Background Data on our Sample

3.5.1 Representativeness of the sample

Since the participants were not randomly selected from the population of job seekers in Edinburgh, one may worry that the sample consists of a selective group that differs from the general population. To provide some indication of the degree of selection, we compare characteristics of the participants to the online survey participants, and to aggregate statistics of job seekers available from The Office of National Statistics (NOMIS). These descriptive statistics are presented in Table 5. The first four columns show the mean, standard deviation, minimum and maximum for the lab participants, while the next four columns show the same statistics for the online survey participants. In column 9, the p-value of a two-sided t-test for equal means is shown. Finally, in column 10 aggregate statistics of job seekers in Edinburgh are shown, for the variables for which these are available.\(^{47}\)

Demographic variables, based on the first week baseline survey, show that 43% of the lab participants are female, the average age is 36 and 43% have some university degree. 80% classify themselves as ‘white’ and 27% have children. The online survey participants differ somewhat in composition: they are more likely to be female, they are slightly younger and they have less children. When comparing these statistics to aggregate statistics of Edinburgh job seekers, we find that we oversample women and non-whites, while the average age is very similar.

The lower part of Table 5 shows variables related to job search history, also based on the first week baseline survey. The lab participants have on average applied to 64 jobs, which lead to 0.48 interviews and 0.42 job offers.\(^{48}\) Only 20% received at least one offer. Mean unemployment duration at the start of the study is 260 days, while the median is 80 days. About three-fourth of the participants had been unemployed for less than half a year. Participants typically receive job seekers allowance and housing allowance. The online survey participants are not significantly different on most dimensions, except that they attended more job interviews.

\(^{47}\) Source: Office for National Statistics: NOMIS Official Labour Market Statistics. Dataset: Claimant Count conditional on unemployment duration< 12 months, average over the duration of the study. We restrict attention to durations of less than 12 months to equalize the median unemployment duration between the NOMIS query and our dataset.

\(^{48}\) We censor the response to the survey question on the number of previous job offers at 10.
We also compare job search behavior of participants in our study with the online survey participants. The online survey includes a question asking for the weekly number of applications sent and the weekly number of job interviews. We compare the control group lab participants to the online survey participants to assess whether participation in the study affects the participants. When using data on applications and interviews in our study, we assign both of these to the week in which search activity was performed that lead to either to these. On average this implies that applications are assigned to search activity one week before the application was send, while interviews are assigned to search activity two weeks before the interview is reported. The average number of applications are shown in panel (a) of Figure 19 and the average number of interviews in panel (b) of Figure 19. For lab participants we observe both the number of applications from job search in the lab, and the number of applications reported through other job search activities. The number of applications outside the lab is quite similar to the number reported by the online participants, while the sum of the two types of applications for lab participants is somewhat higher than for the online participants. In panel (b) we find that the sum of interviews in- and outside the lab is very similar to the number reported by the online participants. The average number of weekly interviews is 0.47 for lab participants and 0.42 for online participants and these numbers are not statistically different (p-value 0.23).

Figure 19: Jobsearch behavior online and lab participants

(a) Applications

(b) Interviews
3.5. Background Data on our Sample

Table 5: Characteristics of lab participants and online survey participants (based on the first week initial survey)

<table>
<thead>
<tr>
<th>Demographics:</th>
<th>Lab participants</th>
<th>Online survey</th>
<th>T-test(^a)</th>
<th>Pop.(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>mean</td>
<td>sd</td>
</tr>
<tr>
<td>gender (%)</td>
<td>43</td>
<td>50</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>age</td>
<td>36</td>
<td>12</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>high educ (%)</td>
<td>43</td>
<td>50</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>white (%)</td>
<td>80</td>
<td>40</td>
<td>77</td>
<td>42</td>
</tr>
<tr>
<td>number of children</td>
<td>.53</td>
<td>1</td>
<td>.28</td>
<td>.57</td>
</tr>
<tr>
<td>couple (%)</td>
<td>23</td>
<td>42</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>any children (%)</td>
<td>27</td>
<td>45</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job search history:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vacancies applied for</td>
<td>64</td>
<td>140</td>
<td>75</td>
<td>187</td>
</tr>
<tr>
<td>interviews attended</td>
<td>.48</td>
<td>.84</td>
<td>2.7</td>
<td>4</td>
</tr>
<tr>
<td>jobs offered</td>
<td>.42</td>
<td>1.1</td>
<td>.51</td>
<td>1.6</td>
</tr>
<tr>
<td>at least one offer (%)</td>
<td>20</td>
<td>40</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>days unempl. (mean)</td>
<td>260</td>
<td>620</td>
<td>167</td>
<td>302</td>
</tr>
<tr>
<td>days unempl. (median)</td>
<td>80</td>
<td>118</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>less than 183 days (%)</td>
<td>76</td>
<td>43</td>
<td>75</td>
<td>44</td>
</tr>
<tr>
<td>less than 366 days (%)</td>
<td>85</td>
<td>35</td>
<td>91</td>
<td>28</td>
</tr>
<tr>
<td>job seekers allowance (£)</td>
<td>52</td>
<td>75</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>housing benefits (£)</td>
<td>64</td>
<td>129</td>
<td>48</td>
<td>95</td>
</tr>
<tr>
<td>other benefits (£)</td>
<td>14</td>
<td>65</td>
<td>12</td>
<td>56</td>
</tr>
</tbody>
</table>

| Observations | 295 | 103 |

\(^a\) P-value of a t-test for equal means of the lab and online participants. \(^b\) Average characteristics of the population of job seeker allowance claimants in Edinburgh over the 6 months of study. The numbers are based on NOMIS statistics, conditional on unemployment duration up to one year. \(^c\) High educated is defined as a university degree.
Table 6: Characteristics of the treatment and control group

<table>
<thead>
<tr>
<th></th>
<th>Control group mean</th>
<th>Control group sd</th>
<th>Treatment group mean</th>
<th>Treatment group sd</th>
<th>T-test pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female (%)</td>
<td>44</td>
<td>50</td>
<td>41</td>
<td>49</td>
<td>.67</td>
</tr>
<tr>
<td>age</td>
<td>36</td>
<td>11</td>
<td>37</td>
<td>12</td>
<td>.53</td>
</tr>
<tr>
<td>high educ (%)</td>
<td>43</td>
<td>50</td>
<td>42</td>
<td>50</td>
<td>.85</td>
</tr>
<tr>
<td>survey qualification level</td>
<td>4.2</td>
<td>1.9</td>
<td>4.5</td>
<td>1.9</td>
<td>.27</td>
</tr>
<tr>
<td>white (%)</td>
<td>80</td>
<td>40</td>
<td>81</td>
<td>40</td>
<td>.88</td>
</tr>
<tr>
<td>number of children</td>
<td>.64</td>
<td>1.1</td>
<td>.40</td>
<td>.83</td>
<td>.04</td>
</tr>
<tr>
<td>couple (%)</td>
<td>25</td>
<td>44</td>
<td>21</td>
<td>41</td>
<td>.37</td>
</tr>
<tr>
<td>any children (%)</td>
<td>30</td>
<td>46</td>
<td>25</td>
<td>43</td>
<td>.37</td>
</tr>
<tr>
<td>Job search history:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vacancies applied for</td>
<td>74</td>
<td>154</td>
<td>53</td>
<td>122</td>
<td>.21</td>
</tr>
<tr>
<td>interviews attended</td>
<td>.41</td>
<td>.63</td>
<td>.56</td>
<td>1</td>
<td>.13</td>
</tr>
<tr>
<td>jobs offered</td>
<td>.37</td>
<td>.96</td>
<td>.49</td>
<td>1.2</td>
<td>.35</td>
</tr>
<tr>
<td>at least one offer (%)</td>
<td>19</td>
<td>40</td>
<td>21</td>
<td>41</td>
<td>.77</td>
</tr>
<tr>
<td>days unemployed (mean)</td>
<td>286</td>
<td>668</td>
<td>231</td>
<td>563</td>
<td>.45</td>
</tr>
<tr>
<td>days unemployed (median)</td>
<td>80</td>
<td></td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>less than 183 days</td>
<td>.75</td>
<td>.44</td>
<td>.78</td>
<td>.42</td>
<td>.54</td>
</tr>
<tr>
<td>less than 366 days</td>
<td>.85</td>
<td>.36</td>
<td>.86</td>
<td>.34</td>
<td>.64</td>
</tr>
<tr>
<td>job seekers allowance (£)</td>
<td>48</td>
<td>41</td>
<td>56</td>
<td>101</td>
<td>.43</td>
</tr>
<tr>
<td>housing benefits (£)</td>
<td>64</td>
<td>123</td>
<td>63</td>
<td>136</td>
<td>.96</td>
</tr>
<tr>
<td>Weekly search activities in weeks 1-3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>listed</td>
<td>498</td>
<td>396</td>
<td>488</td>
<td>377</td>
<td>.82</td>
</tr>
<tr>
<td>saved</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>.56</td>
</tr>
<tr>
<td>applied</td>
<td>3.3</td>
<td>5.8</td>
<td>2.5</td>
<td>4.3</td>
<td>.18</td>
</tr>
<tr>
<td>interview</td>
<td>.09</td>
<td>.34</td>
<td>.09</td>
<td>.24</td>
<td>.84</td>
</tr>
<tr>
<td>applications other</td>
<td>9.2</td>
<td>11</td>
<td>7.5</td>
<td>8.3</td>
<td>.15</td>
</tr>
<tr>
<td>interviews other</td>
<td>.53</td>
<td>.70</td>
<td>.49</td>
<td>.79</td>
<td>.69</td>
</tr>
<tr>
<td>broadness listed<sup>a</sup></td>
<td>3.2</td>
<td>.61</td>
<td>3.2</td>
<td>.57</td>
<td>.73</td>
</tr>
<tr>
<td>broadness applied<sup>a</sup></td>
<td>3</td>
<td>.95</td>
<td>3.2</td>
<td>.90</td>
<td>.36</td>
</tr>
<tr>
<td>hours spend<sup>b</sup></td>
<td>11</td>
<td>8.2</td>
<td>12</td>
<td>10</td>
<td>.12</td>
</tr>
<tr>
<td>concern health (scale 1-10)</td>
<td>1.5</td>
<td>2.5</td>
<td>1.7</td>
<td>2.7</td>
<td>.46</td>
</tr>
<tr>
<td>concern financial (scale 1-10)</td>
<td>7.3</td>
<td>2.6</td>
<td>6.9</td>
<td>3.1</td>
<td>.30</td>
</tr>
<tr>
<td>concern competition (scale 1-10)</td>
<td>7.4</td>
<td>2.3</td>
<td>7.2</td>
<td>2.2</td>
<td>.52</td>
</tr>
<tr>
<td>met caseworker (%)</td>
<td>31</td>
<td>37</td>
<td>29</td>
<td>39</td>
<td>.61</td>
</tr>
<tr>
<td>Observations</td>
<td>155</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demographics and job search history values are based on responses in the baseline survey from the first week of the study. Search activities are mean values of search activities over the first 3 weeks of the study. ^a Occupational broadness, as defined in section 3.5.4. ^b The number of hours spend on job search per week.
3.5.2 Treatment and Control Groups

In order to evaluate the effect of the alternative interface on job search behavior and outcomes we compare treated and non-treated individuals. Both of these groups used the same interface in the first three weeks, and the alternative interface was only provided to the treatment group from week 4 onwards. This means that we can use the information from the first three weeks to correct for fixed differences between treated and control group individuals. In principal this should not be necessary though, since the treatment was assigned randomly. Still, the group fixed effects will increase precision. In Table 6 we compare characteristics of the treatment and control group to ensure that the composition of the groups is balanced.49

We compare the treated and control group on the same set of demographic and job search history variables as in Table 5, and additionally we compare job search behavior in our study over weeks 1-3. For demographic and job search history variables, only one out of 32 t-tests suggests a significant difference, which is the average number of children. In terms of job search behavior in our study over the first three weeks, we find that the control group lists on average 498 vacancies, of which 10 are saved. Out of these, participants report to have applied to 3 and eventually get an interview in 0.09 cases. Furthermore, they report about 8 weekly applications through channels outside our study, leading to 0.03 interviews on average. For each set of vacancies (listed, viewed, saved, applied) we compute a measure of occupational broadness (see subsection 3.5.4), of which the average values are also shown in the table. Participants in the control group report 11 hours of weekly job search in addition to our study. In the weekly survey, participants were also asked to rate to what extend particular problems were a concern to them. On average, health problems are not mentioned as a major concern, while financial problems and strong competition in the labor market seem to be important. Finally, about 30\% met with a case worker at the Jobcentre in a particular week. The values for job search behavior of the treatment group are very similar, and never differ significantly.

49For example, it could be the case that by expressing a strong preference for a particular time slot, participants self-select into groups. Since we switch around the treatment assignment of groups in the second wave (see Table 4), this is unlikely to be problematic though.

3.5.3 Attrition

The study ran for 12 weeks, but job seekers could obviously leave the study earlier either because they found a job or for other reasons. Thus, attrition is an inherent feature of our study, and the experimental intervention could have affected attrition rates. Differential attrition driven by differences in job finding across groups is of course of direct interest, but it also introduces challenges for the empirical analysis of search behavior, as both samples may not remain comparable over the 12 weeks.

We present attrition in panel (a) of Figure 20, for the control and treatment groups (including 95% confidence intervals). An exit from the study is defined to occur in the week after the last session in which the individual attended a lab session, irrespective of the reason for exiting the study. We find that about 50% of the participants continue until the end of the study, and this percentage is very similar in the control and treatment group. The difference between the two curves is not significant at any duration. Of course, it is important to point out that even if we find attrition of similar magnitude in the treatment and control groups, we could still have systematic differences in unobservables over time because there may be heterogeneity in how each interface affects job seekers. We will come back to this issue in the empirical analysis.

Whenever participants dropped out, we followed up on the reasons for dropping out. In case they found a job, we asked for details, and in many cases we were able to obtain detailed information about the new job. Since job finding is a desirable outcome related to the nature of our study, we also present attrition excluding job finding in panel (b) of Figure 20. Here we present the number of participants leaving the study per week due to reasons other than finding employment. In most weeks, we lose 2 to 4 participants, and again, these numbers are very similar in control and treatment group.

The apparent lack of selection is on the one hand helpful to study how the intervention may have affected search outcomes, on the other hand, it already hints that our intervention may not have affected the rather low job finding rates in a statistically significant way. We will come back to the analysis of drop out and job finding in more detail in section (3.6.4).

50 The graph shows Kaplan-Meier estimates of the survival functions of the groups.
3.5.4 Measuring occupational and geographical broadness

We are interested in the effect of providing information about suitable occupations as well as geographical labor market statistics. Measuring such effects requires defining occupational and geographical broadness measures. In this subsection we provide definitions of the measures that are used in the empirical analysis. All measures are defined on the set of vacancies retrieved in a given week, independent of whether they arose due to many independent search queries or few comprehensive queries.

For occupational broadness we focus on the UK Standard Occupational Classification code (SOC code) of a particular vacancy, which consists of four digits. The structure of the SOC codes implies that the more digits two vacancy codes share, the more similar they are. Our measure of diversity within a set of vacancies is based on this principle, defining for each pair within a set the distance in terms of the codes. The distance is zero if the codes are the same, it is 1 if they only share the first 3 digits, 2 if they only share the first 2 digits, 3 if they share only the first digit and 4 if they share no digits. This distance, averaged over all possible pairs within a set, is the measure that we use in the empirical analysis. Note that it is increasing in broadness (diversity) of a set.

\(^{51}\)The first digit of the code defines the “major group”, the second digit defines the “sub-major group”, the third digit defines the “minor group” and the fourth digit defines the “unit group” which provides a very specific definition of the occupation. Some examples are “Social science researchers” (2322), “Housekeepers and related occupations” (6231) and “Call centre agents/operators” (7211).

\(^{52}\)Our results are robust to using the Gini-Simpson index as an alternative broadness measure.
of vacancies. We compute this measure for the set of listed and applied vacancies in each week for each participant.

For geographical broadness we use a simple measure. Since a large share of searches restricts the location to Edinburgh, we use the weekly share of a participants searches that goes beyond Edinburgh as the measure of geographical broadness.53

3.6 Empirical Analysis

We now turn to the empirical analysis. Ultimately we want to find out whether our intervention improves labor market prospects. Our data allow us to examine each step of the job search process: the listing of vacancies to which job seekers are exposed, the vacancies they apply to, the interviews they get and finally, and whether they find a job. Clearly, the ultimate outcome variable we care about is actual job finding, as well as characteristics of the job found (occupation, wage, duration, etc.), which would be important to evaluate the efficiency implications of such an intervention. Unfortunately the information we have on job finding is limited; job finding is relatively rare, and our information on job finding is rather noisy, so we should be cautious when interpreting the results. This is why we focus most of the analysis on the steps preambling job finding, specifically vacancy listings, applications and interviews. Listed vacancies are the direct result of the search criteria used by the job seeker and therefore are the most immediate measure of search behavior. Applications provide a more reliable measure of the job seekers' interest in the vacancies.54 Interviews are the next measure of interest and the next best variable to indicate interest of the employers, and since there are a lot more interviews than jobs found, it is the best indicator we have of labor market prospects. We will briefly discuss the evidence on job finding at the end of this section.

In the weekly survey that participants complete before starting to search, we ask about applications and interviews through channels other than our study. The intervention may affect these outcomes as well, since the information provided in the alternative interface could influence people's job search strategies outside the lab. Therefore we also document the weekly applications and interviews through other channels as outcome variables. We start with presenting the econometric specification.

53Note that the direct surroundings of Edinburgh contain only smaller towns. The nearest large city is Glasgow, which takes about 1-1.5 hours of commuting time.

54We also constructed measures of broadness based on the viewed and saved vacancies. The results were qualitatively similar to the those obtained for the listed and applied vacancies. They are available upon request.
3.6. Empirical Analysis

3.6.1 Econometric specification

Our data is a panel and our unit of observation is at the week/individual level. That is, we compute a summary statistic for each individual of her search behavior (vacancies listed, applications, interviews) in a given week. Since it is a randomized controlled experiment in which we observe individuals for three weeks before the treatment starts, the natural econometric specification is a model of difference-in-differences. To take account of the panel structure we include individual random effects. We have estimated a fixed effects model and performed a Hausman test for each of the main specifications. In none of the cases we could reject that the random effects model is consistent, such that we decide in favor of the random effects model for increased precision. Specifically, we can compare a variable measuring an outcome \(Y \) in the control and treatment group before and after the week of intervention, controlling for week fixed effects \((\alpha_t) \), time–slot \(\times \) wave fixed effects \((\delta_g) \) and a set of baseline individual characteristics \((X_i) \) to increase the precision of the estimates. The treatment effect is captured by a dummy variable \((T_{it}) \), equal to 1 for the treatment group from week 4 onwards. The specification we propose is:

\[
Y_{it} = \alpha_t + \delta_g + \gamma T_{it} + X_i \beta + \eta_i + \epsilon_{it}
\]

where \(i \) relates to the individual, \(t \) to the week and \(\eta_i + \epsilon_{it} \) is an error term consisting of an individual specific component \((\eta_i) \) and a white noise error term \((\epsilon_{it}) \). Individual characteristics \(X_i \) include gender, age and age squared, unemployment duration and unemployment duration squared\(^{55}\) and dummies indicating a short expected unemployment duration, financial concerns, being married or cohabiting, having children, being highly educated and being white.

As mentioned earlier, one important challenge with such approach has to do with attrition. If there is differential attrition between treatment and control groups, it could be that both groups differ in unobservables following the treatment. Differential attrition is of course particularly plausible because our treatment could have affected job finding and therefore study drop out. We proceed in two ways to address this potential concern. First, we documented in Section 3.5.3 attrition across treatment and control groups and found no evidence of asymmetric attrition. Second, our panel structure allows us to control for time-invariant heterogeneity and use within-individual variation. When we estimate a random and fixed effects model, the Hausman test fails

\(^{55}\)Unemployment duration is defined as the reported duration at the start of the study.
to reject the latter. Since the treatment itself is assigned at the group-level it is unlikely to be correlated with unobserved individual characteristics. However, differential attrition could create correlation between unobservable individual characteristics and would therefore lead to rejection of the random-effects model. The fact that we can never reject this model is thus an indication that there is no (strong) differential attrition between treatment and control groups.

We summarize in Table 7 the outcome variables of interest. For listed vacancies and applications we look at broadness (occupational and geographical) and the number. For interviews we only look at the number, since the number is too small to compute informative broadness measures. As an alternative, we asked individuals at the beginning of the study about three “core” occupations in which they are looking for jobs, and we can estimate separate treatment effects for interviews in core and non-core occupations. For the number of applications and interviews we also look at activity outside the lab. Note that applications and interviews through activity in lab are assigned to the week in which the search activity was performed. A similar correction is made for applications and interviews through other channels, which is described in more detail in the relevant sections.

Another important aspect relevant for the econometric specification is the potential heterogeneity of effects across individuals. Given the nature of the intervention, it is likely that the treatment affects different individuals differentially. In order for our intervention to affect job prospects, it has to open new search opportunities

<table>
<thead>
<tr>
<th></th>
<th>Search activity in the lab</th>
<th>Search activity outside the lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed vacancies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational Broadness</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Geographical Broadness</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational Broadness</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Geographical Broadness</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Interviews</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Core and non-core occupations</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>
to participants and participants have to be willing to pursue those opportunities. Participants may differ in terms of their search strategies. We expect our intervention to broaden the search for those participants who otherwise search narrowly, which we will measure by their search in the weeks prior to the intervention. For those who are already searching broadly in the absence of our intervention it is not clear whether we increase the breadth of their search. We therefore estimate heterogeneous treatment effects by initial broadness.56

Second, the willingness to pursue new options depends on the incentives for job search, which change with unemployment duration for a variety of reasons. Longer-term unemployed might be those for whom the search for their preferred jobs turned out to be unsuccessful and who need to pursue new avenues, while they are also exposed to institutional incentives to broaden their search (the Jobcentres require job seekers to become broader after three months). Note again that we are always comparing otherwise identical individuals in the treatment and control groups, so the incentives to broaden their search by themselves would not be different, but the information we provide to achieve this differs. We therefore also interact the treatment effect with unemployment duration. In the subsequent section we provide a simple theoretical model formalizing the channels that may explain differential effects.

Note that since we did not force job seekers to use the alternative interface, our intervention is an intention-to-treat. Panel (a) of Figure 21 plots the fraction of users of the alternative interface over the 12 weeks. On average we find that around 50% of the treated participants use the alternative interface over the 8 weeks and this fraction remains quite stable throughout. This does not mean that only 50% of the treatment group is treated though because all participants in the treatment group used the alternative interface at least once and were therefore exposed to recommendations and suggestions based on their profile. It could be that they used this information while reverting back to searching with the standard interface.

Bearing this in mind, we now document the effects of the intervention on the various steps of the search process. We will present the results on the treatment effect only (γ) as well as the interaction effects between the treatment and the subgroups of interest, for the sake of brevity. For the amount of search activity we report the full results including all other covariates in Table 20 in the Appendix.

56We split the sample at the median level of broadness over the first three weeks.
3. Online jobsearch

3.6.2 Effects on Listed vacancies

The most immediate measure of search relates to listed vacancies, i.e., the listing of vacancies that appears on the participants’ screen as a return to their search query. By default the list is ordered by date of vacancy posting (most recent first), but participants can choose to sort them according to other criteria such as job title, location and salary. Note that we limit ourselves to the list of vacancies the participants actually saw on their screen. A page on the screen is limited to at most 25 listed vacancies, and participants have to actively move from one screen to the next to see additional vacancies. Thus, we exclude the vacancies on pages that were not consulted by the participant. As mentioned earlier, all analysis are at the weekly level and, thus, we group all listings in a week together.57

We have two variables measuring how broad participants search, one in terms of occupation (as described in section 3.5.4), the other in terms of geography (fraction of vacancies outside Edinburgh metropolitan area). In this section both are based on the set of listed vacancies of an individual. We also measure the number of vacancies that were listed.

We estimate a simple linear model with individual random effects (equation (3.1)). The results are presented in Table 8. The first row presents a highly significant positive

57The alternative interface tends to necessitate less search queries than the standard interface to generate the same number of vacancies because on the alternative interface one query is intended to return all vacancy even for other related occupations. For that reason the weekly analysis seems more interesting compared to results at the level of an individual query, for which results arise rather mechanically.
Table 8: Effect of intervention on listed vacancies

<table>
<thead>
<tr>
<th></th>
<th>Broadness of listings</th>
<th>Number of listings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>Occupational</td>
<td>Geographical</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.11***</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Treatment X occupationally broad</td>
<td>-0.16***</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Treatment X occupationally narrow</td>
<td>0.38***</td>
<td>-0.05**</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Linear</th>
<th>Linear</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation weeks</td>
<td>1-12</td>
<td>1-12</td>
<td>1-12</td>
</tr>
<tr>
<td>N</td>
<td>2392</td>
<td>2399</td>
<td>2401</td>
</tr>
</tbody>
</table>

Each column represents two separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Standard errors in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

The overall effect on broadness of search in terms of occupation. The broadness measure increases with 0.11, which amounts to approximately one-fifth of a standard deviation. The alternative interface altered job seekers’ search such that they are exposed to a broader set of occupations. We find no evidence of an overall effect on geographical broadness or on the number of listed vacancies. In rows two and three we split the sample according to how occupationally broad job seekers searched in the first three weeks. We find clear heterogeneous effects: those who looked at a more narrow set

58There are, of course, several other dimensions along which we could estimate heterogeneous effects. Since we have only a limited sample size, we decided to estimate only heterogeneous effects by initial broadness. For this factor we have a clear hypothesis for the effect of the intervention, while estimation of heterogeneous effect along many other dimension might be considered data mining. Note however that initial broadness is correlated with other factors and may therefore pick up the difference in effect along other dimensions. In particular, being an initially broad searcher is correlated with age (correlation coefficient is -0.36), gender (0.07), being in a couple (-0.06), having children (-0.19) and being higher educated (-0.11).
of occupations in the first three weeks become broader, while those who were broad become more narrow as a result of the intervention. Note that these effects are not driven by a regression to the mean since we compare narrow/broad searchers in our treatment group to similarly narrow/broad searchers in our control group. We also find evidence of a substitution effect in terms of geographical broadness. Those who expand their search in terms of occupation appear to also become more narrow in the geographical area they look at, possibly because they now find more jobs within close proximity and have a lower need to search further away. The opposite is true for those who narrow their search in terms of occupation.59,60

The different effects can be reconciled in a setting where broad searchers find many occupations plausible and use the additional information to narrow down the suitable set, while narrow searchers find few occupations suitable and use the additional information to broaden this set. This mechanism is more formally described in Section 3.7.

Finally, we split the effect further depending on how long job seekers have been searching for a job and present the results in Table 9. We interact the intervention effect with two groups: short term unemployed (with unemployment duration of less than the median of 80 days) and long term unemployed (with unemployment duration above the median). The effect is estimated for four groups: interactions of occupational broadness and unemployment duration. We find that results do not change much, though standard errors are larger. We still find that occupationally narrow searchers become broader while those that were already broad become more narrow, irrespective of unemployment duration.

59In the appendix we also report estimates when we split the sample according to broadness along the geographical dimension at the median (see Table 17). The results are similar (those who were searching broadly become more narrow and vice versa, and there is some trade-off with occupational broadness). This could still be driven by initial occupational broadness, since this is negatively correlated with initial geographical broadness (coefficient -0.36) and is not controlled for. Indeed, when we split both by occupational and geographical broadness the effects are driven by the occupational dimension, which we will henceforth focus on.

60The difference in the number of observations between the columns in Table 8 and similar tables that follow is due to the fact that we can only compute the occupational (geographical) broadness measure if the number of listed is two (one) or larger, which excludes different numbers of observations depending on the variable of interest.
3.6. Empirical Analysis

Table 9: Effect of intervention on listed vacancies - interactions

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Broadness of listings</th>
<th>Number of listings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Occupation</td>
<td>Geographic</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>X long unempl. and occ. broad</td>
<td>-0.18***</td>
<td>0.08***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>X short unempl. and occ. broad</td>
<td>-0.14**</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>X long unempl. and occ. narrow</td>
<td>0.38***</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>X short unempl. and occ. narrow</td>
<td>0.38***</td>
<td>-0.07***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Each column represents one regression. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Standard errors in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

3.6.3 Effects on Applications

The second measure of search behavior relates to applications. Here we have information about applications based on search activity conducted inside the laboratory as well as outside the laboratory which we collected through the weekly surveys.

For the applications based on search in the laboratory, we asked participants to indicate for each vacancy saved in the previous week whether they actually applied to it or not. We can therefore precisely map applications to the timing of the search activity. This is important as there may be a delay between the search and the actual application; so applications that are made in week 4 and after could relate to search activity that took place before the actual intervention. For the applications conducted based on search

61 If they have not applied, they are asked whether they intend to apply and will then be asked again whether they did apply or not.
outside the laboratory, we do not have such precise information. We asked how many applications job seekers made in the previous week but we do not know the timing of the search activity these relate to. For consistency, we assume that the lag between applications and search activity is the same inside and outside the laboratory (which is one week) and assign applications to search activity one week earlier. As a result, we have to drop observations based on search activity in the last week of the experiment, as we do not know observe applications related to this week.

Since the distribution of applications contains a large share of zeros, we estimate a negative binomial model, with individual random effects. For these models we report \([\exp(\text{coefficient}) - 1]\), which is the percentage effect.

Table 10: Effect of intervention on applications

<table>
<thead>
<tr>
<th></th>
<th>Broadness of applications</th>
<th>Number of applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Occupation</td>
<td>(2) Geographic</td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.00</td>
<td>-0.06**</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Treatment X occ. broad</td>
<td>-0.19</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Treatment X occ. narrow</td>
<td>0.14</td>
<td>-0.09***</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Each column represents two separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (3)-(5) are negative binomial model regressions where we report \([\exp(\text{coefficient}) - 1]\), which is the percentage effect. Standard errors in parentheses. * \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\)
The results are presented in Table 10. We find no overall treatment effect on applications, except for a decrease in their geographical broadness (approximately one-fifth of a standard deviation). When we split the sample according to initial occupational broadness, we find that those who searched more narrowly in terms of occupation apply to more vacancies when searching with the alternative interface. The number of applications increases by 31%. This increase in applications based on search activity in the lab has no negative spillovers on applications based on search done outside the lab. We find no significant effect on the broadness measure in terms of occupations, but there is a negative effect on geographical broadness for the occupationally narrow job seekers.62

Again, we split these effects by the duration of unemployment and report results in Table 11. We find that occupational broadness goes down for long term unemployed broad searchers, while it goes up for short term unemployed narrow searchers (though both are not significant as a result of larger standard errors). We find that the increase in applications in the lab is concentrated among the long-term unemployed, and in particular those that initially searched narrow occupationally. Furthermore we find that long term unemployed occupationally broad searchers reduce their applications somewhat.

3.6.4 Effects on interviews

We now turn to interviews, the variable that is most closely related to job prospects. Since the number of interviews per week is always very small, we cannot calculate broadness measures. So we only look at a measure of the number of interviews obtained as a result of search conducted inside the laboratory and outside the laboratory.63 Because of the large share of zeros, we estimate a Poisson model with individual random effects.64 Again we report $\exp(\text{coefficient}) - 1$, which is the percentage effect. As was done for applications, we assign interviews to the week in which the search activity was performed, and assign interviews through channels other than the lab to search activity two weeks earlier. As a results we exclude weeks 11 and 12 of the experiment, because for job search done in these weeks we do not observe interviews.

62When splitting the sample according to how narrowly people searched in terms of geography, we find no evidence of heterogeneous effects. Results are presented in the appendix in Table 18.
63For interviews reported outside the lab we restrict observations to 0,1,2 or 3 and more, because of some outliers. Results are similar when no such restriction is imposed.
64Due to the relatively small number of interviews observed, we cannot estimate a negative binomial model and use a Poisson regression model instead.
<table>
<thead>
<tr>
<th>Occupation Geographic Lab</th>
<th>Treatment</th>
<th>1-11</th>
<th>1-11</th>
<th>1-11</th>
<th>1-11</th>
<th>1-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>X long unempl. and occ. broad</td>
<td>-0.30</td>
<td>-0.05</td>
<td>-0.03</td>
<td>-0.23**</td>
<td>-0.20**</td>
<td></td>
</tr>
<tr>
<td>(0.20)</td>
<td>(0.04)</td>
<td>(0.16)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X short unempl. and occ. broad</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.19</td>
<td>0.06</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>(0.22)</td>
<td>(0.04)</td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X long unempl. and occ. narrow</td>
<td>-0.01</td>
<td>-0.12***</td>
<td>0.79***</td>
<td>0.03</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>(0.20)</td>
<td>(0.04)</td>
<td>(0.30)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X short unempl. and occ. narrow</td>
<td>0.30</td>
<td>-0.06</td>
<td>0.01</td>
<td>-0.04</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>(0.19)</td>
<td>(0.04)</td>
<td>(0.15)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation weeks: 1-11

Each column represents one regression. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (3)-(5) are negative binomial model regressions where we report \(\exp(coefficient) - 1 \), which is the percentage effect. Standard errors in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \).
3.6. Empirical Analysis

Table 12: Effect of intervention on interviews

<table>
<thead>
<tr>
<th></th>
<th>Number of interviews</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Lab</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.44</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1.35**</td>
</tr>
<tr>
<td></td>
<td>(0.79)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Poisson</th>
<th>Poisson</th>
<th>Poisson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation weeks</td>
<td>1-10</td>
<td>1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>N</td>
<td>2098</td>
<td>1776</td>
<td>1744</td>
</tr>
</tbody>
</table>

Each column represents two separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (1)-(3) are Poisson regression models where we report \(\text{exp(coefficient) - 1} \), which is the percentage effect.

Results are presented in Table 12. There is a positive effect of the treatment on the total number of interviews, which is significant at the 10% level. We also find positive effects on interviews on the two separate dimensions of search in the lab and search outside the lab, though neither is statistically significant by itself. When splitting the sample according to broadness of search, we find that the effect is entirely driven by those who searched narrowly in terms of occupation. For this group the number of interviews increases for search activity conducted both in the lab and outside. This seems to indicate that the additional information is not only helpful for search on our platform, but also guides behavior outside. Note that this is also the group for which the number of applications increased.\(^{65}\)

\(^{65}\)We find little evidence of heterogeneity in treatment effects when we split the sample according to initial geographical broadness. We find a significant treatment effect for those who searched broadly
Table 13: Effect of intervention on interviews - interactions

<table>
<thead>
<tr>
<th></th>
<th>Number of interviews</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X long unempl. and occ. broad</td>
<td>-0.14</td>
<td>-0.28</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td>(0.20)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>X short unempl. and occ. broad</td>
<td>-0.59</td>
<td>0.55</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.42)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>X long unempl. and occ. narrow</td>
<td>3.15***</td>
<td>0.32</td>
<td>0.70**</td>
</tr>
<tr>
<td></td>
<td>(1.85)</td>
<td>(0.32)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>X short unempl. and occ. narrow</td>
<td>0.31</td>
<td>0.48*</td>
<td>0.41*</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(0.32)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Model</td>
<td>Poisson</td>
<td>Poisson</td>
<td>Poisson</td>
</tr>
<tr>
<td>Observation weeks</td>
<td>1-10</td>
<td>1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>N</td>
<td>2098</td>
<td>1776</td>
<td>1744</td>
</tr>
</tbody>
</table>

Each column represents one regression. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (1)-(3) are Poisson model regressions where we report $\exp(coefficient) - 1$, which is the percentage effect. Standard errors in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

When we further split the sample according to length of unemployment duration, we find that the positive treatment effects on the narrow searchers is mainly driven by the long term unemployed. This group gets a significant increase in the number of interviews both as a result of search activity done inside the lab and outside the lab. These findings highlight that our intervention is particularly beneficial to people who otherwise search narrowly and who have been unemployed for some months. Overall, it does not seem detrimental to those that became more narrow in their search.

Even though the set of weekly interviews is too small to compute broadness measures, we did ask individuals at the beginning of the study to indicate three core geographically, but all the coefficients are positive across the board and not significantly different across sub-groups. Results are presented in the appendix in Table 19.
occupations in which they search for jobs, and observe whether an interview was for a job in someone’s core occupation or for a job in a different occupation. We had seen earlier that the alternative interface was successful in increasing the occupational broadness of listed vacancies, and separate treatment effects on interviews in core vs non-core occupations allow some assessment whether this lead to more “broadness” in job interviews. Results are presented in Table 14. We indeed find that the increase in the number of interviews relative to the control group comes from an increase in non-core occupations that were not their main search target at the beginning of our study. As the number of interviews becomes small when splitting between core and non-core, we cannot split the sample further by subgroups.

Our findings suggest that the alternative interface may be more beneficial to those that search narrowly and have been relatively long unemployed. This finding is supported by statistics on usage of the interface over time. Panel (b) of Figure 21 shows the evolution of the fraction of treated participants using the interface, splitting the sample by occupational broadness and unemployment duration. We find that long term narrow searchers are indeed using the interface more than the other groups (with around 70% of them using the interface in contrast to around 45% for the other groups),

<table>
<thead>
<tr>
<th>Number of interviews (in the lab)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Treatment</td>
<td>Non-core</td>
</tr>
<tr>
<td></td>
<td>-0.22</td>
<td>0.75*</td>
</tr>
<tr>
<td></td>
<td>(0.62)</td>
<td>(0.58)</td>
</tr>
</tbody>
</table>

Table 14: Effect of intervention on interviews: core and non-core occupations

<table>
<thead>
<tr>
<th>Model</th>
<th>Poisson</th>
<th>Poisson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation weeks</td>
<td>1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>N</td>
<td>2098</td>
<td>2098</td>
</tr>
</tbody>
</table>

Each column represents three separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (1)-(2) are Poisson model regressions where we report \(\exp(\text{coefficient}) - 1 \), which is the percentage effect. Standard errors in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \)
and this difference is statistically significant. The fractions remain quite stable over the 8 weeks. This finding supports the intuition that some groups of job seekers benefit more from the intervention and are therefore more willing to use the alternative interface. This group, the long-term unemployed narrow searchers is exactly the group for which we find the most pronounced positive effects.

One way to rationalize the findings is that those who search narrowly are content to do so in the early periods of unemployment where they think that their chances of finding a job within their narrow focus is sufficiently high. Additional information does not alter their view that these occupations are the most relevant ones, and does not change their search very much. This is the group of short-term narrow searchers. For some of them it turns out that they cannot find a job within their narrow focus and they become less convinced of their chances in these occupations. They might still not know which other occupations might be suitable to them, and continue to be narrow. These are the longer-term narrow searchers. Giving them additional information has positive effects, as they would like to pursue new options but do not yet know where. Finally, some people search broadly, either right away because they do not have any clearly preferred occupations (or because these occupations are too small) or because over time they got disappointed by their initial focus and become broader. For these people, getting information singles out some occupations relative to others, and rather than searching everywhere they save on search effort and become more narrow. We formalize this below.

Effects on Job finding

We now return to the analysis of job finding. As mentioned earlier, we should be cautious when interpreting the results because a) the sample is small, b) attrition from one week

<table>
<thead>
<tr>
<th>Week 3</th>
<th>In Study (No Job)</th>
<th>Found a Job</th>
<th>Out of Study</th>
<th>Job finding week mean (std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard int.</td>
<td>86.1%</td>
<td>8.0%</td>
<td>6.0%</td>
<td>2.2 (0.6)</td>
</tr>
<tr>
<td>Alternative int.</td>
<td>88.3%</td>
<td>6.9%</td>
<td>4.8%</td>
<td>2.1 (0.7)</td>
</tr>
<tr>
<td>Week 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard int.</td>
<td>56.7%</td>
<td>28.4%</td>
<td>15.0%</td>
<td>7.6 (2.2)</td>
</tr>
<tr>
<td>Alternative int.</td>
<td>63.7%</td>
<td>21.8%</td>
<td>14.5%</td>
<td>8.1 (2.6)</td>
</tr>
</tbody>
</table>
3.6. Empirical Analysis

to the next for unexplained reasons is unfortunately of the same order of magnitude as the confirmed job finding rate and c) once participants found a job, they had little incentive to inform us about the details.66

We classify job seekers in three categories depending on the information recorded in week 3 (before the intervention) and week 12 (last week of the intervention): Job seekers are either (1) present in the study and having no job (“no job”), (2) not present in the study and unclear outcome (“out of study”), (3) not present in the study and having found a job (“job”).

Table 15 presents the distribution of job seekers across categories, as well as the average length (in weeks) job finders had to wait to find a job. Note that we record the week they accepted a job offer, not the week the job actually started. For week 12, we report the distribution for those who were still in the study in week 4 and have therefore been exposed to the new interface if they were in the treatment group.

Since we have around 15% of our sample who dropped out and we do not know if they found a job or not, it is difficult to draw conclusions based on these numbers. There is indication that the job finding rate is slightly higher in the standard interface than in the alternative interface already in week 3, however this appears more pronounced in week 12, which deserves further attention.

We estimate a simple duration model where the duration is the number of weeks we observe an individual until she/he finds a job. Since we know when each individual became unemployed, we can calculate the total unemployment duration and use this as a dependent variable. This variable is censored for individuals who drop out of the study or who fail to find a job before the end of the study. We estimate a proportional Cox hazard model with the treatment dummy as independent variable, controlling for additional individual characteristics and group session dummies.

We report estimates for the entire sample and for the sub-samples conditioning on initial search type (narrow vs broad search). The results are presented in Table 16. We fail to find significant differences in the hazard rates across treatments. That is, we have no evidence that the job seekers exposed to the alternative interface were more or less likely to find a job (conditionally on still being present in week 4). Of course, these results are only suggestive given the small numbers.

66We tried to follow-up by calling them at least 3 times, though for a non-trivial share of the attrition we still do not observe perfectly whether the person found a job or just quit the study.
Table 16: Treatment effects on job finding rate

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>-0.23</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>Occupationally broad</td>
<td>0.77*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.38)</td>
<td></td>
</tr>
<tr>
<td>Treatment X Occupationally broad</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td></td>
</tr>
</tbody>
</table>

N = 256, 256

Proportional Cox Hazard model, with session group dummies, and controls for gender, age, age squared, ethnicity (white), cohabiting, university degree, number of children and financial concerns. We exclude observations censored at 3 weeks or less. Reported values are coefficients. * *p* < 0.10.

3.7 An Illustrative Model

In the empirical section we saw that our information intervention increases the occupational broadness and the number of applications mainly for long-term but narrow searchers, and increases their job interviews. Searchers that already search broadly without our intervention decrease their broadness, with insignificant effects on interviews. Here we briefly sketch a very stylized occupational job search model that is capable of rationalizing these findings and of organizing our thoughts about the driving forces. The goal is not to provide the richest framework, but to provide a simple setup in which the previous findings can be captured with intuitive arguments in a coherent framework.

A job seeker can search for jobs in different occupations, indexed $i \in \{1, \ldots, I\}$. For each occupation she decides on the level of search effort e_i. Returns to searching in occupation i are given by an increasing but concave function $f(e_i)$.\(^\text{67}\) The returns to

\(^{67}\)The decreasing returns capture that the number of job opportunities within an occupation may be limited. We are focusing on the individual worker’s search here, and do not additionally model the
getting a job are given by wage \(w \) and are the same across occupation, and \(b \) denotes unemployment benefits. The cost of search is given by an increasing and convex function \(c(\sum e_i) \).

The individual is not sure of her job prospects within the various occupations. If her job prospects are good she obtains a job in occupation \(i \) with arrival probability \(a_H f(e_i) \), otherwise she obtains a job with probability \(a_L f(e_i) \), where \(a_H > a_L \). The uncertainty can be about whether the skills of the job seeker (still) meet the requirements of the occupation. The individual knows that there is an objective probability \(q_i \) that someone with her background has good job prospects in occupation \(i \). She does not know this probability, but only knows its distribution \(Q_i \) with support \([q_i, \overline{q}_i] \). Without further information her belief of having good job prospects is simply the mean \(p_i = \int q_i dQ_i \).

Given this average prior and her effort, her expected chances of getting a job offer in occupation \(i \) are

\[
h(p_i, e_i) = f(e_i)(p_i a_H + (1 - p_i) a_L).
\]

Given a vector of beliefs \(p = (p_1, \ldots, p_I) \) and a vector of search effort in the various occupations \(e = (e_1, \ldots, e_I) \), the overall expected probability of being hired in some occupation is

\[
H(p, e) = 1 - \prod_i (1 - h(p_i, e_i))
\]

where the product gives the probability of not getting a job offer in any occupation.

Assume the unemployed job seeker lives for \(T \) periods, discounts the future with factor \(\delta \), and if she finds a job this is permanent. Obviously searching in an occupation changes the beliefs about it. An individual who has a prior \(p_i^t \) at the beginning of period \(t \) and spends effort \(e_i^t \) during the period but does not get a job will update her beliefs

\(^{68}\) In models with only one occupation it is immaterial whether \(c \) is convex or \(f \) concave or both. With multiple occupations, we chose a setup where the costs are based on total effort, which links the various occupations, while the return to search is occupation specific. In this setting, if returns were linear all search would be concentrated in only one market. If costs were linear, then changes in one market would not affect how much individuals search in other markets. So both play a separate role here.
about the chance of being a high type in occupation \(i\) by Bayes rule. Let \(B(p_t^i, e_t^i)\) denote this new belief. For interior beliefs we have

\[
p_t^{i+1} = B(p_t^i, e_t^i) = \begin{cases}
 p_t^i & \text{if } e_t^i = 0 \\
 < p_t^i & \text{if } e_t^i > 0,
\end{cases}
\]

(3.2)
since there is no learning without effort, and the individual becomes more pessimistic if she does put effort but does not get a job. Let \(B(p, e) = (B(p_1, e_1), ..., B(p_I, e_I))\) denote the vector of updates.

The state variable for an individual is the time period \(t\) because of her finite lifetime, and her belief vector at the beginning of this period \(p (= p^t)\). Given this, she chooses her search effort vector \(e (= e^t)\) to maximize her return. She obtains for sure her outside option of doing nothing in the current period: her current unemployment benefit payment and the discounted value of future search. Additionally, if she finds a job, she gets the lifetime value of wages \((W_t)\) to the extent that they exceed her outside option. Finally, she has to pay the search effort costs. So the return to search is given by

\[
R_t(p) = \max_e \left(b + \delta R_{t+1}(B(p, e)) + H(p, e) \left(W_t - (b + \delta R_{t+1}(B(p, e))) \right) - c(\sum_i e_i) \right)
\]

(3.3)

The model implies that an individual may search in multiple occupations due to decreasing returns in each one. The distribution of her effort across occupations depends on the set of priors \(p_i, i \in 1, ..., I\). For our purposes a two-period model suffices (for which \(R_3 = 0, W_2 = w\) and \(W_1 = w(1 + \delta)\)).\(^{70}\) The first period captures the newly unemployed, and the second period the longer-term unemployed.

The unanticipated introduction of the alternative interface provides an additional source of information on occupations. It displays a list of occupations suitable for someone with her background. In general, this implies that for these occupations the individual may update her beliefs positively, while for those not on the list she may update her beliefs downwards. To formalize this mechanism, assume that an occupation is only featured on the list if the objective probability \(q_i\) of having good job

\(^{69}\)The exact formula in this case is \(B(p_t^i, e_t^i) = p_t^i[1 - f(e_t^i)a_H]/[(1 - p_t^i)f(e_t^i)a_H - (1 - p_t^i)f(e_t^i)a_L]\). Note also that beliefs do go up if the person finds a job, but under the assumption that the job is permanent this does no longer matter.

\(^{70}\)Infinitely lived agents would correspond to a specification with \(W_t = w/(1 - \delta)\) and \(R_t(p) = R(p)\).
3.7. An Illustrative Model

prospects exceeds a threshold \(\hat{q} \). In the first period of unemployment this means that for any occupation on the list the individual updates her belief upward to the average of \(q_i \) conditional on being larger than \(\hat{q} \) (i.e., \(p_1^i = \int_{\hat{q}} q_i dQ_i / \int dQ_i \)). For occupations that are not on the list her beliefs decline to the average of \(q_i \) conditional on \(q_i \) being below \(\hat{q} \) (i.e., \(p_1^i = \int_{\hat{q}} q_i dQ_i / \int dQ_i \)). Obviously these updates also apply if the alternative interface is introduced at a later period of unemployment as long as the individual has not yet actively searched in this occupation. If the individual has already exerted search effort the updating is more complicated but obviously being on the list continues to be a positive signal. The alternative interface induces an update in belief \(p_t \) in the period that it is introduced, but given this update maximization problem (3.3) continues to characterize optimal behavior.

In order to gain some insights in how this affects the occupational broadness of search, consider for illustration two types of occupations. Occupations \(i \in 1, \ldots, I_1 \) are the “core” ones where the job seeker is more confident and holds first period prior \(Q_i = Q_H \) leading to average belief \(p_i = p_H \), while she is less confident about the remaining “non-core” occupations to which she assigns prior \(Q_j = Q_L \) with average \(p_j = p_L \) such that \(p_L \leq p_H \). Assume further that core occupations enter the list in the alternative interface for sure (i.e., \(q_H > \hat{q} \)), which means that the alternative interface provides no information content for them. For non-core occupations we assume that there is information content in the alternative interface, but not too much. For ease of notation, denote by \(e_H \) the search effort in the first period in core occupations, and by \(e_L \) the same for non-core occupations.

The following results are immediately implied by problem (3.3): given the search period, the number of core occupations and the current belief about them, there exists a level \(\bar{p} \) such that the individual puts zero search effort on the non-primary occupations iff \(p_i' \leq \bar{p} \) for each non-core occupation \(i \). This is obvious in the limit when the beliefs about the non-core occupations tend to zero. The level of \(\bar{p} \) is increasing in the belief about the core occupations (if core occupations are more attractive search is expanded there, which drives up the marginal cost of any further search in non-core occupations).
and in the number of core occupations (again core occupations as a whole attract more search effort).

We depict our notion of an individual who is recently unemployed and narrow in Figure 22 (a). The person is narrow because her beliefs in her core occupations (p_H) are high enough that she does not want to search in the secondary occupations ($\bar{p} > p_L$). This individual concentrates so much effort onto the primary occupations that marginal effort costs are large, and therefore she does not want to explore the less likely occupations. In fact, the distance in employment prospects is so large that small changes in the prior p_L induced by the alternative interface - indicated by the thick arrows in the figure - do not move them above the threshold \bar{p}. So there would be no difference in search behavior with or without the alternative interface.

In part (b) we depict our notion of the same individual after a period of unemployment. Her prior at the beginning of the second period is derived by updating from the previous one. After unsuccessful search in the core occupations it has fallen there, as indicated by the lower priors for the first three occupations. Since she did not search in non-core occupations, her prior about them remains unchanged. This individual is still narrow if p_L remains below the new \bar{p}, but now these two are closer together. Now information that changes the beliefs moves some of the non-core occupations above the threshold \bar{p}, which makes it attractive to search there and the individual becomes broader. This necessarily requires more search effort in total. This raises the search costs, which the individual is only willing to do if job prospects increase. So this rationalizes why longer-unemployed individuals become broader and apply more and see interviews increase, while at low unemployment durations there is little effect.

Figures 23 (a) and (b) depict individuals who are already broad in the absence of an information intervention, since the threshold $\bar{p} < p_L$. This could be because an individual has rather equal priors already early in unemployment, as shown in panel (a). Alternatively it could be a person whose beliefs fell over the course of the unemployment spell to a more even level, as shown in (b) (possibly from an initially uneven profile such as in Figure 22 (a)). In both cases, the person already searches in all occupations, but additional negative information (i.e., occupations that are not included in the list that is recommended in the alternative interface) might move the prior of those occupations.

73Note that other factors such as regulations on job search activities imposed by the Jobcentre may also affect broadness of search. Though the mechanism would be different, the resulting effect on the distribution of search effort across occupations would be similar.
3.7. An Illustrative Model

so low that the person stops searching there and becomes narrow. Effects on search effort and job prospects are ambiguous: search effort can now be concentrated more effectively on promising occupations which raises effort and job prospects; alternatively the negative information on some occupations can translate simply into reduced search effort which is privately beneficial but reduces job prospects. Depending on parameters, either can dominate. This can rationalize why otherwise broad searchers become narrower in our treatment group, without significant effects on job prospects.

Thus, the model is able to replicate differential effects by broadness and unemployment duration. In this model, as in all models of classical decision theory, more information can only improve the expected utility for the individual. This is true even for reduced search by otherwise broad individuals. But socially, when taking into account unemployment benefit payments, it can lead to costs if some of the broad searchers have parameters that lead them to cut back on search effort in non-core occupations in a way such that their job prospects decline. It makes clear that targeting our intervention might be appropriate to prevent such outcomes. More studies might be necessary to confirm both the empirical findings and our rationalization here.

Figure 22: Model Illustration: narrow search
3. Online jobsearch

3.8 Conclusion

We provided an information intervention in the labor market by redesigning the search interface for unemployed job seekers. Compared to a “standard” interface where job seekers themselves have to specify the occupations or keywords they want to look for, the “alternative” interface provides suggestions for occupations based on where other people find jobs and which occupations require similar skills. It provides this information in an easily accessible way by showing two lists, and provides all associated vacancies at the click of a button. While the initial costs of setting up such recommendations might be non-trivial, the intervention shares the concept of a "nudge" in the sense that the marginal cost of providing the intervention to more individuals is essentially costless and individuals are free to opt out and continue with the standard interface.\footnote{It is essentially costless to provide our information to a larger set of existing participants on a job search site such as Universal Jobmatch. The acquisition of new participants is by no means costless and prevents us to roll this out in a larger scale ourselves. See also Footnote 23.} A major aim of the intervention was to keep things simple for participants, so little cognitive effort is required to learn on the alternative interface.

We find that the alternative interface significantly increases the overall occupational broadness of job search. In particular, it makes initially narrow searchers consider
a broader set of options and apply more, but decreases occupational broadness for initially broad searchers, even though overall the former effect dominates. Overall we find a positive effect on job interviews. This effect is driven by participants with longer-then-median unemployment duration in our study. This can be rationalized if those who just got unemployed concentrate their efforts on those occupations they have most hopes in and are not interested in investing time into new suggestions. If this does not lead to success, they become more open to new ideas, but might remain narrow for longer in the absence of new information.

Our findings indicate that targeted job search assistance can be effective, in a cost-efficient way. Yet it should be obvious that additional larger-scale roll-out of such assistance would be required to document the full effects. The sample size in this study is restrictive, so is the absence of access to administrative data to follow individuals longer-term. This prohibits conclusive findings on unemployment duration or the length and compensation of jobs they might find. The study also does not allow the assessment of general equilibrium effects that arise if all unemployed obtain more information.

Nevertheless, the paper documents the positive effects that can be obtained by targeted interventions on information. As a first study on job search design on the web, it offers a new route how to improve market outcomes in decentralized environments and hopefully opens the door to more investigations in this area.

3.9 Appendix

3.9.1 Extended results

In Table 17 we present the effect of the intervention on listed vacancies, separated by initial geographical broadness. An individual is defined to be geographically broad if his share of searches that is outside the Edinburgh area is above the median in the first 3 weeks of the study. The overall effect is presented in the first row (the same as in Table 8), which shows that the intervention increased occupational broadness. When splitting the effect by initial geographical broadness (rows 2 and 3), we find that the positive effect is only prevalent among those that are geographically broad. However, when we estimate four effects for the combinations of initial occupational and geographical broadness (rows 4)-(7), we find that occupational broadness is the main determinant
of the effect. Irrespective of geographical broadness, those that were occupationally narrow become broader, while those that were occupationally broad become narrower. In column (2) we find a similar pattern for the effect on geographical broadness.

In Table 18 we present the effect of the intervention on applications, splitting the effect by initial geographical broadness. Column (1) and (2) show that this provides no new insights: the effect is not different for geographically narrow and broad participants. The same holds for the effect on the number of applications (columns (3)-(5)), which does not appear to depend on initial geographical broadness.

In Table 19 we present the effect of the intervention on interviews, again splitting the effect by initial geographical broadness. Rows (2) and (3) show that the positive effect on interviews is most pronounced among those that were initially geographically broad, though the coefficient is positive for both groups. In rows (4)-(7) we find that with the exception of those that were occupationally broad and geographically narrow, all groups have positive effects, though due to larger standard errors not all are significant.
Table 17: Effect of intervention on listed vacancies - extensions

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Geographic</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.11***</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Treatment	0.23***	-0.06***	22.51
	(0.05)	(0.02)	(37.02)
X geographically broad	-0.02	0.05**	-26.15
	(0.05)	(0.02)	(38.14)

Treatment	-0.14**	-0.02	70.23
	(0.06)	(0.03)	(51.44)
X occ. broad and geo. broad	-0.18***	0.07***	-117.31**
	(0.06)	(0.02)	(46.53)
X occ. broad and geo. narrow	0.49***	-0.09***	-8.84
	(0.05)	(0.02)	(44.04)
X occ. narrow and geo. broad	0.21***	0.02	98.61*
	(0.06)	(0.03)	(51.60)

<table>
<thead>
<tr>
<th>Model</th>
<th>Linear</th>
<th>Linear</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation weeks</td>
<td>1-12</td>
<td>1-12</td>
<td>1-12</td>
</tr>
<tr>
<td>N</td>
<td>2392</td>
<td>2399</td>
<td>2401</td>
</tr>
</tbody>
</table>

Each column represents three separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Standard errors in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 18: Effect of intervention on applications - extensions

<table>
<thead>
<tr>
<th>Broadness of applications</th>
<th>Number of applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Occupation</td>
<td>(2) Geographic</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>Treatment X geo. broad</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
</tr>
<tr>
<td>X geo. narrow</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
</tr>
<tr>
<td>Treatment X occ. broad and geo. broad</td>
<td>-0.29</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
</tr>
<tr>
<td>X occ. broad and geo. narrow</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
</tr>
<tr>
<td>X occ. narrow and geo. broad</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
</tr>
<tr>
<td>X occ. narrow and geo. narrow</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
</tr>
</tbody>
</table>

Model | Linear | Linear | Neg. binomial | Neg. binomial | Neg. binomial |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation weeks</td>
<td>1-11</td>
<td>1-11</td>
<td>1-11</td>
<td>1-11</td>
<td>1-11</td>
</tr>
<tr>
<td>N</td>
<td>939</td>
<td>1177</td>
<td>2251</td>
<td>2016</td>
<td>1984</td>
</tr>
</tbody>
</table>

Each column represents three separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (3)-(5) are negative binomial model regressions where we report \[\exp(\text{coefficient}) - 1 \], which is the percentage effect. Standard errors in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \)
Table 19: Effect of intervention on interviews - extensions

<table>
<thead>
<tr>
<th></th>
<th>Number of interviews</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>Survey</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.56</td>
<td>0.25</td>
<td>0.29*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.21)</td>
<td>(0.19)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.65</td>
<td>0.49**</td>
<td>0.47**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(0.29)</td>
<td>(0.27)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.52</td>
<td>0.05</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.20)</td>
<td>(0.20)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.02</td>
<td>1.20***</td>
<td>0.93**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.57)</td>
<td>(0.66)</td>
<td>(0.53)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.75**</td>
<td>-0.38*</td>
<td>-0.44**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1.14</td>
<td>0.26</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(0.28)</td>
<td>(0.27)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1.59**</td>
<td>0.53*</td>
<td>0.74***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.03)</td>
<td>(0.37)</td>
<td>(0.37)</td>
<td></td>
</tr>
</tbody>
</table>

Model: Poisson
Observation weeks: 1-10
N: 2098

Each column represents three separate regressions. All regressions include group fixed effects, week fixed effects, individual random effects and individual characteristics. Columns (1)-(3) are Poisson regression models where we report [exp(coefficient) − 1], which is the percentage effect. Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
Table 20: Effect of intervention - all coefficients

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of listed</td>
<td>Total number of applications</td>
<td>Total number of interviews</td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.68</td>
<td>-0.03</td>
<td>0.29*</td>
</tr>
<tr>
<td></td>
<td>(30.98)</td>
<td>(0.06)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Age</td>
<td>9.04</td>
<td>0.12***</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(16.47)</td>
<td>(0.04)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Age^2</td>
<td>-17.42</td>
<td>-0.12***</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(21.03)</td>
<td>(0.04)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Gender</td>
<td>82.53</td>
<td>-0.04</td>
<td>0.32*</td>
</tr>
<tr>
<td></td>
<td>(54.83)</td>
<td>(0.10)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Weeks unemployed</td>
<td>-0.45</td>
<td>0.00</td>
<td>-0.01**</td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Weeks unemployed^2</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.00**</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Financial problem</td>
<td>89.41*</td>
<td>-0.08</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>(53.29)</td>
<td>(0.10)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Short expected duration</td>
<td>21.20</td>
<td>-0.025***</td>
<td>0.46**</td>
</tr>
<tr>
<td></td>
<td>(58.19)</td>
<td>(0.08)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Couple</td>
<td>-56.19</td>
<td>-0.22*</td>
<td>0.48**</td>
</tr>
<tr>
<td></td>
<td>(64.10)</td>
<td>(0.10)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Children</td>
<td>-95.15</td>
<td>-0.23**</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(68.10)</td>
<td>(0.10)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>High educated</td>
<td>-34.47</td>
<td>0.18</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>(57.18)</td>
<td>(0.13)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>White</td>
<td>53.99</td>
<td>-0.12</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(67.63)</td>
<td>(0.11)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Constant</td>
<td>441.85</td>
<td>-0.27</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>(341.24)</td>
<td>(0.49)</td>
<td>(0.72)</td>
</tr>
</tbody>
</table>

Model: Linear, Neg. binomial, Poisson
Observation weeks: 1-12, 1-11, 1-10
N: 2401, 1982, 1741

Each column represents one regression. All regressions include group f.e., week f.e. and ind. random effects. Columns (2) and (3) are Poisson regression models where we report \([\exp(\text{coefficient}) - 1] \). Standard errors in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \)
Estimating equilibrium effects of job search assistance

4.1 Introduction

In this chapter we estimate the labor market effects of a Danish activation program for unemployed workers taking into account general equilibrium effects. The program starts quickly after entering unemployment, and the goal is to provide intensive guidance towards finding work. To empirically evaluate the effectiveness of the activation program, a randomized experiment was setup in two Danish counties. Graversen and van Ours (2008), Rosholm (2008) and Vikström et al. (2013) show that participants in the program found work significantly faster than nonparticipants, and the difference is substantial. To investigate the presence general equilibrium effects, we compare job finding rates of nonparticipants in the experiment counties with unemployed workers in comparison counties (using the same administrative data). Since both experiment counties were not selected randomly, we use pre-experiment data from all counties to control in a difference-in-difference setting for existing differences between counties. This allows us to estimate treatment effects on the non-treated workers. We find that the job finding rate of nonparticipants is lower during the experiment.

75 This chapter is based on Gautier et al. (2012)
76 The program includes job search assistance and meetings with caseworkers during which, for example, job search effort is monitored and vacancies are offered. If this was not successful, the caseworker has some discretion in choosing an appropriate follow-up program.
4. Estimating equilibrium effects

We also focus on how the experiment affects vacancy supply, wages and working hours. We find some evidence that the supply of vacancies increased faster in the experiment regions but we do not find any effect on the post-unemployment job quality. Next, we develop an equilibrium search model that incorporates the activation program, and allows for both positive or negative congestion effects (it takes more time for non-treated workers in the treatment region to find work), adapting vacancy supply and no effects on job characteristics. We use the results from the empirical analyses to estimate the parameters of the equilibrium search model using indirect inference. The estimated equilibrium search model allows us to study the effects of a large-scale role out of the activation program and compute the effects on labor market behavior and outcomes. Our main finding is that in case of a large-scale role out welfare would decrease. This finding is robust to different specifications in terms of wage mechanism and matching function. The model that fits the data best has a matching function that allows for strong congestion effects (if the average search intensity increases, the aggregate matching rate can even decrease) and has Nash wage bargaining. In this model, aggregate unemployment would increase slightly (half a percent point) in case of a large-scale roll out.

A large number of papers stresses the importance of dealing with selective participation when evaluating the effectiveness of employment programs for disadvantaged workers. In particular, LaLonde (1986) showed that the results from a randomized experiment do not concur with a series of non-experimental estimates. Since then, the use of randomized experiments has become increasingly popular when evaluating active labor market programs, see for example Johnson and Klepinger (1994), Meyer (1995), Dolton and O’Neill (1996), Gorter and Kalb (1996), Ashenfelter et al. (2005b), Card and Hyslop (2005), Van den Berg and Van der Klaauw (2006), and Graversen and van Ours (2008). The evaluation of active labor market programs is typically based on comparing the outcomes of participants with nonparticipants. This is not only the case in experimental evaluations, but also in non-experimental evaluations (after correcting for selection). It implies that equilibrium effects are assumed to be absent (e.g. DiNardo and Lee (2011)).

In case of active labor market programs, equilibrium effects are likely to be important (e.g. Abbring and Heckman (2007)). Moreover, the goal of an empirical evaluation is to collect information that helps deciding whether or not a program should be implemented on a large scale. If there are equilibrium effects, changing the treatment
intensity affects the labor market outcomes of both participants and nonparticipants. The results from the empirical evaluation in which outcomes of participants and nonparticipants are compared are then only relevant at the observed treatment intensity. Cahuc and Le Barbanchon (2010) show within a theoretical equilibrium search model that neglecting equilibrium effects can lead to wrong conclusions regarding the effectiveness of the program. Albrecht et al. (2009), Blundell et al. (2004) and Ferracci et al. (2014) show empirically that spillover effects of various labor market policies can be sizeable and Lise et al. (2004) find that the conclusion from a cost-benefit evaluation is reversed when taking account of equilibrium effects. Crépon et al. (2013) observe different treatment intensities for a sample of long-term unemployed workers in France and Lalive et al. (2013) report quasi-experimental evidence of spillover effects of an extended benefits program for Austria.

This chapter not only contributes to the empirical treatment evaluation literature, but also to the macro (search) literature. We show how data from a randomized experiment can be used to identify congestion effects in the matching process, and how vacancy supply responds to an increase in search intensity. We exploit that, due to the experimental design, the increase in search intensity of participants in the activation program is truly exogenous. This makes the identification of the structural parameters more convincing than in typical calibration exercises. Our approach of combining data from a randomized experiment with a structural model relates to Attanasio et al. (2012) and Todd and Wolpin (2006), who used the exogenous variation from randomized experiments to estimate structural models for evaluating Progresa.

The remainder of the chapter is organized as follows. Section 4.2 discusses the background of the Danish randomized experiment, as well as literature on treatment externalities. Section 4.3 provides a description of the data and section 4.4 presents the empirical analyses and the estimation results. In section 4.5 we develop an equilibrium search model including the activation program. We estimate this model in section 4.6 and use it for policy simulations. Section 4.7 concludes.

4.2 Background

4.2.1 The Danish experiment

In this subsection, we provide some details about the activation program for unemployed workers considered in this chapter. We also discuss the randomized experiment
used to evaluate the effectiveness of the program and review earlier studies on this experiment. More details on the institutional background can be found in Graversen and van Ours (2008) and Rosholm (2008).

The goal of the activation program is to provide intensive guidance towards finding work. The relevant population consists of newly unemployed workers. After approximately 1.5 weeks of unemployment, those selected for the program receive a letter explaining the content of the program. The program consists of three parts. First, after five to six weeks of unemployment, workers have to participate in a two-week job search assistance program. Next, the unemployed workers meet a caseworker either weekly or biweekly. During these meetings a job search plan is developed, search effort is monitored and vacancies are provided. Finally, if after four months the worker still has not find work, a new program starts for at least three months. At this stage the caseworker has some discretion in choosing the appropriate program, which can either be more job search assistance, a temporary subsidized job in either the private sector or the public sector, classroom training, or vocational training. The total costs of the program are 2122 DK (about 285 euro, 355 USD), on average, per entitled worker.

To evaluate the effectiveness of the activation policy, a randomized experiment was conducted in two Danish counties, Storstrøm and South Jutland. These counties are shown in Figure 24. Both counties are characterized by a small public sector relative to other Danish counties. The key economic sectors are industry, agriculture, and to some extent transportation. All individuals who started collecting unemployment benefits between November 2005 and February 2006 participated in the experiment. Individuals born on the first to the 15th of the month participated in the activation program, while individuals born on the 16th to the 31st did not receive this treatment. The control group received the usual assistance, consisting of meetings with a caseworker every three months and more intensive assistance after one year of unemployment.

During the experiment Denmark had about 5.5 million inhabitants and consisted of 15 counties. Storstrøm and South Jutland each had about 250,000 inhabitants. Both counties volunteered to run the experiment. At the time of the experiment the unemployment rate in Denmark was about 4.2%. Denmark provides relatively high unemployment benefits. The average UI benefits level is about 14,800 DKK per month (1987 EUR) and the average replacement rate is between 65 and 70%. It is often argued that the success of Danish active labor market programs explains the low unemployment rate (e.g. Rosholm (2008)). The median unemployment duration at the time of the experiment was about 13 weeks.
4.2. Background

Figure 24: Location of the experiment counties: South Jutland (left) and Storstrøm (right).

Graversen and van Ours (2008) use duration models to estimate the effect of the activation program on exit rates to work. They find large effects, due to the program the re-employment rate increases about 30%, and this effect is constant across age and gender. Rosholm (2008) finds similar results when estimating the effects of the activation program separately for both counties. Graversen and van Ours (2008), Rosholm (2008) and Vikström et al. (2013) all investigate which elements of the activation program are most effective. Graversen and van Ours (2008) find that the threat effect and job search assistance are most effective. A similar conclusion is drawn by Vikström et al. (2013), who construct non-parametric bounds. Also Rosholm (2008) finds substantial threat effects. Additional evidence for threat effects is provided by Graversen and Van Ours (2011). They show that the effect of the activation program is largest for individuals with the longest travel time to the program location. The finding that activation programs can have substantial threat effects is in agreement with Black et al. (2003).

All studies on the effect of the Danish activation program ignore possible spillover effects between participants and nonparticipants. Graversen and van Ours (2008) argue that spillover effects should be small because the fraction of the participants in the
4. Estimating equilibrium effects

total population of unemployed workers never exceeds 8%. If this fraction is indeed small, substantial spillover effects are unlikely. However, we estimate that within an experiment county the fraction of participants in the stock of unemployed workers is much larger towards the end of the experiment period.

Approximately 5% of all unemployed workers find work each week, implying that if the labor market is in steady state, after four months about 25% of the stock of unemployed workers are participants. If we take into account that the outflow of long-term unemployed workers is considerably lower than the outflow of short-term unemployed workers (which implies that competition for jobs occurs mostly between short-term unemployed workers), the treatment intensity is about 30% of the stock of unemployed workers.

4.2.2 Treatment externalities

In this subsection we briefly illustrate the definition of treatment effects in the presence of possible treatment externalities. We discuss some recent empirical literature dealing with treatment externalities. We mainly focus on labor market applications, but also address empirical studies in other fields.

Within a population of \(N \) individuals, the treatment effect for individual \(i \) equals

\[
\Delta_i(D_1, \ldots, D_N) \equiv E[Y^*_1|D_1, \ldots, D_N] - E[Y^*_0|D_1, \ldots, D_N] \tag{4.1}
\]

Where \(Y^*_0 \) and \(Y^*_1 \) denote the potential outcomes without treatment and with treatment, respectively. \(D_i \) equals one if individual \(i \) receives treatment and zero otherwise. A standard assumption in the treatment evaluation literature is that each individual’s behavior and outcomes do not directly affect the behavior of other individuals (e.g. DiNardo and Lee (2011)). This assumption is formalized in the stable unit treatment value assumption (SUTVA), which states that the potential outcomes of each individual are independent of the treatment status of other individuals in the population (Cox (1958), Rubin (1978)),

\[
(Y^*_1, Y^*_0) \perp D_j \quad \forall j \neq i
\]

If SUTVA holds, then the treatment effect for individual \(i \) equals \(\Delta_i = E[Y^*_1] - E[Y^*_0] \).

When data from a randomized experiment are available such as from the Danish experiment discussed in the previous subsection, the difference-in-means estimator provides an estimate for the average treatment effect in the population \(\Delta = \frac{1}{N} \sum^N_i \Delta_i \).
4.2. Background

However, if SUTVA is violated, the results from a randomized experiment are of limited policy relevance. This is, for example, the case when the ultimate goal is a large-scale role out of a program (e.g. DiNardo and Lee (2011), Heckman and Vytlacil (2005)). The treatment effect for individual i in equation (4.1) depends on which other individuals receive treatment. If all individuals live in the same area, then only the fraction of the population in the same area receiving treatment might be relevant. The latter is defined by $\tau = \frac{1}{N} \sum_{i=1}^{N} D_i$. In the case of the Danish activation program, the area is taken as the county which we assume to act as local labor market. See for a justification of this assumption Van den Berg and Van Vuuren (2010), who discuss local labor markets in Denmark. Also Deding and Filges (2003) report a low geographical mobility in Denmark. When the ultimate goal is the large-scale role out of a treatment, the policy relevant treatment effect is

$$\Delta = \frac{1}{N} \sum_{i=1}^{N} E[Y^*_i|\tau = 1] - E[Y^*_i|\tau = 0]$$ (4.2)

Identification of this treatment effect requires observing similar local labor markets in which sometimes all unemployed workers participate in the program and sometimes no individuals participate. A randomized experiment within a single local labor market does not provide the required variation in the treatment intensity τ.

Previous literature on the Danish activation program shows that participants have higher re-employment rates than nonparticipants. Because participants and nonparticipants are living in the same local labor market, SUTVA might be violated. Activating some unemployed job seekers can have various spillover effects to other unemployed job seekers. First, if participants search more intensively, this can reduce the job finding rates of nonparticipants competing for the same jobs. Second, the activation program may affect reservation wages of the participants, and thereby wages. Third, when unemployed workers devote more effort to job search, a specific vacancy is more likely to be filled. Firms may respond to this by opening more vacancies. These equilibrium effects do not only apply to the nonparticipants but also to other participants in the program. In section 4.5 we provide a more formal discussion on possible equilibrium effects due to the activation program.

As discussed in the previous subsection, the randomized experiment to evaluate the activation program was conducted in two Danish counties. The experiment provides an estimate for $\Delta(\hat{\tau})$, where $\hat{\tau}$ is the observed fraction of unemployed job seekers...
Estimating equilibrium effects

participating in the activation program. In addition, we compare the outcomes of the nonparticipants to outcomes of unemployed workers in other counties. This should provide an estimate for \(E[Y^*_{u_0} | \tau = \hat{\tau}] - E[Y^*_{u_0} | \tau = 0] \), i.e. the treatment effect on the non-treated workers. To deal with structural differences between counties, we use outcomes in all counties prior to the experiment and make a common trend assumption. In section 4.4 we provide more details about the empirical analyses. Still the empirical approach only identifies treatment effects and equilibrium effects at a treatment intensity \(\hat{\tau} \), while for a large-scale role out of the program one should focus on \(\tau = 1 \). Therefore, in section 4.5 we develop an equilibrium search model, which we estimate using the estimated treatment effects. Using this model we investigate the case of providing treatment to all unemployed workers \(\tau = 1 \) and get an estimate for the most policy relevant treatment effect \(\Delta \) defined in equation (4.2).

Treatment externalities have recently received increasing attention in the empirical literature. Blundell et al. (2004) evaluate the impact of an active labor market program (consisting of job search assistance and wage subsidies) targeted at young unemployed. Identification comes from differences in timing of the implementation between regions, as well as from age requirements. The empirical results are inconclusive with regard to equilibrium effects. However, after using a more structural approach, Blundell et al. (2003) show that treatment effects can change sign when equilibrium effects and displacement effects are taken into account. Also Ferracci et al. (2014) find strong evidence for the presence of equilibrium effects of a French training program for unemployed workers. In their empirical analysis, they follow a two-step approach. In a first step, they estimate a treatment effect within each local labor market. In a second step, the estimated treatment effects are related to the fraction of treated workers in the local labor market. Because of the non-experimental nature of their data, in both steps they rely on the conditional independence assumption to identify treatment effects.

A different approach is taken by Lise et al. (2004), who specify a matching model to quantify equilibrium effects of a wage subsidy program. The model is first tested for ‘partial equilibrium implications’ using experimental data. I.e. it is calibrated to the control group, but it can predict the treatment group outcomes well. The results show that equilibrium effects are substantial and may even reverse the cost-benefit conclusion made on the basis of a partial equilibrium analysis.

Crépon et al. (2013) use data from a randomized experiment to identify equilibrium effects of a counselling program. The experiment took place in various French regions.
and included two levels of randomization. First, for each region the treatment intensity was randomly determined, and second, within each region unemployed workers were randomly assigned to the program according to the local treatment intensity. The target population are high-educated unemployed workers below age 30 who have been unemployed for at least six months. They find a positive effect of the treatment on the treated workers and a small negative (and statistically insignificant) effect on the non-treated workers. The small spillover effects could be due to the fact that the treated workers are only a very small fraction of the total stock of unemployed workers. In particular, because for individuals assigned to the program, participation is voluntary, and observed refusal rates are high.

Also outside the evaluation of active labor market programs, there is an interest in estimating treatment externalities. Heckman et al. (1998) find that the effects of the size of the tuition fee on college enrollment are substantially smaller if general equilibrium effects are taken into account. Miguel and Kremer (2004) find spillover effects of de-worming drugs on schools in Kenya. They find that simple estimates of the treatment effect underestimate the real effect, since there are large positive spillovers to the control group. Duflo et al. (2011) study the effect of tracking on schooling outcomes, allowing for several sources of externalities. Moretti (2004) shows that equilibrium effects of changes in the supply of educated workers can be substantial.

4.3 Data

For the empirical analysis we use two data sets. The first is an administrative data set describing unemployment spells, earnings and hours worked. The second is a data set including the stock of open vacancies. Below we discuss both data sets in detail.

The randomized experiment involved all individuals becoming unemployed between November 2005 and February 2006 in Storstrøm and South Jutland. Our data are from the National Labor Market Board and include all 41,801 individuals who applied for regular benefits in the experiment period in all Danish counties.77 We removed 1398 individuals from this sample for which the county of residence was inconsistent. Of the remaining 40,403 observation, 3751 individuals were living in either Storstrøm or South Jutland and participated in the experiment. Of the participants in the experiment, 1814

77We exclude Copenhagen, because it differs a lot from the rest of Denmark in terms of labor market characteristics.
individuals were assigned to the treatment group and 1937 to the control group. The data include also individuals who started collecting benefits one and two years before the experiment period, so between November 2004 and February 2005 and between November 2003 and February 2004. We refer to the 49,063 individuals who entered unemployment between November 2004 and February 2005 as the pre-experiment sample.

For each worker we observe the week of starting collecting benefits and the duration of collecting benefits measured in weeks. Workers are followed for at most two years after becoming unemployed. All individuals are entitled to at least four years of collecting benefits. Combining the data on unemployment durations with data on earnings shows that almost all observed exits in the first two years are to employment. In Figure 25 we show for individuals who started collecting benefits in the pre-experiment periods (November 2003 until February 2004 and November 2004 until February 2005) the Kaplan-Meier estimates for the survivor functions. We distinguish between the experiment counties (Storstrom and South Jutland) and all other counties to which we refer as comparison counties. Because Storstrom and South Jutland volunteered to run the experiment, it is interesting to compare these counties to the other Danish counties. To correct for differences in observable characteristics, each survivor is weighted based on the distribution of gender, unemployment history and ethnicity in the comparison counties in the 2005-2006 period.

Panel (a) of Figure 25 shows that in the 2003-2004 period, the experiment counties were very similar to the comparison counties. The median unemployment duration was

![Figure 25](image_url)
18 weeks in the experiment counties and 17 weeks in the comparison counties. After one year, in both groups, 78% of the unemployed has left unemployment. A logrank test cannot reject the null hypothesis that the distributions of unemployment durations in the experiment counties and in the comparison counties are the same, the \(p \)-value for this test is 0.25. Also in the 2004-2005 period (panel (b) of Figure 25) the survival functions of the experiment counties and comparison counties are very similar. For both groups, the median unemployment is 15 weeks. Again, a log-rank test can not reject that the unemployment distributions of the two groups are the same in 2004-2005 (the \(p \)-value is 0.24).

Next, we consider individuals who entered unemployment in the experiment period (November 2005 until February 2006). Figure 26 shows the Kaplan-Meier estimates for the treatment and control group in the experiment counties and for individuals living in the comparison counties. It is clear that individuals exposed to the activation program have a higher exit rate from unemployment than individuals assigned to the control group in the experiment counties.

The Kaplan-Meier estimates show that after 12 weeks about 50% of the treated individuals have left unemployment, while this is 16 weeks for individuals in the control group and 14 weeks for individuals living in the comparison counties. Within the
treatment group 91% of the individuals leave unemployment within a year, compared to 87% in the control group and 86% in the comparison counties. A logrank test rejects that the distributions of unemployment durations are the same in the treatment and control group (p-value less than 0.01). But such a test cannot reject that the distributions of unemployment durations are the same in the control group and the comparison counties, the p-value equals 0.47.

The dataset contains for each individual the annual earnings and annual hours worked from 2003 until 2010. Combining this information with the unemployment spells, we can compute weekly earnings for the period after the unemployment spell. Table 21 shows summary statistics for the experiment period and the pre-experiment year, of individuals in each of the five groups. On average, those individuals who are observed to have found work after unemployment, work about 35 hours per week and there are no substantial differences between the experiment countries and the comparison counties. The weekly earnings are higher in the experiment period than in the pre-experiment period and higher in the comparison counties than the experiment counties. Participants in the activation program work slightly more hours and have somewhat higher earnings than individuals in the control group.

The data include a number of individual characteristics. Age and immigrant status distributions are roughly similar across groups. In the experiment period there was a higher fraction of males among those becoming unemployed in the experiment counties than in the comparison counties. In the comparison counties in the experiment period the unemployed workers had a slightly longer history of benefits receipt than in the pre-experiment period. Earnings and hours worked preceding the unemployment spell are roughly similar across groups and also in education categories there are only minor differences.

The lower panel of the table shows some county level statistics. In both the experiment counties and the comparison counties the local unemployment rate declined and GDP per capita increased between the pre-experiment and the experiment period. The labor force participation rate remained virtually unchanged. One can interpret this as evidence that the experiment counties and the comparison counties were subject to similar calendar time trends. However, in both time periods the labor market conditions were, on average, more favorable in the comparison counties than in the experiment counties, i.e. lower unemployment rate, higher labor force participation and higher GDP per capita.
Table 21: Summary statistics.

<table>
<thead>
<tr>
<th></th>
<th>Experiment counties</th>
<th></th>
<th>Comparison counties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours worked (per week)</td>
<td>35.4</td>
<td>36.6</td>
<td>34.9</td>
<td>35.0</td>
</tr>
<tr>
<td>Earnings (DK per week)</td>
<td>5950</td>
<td>6271</td>
<td>6160</td>
<td>6256</td>
</tr>
<tr>
<td>Male (%)</td>
<td>54.6</td>
<td>60.8</td>
<td>59.2</td>
<td>53.0</td>
</tr>
<tr>
<td>Age</td>
<td>42.0</td>
<td>42.4</td>
<td>42.3</td>
<td>41.3</td>
</tr>
<tr>
<td>Native (%)</td>
<td>94.8</td>
<td>93.2</td>
<td>94.4</td>
<td>93.7</td>
</tr>
<tr>
<td>West. Immigrant (%)</td>
<td>3.2</td>
<td>4.0</td>
<td>3.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Non-West. Immigrant (%)</td>
<td>2.0</td>
<td>2.8</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Benefits previous year (in weeks)</td>
<td>10.5</td>
<td>9.8</td>
<td>9.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Benefits past two years (in weeks)</td>
<td>12.7</td>
<td>12.3</td>
<td>11.9</td>
<td>12.5</td>
</tr>
<tr>
<td>Previous hours worked (per week)</td>
<td>27.5</td>
<td>28.4</td>
<td>28.5</td>
<td>27.1</td>
</tr>
<tr>
<td>Previous earnings (DK per week)</td>
<td>4903</td>
<td>5191</td>
<td>5436</td>
<td>4993</td>
</tr>
<tr>
<td>Education category: (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (no qualifying education)</td>
<td>34.6</td>
<td>35.8</td>
<td>40.5</td>
<td>33.7</td>
</tr>
<tr>
<td>2 (vocational education)</td>
<td>49.4</td>
<td>50.7</td>
<td>47.6</td>
<td>45.2</td>
</tr>
<tr>
<td>3 (short qualifying education)</td>
<td>4.1</td>
<td>4.9</td>
<td>3.5</td>
<td>4.7</td>
</tr>
<tr>
<td>4 (medium length qualifying educ.)</td>
<td>9.8</td>
<td>5.9</td>
<td>6.3</td>
<td>11.6</td>
</tr>
<tr>
<td>5 (bachelors)</td>
<td>0.5</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>6 (masters or more)</td>
<td>1.5</td>
<td>1.9</td>
<td>1.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Observations</td>
<td>5321</td>
<td>1496</td>
<td>1572</td>
<td>37,082</td>
</tr>
<tr>
<td>Unemployment rate (%)</td>
<td>6.1</td>
<td>5.0</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Participation rate (%)</td>
<td>76.3</td>
<td>76.3</td>
<td>79.2</td>
<td>79.2</td>
</tr>
<tr>
<td>GDP/Capita (1000 DK)</td>
<td>197.5</td>
<td>201.3</td>
<td>219.8</td>
<td>225.1</td>
</tr>
</tbody>
</table>
Our second data set describes monthly information on the average number of open vacancies per day in all Danish counties between January 2004 and November 2007. These data are collected by the National Labor Market Board on the basis of information from the local job centres. To take account of differences in sizes of the labor force between counties we consider the logarithm of the stock of vacancies. Figure 27 shows how in both the experiment counties and the comparison counties the average number of open vacancies changes over time. Both lines seem to follow the same business cycle pattern. However, during the experiment period and just afterwards, the increase in the vacancy stock was larger in the experiment counties than in the comparison counties.

4.4 Estimations

The previous section discussed descriptive evidence on the impact of the activation program. In this section we provide more empirical evidence. We focus on exit rates from unemployment, post-unemployment earnings and hours worked, and the stock of vacancies. The goal is not only to estimate the impact of the program, but also to investigate the presence of possible equilibrium effects.

4.4.1 Unemployment durations

The aim of the activation program is to stimulate participants to find work faster. In previous studies of the randomized experiment, participants were compared to nonparticipants (see Graversen and van Ours (2008), Rosholm (2008) and Vikström et al. (2013)). In the presence of spillovers, a simple comparison of outcomes between participants and nonparticipants does not provide a proper estimate for the effect of the activation program. To identify possible spillover effects we use the comparison counties in which the activation program was not introduced. We use the pre-experiment period to control for structural differences between counties.

Binary outcomes

We first consider the effect of the program on the probability of exiting unemployment within a fixed time period. Let E_i be an indicator for exiting unemployment within this period. In the estimation, we consider exit within three months, one year and two years. So in the first case, the variable E_i takes value one if individual i is observed to
Figure 27: Logarithm of the stock of vacancies per month (experiment period between the vertical lines).

(a) Log vacancies

leave unemployment within three months and zero otherwise. To estimate the effect of the activation program on the participants and the non-participants, we estimate the following linear probability model:

\[
E_i = \alpha_{r_i} + x_i \beta + \delta d_i + \gamma c_i + \eta_p + U_i \tag{4.3}
\]

This is a difference-in-difference model. Differences in the probabilities to exit unemployment between counties are controlled for by county fixed effects \(\alpha_{r_i}\), where \(r_i\) describes the county in which individual \(i\) lives. The common time trend is described by \(\eta_p\), where \(p\) is either the experiment period or the pre-experiment period. The dummy variable \(d_i\) is equal to one if individual \(i\) belongs to the treatment group, and \(c_i\) is equal to one if individuals \(i\) belongs to the control group. Finally we include a vector of covariates \((x_i)\) which contains gender, immigrant status, age dummies, education level, log previous earnings, history of benefit receipt and an indicator for becoming unemployed in November or December to capture possible differences in labor market conditions between the end (Q4) and the beginning (Q1) of a year.
Our parameters of interest are δ and γ, which describe the effect of the activation program on participants and nonparticipants, respectively. The parameter γ thus describes possible spillover effects. The key identifying assumption for the spillover effects is a common trend in exit probabilities between the experiment counties and the comparison counties. The randomized experiment identifies the difference in exit probabilities between participants and nonparticipants in the experiment counties, so $\delta - \gamma$.

Table 22 shows the parameter estimates for the linear probability model, the standard errors are clustered within counties interacted with the two calendar time periods. First, the size of the treatment effect on the participants becomes smaller for longer unemployment durations, but is always positive and highly significant. The decrease in size is not surprising. After longer periods the fraction survivors is reduced substantially and the parameter estimates describe absolute changes in survival probabilities. Also Graversen and van Ours (2008), Rosholm (2008) and Vikström et al. (2013) find that the effect of the activation program was largest early during the unemployment spell.

After three months, participants in the program are more than 9 % -points ($0.059 + 0.033$) more likely to have found work than the nonparticipants, but over one third of this difference is due to reduced job finding of the nonparticipants. The effect of

Table 22: Estimated effects of the activation program on exit probabilities of participants and nonparticipants.

<table>
<thead>
<tr>
<th></th>
<th>three months (1)</th>
<th>one year (2)</th>
<th>two years (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>0.059 (0.007)**</td>
<td>0.039 (0.004)**</td>
<td>0.010 (0.005)**</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>-0.033 (0.014)**</td>
<td>0.013 (0.003)**</td>
<td>-0.006 (0.003)**</td>
</tr>
<tr>
<td>Mean dependent var.a</td>
<td>0.500</td>
<td>0.901</td>
<td>0.969</td>
</tr>
</tbody>
</table>

Note: Clustered standard errors in parentheses. * indicates significant at 10% level, ** at the 5% level and *** at the 1% level. Individual characteristics include gender, age dummies, education level, log previous earnings, immigrant status, labor market history and quarter of entering unemployment. aThe aggregate outflow probability in the experiment counties during the experiment.
the activation program on those randomly assigned to the control group during the experiment is substantial and significant after three months. This describes the period in which the activation program was most intense, containing a job search assistance program and frequent meeting with caseworkers. Early in the unemployment spell also relatively many participants in the activation program leave unemployment, which reduces treatment externalities for the nonparticipants later in the unemployment spell. Indeed, we find that after one year, the effect on the nonparticipants is smaller in magnitude and has changed sign. After two years, the negative effect on the nonparticipants is more than half the size of the effect on the participants. Both effects are significant, but small. Only slightly more than 3% of the participants in the experiment are still unemployed after two years.

Log duration model

A disadvantage of the linear probability model is that it uses only part of the available information on unemployment duration. Therefore, we estimate a linear model using the log of unemployment duration as the dependent variable. We use the same difference-in-differences specification.

\[
\log(T_i) = \alpha + x_i \beta + \delta d_i + \gamma c_i + \eta p_i + U_i
\]

(4.4)

A problem with this approach is that it cannot deal with censoring. However, because censoring occurs after two years, only 3% of the observations are censored. Estimation results are presented in column (1) of Table 23. We find that the activation program reduces the unemployment duration of participants with approximately 14%, while the unemployment duration of non-participants increases by approximately 7%. Both effects are significant at the 1% level.

Duration model

Previous studies used duration models to evaluate the experiment (Rosholm (2008) Graversen and van Ours (2008)). Therefore, we also specify a proportional hazard model
for the exit rate from unemployment. The exit rate at duration t (measured in weeks) is described by $\theta(t)$ and has the following specification,

$$
\theta(t|p_i, r_i, x_i, d_i, c_i) = \lambda_{p_i}(t) \exp(\alpha_{r_i} + x_i \beta + \delta d_i + \gamma c_i) \tag{4.5}
$$

where $\lambda_{p_i}(t)$ describes duration dependence, which we allow to be different for individuals who entered unemployment in the experiment period and in the pre-experiment period. This also captures the common time trend. All other notation is the same as in the previous models.

To estimate the parameters of interest we use stratified partial likelihood estimation (e.g. Ridder and Tunalı (1999)). The key advantage is that this does not require any functional form restriction on the duration dependence pattern $\lambda_{p_i}(t)$. Let t_i describe the observed duration of unemployment of individual $i = 1, \ldots, n$ and the indicator variable e_i takes the value 1 if an actual exit from unemployment was observed and

78We tried estimating the model parameters using MCMC methods allowing for unobserved heterogeneity. Since there was not much dispersion in unobserved heterogeneity, the estimated treatment effects are very similar. Only because standard errors are much smaller than in the Cox model, both the treatment effect on the treated and on the nontreated are highly significant.
4.4. Estimations

value 0 if the unemployment duration has been censored. Stratified partial likelihood estimation optimizes the likelihood function

\[\mathcal{L} = \sum_p \sum_{i \in \mathcal{I}_p} e_i \log \left(\frac{\exp(\alpha r_i + x_i \beta + \delta d_i + \gamma c_i)}{\sum_{j \in \mathcal{I}_r} I(t_j \geq t_i) \exp(\alpha r_j + x_j \beta + \delta d_j + \gamma c_j)} \right) \]

The set \(\mathcal{I}_p \) includes all individuals who entered unemployment in the same calendar time period (experiment or pre-experiment period), and, therefore, share the same duration dependence pattern. A Hausman test rejects that the pattern of duration dependence is the same in both time periods (\(p \)-value less than 0.01). This coincides with the earlier discussion that labor market conditions were relatively favorable at the moment of the experiment. It stresses the importance of allowing for calendar time effects in the hazard rate.

Column (1) of Table 24 shows the estimates using all information on unemployment durations in the data. Participating in the activation program increases the exit rate from unemployment with \(100\% \times (\exp(0.154) - 1) \approx 17\% \) compared to not having any activation program. The effect is significant at the 1% level. The effect of the presence of the activation program on the exit rate of the nonparticipants in the program is negative, however, not significant.

The results in subsection 4.4.1 showed that most effects of the activation program are in the first months of the program. This is in line with Rosholm (2008). The proportional

<table>
<thead>
<tr>
<th></th>
<th>Data censored after:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 years</td>
<td>1 year</td>
<td>3 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Participants</td>
<td></td>
<td>0.154 (0.031)***</td>
<td>0.167 (0.032)***</td>
<td>0.151 (0.042)***</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td></td>
<td>-0.044 (0.030)</td>
<td>-0.031 (0.031)</td>
<td>-0.115 (0.044)***</td>
</tr>
<tr>
<td>Ind. characteristics</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>County f.e.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>77,057</td>
<td>77,057</td>
<td>77,057</td>
<td></td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses. * indicates significant at 10% level, ** at the 5% level and *** at the 1% level. Individual characteristics include gender, age dummies, education level, log previous earnings, immigrant status, labor market history and quarter of entering unemployment.
hazard model assumes that the effect of the activation program on the exit rate remains constant during the period of unemployment. As a result, the estimated effect of the program is an average over the observation period of two years. Earlier we found that the program effect might be larger early in the spell of unemployment. Therefore we estimate the same proportional hazard model, but censor unemployment spells after either one year, or three months. Results are shown in column (2) and (3) of Table 24. Censoring the data after one year has little effect on the results, the estimated effects are close to those in column (1). When we censor the spells after 3 months, the negative effect of the program on non-participants is much larger in magnitude and significant at the 1 % level (see column (3)). The coefficient corresponds to a 11 % decrease in the exit rate during the first 3 months of unemployment for the nonparticipants. The effect for the participants remains similar to both other specifications.

Our estimate for the difference in exit rates between participants and nonparticipants in the activation program is in line with what has been found before, e.g. Graversen and van Ours (2008) and Rosholm (2008). The activation program is effective in stimulating participants in leaving unemployment, but there is some evidence that the program is associated with negative externalities to the nonparticipants. A simple comparison of the participants and nonparticipants overestimates the effectiveness of the activation program.79

In our specification we allowed the duration dependence pattern to be different in both calendar time periods and we included fixed effects for all counties. Alternatively, we can include fixed effects for the calendar time period and have the duration dependence pattern differ between counties. Repeating the analyses above, shows that the estimated effects of the activation program are not sensitive to the choice of the specification. We also tried restricting the group of comparison counties. We included only counties located closely to the experiment counties, or located as far away as possible, or counties which are most similar in aggregate labor market characteristics. The estimation results are very robust to the choice of comparison counties (see appendix 4.8.1).

79In theory, we can allow the treatment effects δ and γ to depend on the treatment intensity r. This is possible because workers enter unemployment at different moments in the experiment period and the treatment intensity changes over calendar time. However, this provides estimates that are imprecise and also not robust to different specifications.
4.4.2 Earnings and hours worked

Participation in the activation program may affect not only job finding, but also the quality of the job. Therefore, we consider weekly earnings and hours worked after unemployment as outcomes. If, for example, the activation program induces job seekers to lower their reservation wage, they may find jobs faster, but will have lower earnings, on average. On the other hand, if the program points the job seekers to the most suitable jobs, this may result in better matches and higher earnings, on average. Similar arguments can be made for hours worked.

We estimate a model similar to equation (4.3):

\[Y_i = \alpha r_i + x_i \beta + \delta d_i + \gamma c_i + \eta p_i + U_i \]

Where the outcome \(Y_i \) is either the logarithm of weekly earnings of individual \(i \) or hours worked per week. In the set of covariates we include respectively weekly earnings and hours worked prior to becoming unemployed. The results are presented in columns (2) and (3) of Table 23. These show no effects of the activation program on both the participants and the nonparticipants.

We conclude that even though the activation program significantly reduced the duration until job finding for participants, and increased the duration for nonparticipants, the program had no impact on post-unemployment earnings and hours worked.

4.4.3 Vacancies

The results in the previous subsection provide evidence for treatment externalities. A likely channel is that unemployed job seekers compete for the same vacancies, and that an increase in search effort of participants affects the exit rate to work of other unemployed job seekers in the same local labor market. A more indirect effect may be that when firms realize that unemployed workers make more applications, this will affect the efficiency of the matching process (either positively or negatively). Both participants and nonparticipants benefit if there are more vacancies per unemployed worker. In this subsection we investigate to what extent the stock of vacancies is affected by the experiment.

To investigate empirically whether the experiment affected the demand for labor we consider the stock of vacancies in county \(r \) in month \(t \), which is denoted by \(V_{rt} \). We
regress the logarithm of the stock of vacancies on time dummies α_t, an indicator for the experiment D_{rt}, and we allow for county fixed effects θ_r,

$$\log(V_{rt}) = \alpha_t + \delta D_{rt} + \theta_r + U_{rt}$$

This is, again, a difference-in-differences model. The parameter of interest is δ, which describes the fraction by which the stock of vacancies changed during the experiment. The key identifying assumption is that the experiment counties and the comparison counties have a common trend, described by α_t, in the changes in the stock of vacancies. Furthermore, the experiment should only affect the local labor market in the experiment counties. If there would be spillovers between counties, δ would underestimate the effect of the experiment on vacancy creation. Finally, since the unit of time is a month, there is likely to be autocorrelation in the error terms U_{rt}. Because the total number of counties equals 14, we report cluster-robust standard errors to account for the autocorrelation (see Bertrand et al. (2004) for an extensive discussion).

Table 25 reports the estimation results. Column (1) shows that during the four months of the experiment (November 2005 until February 2006), the stock of vacancies increased by about 5% in the experiment counties but this effect is not significant. Recall that the activation program does not start immediately after entering unemployment, but workers start the two-week job search assistance program five to six weeks after entering unemployment. Therefore, we allow the effect of the experiment to change over time. The parameter estimates reported in column (2) show that during the experiment the stock of vacancies started to increase in the experiment counties compared to other counties. This effect peaked in May/June, so three to four months after the random assignment stopped and decreased afterwards again.

The results in column (3) show the same analysis as presented in column (2), but restrict the observation period from January 2005 until December 2006. The pattern in the effects of the experiments on the stock of vacancies remains similar, although fewer parameter estimates are significant. The latter is not only because standard errors are larger, but also estimated effects are slightly smaller. Finally, like in the empirical analyses on unemployment durations, we also restricted the set of comparison counties. The estimated effects vary somewhat depending on the choice of the set of comparison counties. But in general the estimated effects of the experiment increase somewhat as well as the standard errors (the estimation results are provided in appendix 4.8.1).
Table 25: Estimated effect of the experiment on logarithm of vacancies.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Vacancies</td>
<td>Log Vacancies</td>
<td>Log Vacancies</td>
<td>Log Normalized</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.047 (0.050)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment nov/dec 05</td>
<td>0.057 (0.084)</td>
<td>0.007 (0.055)</td>
<td>0.050 (0.092)</td>
<td></td>
</tr>
<tr>
<td>Experiment jan/feb 06</td>
<td>0.067 (0.032)*</td>
<td>0.016 (0.032)</td>
<td>0.051 (0.033)</td>
<td></td>
</tr>
<tr>
<td>Experiment mar/apr 06</td>
<td>0.081 (0.033)**</td>
<td>0.031 (0.041)</td>
<td>0.046 (0.036)</td>
<td></td>
</tr>
<tr>
<td>Experiment may/june 06</td>
<td>0.182 (0.046)***</td>
<td>0.132 (0.034)***</td>
<td>0.128 (0.033)***</td>
<td></td>
</tr>
<tr>
<td>Experiment july/aug 06</td>
<td>0.114 (0.027)***</td>
<td>0.064 (0.031)*</td>
<td>0.095 (0.024)***</td>
<td></td>
</tr>
<tr>
<td>Experiment sept/oct 06</td>
<td>-0.049 (0.046)***</td>
<td>-0.099 (0.068)</td>
<td>0.128 (0.033)***</td>
<td></td>
</tr>
<tr>
<td>County f.e.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Month f.e.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs. period</td>
<td>Jan 04–Dec 07</td>
<td>Jan 04–Dec 07</td>
<td>Jan 05–Dec 06</td>
<td>Jan 04–Dec 07</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses, * indicates significant at 10% level, ** at the 5% level and *** at the 1% level. Column (4) present results from an estimation weighted with the county-variance of log-vacancies, in the pre-experiment periods.
4.5 Equilibrium analysis of the activation program

The empirical results on unemployment duration, earnings and the stock of vacancies indicate the presence of equilibrium effects. Nonparticipants in the experiment have somewhat reduced exit rates from unemployment, the stock of vacancies increased after three months and the activation program does not affect earnings and hours worked. In subsection 4.2.2, we argued that in the presence of treatment externalities a simple comparison of outcomes between participants and nonparticipants does not estimate the most policy relevant treatment effect. In particular, a large scale role out of the program will change the treatment intensity in the population and thereby the effect of the activation program. In this section we extend the Diamond-Mortensen-Pissarides (DMP) equilibrium search model (see Diamond (1982), Mortensen (1982) and Pissarides (2000)) to analyse how externalities vary with the treatment intensity of the activation program. We estimate the model by indirect inference where we use the estimates in the previous section as our auxiliary model given a treatment rate of 30 %. We then use the estimated model to study the effects of the activation program for higher treatment rates including the case where the program is implemented in Denmark as a whole.

4.5.1 The labor market

Point of departure is a discrete-time DMP matching model. We extend the model with an endogenous matching function that depends on labor market tightness, the individual number of applications and the average number of applications (see Albrecht et al. (2006) for a related matching function). Workers are risk neutral and all have the same productivity. They only differ in whether or not they participate in the activation program. Participation in the program reduces the costs of making a job application but costs time. Recall that the goal of the activation program was to stimulate job search effort. The regular meetings did not include elements that could increase human capital or productivity (e.g. Graversen and van Ours (2008)). Indeed, we did not find any effect of the activation program on job characteristics. Firms are also assumed to be identical. Finally, we impose symmetry (identical workers play identical strategies) and anonymity (firms treat identical workers equally).

When a worker becomes unemployed, she receives benefits b and a value of non-market time, h. She must also decide how many applications to send out. The choice variable a describes the number of applications, which workers make simultaneously
within a time period. A worker becomes employed in the next period if one of the job applications was successful, otherwise she remains unemployed and must apply again in the next period. Making job applications is costly, and we assume these costs to be quadratic in the number of applications, i.e. \(\gamma a^2 \).

An important feature of our model is that we allow the success of an application to depend on the search behavior of other unemployed workers and the number of posted vacancies. Let \(\bar{a} \) describe the average number of applications made by other unemployed workers, \(u \) be the unemployment rate and \(v \) the vacancy rate (number of open vacancies divided by the size of the labor force). In subsection 4.5.2 we derive our matching function and find that it exhibits constant returns to scale. The matching rate for a worker who sends out \(a \) applications, \(m(a; \bar{a}, \theta) \) is increasing in labor-market tightness \(\theta = v/u \) and decreasing in the average search intensity of other workers \(\bar{a} \).

Let \(r \) be the discount rate and \(E(w) \) be the flow value of being employed at a job that pays \(w \). We assume that benefits and search costs are realized at the end of the period to simplify notation (if one prefers benefits and search costs to be realized at the beginning of a period they should be multiplied by \((1 + r)\)). For an unemployed worker who does not participate in the activation program, the value of unemployment is summarized by the following Bellman equation,

\[
U_0 = \max_{a \geq 0} \frac{1}{1 + r} \left[b + h - \gamma_0 a^2 + m(a; \bar{a}, \theta)E(w) + (1 - m(a; \bar{a}, \theta))U_0 \right]
\]

which can be rewritten as,

\[
rU_0 = \max_{a \geq 0} b + h - \gamma_0 a^2 + m(a; \bar{a}, \theta)[E(w) - U_0]
\] (4.6)

The optimal number of applications of a worker, who does not participates in the activation program, \((a_0^*) \) follows from the first-order condition

\[
a_0^* = \frac{E(w) - U_0}{2\gamma_0} \frac{\partial m(a; \bar{a}, \theta)}{\partial a} \bigg|_{a=a_0^*}
\] (4.7)

The activation program consists of meetings with caseworkers and a job search assistance program which are both time-consuming for participants. We assume that this eliminates the value of non-market time, \(h \). The benefit of the program is that it
reduces the costs of making job applications to \(\gamma_1 < \gamma_0 \). This implies that for participants in the activation program the value of unemployment follows from

\[
 rU_1 = \max_{a \geq 0} b - \gamma_1 a^2 + m(a; \bar{a}, \theta) [E(w) - U_1]
\]

Let \(a^*_1 \) denote the optimal number of applications of a participant in the activation program that follows from

\[
 a^*_1 = \frac{E(w) - U_1 \partial m(a; \bar{a}, \theta)}{2\gamma_1} \bigg|_{a=a^*_1}
\]

Furthermore, let \(\tau \) be the fraction of the unemployed workers participating in the activation program. Since we focus on symmetric equilibria, the average number of applications of all unemployed workers within the population equals \(\bar{a} = \tau a_1^* + (1 - \tau) a_0^* \).

The aim of our model is to describe the behavior of unemployed workers. Therefore, we keep the model for employed workers as simple as possible, and we ignore on-the-job search. This is also motivated by data restrictions; our data do not contain any information on job-to-job transitions. With probability \(\delta \) a job is destroyed and the employed worker becomes unemployed again. When being employed, the worker does not know whether or not she will enter the activation program once she becomes unemployed. This implies that employees consider \(\bar{U} = \tau U_1 + (1 + \tau) U_0 \) as the relevant outside option. Since we assumed that wages are paid at the end of the period, the value function for the state of employment at wage \(w \) is,

\[
 rE(w) = w - \delta(E(w) - \bar{U})
\]

Vacancies are opened by firms but this is costly. For a firm, the costs of having an open vacancy are \(c_v \) per period. The probability of filling a vacancy depends on the average job application behavior \(\bar{a} \) of unemployed workers and on labor market tightness \(\theta \). The probability of filling a vacancy is (given that the matching function exhibits constant returns to scale), \(\frac{m(\bar{a}, \theta)}{\theta} \), which we derive below. The value of a vacancy \(V \) follows from,

\[
 rV = -c_v + \frac{m(\bar{a}, \theta)}{\theta}(J - V)
\]

where \(J \) is the value of filled vacancy. Each period that a job exists, the firm receives the value of output \(y \) minus wage cost \(w \). With probability \(\delta \) the job is destroyed and the job switches from filled to vacant. The value of filled vacancy \(J \) is, therefore, given by,

\[
 rJ = y - w - \delta(J - V)
\]
4.5.2 Wages and the matching function

Wages are determined by Nash bargaining. The bargaining takes place after the worker and firm meet. We assume that firms do not observe whether or not the unemployed worker participates in the activation program. Consequently, firms do not observe search intensity nor the worker’s disutility of program participation. Therefore, firms assign the same (average) outside option to all workers when bargaining. Note that if wages are continuously renegotiated, all employed workers will have the same outside option and earn the same wage anyway. This is in line with our empirical findings. Let β denote the bargaining power of the workers. Then, the generalized Nash bargaining outcome implies

$$w^* = \arg\max_w (E(w) - \bar{U})^\beta (J(w) - \bar{V})^{1-\beta}. $$

with the following first-order condition,

$$\beta(y - w) = (1 - \beta)(w - r\bar{U}).$$

Define the per-period payoffs for unemployed individuals by $\pi_0 = b + h - \gamma_0 a_0^{*2}$ and $\pi_1 = b - \gamma_1 a_1^{*2}$. The equilibrium wage is,

$$w^* = \frac{\beta y [(r + \delta)(r + m_0 + m_1) + m_0 m_1 - \delta \bar{m}] + (1 - \beta) [1 - \tau] m_1 \pi_0 + \tau m_0 \pi_1 + r \bar{m}]}{(r + \delta)(r + m_0 + m_1 - \bar{m}) + \beta (r \bar{m} + m_0 m_1)}$$

(4.12)

where $m_0 = m(a_0^*; \bar{a}, \theta)$, and $m_1 = m(a_1^*; \bar{a}, \theta)$. The function \bar{m} describes the population average matching rate, $\tau m_1 + (1 - \tau) m_0$, and similarly $\bar{m} = \tau \pi_1 + (1 - \tau) \pi_0$. The wage level increases in the productivity of a match (y) and in the (average) net flow income of unemployment (π_0 and π_1), which increases the outside option of the worker.

In appendix 4.8.2 we solve the model for the wage mechanism of Albrecht et al. (2006) where workers with multiple offers have their wages bid up by Bertrand competition. This gives similar results in terms of labor market flows, vacancy creation and the effects of the activation program. The outcomes are discussed in more detail in subsection 4.6.3.

Finally, we have to specify the matching rates $m(a; \bar{a}, \theta)$ for unemployed workers and $m(\bar{a}, \theta)$ for vacancies. Since participation in the activation program reduces search costs, the matching function should allow for different search intensities of participants and nonparticipants. Moreover, it should allow for congestion effects between unemployed job seekers. Below we adjust the matching function of Albrecht et al. (2006) to
incorporate this. There are two coordination frictions affecting job finding: (i) workers do not know where other workers apply, and (ii) firms do not know which candidates are considered by other firms. This last coordination friction is absent in a usual Cobb-Douglas matching function. If a firm receives multiple applications, it randomly selects one applicant who receives a job offer. The other applications are turned down as rejections. A worker who receives only one job offer accepts the offer and matches with the firm. If a worker receives multiple job offers, the worker randomly selects one of the offers and accepts it.

The expected number of applications per vacancy is given by

$$ \frac{u(\tau a^*_1 + (1-\tau)a^*_0)}{v} = \tilde{a} $$

If the number of unemployed workers and the number of vacancies are sufficiently large, then the number of applications that arrive at a specific vacancy is approximately a Poisson random variable with mean \tilde{a}/θ. For a worker, an application results in a job offer with probability $\frac{1}{1+i}$, where i is the number of competitors for that job (which is the number of other applications to the vacancy). This implies that the probability that an application results in a job offer equals

$$ \psi = \sum_{i=0}^{\infty} \frac{1}{1+i} \frac{\exp(-\tilde{a}/\theta)(\tilde{a}/\theta)^i}{i!} = \frac{\theta}{\tilde{a}} \left(1 - \exp\left(-\frac{\tilde{a}}{\theta}\right) \right) $$

The matching probability of a worker who makes a applications is thus given by

$$ m(a; \tilde{a}, \theta) = 1 - (1 - \psi)^a = 1 - \left(\frac{\tilde{a} - \theta}{\tilde{a}} - \frac{\theta}{\tilde{a}} \exp\left(-\frac{\tilde{a}}{\theta}\right) \right)^a $$

Once we substitute for a the optimal number of applications a^*_1 and a^*_0, we obtain the matching rates for the participants and the nonparticipants in the activation program, respectively.

The aggregate matching function is simply $u m$ and it is first increasing in the number of applications per worker and then decreasing. More applications per worker reduce the first coordination problem mentioned above but amplify the second one.

80 As a sensitivity analysis we also tried a Cobb-Douglas matching function. But we did not manage to get the parameters of the matching function such that it could explain both a negative effect of the activation program on the nonparticipants in the program and a higher stock of vacancies. We take this as evidence that in this setting our matching function is preferred over a Cobb-Douglas specification.

81 Only for very low values of θ the matching function is monotonically decreasing in the number of applications.
4.5. Equilibrium analysis of the activation program

4.5.3 Equilibrium and welfare

In steady state, the inflow into unemployment equals the outflow from unemployment, which gives

\[\delta (1 - u) = (\tau m(a_1^*; \bar{a}, \theta) + (1 - \tau) m(a_0^*; \bar{a}, \theta)) u \]

The equilibrium unemployment rate is, therefore,

\[u^* = \frac{\delta}{\delta + \tau m(a_1^*; \bar{a}, \theta) + (1 - \tau) m(a_0^*; \bar{a}, \theta)} \] (4.13)

The zero-profit condition for opening vacancies \(V = 0 \) implies that the flow value of a filled vacancy equals

\[J = \frac{y - w^*}{r + \delta} \]

Substituting this into the Bellman equation for vacancies (4.10) gives

\[\frac{m(\bar{a}, \theta^*)}{\theta^*} = \frac{(r + \delta) c_v}{y - w^*} \] (4.14)

The left-hand size is decreasing in \(\theta \) and goes to infinity when \(\theta \) approaches zero. Because wages are increasing in \(\theta \), the right-hand side is increasing in \(\theta \). Therefore, there is a unique \(\theta^* \) that satisfies the equilibrium condition in equation (4.14). We can now define the equilibrium as the tuple \(\{a_0^*, a_1^*, w^*, u^*, \theta^*\} \) that satisfies equations (4.7), (4.8), (4.12), (4.13) and (4.14).

Now we have solved the model and have derived conditions for equilibrium, we can use the model for policy simulations. The decision parameter for the policy maker is the intensity \(\tau \) of the activation program.\(^{82}\) Let \(c_p \) describe the costs of assigning an unemployed worker to the activation program. This is a lump-sum amount paid at the start of participation in the activation program. Implicitly, we assume here that it is paid from a non-distortionary tax. Introducing distortionary taxes, would make the program less desirable. It would reduce net earnings and thereby reduce incentives to work. Besides those costs, a welfare analysis should take account of the productivity of the workforce \((1 - u) y \), the costs of keeping vacancies open \(v c_v \), and the time costs of unemployed workers \((h - \gamma_0 a_0^{*2}) \) and \(-\gamma_1 a_1^{*2} \) for nonparticipants and participants.

\(^{82}\) Most policy makers aim to make a program available to all eligible unemployed workers or to none, which would imply \(\tau \) is either one or zero. However, in our policy simulations we consider also values between zero and one. This provides interesting insight in the spillover effects of the program. But the interest in not only scientific, since there are cases in which programs have a limited budget or capacity causing that not all eligible unemployed workers can enroll.
respectively. We define welfare as net (of all pecuniary and non-pecuniary cost) output per worker,

\[
W(\tau) = (1 - u) y + u \left((1 - \tau) \frac{h - \gamma_0 a_0^2}{1 + r} + \tau \frac{-\gamma_1 a_1^2}{1 + r} \right) - \delta (1 - u) \tau c_p - v c_v \tag{4.15}
\]

Note that the welfare function does not include unemployment insurance benefits because those must be paid for and are thus a matter of redistribution. After having estimated the model parameters, we can investigate if the experiment increased welfare, i.e. if \(W(0.3) > W(0) \) and if a large scale role out of the activation program would increase welfare \(W(1) > W(0) \). The latter program effect is based on the policy relevant treatment effect defined in equation (4.2). Furthermore, we can compute the welfare-maximizing value for \(\tau \).

Alternatively, a naive policy maker may be interested in the effect of the program on the government budget. Since \(\delta (1 - u) \) describes the inflow into unemployment, total program costs are \(\delta (1 - u) \tau c_p \). The naive policy maker confronts the costs of the program with the total reduction in benefit payments. The total amount of benefit payment equals \(ub \). This implies that the naive policy maker chooses \(\tau \) such that it minimizes the costs of the unemployment insurance program,

\[
C_{UI}(\tau) = ub + \delta (1 - u) \tau c_p \tag{4.16}
\]

Finally, it is interesting to compare the results of these policy parameters to results from a typical microeconometric evaluation. As discussed in subsection 4.2.2 most microeconometric evaluations impose SUTVA, and typically compare the costs of a program with the reductions in benefit payments. The reduction in benefit payments is usually estimated from comparing expected benefit durations of participants and nonparticipants (e.g. Eberwein et al. (2002) and Van den Berg and Van der Klaauw (2006)),

\[
ME_{\tau=0.3} = \left(b \left(\frac{1}{m(a_1^*; \bar{a}, \theta)} - \frac{1}{m(a_0^*; \bar{a}, \theta)} \right) - c_p \right) \tag{4.17}
\]

where \(\frac{1}{m(a_1^*; \bar{a}, \theta)} - \frac{1}{m(a_0^*; \bar{a}, \theta)} \) is the difference in expected unemployment duration between unemployed workers participating and not participating in the activation program. A positive value implies positive returns to the program. This evaluation not only ignores equilibrium effects, but also, for example, foregone leisure of the participants.
4.6 Estimation and evaluation

In this section we first describe the estimation of the equilibrium search model by indirect inference using the treatment effects estimated in section 4.4 as our auxiliary model (see Smith (1993) and Gourieroux et al. (1993)). Next, we use the estimated model to study the welfare effects of the program and the effects of a large scale implementation. Finally, we provide some sensitivity analyses.

4.6.1 Parameter values

Our key interest is the causal effect of modifying the intensity of the activation program on various aggregated labor market outcomes. Because for the estimation we want to avoid making additional functional form assumptions, we estimate the equilibrium model using indirect inference. This also avoids that we, for example, have to allow for measurement errors. This has the advantage that the estimation is less computer intensive than alternative approaches for estimating structural models. Furthermore, our approach estimates the structural parameters using mainly information directly related to the activation program. Indirect inference has the additional advantage that it is transparent in terms of which information drives the identification of a parameter. Below we discuss the estimation in more detail.

By the nature of our matching function, the equilibrium search model is in discrete time. The length of a time period is determined by the time it takes for firms to collect and process applications which we set equal to one month. Next, we fix the treatment intensity of the activation program during the experiment to 0.3 (see the discussion in subsection 4.2.1). We denote the treatment intensity during the experiment by τ_e. In subsection 4.6.3 we estimate the model for alternative levels of τ_e. We set the discount rate equal to 10 % annually, which implies that r is 0.008. This is smaller than the discount rates used by, for example, Lise et al. (2004), Fougère et al. (2009) and estimated by Frijters and Van der Klaauw (2006). Productivity y is normalized to one. The upper panel of Table 26 summarizes the values for the model parameters that we fix a priori.

Next, we use indirect inference to estimate the remaining model parameters. The parameters are determined such that a set of data moments is matched as closely as possible by the corresponding model predictions. The moments that we consider are presented in Table 27. After we have fixed the discount rate and the treatment
4. Estimating equilibrium effects

Table 26: Parameter values.

<table>
<thead>
<tr>
<th>Fixed parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^e)</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>30 % of the stock of unemployed workers are treated in the experiment</td>
</tr>
<tr>
<td>(r)</td>
</tr>
<tr>
<td>0.008</td>
</tr>
<tr>
<td>annual discount rate equals 10 %.</td>
</tr>
<tr>
<td>(y)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>productivity normalized to 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_0)</td>
</tr>
<tr>
<td>0.216 ((0.003))</td>
</tr>
<tr>
<td>cost of sending an application for nonparticipants</td>
</tr>
<tr>
<td>(\gamma_1)</td>
</tr>
<tr>
<td>0.116 ((0.027))</td>
</tr>
<tr>
<td>cost of sending an application for program participants</td>
</tr>
<tr>
<td>(h)</td>
</tr>
<tr>
<td>-0.014 ((0.011))</td>
</tr>
<tr>
<td>value non-market time for nonparticipants</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>0.640 ((0.173))</td>
</tr>
<tr>
<td>UI benefits</td>
</tr>
<tr>
<td>(\delta)</td>
</tr>
<tr>
<td>0.011 ((0.011))</td>
</tr>
<tr>
<td>job destruction rate</td>
</tr>
<tr>
<td>(c_v)</td>
</tr>
<tr>
<td>0.603 ((0.008))</td>
</tr>
<tr>
<td>per period cost of posting a vacancy</td>
</tr>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td>0.814 ((0.223))</td>
</tr>
<tr>
<td>bargaining power</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses.

intensity (and normalized productivity to 1), there are 7 unknown parameters and we also use 7 moment restrictions. So identification hinges on the structure imposed by the equilibrium search model and follows from solving 7 non-linear equations. In the set of moment conditions we do not include the absence of an effect on wages. But as can be seen below our empirical results also do not express any substantial effect on the equilibrium wage.

The model should capture the unemployment and vacancy rates from the data, the estimated program effect on the participants and on the nonparticipants, the estimated increase in vacancies due to the experiment, the average matching rate in the experiment counties and finally the fact that unemployment benefits are approximately 65 \% of the wage level. Define \(\xi = (\gamma_0, \gamma_1, h, \delta, c_v, b, \beta) \) as the vector of parameters to be estimated. For given values for \(\xi \) the model can be solved and the set of model predictions can be computed. To obtain estimates for \(\xi \), we minimize the sum of squared differences between the data moments and the corresponding model predictions over \(\xi \), where each squared difference is given an appropriate weight based on the variance of the (estimated) data moment.

The estimates for the parameters included in \(\xi \) are presented in the lower panel of Table 26 (standard errors are computed using the delta method). In line with the
<table>
<thead>
<tr>
<th>Data moment</th>
<th>Description</th>
<th>Corresponding value model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment rate</td>
<td>5.0 % Unemployment rate Storstrøm and South Jutland during the experiment</td>
<td>$u^*</td>
</tr>
<tr>
<td>Program effect on participants</td>
<td>0.059 Estimated effect (see Table 22)</td>
<td>$[1 - (1 - (m_1</td>
</tr>
<tr>
<td>Program effect on nonparticipants</td>
<td>-0.033 Estimated effect (see Table 22)</td>
<td>$[1 - (1 - (m_0</td>
</tr>
<tr>
<td>Program effect on log vacancies</td>
<td>8.1 % Estimated percentage effect on vacancies 5-6 months after the beginning</td>
<td>$\frac{v^*</td>
</tr>
<tr>
<td>Outflow rate after three months</td>
<td>0.51 Fraction of unemployed in Storstrøm and South Jutland that leaves</td>
<td>$1 - \tau (1 - (m_1</td>
</tr>
<tr>
<td>Vacancy rate</td>
<td>1 % Approximation of the number of vacancies as a percentage of the</td>
<td>$v^*</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>0.65 Unemployment benefits are 65 % of the wage level</td>
<td>$\frac{b}{w^*}</td>
</tr>
</tbody>
</table>
goal of the activation program, we find that the costs of making job applications are lower for participants than for nonparticipants. The leisure costs of participating in the activation program are close to zero. The job destruction rate is slightly over 1 % per month, unemployment benefits are 64 % of productivity, and the bargaining power of workers is 0.81. In Table 28 we present the data moments and corresponding model moments as described in Table 27. The model is able to match most moments very closely. The distance between model and data moments is always less than 5 %, except for the effect on vacancies, which the model can reproduce qualitatively, but the magnitude is much smaller than the data suggest. This is the moment that was measured relatively imprecisely though.

4.6.2 Increasing the intensity of the activation program

Next, we use the model to predict how the program effects depend on the fraction τ of the unemployed population participating in the activation program. We are interested in the effects on the matching rates of both participants and nonparticipants, as well as the effects on aggregate unemployment and vacancy rates, wages and welfare.

We simulate the model for a gradually increasing fraction of program participants τ in the unemployed population. The results are shown in Figure 28. The graph on the top-left shows that increasing the treatment rate τ monotonically increases the unemployment rate. The difference between no treatment and full treatment is approximately 0.3 %-points. The increase in unemployment can be explained by the matching rates which are presented in top-right graph. Because participants in the activation program send out more applications than nonparticipants, they always have a higher matching rate. The difference in matching rates remains similar for different

<table>
<thead>
<tr>
<th></th>
<th>Data moment</th>
<th>Model moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment (for $\tau=0.3$)</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>Effect on vacancies (%)</td>
<td>0.081</td>
<td>0.008</td>
</tr>
<tr>
<td>Effect on non-treated</td>
<td>-0.033</td>
<td>-0.033</td>
</tr>
<tr>
<td>Effect on treated</td>
<td>0.059</td>
<td>0.061</td>
</tr>
<tr>
<td>Outflow within 3 months</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>Vacancy rate</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>0.650</td>
<td>0.648</td>
</tr>
</tbody>
</table>
4.6. Estimation and evaluation

Figure 28: Simulation results baseline model.
values of τ and shows that participants are about 5 %-points more likely to find a job within a given month. The matching rates of both participants and nonparticipants decrease monotonically as τ increases and even the aggregate matching rate decreases marginally. For a program intensity of 30 %, participants have a 28 % higher matching rate than nonparticipants.

We can relate the simulated matching rates to the treatment effects presented in subsection 4.2.2. The evaluation of the randomized experiment estimates a treatment effect on the matching rates equal to $0.243 - 0.192 = 0.051$, which is $E[m(a^*_1; \hat{a}, \theta)|\tau = 0.3] - E[m(a^*_0; \hat{a}, \theta)|\tau = 0.3]$. However, as we mentioned before the policy relevant treatment effect is $E[m(a^*_1; \hat{a}, \theta)|\tau = 1] - E[m(a^*_0; \hat{a}, \theta)|\tau = 0]$, which is $0.208 - 0.209 = -0.001$. Even though the microeconometric evaluation suggests a positive effect on the matching rate, the policy relevant treatment effect is virtually zero.

Figure 28 shows that because the congestion effects of the treatment, unemployment rises from 5 to 5.25 %. Partly because of the increase in unemployment, vacancy supply increases while market tightness (v/u) at first remains flat but then decreases for larger τ. Our matching function does not force unemployment to rise in response to a higher search intensity. The wage level remains almost constant when the treatment intensity changes. This is in line with the empirical findings in subsection 4.4.2, where we found that the program had no effect on earnings of both participants and non-participants. Since we did not attempt to match wage moments this result can be interpreted as a test of the model.

Our estimated model allows for different types of cost-benefit analyses, which are described in subsection 4.5.3. First in equation (4.15) we defined welfare as a function of τ. This is plotted in the bottom-left graph of Figure 28. In line with rising unemployment, welfare decreases with τ and is thus maximized for $\tau = 0$. A large scale role out of the program reduces welfare with 0.4 %, which corresponds to 0.4 % of the workers productivity. The reasons for the decline in welfare are that the negative congestion effects of the increased search intensity tend to dominate. However, in different specifications that we discuss below (i.e. a Cobb Douglas matching function, Bertrand wage setting) the increased search intensity reduces unemployment but the total welfare effects remain negative.

Second, we consider the total government expenditures on unemployment benefits. This takes into account spendings on unemployment benefits and the costs of the activation program (see equation (4.16)). This is shown in the bottom-right graph.
Government expenditure increases in the share of the unemployed that participate in
the activation program. A large scale role out of the activation program increases total
government expenditure on the unemployment benefits program by 9%.

Finally, microeconometric evaluations often ignore equilibrium effects. Equation
\((4.17)\) shows the cost-benefit analysis that is usually applied in microeconometric
evaluations. It simply compares the costs of the program with the difference in total
benefits payments between participants and nonparticipants. The costs of the program
\((c_p)\) are 2122 DK (about 382 dollar), while the change in average unemployment duration
is 1.1 months. Average monthly benefit payments are 14,800 DK. The gain for the
government budget is, therefore, 14,158 DK for each participant in the activation
program. This microeconometric evaluation thus erroneously provides a positive
assessment of the activation program.

The main conclusions from the analysis above is that even though matching rates
of participants and nonparticipants are significantly different, the aggregate matching
rate slightly decreases with the intensity of the activation program. As a result, the
program effects are not very positive if equilibrium effects are taken into account. At 0%
program participation the unemployment rate is minimized and welfare is maximized.
These conclusions do not concur with the results from a standard microeconometric
evaluation that typically ignores equilibrium effects.

4.6.3 Robustness checks

In this subsection we address the robustness of our empirical results. We focus on
modelling choices in the equilibrium search model. We made three key assumptions.
First, our matching function is of the urn ball type rather than the more commonly
used Cobb-Douglas type. Second, wages are determined by Nash bargaining. Third,
the treatment intensity of 30% is based on a steady state assumption. Below, we
subsequently discuss alternatives to those assumptions.

The matching function

Our urnball matching function with multiple applications and without full recall has the
property that initially, the average matching rate is increasing in average search intensity
but for sufficiently high average search intensity, a further increase in the number of
applications reduces the matching rate. This captures the idea that a firm can fail to hire because it loses its candidate to other firms. The negative welfare effects are however not solely driven by congestion effects as we show below. One way to switch them off is by estimating the model with a Cobb-Douglas matching function. One indication for the importance of congestion effects is that the fit is not as good as for our preferred urnball model. It turns out that in order to match the observed increase in vacancies, the negative effect on the exit rate to work of nonparticipants is sacrificed with the Cobb Douglas matching function. An increase in search intensity for the participants always leads to a higher aggregate matching rate and to an increase in vacancies per unemployed worker (and the non participants also benefit from this). Therefore, it is hard to increase unemployment duration for the nonparticipants. Note, however, that also in the Cobb Douglas case, despite the fact that unemployment decreases with τ, the marginal returns of an increase in search intensity are decreasing in τ. For this case, we also find negative welfare effects. When moving from a labor market without the activation program to a large scale role out aggregate welfare reduces from 0.918 to 0.915.

The wage mechanism

In our baseline model we assumed that wages are determined by Nash bargaining. In subsection 4.5.2 we mentioned ex post Bertrand competition as alternative wage setting mechanism. Below we briefly discuss the results from Bertrand competition (see Albrecht et al. (2006)) and we find qualitatively similar results. Under Bertrand competition workers with one offer receive their reservation wage or the minimum wage while workers with multiple offers receive the full match surplus. This has the theoretical advantage that it endogenizes the bargaining power which reduces the number of parameters to estimate with one. In appendix 4.8.2 we give a more detailed discussion of the equilibrium search model with Bertrand competition. Table 29 presents the parameter estimates.

This model matches the data and empirical findings very well. We also simulate this estimated model for different values of τ. The simulation results are presented in Figure 29. Under Bertrand wages the unemployment rate decreases when τ is increased. In addition, we find that the activation program now increases the average matching rate (which confirms that our results are not driven by the fact that the urnball matching function is locally decreasing in the average number of applications). As vacancy supply
4.6. Estimation and evaluation

Table 29: Parameter estimates for the model with Bertrand competition.

\begin{tabular}{ll}
\hline
Fixed parameter values & \\
τ^e & 0.3 \quad 30\% of the unemployed workers are treated \\
r & 0.008 \quad annual discount rate equals 10\% \\
p & 1 \quad productivity normalized to 1 \\
\hline
Estimated parameter values & \\
γ_0 & 0.030 (0.023) \quad cost of sending an application for untreated workers \\
γ_1 & 0.155 (0.019) \quad cost of sending an application for treated workers \\
h & 0.275 (0.025) \quad value non-market time for untreated unemployed \\
b & 0.632 (0.044) \quad UI benefits \\
δ & 0.011 (0.001) \quad job destruction rate \\
cv & 2.298 (1.725) \quad per period cost of posting a vacancy \\
\hline
\end{tabular}

increases slightly and unemployment decreases, market tightness θ increases. This is caused by the decreasing value of being unemployed because now the utility of not being in the program, h, is substantial. In the baseline model, we estimated a high bargaining power parameter for workers. With this wage mechanism, workers receive in expectation lower wages. Again, as in our baseline model, we still find that welfare decreases monotonically as the treatment intensity increases. The key difference with the model with Nash bargaining is that in case of Bertrand competition overall government spending declines in τ, for τ larger than 0.3. The reason that we prefer the model with Nash wage bargaining is that we find in the data that treated and non-treated workers earn the same wage while the model with Bertrand wage setting predicts that the treated workers, who send more applications, would receive more offers in expectation and therefore earn higher wages.

Treatment intensity

We estimated the search model under the assumption that about 30\% of the unemployed workers were participating in the activation program towards the end of the experiment period ($\tau^e = 0.3$). The choice of this parameter was motivated by a steady state assumption of a constant inflow and that each week about 5\% of the unemployed workers find work. Both assumptions might be violated. First, the exit rate from
Figure 29: Simulation results due to changes in τ with Bertrand wages
unemployment shows negative duration dependence. If we take into account that the exit rate declines during the spell of unemployment, the fraction of program participants among the stock of unemployed workers reduces to about 26%. Furthermore, recall from section 4.3 that the inflow into unemployment was higher in the pre-experiment year than in the experiment year. If we take this decline in inflow rate into account, the intensity of the activation program at the end of the experiment period is about 21%. Fixing τ^e at about 0.2 assumes that workers with a longer elapsed unemployment duration search as intensively for work as recently unemployed workers. Below, we show that if the actual treatment intensity was lower than 0.3, this implies that the observed negative program effects on the nonparticipants must be the result of even larger congestion effects. Consequently, welfare decreases faster in simulations where τ is increased.

Heterogeneity in the pool of unemployed could also affect the value of τ^e in a different way. One may argue that perhaps longer term unemployed are unable to find a job anyway, and therefore are not hurt by the higher job finding rate of the program participants. If one takes this argument to the limit, the spillovers effects are only relevant for the group of recent unemployed, which is the 50% of newly unemployed that were randomized out of the program. Note that this is an extreme upper bound, as it assumes that the entire stock of unemployed at the start of the experiment was unaffected by the experiment. The resulting value of τ^e is 0.5. Even though this is clearly an unlikely value, we present estimates based on $\tau^e = 0.5$ as a lower bound on the spillover effects.

Taking both arguments into account we believe that $\tau^e = 0.3$ is a reasonable value for the treatment intensity during the experiment. We present results for lower and higher values simply to demonstrate whether the conclusions are sensitive to the choice of this parameter. Simulation results based on the various values of τ^e are presented in Figure 30 together with the simulation results from the baseline model ($\tau^e = 0.3$). In the figure we show the unemployment rate and the welfare. To make the different estimates comparable, we normalize welfare to 1 in case no unemployed worker enters

83 Another argument against this case is the fact that almost everyone in our sample finds a job within 2 years, such that a scenario with zero job finding for long-term unemployed is unlikely.

84 One may argue that our model describes the bottom segment of the labor market, where unemployment occurs more frequently. The unemployment rate among low-skilled unemployed workers is typically twice the overall unemployment rate and spillovers between labor market segments requiring different skill levels may be low. Therefore, we also estimated our model with a twice as high target unemployment rate of 10%. The results for this case are almost identical to our baseline results.
4. Estimating equilibrium effects

Figure 30: Simulation results from estimations using different values of τ^e

the activation program. As expected, a lower value of τ^e aggravates the negative effect of the activation program on the unemployment rate and welfare. For $\tau^e = 0.2$ the effect on unemployment and welfare are large, as full participation would increase unemployment with more than 1 %point and decrease welfare with 1%. Instead, setting $\tau^e = 0.5$ is sufficient to get a modestly positive effect of the program. In this scenario, full participation reduces unemployment slightly and increases welfare slightly (relative to the case where no workers participate in the activation program). The welfare maximizing treatment rate remains τ smaller than one though. These findings show that the model is able to generate positive welfare effects, but only by setting τ^e at unrealistically high levels. These findings illustrate that our negative baseline program effect estimates are not an artifact of the model structure, but are the result of the relatively strong negative spillovers that we observe at a realistic treatment intensity of 30%.

4.7 Conclusion

In this chapter we investigate the existence and magnitude of equilibrium effects of an activation program for unemployed workers. In the empirical analysis we have combined data from a randomized experiment in two Danish Counties with data from other counties. This allows us to evaluate in a difference-in-difference setting not only the program effect on the treated, but also on the nontreated individuals. In this
4.7. Conclusion

In our analysis, we have considered various outcomes. In particular, we find that the activation program increases job finding of participants, but has adverse effects on the job finding of the nonparticipants. This implies that simply comparing unemployment durations of participants and nonparticipants overestimates the effects of the activation program. For none of the groups there is an effect on the quality of the post-unemployment job. However, we do find some evidence that the activation program increases the number of vacancies in the county.

We have constructed an equilibrium search model which despite its simplicity fits the empirical results from the experiment well. This is particularly true when having a urn-ball matching function rather than Cobb-Douglas matching function. The structural parameters have been estimated using indirect inference. Using the estimated model, we have simulated the effects of increasing the number of participants in the activation program up to a large scale role out. This provides the policy relevant treatment effect of the activation program.

The simulation experiments show that despite the increased job finding rate for program participants and the increase in vacancies, the unemployment rate increases if the number of program participants is increased. This is due to more congestion in the labor market. A large-scale role out of the activation program thus reduces welfare, not only because the unemployment rate increases and increased government expenditures on the activation program, but also because of increased search costs of unemployed job seekers. These results do not concur with the results form a standard microeconometric evaluation, but are robust against alternative specifications of the equilibrium search model, such as changing the wage mechanism.
4.8 Appendix

4.8.1 Empirical analyses with restricted comparison counties

In section 4.4 we presented our empirical results, which were based on comparing the experiment counties with all other Danish counties. Both the pre-experiment period and the experiment period are characterized by solid economic growth and decreasing unemployment rates. There is no reason to believe that (one of) the experiment counties experienced an idiosyncratic shock which might have affected labor market outcomes. In this appendix we consider the robustness of our empirical results with respect to the choice of comparison counties.

First, we consider as comparison counties the three counties which are closest to the experiment counties. These counties might be most similar and experience a trend very close to the experiment counties. However, if there are spillovers between counties due to, for example, workers commuting between counties, this most likely affects neighboring counties most. Therefore, as a second sensitivity analysis we consider the two counties which are furthest from the experiment counties as control counties. Finally, we consider a control counties five counties which are most similar in aggregate statistics to the experiment counties.

Table 30 shows for the duration model for the unemployment durations the estimation results for the three sensitivity analyses. Comparing the parameter estimates across the different columns and with those presented in Table 24 shows that the estimated effects are quite robust against the choice of the comparison counties.

In Table 31 we repeat the sensitivity analyses but now for the difference-in-difference model for the stock of vacancies. Although the significance levels differ between the different choice of comparison counties, all results indicate substantial equilibrium effects quantitatively similar to those presented in Table 25.

4.8.2 Equilibrium search model with Bertrand competition

In this appendix, we follow Albrecht et al. (2006) and assume that wages are determined by ex-post Bertrand competition rather than Nash bargaining. Bertrand competition implies that if a worker receives offers from multiple firms, wages are driven up to productivity \((w = p)\). But if a worker only receives one offer, the firm receives the full surplus. In this latter case the worker receives the reservation wage \((w = w_l)\). Therefore,
Table 30: Estimated effects of the activation program on outcomes of participants and nonparticipants with restricted comparison groups.

<table>
<thead>
<tr>
<th></th>
<th>(1) 3 closest counties</th>
<th>(2) 2 furthest counties</th>
<th>(3) 5 most similar counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit within 3 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>0.072 (0.008)**</td>
<td>0.078 (0.010)**</td>
<td>0.073 (0.007)**</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>-0.021 (0.014)</td>
<td>-0.015 (0.016)</td>
<td>-0.029 (0.014)</td>
</tr>
<tr>
<td>Log duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>-0.198 (0.019)**</td>
<td>-0.155 (0.019)**</td>
<td>-0.156 (0.022)**</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>0.004 (0.022)</td>
<td>0.046 (0.020)*</td>
<td>0.047 (0.025)*</td>
</tr>
<tr>
<td>PH censored at 3 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>0.208 (0.046)**</td>
<td>0.205 (0.047)**</td>
<td>0.189 (0.043)**</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>-0.061 (0.048)</td>
<td>-0.066 (0.049)</td>
<td>-0.079 (0.045)*</td>
</tr>
<tr>
<td>Log earnings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>0.020 (0.025)</td>
<td>-0.005 (0.024)</td>
<td>0.009 (0.023)</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>0.020 (0.025)</td>
<td>-0.007 (0.024)</td>
<td>0.009 (0.023)</td>
</tr>
<tr>
<td>Hours worked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>1.002 (1.203)</td>
<td>0.364 (1.286)</td>
<td>0.531 (1.271)</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>0.776 (1.191)</td>
<td>0.216 (1.275)</td>
<td>0.387 (1.258)</td>
</tr>
<tr>
<td>Ind. characteristics</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>County fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>28,394</td>
<td>25,530</td>
<td>53,682</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parenthesis, * indicates significant at 10% level, ** at the 5% level and *** at the 1% level. Closest counties are West-Zealand, Ribe and Funen, furthest counties are Viborg and North-Jutland, most similar counties are Funen, West-Zealand, North-Jutland, Viborg and Aarhus. Individual characteristics include gender, age dummies, education level, immigrant status, log previous earnings, labor market history and quarter of entering unemployment.
Table 3: Estimated effects of the experiment on the logarithm of vacancies with restricted comparison groups.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 closest counties</td>
<td>0.092 (0.094)</td>
<td>0.127 (0.023)</td>
<td>0.146 (0.035)</td>
<td>0.158 (0.068)</td>
<td>0.079 (0.069)</td>
<td>0.009 (0.108)</td>
</tr>
<tr>
<td>2 furthest counties</td>
<td>0.039 (0.168)</td>
<td>0.025 (0.144)</td>
<td>-0.074</td>
<td>0.120 (0.049)</td>
<td>-0.043 (0.040)</td>
<td>-0.066 (0.038)</td>
</tr>
<tr>
<td>5 most similar counties</td>
<td>0.039 (0.098)</td>
<td>0.089 (0.060)</td>
<td>0.106 (0.049)</td>
<td>0.095 (0.046)</td>
<td>0.185 (0.033)</td>
<td>-0.022 (0.024)</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1% level, respectively.

Closest counties are West-Zealand, Ribe and Funen, furthest counties are Viborg and North-Jutland, most similar counties are Funen, West-Zealand, North-Jutland, Viborg.
the wage depends on the number of offers (denoted by \(j \)), and the probability of receiving the low reservation wage given a match is:

\[
p_l(a) \equiv \Pr(j = 1 | j > 0) = \frac{\Pr(j = 1)}{\Pr(j > 0)}
\]

Recall from subsection 4.5.2 that the probability that an offer results in a job offer equals \(\psi = \frac{a}{\bar{a}} \left(1 - \exp \left(-\bar{a}/\theta \right) \right) \). In a large labor market the number of job offers when making \(a \) applications follows a Poisson distribution with intensity \(\psi a \). This implies that

\[
p_l(a) = \frac{\psi a \exp(-\psi a)}{1 - \exp(-\psi a)} = 1 - p_h(a)
\]

where \(p_h(a) \) is the probability of receiving the high wage.

In the model with Nash bargaining, there is only one wage level. In case of Bertrand competition there are two wage levels so we should condition the value of being employed (see equation (4.9)) on the wage,

\[
\begin{align*}
 rE_l &= w_l - \delta (E_l - \bar{U}) \\
 rE_h &= p - \delta (E_h - \bar{U})
\end{align*}
\]

For a worker who sends out \(a \) applications, the expected value of employment equals

\[
E(a) = p_l(a)E_l + p_h(a)E_h
\]

Recall that participants and nonparticipants in the activation program make a different number of application denoted by \(a^*_1 \) and \(a^*_0 \). Strictly speaking, participants and nonparticipants will also have a different reservation wage, so without further assumptions this would require a mixing strategy such as discussed by Albrecht and Axell (1984). In our setting the only difference occurs when a worker receives only one job offer. For ease of simplification, we ignore mixing and assume that all firms offer the maximum of the reservation wages of participants and nonparticipants. This is equivalent to the government imposing a minimum wage which is acceptable to all workers.
Bertrand competition implies

\[E_l = \max\{U_0, U_1\} \]

and therefore

\[w_l = (r + \delta) \max\{U_0, U_1\} - \delta \bar{U} \]

The value functions for a filled job (equation (4.11)) now become,

\[r J_w = p - w_l - \delta(J_l - V) \]

\[r J_p = 0 \]

\[J = \bar{p}_l J_{w_l} + \bar{p}_h J_{p} \]

This last equation gives the expected value of a filled vacancy, where the \(\bar{p}_l \) and \(\bar{p}_h \) describe the average probabilities in the population, e.g. \(\bar{p}_l = (1 - \tau)p_l(a_0^*) + \tau p_l(a_1^*) \).
5.1 Introduction

Many countries seek to increase the labor force participation of mothers with young children. Policymakers often point to Scandinavia, where public spending on childcare is high and participation rates of mothers are high as well. Indeed, several countries and regions have adopted part of the Scandinavian model by providing generous childcare subsidies to parents with young children (e.g. the Netherlands, Quebec) or are in the process of doing so (e.g. Germany).

In this chapter we study the causal effect of childcare subsidies on labor supply by means of a large, recent reform in the Netherlands. After the introduction of the Law on Childcare in 2005, childcare subsidies in the Netherlands became much more generous. The average effective parental fee for formal childcare was cut in half, and subsidies were extended to so-called guestparent care (small-scale care at the home of the ‘guestparent’ or at the home of the children). As a result, public spending on childcare skyrocketed, from 1 billion euro in 2004 to 3 billion euro (0.5% of GDP) in 2009. Over the same period, the government also increased targeted earned income tax

85 This chapter is based on Bettendorf et al. (2015)
credits (EITCs) for the same parents. Budgetary outlays of these EITCs increased from 0.7 billion euro in 2004 to 1.3 billion euro in 2009. Since both policies target the same treatment group, the modest labor supply effects we find are the combined treatment effects of the childcare and the EITC reform.

We estimate the effect of the joint reform using data from the Labor Force Survey of Statistics Netherlands for the period 1995-2009, employing a differences-in-differences (DD) strategy. We estimate the effect on the participation rate and hours worked per week. The treatment group consists of parents 20 to 50 years of age with a youngest child up to 12 years of age. As a control group we use parents 20 to 50 years of age with a youngest child 12 to 17 years of age. This control group is chosen because the trends in participation and average hours worked per week of the treatment and control group are very similar before the reform, and placebo treatment dummies are insignificant. Unfortunately, we do not have linked individual data on labor supply and the use of childcare. Hence, we estimate an intention-to-treat effect.

Our main findings are as follows. First, we find that the reform increased the participation rate of women in the treatment group by 2.3 percentage points (3.0%). Second, the reform increased the average number of hours worked per week by women in the treatment group by 1.1 hours per week (6.2%), and reduced the hours worked per week by men in the treatment group by 0.3 hours per week (0.8%). Third, the policy seems to have been rather costly in terms of additional government spending per additional person and per additional fulltime equivalent employed. Spending on childcare subsidies and EITCs for parents with young children increased by 2.6 billion euro, whereas the treatment effect on the number of persons and fulltime equivalents employed was just 30 thousand additional persons and 30 thousand additional fulltime equivalents, respectively. This suggests an additional public spending of 87 thousand euro per additional person employed. Given that modal wage income in 2009 was around 32,500 euro, and the average taxes paid on this modal wage income were less than 10 thousand euro, the additional costs for the government seem to have been much larger than the additional receipts, even if we allow for some additional savings on social assistance benefits (of approximately 14,000 euro per person) for single parents that started to work. Why was the reform so costly? A substantial share of the higher

86 Own calculations using Microtax of CPB Netherlands Bureau for Economic Policy Analysis.
87 In our data set we do not have information on how participation in formal childcare affects childrens’ outcomes, nor do we have information on the impact on the well-being of parents, as in Baker et al. (2008). A full cost-benefit analysis of the reform we consider would have to take these effects into account, along with distributional effects of the reform.
subsidies was paid to parents that already used formal childcare at the lower pre-reform subsidy. In addition, the higher subsidy also caused a large shift from informal to formal childcare. Indeed, a back-of-the-envelope calculation suggests only a 0.19 (0.23) percentage point increase in the maternal employment rate per percentage point increase in the enrollment rate of children in daycare (out-of-school care).

There is an extensive literature that considers the relationship between parental labor supply and the cost of childcare using structural models and cross-sectional data. An in-depth overview is given in Blau and Currie (2006), who report estimated (childcare) price elasticities of female labor force participation ranging from 0.06 to −3.60. They argue that only a small part of this variation is due to differences in the composition of the sample or different data sources. Most of the variation seems to be due to identification problems related to the endogeneity of the explanatory variables. To solve this problem, exogenous variation in the cost of childcare is needed. Therefore, the focus has shifted to quasi-experimental methods that use policy changes or discontinuities in policies as exogenous variation in childcare prices for parents. As a result, there is a small but growing body of quasi-experimental literature that studies the impact of changes or differences in childcare costs on labor supply.

In Section 5.6 we give a detailed overview of estimated treatment effects and study characteristics of related studies using natural experiments. A number of papers find rather small labor supply effects: Lundin et al. (2008) for Sweden, Havnes and Mogstad (2011a) for Norway and Fitzpatrick (2010) for the US. However, there are also a number of papers that find substantial labor supply effects, overall or for subgroups, in particular Baker et al. (2008) and Lefebvre and Merrigan (2008) for a reform in Quebec. When we compare our findings to related studies, our estimated treatment effects take an intermediate position. One potential explanation for why we find smaller effects than e.g. Baker et al. (2008) and Lefebvre and Merrigan (2008) is that we consider data from a recent period, where the pre-reform participation rate is already relatively high. However, some authors (e.g. Goux and Maurin, 2010; Havnes and Mogstad, 2011a) also point to potential pitfalls in the analysis of the reform in Quebec, where the treatment effect may in part have been driven by differential trends and/or other reforms. One potential explanation for why we find larger effects than the studies by Lundin et al. (2008) and Havnes and Mogstad (2011a) is that both workers and non-workers are

88For example, unobserved characteristics are likely to influence both the costs of childcare (which depend on income) and the labor supply decision.
eligible for childcare subsidies in Norway and Sweden, whereas only working single parents and two-earner couples are eligible for childcare subsidies in the Netherlands. This can also explain why we find larger effects than the US studies that consider differences in enrollment in pre-school, which is also universal and not targeted solely at working parents.

We make a number of contributions to the literature. First, we study a very recent reform in a highly developed OECD country. This makes our results particularly relevant for other highly developed OECD countries that are considering to expand their formal childcare programs, since the initial maternal employment rate and public spending on childcare are arguably quite similar to many of these countries.89 Indeed, as shown in Section 5.6, the effect of expanding subsidized childcare on maternal employment rates is lower in countries with a high initial maternal employment rate. Furthermore, being one of the few studies to use the Labor Force Survey, we can also determine the effect on hours worked, next to the effect on the participation rate. We find that the effect on hours worked by women is twice as large as the effect on the participation rate of women in percentage terms. Also, we study a reform that expands subsidies for both daycare and out-of-school care. To the best of our knowledge we are the first quasi-experimental study to look at the effect of out-of-school care on parental labor supply. Finally, our study is also unique in that we have ten years of pre-reform data and five years of post-reform data. This enables us to do placebo tests in a number of pre-reform periods, and to study both the short- and medium-run effects.

The outline of the chapter is as follows. Section 5.2 describes the main aspects of the reform we exploit in the empirical analysis. Section 5.3 discusses our empirical methodology. In Section 5.4 we present our dataset and some descriptive statistics. Section 5.5 gives the estimation results for participation and hours worked. In Section 5.6 we compare our findings and study characteristics with related quasi-experimental studies. Section 5.7 concludes.

5.2 The reform

In the beginning of the 1970s, the employment rate of women (15–64 years of age) in the Netherlands, close to 30%, was rather low by international standards; see Figure 31. But following the economic crisis in the early 1980s, the employment rate of women in the

89See e.g. OECD (2007, Table 3.2, Chart 6.1).
Netherlands started to rise.\(^{90}\) The strong rise in the participation rate of Dutch women continued all the way up to the reforms in 2005–2009, which we consider below. Indeed, by 2004 the participation rate of women in the Netherlands was among the highest in the OECD, close to 70%, falling just short of the participation rates in Norway, Sweden and the US.

Whereas the participation rate of women in the Netherlands showed a strong rise since the mid 1980s, a sizeable gap remained in terms of hours worked per week by employed women; see Figure 32. Furthermore, the gap with other OECD countries has been rather stable over time. In 2004, employed women in the Netherlands worked on average approximately 24 hours per week, while their counterparts in other OECD countries worked 5 to 10 hours per week more. Indeed, in 2004, the share of women working part-time in the Netherlands was 60%, by far the largest share in the OECD (OECD, 2013).

To further promote the labor force participation of Dutch women, in persons but also in hours per week, the Dutch government implemented a series of reforms in the period 2005–2009. The two main goals of the reforms were: i) to make it easier for parents to combine work and care, and ii) to promote good quality care. With i) the government also planned to stimulate the labor force participation of parents (Ministry of Social Affairs and Employment, 2012, p.2). The most important changes took place in 2006 and 2007 when childcare subsidies were increased such that on average the parental fee decreased by 50%. Below, following a brief introduction into the pre-reform childcare market in the Netherlands, we give a historical account of the policy changes over the period 2005–2009, and indicate their relative importance for our analysis.

Children in the Netherlands go to primary school when they turn 4, and most children are 12 years old when they go to secondary school. Before the age of 4, children can go to center-based daycare, so-called playgroups and informal care. Before the introduction of the Law on Childcare (Wet kinderopvang) in 2005, center-based daycare was subsidized at different rates.\(^{91}\) The majority (76%) of places was subsidized directly by employers and local governments.\(^{92}\) These places had lower effective parental fees

\(^{90}\) For a detailed analysis of trends in female labor force participation in the Netherlands, see Euwals et al. (2011). Over the past decades, the rise in participation by mothers of young children was particularly strong.

\(^{91}\) All data on the use of formal childcare in Section 2 are from Statistics Netherlands (http://statline.cbs.nl).

\(^{92}\) The subsidy is per hour of formal childcare.
Figure 31: Participation rate by women 15–64 years of age: 1975–2009

![Participation率图示](image1)

Figure 32: Hours worked per week by employed women 15–64 years of age: 1985–2009

![工作时数图示](image2)

than so-called ‘unsubsidized’ places (24%), the costs of which were however partly tax deductible for parents. To qualify for the subsidies and tax deduction, both parents for two-parent households and one parent for single-parent households need to work. The total enrollment rate of children 0–3 years of age in center-based care was 25% in 2004. Next to center-based care a large number of children also go to playgroups (peuterspeelzalen). This is part-time care for less than 4 hours per day, mostly used by families in which one of the parents does not work. The enrollment rate of children 0–3 in playgroups was also close to 25%. Children that are in primary school can go to center-based out-of-school care and informal care. Similar to daycare, before the introduction of the Law on Childcare, subsidized and unsubsidized center-based out-of-school care places co-existed, where the costs of unsubsidized places were partly tax deductible for parents. The pre-reform enrollment rate of 4–12 year olds in center-based care was below 6% in 2004.

The introduction of the Law on Childcare in 2005 unified the subsidies for center-based care. From 2005 onward, all center-based places qualified for the same subsidy from the government, and subsidies were no longer transferred directly to childcare institutions but to parents using formal childcare. This increased the subsidy for parents with children going to an unsubsidized place before 2005 (before the reform they were eligible for a tax deduction that was typically lower than the subsidy after the reform). With the introduction of the Law on Childcare so-called guestparent care also became eligible for subsidies, becoming part of formal childcare. Guestparent care is small-scale care at the home of the guestparent or at the home of the children. The Law on Childcare in 2005 was the start of the reforms we consider in our empirical analysis below, but the unification of the subsidies and the extension to guestparent care had only a minor (initial) effect on public spending on formal childcare; see Table 32. Indeed, presumably because the subsidy was slightly reduced for the highest incomes, public spending actually fell slightly from 2004 to 2005. Figure 33 shows that the share of children in formal childcare in 2005 hardly changed relative to the preceding period. Hence, in our empirical analysis we do not expect to find significant labor supply effects for 2005.

In 2006 and 2007 the subsidy rate was increased drastically. Figure 34 shows the resulting changes in the parental contribution rate for the ‘first child’ between 2005 and 2007. First, note that the parental fee depends on the income of the household. In

93 See Plantenga et al. (2005).
94 The Tax Office defines the first child as the child for which the parents have the highest childcare expenditures.
Figure 33: Share of children in formal childcare (in %)

Source: Statistics Netherlands.

Figure 34: Parental contribution rate for the first child

Source: own calculations using publicly available subsidy tables.
Table 32: Public spending on childcare and EITCs for parents (millions of euro)

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childcare subsidies</td>
<td>725</td>
<td>755</td>
<td>1028</td>
<td>1,001</td>
<td>1,343</td>
<td>2,058</td>
<td>2,825</td>
<td>3,034</td>
</tr>
<tr>
<td>EITCs for parents</td>
<td>410</td>
<td>460</td>
<td>738</td>
<td>830</td>
<td>871</td>
<td>984</td>
<td>971</td>
<td>1,290</td>
</tr>
<tr>
<td>– Combinatiekorting(^a)</td>
<td>410</td>
<td>460</td>
<td>479</td>
<td>484</td>
<td>314</td>
<td>324</td>
<td>247</td>
<td>0</td>
</tr>
<tr>
<td>– Inkomensafhankelijke combinatiekorting(^b)</td>
<td>0</td>
<td>0</td>
<td>259</td>
<td>346</td>
<td>557</td>
<td>660</td>
<td>724</td>
<td>1,290</td>
</tr>
</tbody>
</table>

Source: Ministry of Finance (2010) and own calculations (imputation of employers’ contribution for childcare up to 2007 with data from the Ministry of Social Affairs and Employment (personal communication) and split of the EITCs for parents in its two components using the MIMOSI model of CPB). \(^a\)The Combinatiekorting applies to primary earners, secondary earners and working single parents with a youngest child up to 12 years of age. \(^b\)The Inkomensafhankelijke combinatiekorting applies to secondary earners and working single parents with a youngest child up to 12 years of age.
all years, households with the lowest income receive the highest subsidy (up to 96% of the full price). For households with a low income the subsidy rate hardly changed between 2005 and 2007. For middle income households the subsidy rate went up by 20 to 40 percentage points, whereas the increase in the subsidy for the highest income households was smaller than for middle income households. On average, the parental cost share in the full price dropped from 37% in 2005 to 18% in 2007. Indeed, parents were the main beneficiaries of the reform as average prices of formal childcare places grew more or less in line with the CPI, despite the steep increase in the subsidy rate. Hence, the increase in the subsidy rate was not counteracted by a rise in the full price of childcare charged by childcare institutions to parents. Next to the drop in parental fees, from 2007 onward schools were obliged to act as an intermediary for parents and childcare institutions to arrange out-of-school care. Finally, in 2009, we saw a small reversal of the policy change, as the government reduced the subsidy for parents to

95 Source: Tax Office data provided by the Ministry of Social Affairs and Employment (personal communication).
96 Over 2005–2009 the average full price for an hour of daycare and out-of-school care grew by 9.6% and 6.0%, respectively (Ministry of Education, Culture and Science, 2009), while the CPI grew by 6.5% (CPB, 2012).
some extent (see Figure 34), but compared to 2005 there was still a large drop in the parental fee for middle and high income households.\(^\text{97}\)

Figure 33 shows that the dramatic drop in the contribution rate in 2006 and 2007 spurred the growth in the use of formal childcare in 2006 and beyond.\(^\text{98}\) Due to the rise in the subsidy per child and the higher participation in formal childcare, public spending on childcare rose quickly from 1 billion euro in 2005 to 3 billion euro in 2009; see Table 32.

In DD analyses it is crucial to consider other policies that might influence the outcome variables for the treatment or control group (differently).\(^\text{99}\) We carefully examined various changes in taxes and subsidies and found that, apart from one, there were no substantial changes in taxes or subsidies targeted at the treatment or control group. The only complication comes from changes in the EITCs for parents with a youngest child up to 12 years old, the Combinatiekorting (Combination credit) and the Inkomensafhankelijke combinatiekorting (Income dependent combination credit). These EITCs are also targeted exclusively at our treatment group. Figure 35 shows the change in the sum of the Combinatiekorting and Inkomensafhankelijke combinatiekorting for secondary earners and single parents (mostly women) over the period 2001–2009. Table 32 gives the changes in aggregate ‘spending’ (revenue losses) on these EITCs. Between 2001 and 2004 these credits increased from 138 to 514 euro, and public expenditures increased from 410 to 738 million euros between 2002 and 2004. Between 2004 and 2008 the individual subsidy increased from 514 euro to 858 euro for secondary earners and single parents, and in 2009 there was another increase

\(^{97}\)Since childcare subsidies expanded more for middle income households than for high and low income households, larger labor supply effects are expected for the former households. Unfortunately, we cannot perform this exercise, because data on household income is not included in our dataset (the Labor Force Survey).

\(^{98}\)Survey results from Berden and Kok (2009) indicate that there was a large shift from informal to formal care between 2004 and 2008: for children 0–3, 4–7 and 8–12 years of age, the share of parents using formal care in the total of parents using formal and informal care rose from respectively 58% to 77%, 22% to 54% and 21% to 44%.

\(^{99}\)Another concern might be that what we see is not the result of an increase in childcare demand but the result of a drop in rationing on the formal childcare market. However, the available data on waiting lists suggest that these are rather small, and that the change in waiting lists was much smaller than the change in filled childcare places. For example, the survey data reported in Van Rens and Smit (2011) suggest that the waiting list for daycare (out-of-school care) dropped from 10% (11%) of filled places in 2007 (the first year of the survey) to 7% (6%) of filled places in 2009. The drop in waiting lists is much smaller than the increase in the number of children going to daycare and out-of-school care, which increased by 49% (19%) and 139% (55%) respectively between 2005 and 2009 (2007 and 2009).
for secondary earners and single parents with relatively high earnings. In 2009, the maximum credit was 1,765 euro, where the maximum was reached at 30,803 euro of gross individual income (for comparison, in 2009 the minimum wage of a fulltime worker was 16,776 euro). Since these credits target the same group as childcare subsidies we can only determine the joint effect of the changes in childcare subsidies and these credits. The EITC reform presumably served to increase the labor supply of the treatment group, meaning that this does not affect our conclusion that the effect on employment was modest given the budgetary impulse.

5.3 Methodology

We estimate the effect of the reform on labor participation using a DD strategy (see e.g. Blundell and Costa Dias, 2009; Imbens and Wooldridge, 2009). This method estimates the effect of a reform by comparing the change in outcomes of the treatment group before and after the reform, using the change in outcomes of a control group to control for common time effects. Our treatment group consists of parents influenced by the change in childcare costs, which are parents with a youngest child up to 12 years of age.

As the control group we use parents with a youngest child 12 to 18 years of age (living at home). These parents are not eligible for childcare subsidies but are otherwise quite similar to the treatment group. The DD estimator requires that in the absence of the policy reform the treatment and control group face a common time trend in labor force participation. This assumption cannot be tested. However, we have ten years of pre-reform data, so we can check whether the groups have a similar trend in the pre-reform period. In general, we estimate an event history specification, allowing leads and lags around the reform to have different coefficients.

This assumption could be violated if the government was anticipating a change in behavior when deciding to pass the new law. Also, if parents anticipated the policy change and adapted their behavior in advance, this too would create a problem for identification of the treatment effect. In our case, both issues are unlikely. First,

100 The tax credit for working primary earners (mostly men) with young children was phased out over the period 2005–2009.
101 Also note that the change in the credits for working parents in 2009 was mostly targeted at middle and high income earners, like the childcare reform.
102 De Boer et al. (2014, Table 5) simulate the EITC reform with a structural model. They find that the reform increased both the participation rate and the hours worked per week of mothers with a youngest child 0–11 years of age living in couples.
inspection of the data shows that there is no change in the long-term trend in the years before the reform that could have induced the policy changes from 2005 onward. Second, the most important policy change is the reduction of the parental fee in 2006–2007. Since this reduction was not included in the Law on Childcare of 2005, parents were unable to anticipate these changes before 2005. Both assumptions are supported by the outcomes of the placebo tests that we report in Section 5.5.

Finally, the common trend assumption is violated if the composition of characteristics related to our outcomes within the groups is not stable. This could happen if for example the childcare reform led to a change in fertility rates (since our treatment group is defined by having a young child this would alter the composition of the treatment group).103 We constructed and inspected fertility rates but found no evidence of a change in trends after 2005.104

To estimate the treatment effect on participation, we regress participation status on year fixed effects (α_t), group fixed effects (γ_g), individual characteristics (X_i) and a set of treatment dummies for each year after the reform (D_{gs}):

$$y_{igt} = \alpha_t + \gamma_g + X_i \beta + \sum_{s=2005}^{2009} \delta_s D_{gs} + \epsilon_{igt}. \quad (5.1)$$

D_{gs} is a set of dummies equal to one if individual i has a youngest child up to 12 years of age in year s. The common trend of the treatment and control group is captured by the year fixed effects, while the constant difference in participation between the treatment and control group is captured by the group fixed effects. We include different group fixed effects for parents with a youngest child 0–3, 4–7 and 8–11 years of age. Individual characteristics are included to control for observable changes in the composition of the

103In the online appendix of Bettendorf et al. (2015), it is shown that each characteristic develops smoothly for both the treatment and control group. The proverbial exception is the ethnicity dummy, the increase in the share of immigrants in 2000 is caused by a change in the definition of this group, however our results are very similar when we exclude the ethnicity dummy from the regressions. We have also run regressions of the covariates on year fixed effects, the group dummies and the treatment dummies. The results for the treatment dummies (see online appendix Bettendorf et al. (2015)) indicate that some covariates are correlated with the treatment dummies. However, it is unlikely that these results reflect endogenous responses to the reform (e.g. education, ethnicity and age are presumably fixed), rather they indicate small differences in the trend growth of the covariates between the treatment and control group. Regression results indeed show that it is important to control for these individual characteristics. A concern is then that there are also unobserved differential changes in the treatment and control group. However, we do not find support for this hypothesis since the placebo treatment dummies are not significantly different from zero.

104None of the other quasi-experimental studies discussed in Section 5.6 that look at fertility finds a significant effect on fertility.
groups over time. In equation (5.1) we allow the treatment effect to be different in each year after the policy change. When the annual treatment effects are not significantly different from one another, we instead estimate two treatment effects: a treatment effect for 2005–2007 (short-run) and a treatment effect for 2008–2009 (medium-run).

According to the modified Breusch-Pagan test, the hypothesis of homoskedasticity is strongly rejected for both the participation and hours equation. Therefore, we use population weights in estimation to correct for heteroskedastic error terms.105 In the online appendix of Bettendorf et al. (2015), results are presented which show that the estimates of the treatment effects are very similar when standard OLS without weights is applied.

To further correct for potential heteroskedasticity we report robust standard errors.106 In the majority of cases, clustered standard errors are smaller than robust standard errors. We prefer to be conservative and report the larger (robust) standard errors (as suggested by Angrist and Pischke, 2009). Furthermore, the conclusions are robust across the alternative specifications for the standard errors.

Participation is a discrete variable, so equation (5.1) is a linear probability model for participation. We also estimate the effect on hours worked per week. We follow Angrist and Pischke (2009) and estimate a linear model with the same sample of individuals that we use in the participation equation. So we estimate equation (5.1) with y denoting the number of hours worked per week, potentially zero.

5.4 Data

We use data from the Dutch Labor Force Survey (\textit{Enquête Beroepsbevolking}) of Statistics Netherlands. This is an annual survey which includes approximately 80,000 individuals per year. We have repeated cross-sections for the period 1995–2009. The reform started in 2005, so we have a long data series preceding the policy change to study the common trend assumption crucial in DD analyses. The finding of a common trend before the reform is taken as an indication that the trend would remain the

105 Following the recommendation of Solon et al. (2013).

106 In the online appendix of Bettendorf et al. (2015) alternative standard errors are presented. For the main regressions, the online appendix presents standard errors clustered at the year-group level, (64 clusters: 4 groups, youngest child 0–3, 4–7, 8–11 and 12–17 years of age, times 16 time periods) and standard errors clustered at the group level (4 clusters: youngest child 0–3, 4–7, 8–11 and 12–17 years of age).
same in the absence of the reform. The survey includes labor supply information (participation and hours worked per week), individual characteristics (age, education level, native/immigrant, couple/single) and household characteristics (number of children, age of the children).107

From this dataset we select our treatment group of mothers with a youngest child up to 12 years of age. Furthermore we restrict the analysis to mothers 20 to 50 years of age. This gives us 202,104 observations for the treatment group (for the full sample period). As a control group we use mothers with a youngest child 12 to 18 years of age. Restricting the control group to mothers 20 to 50 years of age we have 61,125 observations in the control group. We also considered women without children as a potential control group. However, as we will see below, this is not a valid control group since they have a different pre-reform trend in the participation rate and hours worked than the treatment group.

Table 33 gives descriptives statistics for the treatment and control group. The table shows the outcome variables participation and hours worked per week, and the covariates age (in the regression we use 5-year category dummies), education (in categories lower, middle and higher educated), a dummy for being single, a dummy for being an immigrant, the size of the household (in the regression we include dummies for families with one, two or three and more children below the age of 12) and the age of the youngest child (with separate dummies for 0–3, 4–7 and 8–11 years of age). For most variables, the treatment and control group are quite similar. Mothers in the control group are somewhat more likely to be single, and are also somewhat more likely to be lower educated. The share of immigrants is slightly higher in the treatment group, which could be explained by the higher fertility rate of immigrants. There are sizeable differences between the groups with respect to the age of the mother and the age of the youngest child, however this is inevitable considering the definition of the groups.

In the DD method we compare the outcomes of the treatment and control group over time. In Figure 36 we plot participation rates of the women in the treatment group (youngest child 0–11), the control group (youngest child 12–17) and for women without

107For each year we restrict our sample to individuals that were interviewed in person. Apart from these, there were three follow-up interviews of the same individual within one year by telephone. Since these are considered less reliable and are basically the same observation (see Statistics Netherlands, 2009), we decided to use only the data from the interviews in person. Unfortunately, we could not make this distinction for 2009, so we have about four times more observations in 2009 than in the other years, but the sample weights correct for this.
Figure 36: Participation rate

Source: Labor Force Survey (Statistics Netherlands).

Figure 37: Hours worked per week

Source: Labor Force Survey (Statistics Netherlands).
Table 33: Descriptive statistics treatment and control group (1995–2009)

<table>
<thead>
<tr>
<th></th>
<th>Treatment group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>0.664</td>
<td>0.709</td>
</tr>
<tr>
<td>Hours worked per week</td>
<td>14.44</td>
<td>16.63</td>
</tr>
<tr>
<td>Age</td>
<td>35.73</td>
<td>44.00</td>
</tr>
<tr>
<td>Lower educated</td>
<td>0.292</td>
<td>0.400</td>
</tr>
<tr>
<td>Middle educated</td>
<td>0.461</td>
<td>0.423</td>
</tr>
<tr>
<td>Higher educated</td>
<td>0.247</td>
<td>0.177</td>
</tr>
<tr>
<td>Single</td>
<td>0.095</td>
<td>0.144</td>
</tr>
<tr>
<td>Immigrant</td>
<td>0.207</td>
<td>0.165</td>
</tr>
<tr>
<td>Household size</td>
<td>3.918</td>
<td>3.812</td>
</tr>
<tr>
<td>Age youngest child</td>
<td>4.459</td>
<td>14.361</td>
</tr>
<tr>
<td>Observations</td>
<td>202,104</td>
<td>61,125</td>
</tr>
</tbody>
</table>

Values are means weighted with sample weights. Source: Labour Force Survey (Statistics Netherlands).

...children (a potential control group). The solid vertical line marks the start of the policy reform. We see that both the treatment and control group exhibit an upward trend before the policy change, while participation is always higher for the control group. Furthermore, the rate of growth is very similar for the two groups, whereas women without children clearly have a different pre-reform trend. This suggests that women with an older child are an appropriate control group for our DD analysis, whereas women without children are not.

In Figure 37 we plot the average number of hours worked per week. Again we see that there is a clear upward trend, both in the treatment group and our control group, whereas the upward trend is absent in the group of women without children. Again, women with an older child seem an appropriate control group, and women without children do not.

108 There appears to be somewhat of a wobble in the participation rate in the control group around 2003–2004. However, when we add a placebo treatment dummy for 2003–2004, it is not significantly different from zero, and the treatment effect is virtually unchanged, see below in Table 34. As an additional check we also looked at the mean values for the covariates for the control group, but these show no sudden changes around 2003 (see the online appendix of Bettendorf et al. (2015)).
5.5 Estimation results

5.5.1 Participation rate

We first present the estimation results for the effect of the reform on the participation rate of all women in the treatment group, and subsequently consider the results for subgroups.

We first estimate equation (5.1) for the participation rate, without any individual or household characteristics and with two treatment effects, one for 2005–2007 and one for 2008–2009.\(^{109}\) Estimates are presented in column (1) in Table 34. In the first three years the effect is 2.7 percentage points, while in the last two years it is 4.2 percentage points, both significantly different from zero. In column (2) we include individual characteristics. Controlling for changes in the observed characteristics, the effects drop to 1.5 percentage points and 2.3 percentage points (a 3.0% increase), respectively.\(^{110, 111}\)

A concern might be that some women that were in the treatment group in the early years are in the control group in the later years. When there is a treatment effect on the participation rate of mothers extending beyond the treatment period (due to for example a career effect), part of the treatment effect may be masked by an effect on the control group.\(^{112}\) Therefore we also estimate the model using only parents with a child 16–17 years of age in the control group so that individuals in the control group that were previously in the treatment group are excluded. This results in the effects reported in column (3). The effect is somewhat larger than our base results, though not significantly different.

\(^{109}\)Results of estimating the model with annual treatment dummies for 2005–2009 can be found in the online appendix of Bettendorf et al. (2015). We can not reject that the treatment effects per year are equal. However, the results suggest a difference between the effects in 2005–2007 and 2008–2009. We therefore decided to estimate and present results with separate treatment effects for 2005–2007 and 2008–2009. These might be considered the short- and medium-run effects of the reform.

\(^{110}\)The estimates of the coefficients of the control variables are all significant and in line with expectations, see the online appendix of Bettendorf et al. (2015). The linear probability model may predict values outside the [0,1] interval. We find that only 0.14% of the predicted values are outside this interval.

\(^{111}\)For the two treatment effects we still cannot reject that they are equal. When we estimate one single treatment effect for 2005–2009, we obtain a treatment effect of 1.8 percentage points (significant at the 1% level).

\(^{112}\)The results on career effects of the studies discussed in Section 5.6 are mixed. Lefebvre et al. (2009) find significant long-run effects for lower-educated mothers, Nollenberger and Rodríguez-Planas (2015) find that the effect on participation reaches its maximum two years after the treatment and then fades away.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLS</td>
<td>WLS</td>
<td>WLS</td>
<td>WLS</td>
<td>M-DD</td>
<td>WLS</td>
</tr>
<tr>
<td>95–09</td>
<td>95–09</td>
<td>95–09</td>
<td>95–09</td>
<td>95–09</td>
<td>95–09</td>
<td>95–09</td>
</tr>
<tr>
<td></td>
<td>No covariates</td>
<td>No overlap</td>
<td>With placebo</td>
<td>Simple diff. quadr. trend</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Placebo 00–02

-0.001 (0.007)

Placebo 03–04

-0.011 (0.008)

Treat 05–07

-0.027*** (0.006) 0.015** (0.006) 0.025** (0.011) 0.012* (0.007) 0.016* (0.008) -0.008 (0.006)

Treat 08–09

0.042*** (0.006) 0.023*** (0.006) 0.034*** (0.010) 0.021*** (0.007) 0.031*** (0.007) 0.033*** (0.011)

Observations

263,229 263,229 219,961 263,229 263,229 202,104

Robust standard errors in parentheses, standard errors in column (5) are bootstrapped, * denotes significant at 10% level, ** at 5% level and *** at 1% level. Individual characteristics (except in (1)), group fixed effects and year fixed effects are included but not reported. The control group consists of parents with a youngest child aged 16–17, so we exclude individuals in the control group that were previously in the treatment group.
Table 35: Effect on participation rate: subgroups of women (WLS)

<table>
<thead>
<tr>
<th></th>
<th>(1) Single women</th>
<th>(2) Women in couples</th>
<th>(3) Youngest child 0–3</th>
<th>(4) Youngest child 4–7</th>
<th>(5) Youngest child 8–11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat 05-07</td>
<td>0.030 (0.019)</td>
<td>0.011 ∗</td>
<td>0.018 ***</td>
<td>0.015 **</td>
<td>0.012 (0.008)</td>
</tr>
<tr>
<td>Treat 08-09</td>
<td>0.047 ***</td>
<td>0.020 ***</td>
<td>0.025 ***</td>
<td>0.028 ***</td>
<td>0.015 ** (0.007)</td>
</tr>
<tr>
<td>Observations</td>
<td>26,453 236,776</td>
<td>155,163 119,429</td>
<td>110,887</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses, ∗ denotes significant at 10% level, ∗∗ at 5% level and ∗∗∗ at 1% level. Individual characteristics, group fixed effects and year fixed effects are included but not reported.

The validity of our estimates depends critically on the common trend assumption. To further assess the plausibility of this assumption we also estimate a placebo treatment effect. Specifically, we estimate a treatment effect for some years before 2005. Since no relevant policy change occurred in this period (that differs between the treatment and control group) we should not find a significant effect. We estimate a placebo treatment effect for 2000–2002 and for 2003–2004. The placebo effects and the two treatment effects are reported in column (4). Both placebo treatment effects are not significantly different from zero, while both treatment effects are hardly affected by the inclusion of the placebo dummies.113

As another robustness check we report estimates based on a matching-differences-in-differences approach (see for example Blundell and Costa Dias, 2009). The combination of matching and differences-in-differences weakens the required assumptions of each of these methods separately. We create cells based on marital status, ethnicity, education level and number of children. We calculate the average participation in each cell-year combination for both the control and the treatment group and compute the differences-in-differences estimate for each cell. We then average over all estimates, weighting by the population share of the cell in the treatment group.114 The estimates are presented in column (5) and are very close to the baseline effects.

114 The exact estimator is defined as follows. Define cells \(j \in J \) for each combination of the values of the covariates (there are 36 cells in our application). The variable of interest (participation or hours worked) of individual \(i \), in year \(t \) belongs to one particular cell \(j \) and to the treatment group \((d = 1) \) or the control
Finally, we show results of a simple differencing model for only the treatment group, including a quadratic time trend (column (6)). This leads to a zero effect in 2005–2007 and a positive effect of 3.3 percentage points in 2008–2009.

We also estimate the effect for the following subgroups of women: i) single women, ii) women in couples, iii) women with a youngest child 0–3 years of age (pre primary school), iv) 4–7 years of age (first years in primary school), and v) 8–11 years of age (last years in primary school). We do this by estimating equation (5.1) for each subsample, thereby allowing differences in coefficients for all covariates between subgroups. Results are reported for these groups in Table 35. In columns (1) and (2) we find that the effect on the participation rate of single women is higher than for women in couples. Next, columns (3), (4) and (5) suggest that the effect on the participation rate is larger for women with a child in daycare or a child in the first grades of primary school than for women with a child in the later grades of primary school. Since older children are less likely to go to childcare, and we are estimating an intention-to-treat effect, this is in line with expectations. The placebo treatment dummies for 2000–2004 are insignificant for all subgroups except for women with a youngest child aged 0-3.

5.5.2 Hours worked per week

In addition to participation we are also interested in the effect on hours worked per week. Again we start with the results for all women, and subsequently consider the group \(d = 0\), and is denoted by \(Y^d_{ijt}\). We define three periods \(p = 0, 1, 2\), which are the pre-reform period (1995–2004), the short-term post-reform period (2005–2007) and the medium-term post-reform period (2008–2009). The average outcome in cell \(j\) of group \(d\) in period \(p\) is given by:

\[
\bar{Y}^d_{j,p} = \frac{1}{\sum_i \sum_{t\in p} k_{i,t} Y^d_{i,j,t}} \sum_{t\in p} k_{i,t} \sum_i Y^d_{i,j,t}
\]

With \(k_{i,t}\) is the individual’s weight within a cell, which is based on the population weights that we use in all regressions. The treatment effect estimator (for the short-term effect, \(p = 1\)) is given by the weighted average over the differences-in-differences estimates in each cell:

\[
\delta_p = \sum_{j=1}^L \alpha_j \left[(\bar{Y}^{\text{treat}}_{j,1} - \bar{Y}^{\text{treat}}_{j,0}) - (\bar{Y}^{\text{control}}_{j,1} - \bar{Y}^{\text{control}}_{j,0}) \right]
\]

And similar for the medium-term effect, \(p = 2\). The weight of each cell in the sample is denoted by \(\alpha_j\) and is based on the distribution of covariates of the treated individuals in the post-reform period.

115 The online appendix of Bettendorf et al. (2015) contains treatment effects per age of the youngest child, for 2005–2007 and 2008–2009, respectively. These results also show a declining pattern with age of the youngest child.

116 These results are available in the online appendix of Bettendorf et al. (2015).
results for subgroups.117

As discussed in Section 5.3 we estimate equation (5.1) with average hours worked per week as the outcome variable and including all women in this regression, both working women and non-working women. We estimate a separate treatment dummy for 2005–2007 and for 2008–2009. Results for the estimation without covariates are reported in column (1) in Table 36. We find a significantly positive effect of 1.0 hours per week in 2005–2007, and 1.6 hours per week in 2008–2009. When we include covariates, in column (2), the treatment effects drop again, but remain positive and significant at the 1% level in both periods. In 2005–2007 the estimated effect is an increase of 0.7 hours per week. In 2008–2009 the effect is 1.1 hours per week. Given the average number of hours worked per week for women of 18.4 in 2008–2009, these effects are more substantial in percentage terms (6.2\% in 2008–2009) than the effects on the participation rate (3.0\% in 2008–2009).

When we restrict the control group to mothers with a youngest child 16–17 years of age, such that they were never in the treatment group, we find that the estimated effect on hours is again somewhat larger; see column (3). Column (4) presents the effects on hours worked when we add two placebo treatment dummies, for 2000–2002 and 2003–2004. The first placebo dummy is negative and significant at the 10\% level, the second is not significantly different from zero.118 Both the short- and medium-run treatment effects are somewhat lower than in column (2).

In column (5) we present results from the matching-differences-in-differences estimator as defined in the previous section. The results are very similar to the baseline results in column (2). In column (6) we present results from a simple difference model, only including the treatment group and a quadratic trend. The treatment effect for 2005–2007 is not significantly different from zero, the treatment effect for 2008–2009 is close to our baseline estimate.

For subgroups of women we report estimates in Table 37. The pattern is similar to the results for participation. The effect for single women is again larger than for women in couples and the total effect can be attributed mainly to women with a child younger

117For the hours worked analysis we restrict the sample period to 1997–2009. Inspection of the trends showed that in 1995–1996 trends might be slightly different, such that we decided to exclude these early years from the hours analysis.

118In the online appendix of Bettendorf et al. (2015) results can be found that show that using 2003–2004 as the base years and including a placebo treatment dummy for the periods before 2003, results in insignificant placebo treatment dummies for hours worked per week.
Table 36: Effect on hours worked per week: all women

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLS</td>
<td>WLS</td>
<td>WLS</td>
<td>WLS</td>
<td>M-DD</td>
<td>WLS</td>
</tr>
<tr>
<td>Time period</td>
<td>97–09</td>
<td>97–09</td>
<td>97–09</td>
<td>97–09</td>
<td>97–09</td>
<td>97–09</td>
</tr>
<tr>
<td>No covariates</td>
<td>No overlap(^a)</td>
<td>With placebo</td>
<td>Simple diff. quadr. trend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo 00–02</td>
<td>-0.447(^*)</td>
<td>0.436</td>
<td>-0.134</td>
<td>(0.263)</td>
<td>(0.271)</td>
<td></td>
</tr>
<tr>
<td>Placebo 03–04</td>
<td>1.033(^{***})</td>
<td>0.661(^{***})</td>
<td>0.775(^{***})</td>
<td>0.384</td>
<td>0.817(^{***})</td>
<td>-0.134</td>
</tr>
<tr>
<td>Treat 05–07</td>
<td>(0.207)</td>
<td>(0.198)</td>
<td>(0.356)</td>
<td>(0.246)</td>
<td>(0.237)</td>
<td>(0.173)</td>
</tr>
<tr>
<td>Treat 08–09</td>
<td>1.570(^{***})</td>
<td>1.075(^{***})</td>
<td>1.402(^{***})</td>
<td>0.798(^{***})</td>
<td>1.278(^{***})</td>
<td>1.136(^{***})</td>
</tr>
<tr>
<td>Observations</td>
<td>231,097</td>
<td>231,097</td>
<td>192,962</td>
<td>231,097</td>
<td>231,097</td>
<td>177,286</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses, \(^*\) denotes significant at 10% level, \(^{**}\) at 5% level and \(^{***}\) at 1% level. Individual characteristics (except in (1)), group fixed effects and year fixed effects are included but not reported. \(^a\)The control group consists of parents with a youngest child aged 16–17, so we exclude individuals in the control group that were previously in the treatment group.
Table 37: Effect on hours worked per week: subgroups of women (WLS)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat 05–07</td>
<td>1.090*</td>
<td>0.552**</td>
<td>1.009***</td>
<td>0.472**</td>
<td>0.309</td>
</tr>
<tr>
<td></td>
<td>(0.623)</td>
<td>(0.207)</td>
<td>(0.218)</td>
<td>(0.241)</td>
<td>(0.254)</td>
</tr>
<tr>
<td>Treat 08–09</td>
<td>1.680***</td>
<td>0.962***</td>
<td>1.418***</td>
<td>1.226***</td>
<td>0.408</td>
</tr>
<tr>
<td></td>
<td>(0.609)</td>
<td>(0.203)</td>
<td>(0.215)</td>
<td>(0.239)</td>
<td>(0.250)</td>
</tr>
<tr>
<td>Observations</td>
<td>23,945</td>
<td>207,152</td>
<td>135,545</td>
<td>105,170</td>
<td>98,004</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses, * denotes significant at 10% level, ** at 5% level and *** at 1% level. Individual characteristics, group fixed effects and year fixed effects are included but not reported.

than 8 years of age. For hours worked, the placebo treatment dummies are insignificant for all subgroups except women in couples and women with a youngest child 0–3 years old. Recall we are identifying the treatment effects of the joint reform and not solely of the childcare reform. The differential effects across subgroups therefore might be confounded by heterogeneous effects of the EITC expansion.

5.5.3 Results for men

The effects for men are much less pronounced. We briefly report the main results in Table 38. We find no significant effect on the participation rate of men in any treatment year in any specification. We also check for an effect on the participation rate for subgroups. We find no significant effect for most subgroups.

We find a negative coefficient on hours worked per week for men, increasing in magnitude to –0.3 hours in 2008-2009. However, the coefficient is not significantly different from zero. For men with a youngest child 0–3 years old we find a significant negative effect on hours worked of –0.5 hours per week. The drop in hours worked by these men may be the result of the increase in the labor supply of their partners.

119 Placebo treatment effects can be found in the online appendix of Bettendorf et al. (2015).
120 Detailed results can be found in the online appendix of Bettendorf et al. (2015). Also figures showing the participation rates and hours worked per week for men can be found in the online appendix.
121 When we limit the control group to men with a youngest child 16 or 17 years old, the coefficient on the treatment effect becomes slightly negative for 2008–2009 and significant at the 10% level.
Table 38: Effects on labour supply: all men

<table>
<thead>
<tr>
<th></th>
<th>(1) Participation</th>
<th>(2) Hours worked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLS</td>
<td>WLS</td>
</tr>
<tr>
<td>Treatment 05-07</td>
<td>0.005</td>
<td>-0.108</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.238)</td>
</tr>
<tr>
<td>Treatment 08-09</td>
<td>0.003</td>
<td>-0.344</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.216)</td>
</tr>
<tr>
<td>Observations</td>
<td>224,674</td>
<td>195,879</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses, * denotes significant at 10% level, ** at 5% level and *** at 1% level. Individual characteristics, group fixed effects and year fixed effects are included but not reported.

5.6 Discussion

How do our results compare to the findings of related studies? Table 39 gives an overview of quasi-experimental studies that study the effect of changes in subsidized childcare or eligibility for (pre-)school on the labor force participation of parents. For each study we report subsequently: the country under consideration, a brief description of the reform/instrument and the treatment group, the pre-reform or counterfactual participation rate and hours worked per week (including the zeros for the non-participants), the sample period, the share of part-time employment in total employment, and finally the treatment effect on the participation rate (in percentage points) and on hours worked per week.

We divide the studies into two groups, 'intention-to-treat' studies and 'IV' studies. The reported treatment effects for the IV studies measure the effect corresponding to an increase in the enrollment rate of children in childcare or pre-school by 1 percentage point (multiplied by 100 for the participation rate). The reported treatment effects for the intention-to-treat studies correspond to different changes in enrollment rates of children in childcare or pre-school. Therefore, to ease the comparison, below we also...

122 The exact references of the reported treatment effects can be found in the online appendix of Bettendorf et al. (2015).
123 The data on part-time employment in total employment are taken from the OECD Labor Force Statistics. The data are for all women and men. Unfortunately, the OECD does not report part-time shares for the subgroups we consider.
present back-of-the-envelope calculations of an ‘IV’ treatment effect for some intention-to-treat studies using information on changes in the enrollment rates of children in childcare or pre-school.

First, consider the effect on the participation rate. Looking at the column ‘TE PR’ (treatment effect, participation rate) of Table 39, we find that our treatment effect takes an intermediate position. For the whole group of mothers with a youngest child 0–11 years of age, we find an increase in the participation rate of 2.3 percentage points. This is larger than the effects reported for the reforms in Sweden and Norway by respectively Lundin et al. (2008) and Havnes and Mogstad (2011a), comparable to the effects reported by Nollenberger and Rodríguez-Planas (2015) for the reform in Spain, but substantially smaller than the effects reported by Baker et al. (2008) and Lefebvre and Merrigan (2008) for the reform in Quebec.124

However, the comparison is complicated by the fact that we are comparing treatment effects for different impulses, and for different treatment groups. To ease the comparison with other studies we can calculate the increase in the participation rate of mothers per percentage point increase in the enrollment rate of children in childcare or pre-school, following e.g. Cascio (2009). Furthermore, most other studies focus on mothers with young children, so we will do the calculation for mothers with a youngest child 0–3 years of age. For this group we find a treatment effect of 2.5 percentage points. The data underlying Figure 33 show that the enrollment rate for children 0–3 years of age increased by 13.2 percentage points over the period 2004–2009 (the last year of the pre-reform period to the last year of the reform period for which we have data).125 This suggests a 0.19 (0.025/0.132) percentage point increase in the participation rate of mothers with a youngest child 0–3 years of age per percentage point increase in the enrollment of children 0–3 years of age in formal childcare.126 This is larger than the

124The treatment effect of Lundin et al. (2008) is not directly comparable to the other numbers since it measures the childcare price elasticity of the employment rate of mothers. However, what is the most relevant here is that the number is small and insignificantly different from zero.

125This may include an increase in the enrollment rate due to other reasons than the reform. However, since there is no control group for the use of formal childcare (we consider a nationwide reform), it is hard to determine what the increase in enrollment would have been in the absence of the reform.

126A similar calculation for mothers with a youngest child 4–7 and 8–11 years of age is complicated by the fact that we only have information on the enrollment rate of children for both age groups combined. The enrollment rate of children in formal childcare in this age range increased by 9.6 percentage points over the period 2004–2009. Applying this increase to both groups we obtain a 0.29 (0.028/0.096) and 0.16 (0.015/0.096) percentage point increase in the participation rate of mothers with a youngest child 4–7 and 8–11 years of age, respectively, per percentage point increase in the enrollment of their children in...
Table 39: Comparison with related quasi-experimental studiesa

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Reform/instrument</th>
<th>Treatment group</th>
<th>Pre PR</th>
<th>Pre H/W</th>
<th>Sample period</th>
<th>Share PT</th>
<th>TE PR</th>
<th>TE H/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>NL</td>
<td>Parental fee from 37 to 18%, extens. to guestparent care, increase EITC work. parents</td>
<td>Mothers 0–11</td>
<td>71</td>
<td>15.2</td>
<td>95–09</td>
<td>60</td>
<td>2.3***</td>
<td>1.1***</td>
</tr>
<tr>
<td></td>
<td>Mothers coupl. 0–11</td>
<td>72</td>
<td>15.3</td>
<td>95–09</td>
<td>60</td>
<td>2.0***</td>
<td>0.9***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single moth. 0–11</td>
<td>56</td>
<td>14.2</td>
<td>95–09</td>
<td>60</td>
<td>4.7***</td>
<td>1.7***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mothers young. 0–3</td>
<td>70</td>
<td>15.3</td>
<td>95–09</td>
<td>60</td>
<td>2.5***</td>
<td>1.4***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mothers young. 4–7</td>
<td>69</td>
<td>14.4</td>
<td>95–09</td>
<td>60</td>
<td>2.8***</td>
<td>1.2***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mothers young. 8–11</td>
<td>74</td>
<td>16.0</td>
<td>95–09</td>
<td>60</td>
<td>1.5**</td>
<td>0.4***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fathers 0–11</td>
<td>94</td>
<td>38.2</td>
<td>95–09</td>
<td>15</td>
<td>0.3</td>
<td>–0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nollenberger and Rodríguez-Planas (2014)</td>
<td>ESP</td>
<td>Expansion of subsidized childcare</td>
<td>Mothers young. 3</td>
<td>29</td>
<td>10.9</td>
<td>87–97</td>
<td>12</td>
<td>2.3***</td>
<td>0.9***</td>
</tr>
<tr>
<td>Felle et al. (2013)</td>
<td>SWI</td>
<td>Difference in after-school care in neighbouring cantons</td>
<td>Mothers 0–12</td>
<td>68</td>
<td>-</td>
<td>10</td>
<td>47</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fathers 0–12</td>
<td>98</td>
<td>-</td>
<td>10</td>
<td>9</td>
<td>-2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Havnes and Mogstad (2011a)</td>
<td>NOR</td>
<td>Staggered intro childcare</td>
<td>Married moth. y. 3–6</td>
<td>25</td>
<td>-</td>
<td>(76,79)</td>
<td>41</td>
<td>7.1***</td>
<td>-</td>
</tr>
<tr>
<td>Schlosser (2011)</td>
<td>ISR</td>
<td>Staggered intro pre-school</td>
<td>Arab mothers 2–4</td>
<td>6</td>
<td>1.5</td>
<td>98–03</td>
<td>-</td>
<td>7.1**</td>
<td>2.8**</td>
</tr>
<tr>
<td>Goux and Maurin (2010)</td>
<td>FRA</td>
<td>Eligibility for pre-school</td>
<td>Mothers coupl. 3</td>
<td>78</td>
<td>-</td>
<td>99</td>
<td>25</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Single moth. 3</td>
<td>80</td>
<td>-</td>
<td>99</td>
<td>25</td>
<td>3.6**</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascio (2009)</td>
<td>US</td>
<td>Staggered intro public school</td>
<td>Married moth. y. 5</td>
<td>36</td>
<td>12.7</td>
<td>50–90</td>
<td>-</td>
<td>–1.1</td>
<td>–0.3</td>
</tr>
<tr>
<td></td>
<td>Single moth. y. 5</td>
<td>58</td>
<td>21.9</td>
<td>50–90</td>
<td>-</td>
<td>6.9**</td>
<td>2.4*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker et al. (2008)</td>
<td>CAN</td>
<td>Expansion childcare Quebec, parental fee from 50 to 20%</td>
<td>Women coupl. 0–4</td>
<td>53</td>
<td>-</td>
<td>94–02</td>
<td>29</td>
<td>7.7***</td>
<td>-</td>
</tr>
<tr>
<td>Lefebvre and Merrigan (2008)</td>
<td>CAN</td>
<td>Expansion childcare Quebec, parental fee from 50 to 20%</td>
<td>Mothers y. 1–5</td>
<td>61</td>
<td>19.8</td>
<td>93–02</td>
<td>29</td>
<td>8.1***</td>
<td>4.5***</td>
</tr>
<tr>
<td>Lundin et al. (2008)</td>
<td>SWE</td>
<td>Price cap childcare prices, 55% drop in parental fee</td>
<td>Mothers coupl. 1–9</td>
<td>70</td>
<td>-</td>
<td>(01,03)</td>
<td>21</td>
<td>–0.2</td>
<td>-</td>
</tr>
<tr>
<td>Berlinksi and Galiani (2007)</td>
<td>ARG</td>
<td>Staggered increase pre-school</td>
<td>Mothers 3–5</td>
<td>39</td>
<td>12.5</td>
<td>92–00</td>
<td>-</td>
<td>7.4</td>
<td>-</td>
</tr>
<tr>
<td>Fitzpatrick (2012)</td>
<td>US</td>
<td>Eligibility for public school, using date of birth</td>
<td>Married moth. y. 5</td>
<td>60</td>
<td>25.3</td>
<td>00</td>
<td>19</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Single moth. y. 5</td>
<td>68</td>
<td>32.9</td>
<td>00</td>
<td>19</td>
<td>12.2**</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitzpatrick (2010)</td>
<td>US</td>
<td>Eligibility for pre-kindergarten in Georgia and Oklahoma, using date of birth</td>
<td>Mothers young. 4</td>
<td>70</td>
<td>25.6</td>
<td>00</td>
<td>19</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Single moth. y. 4</td>
<td>-</td>
<td>-</td>
<td>00</td>
<td>19</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelbach (2002)</td>
<td>US</td>
<td>Eligibility for public school, using quarter of birth</td>
<td>Married moth. y. 5</td>
<td>41</td>
<td>13.5</td>
<td>80</td>
<td>22</td>
<td>5.0***</td>
<td>1.5***</td>
</tr>
<tr>
<td></td>
<td>Single moth. y. 5</td>
<td>52</td>
<td>17.9</td>
<td>80</td>
<td>22</td>
<td>5.1**</td>
<td>2.7***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aColumn 4 indicates the treatment group, where the numbers (e.g. 0–11) indicate the age of the child, and youngest child is abbreviated to young. Columns 5–10 give respectively (5) the pre-reform or counterfactual participation rate, (6) the pre-reform or counterfactual hours worked per week (including zeros for non-participants), (7) the sample period, (8) the share of part-time workers for all women or men in a country from the OECD in the year before the reform (DD studies) or the year before the year of the data (RD studies), (9) the treatment effect on the participation rate (in percentage points) and (10) the treatment effect on hours worked per week (in hours per week). The exact reference for the treatment effects for each study can be found in the online appendix of Bettendorf et al. (2015).
0.06 calculated for Norway by Havnes and Mogstad (2011a), comparable to the 0.18 calculated for Spain by Nollenberger and Rodriguez-Planas (2015) but substantially smaller than the 0.55 which we can calculate for the reform in Quebec of Baker et al. (2008).

One reason that can explain why we find smaller effects than Baker et al. (2008) for Quebec is that we consider data from a relatively recent period, where the pre-reform participation rate of mothers was already relatively high. As argued by e.g. Cascio (2009) and Fitzpatrick (2012), studies that use data from a later period are therefore more likely to find smaller effects, as childcare subsidies are then more likely to be inframarginal to the participation decision. However, we should note that some studies (e.g. Goux and Maurin, 2010; Havnes and Mogstad, 2011a) have also expressed concerns about the studies on the reform in Quebec, where pre-reform trends seem to differ between the treatment province and the control provinces and there were also other reforms occurring during the same period as the childcare reform.

A potential explanation for why the effect is larger than the effects reported by Lundin et al. (2008) and Havnes and Mogstad (2011a), is that both workers and non-workers are eligible for subsidized childcare in Sweden and Norway, whereas only working parents are eligible for subsidized childcare in the Netherlands. Indeed, only working single parents and two-earner couples qualify for formal childcare subsidies in the Netherlands. This may also explain why the effect for women in couples is bigger than the effect found by e.g. Goux and Maurin (2010) and the effects of the US formal childcare. However, since the enrollment rate of children 4–7 years of age is typically larger than the enrollment rate of children 8-11 years of age, and hence probably also the increase in enrollment rate in percentage points, the number is more likely to be smaller than 0.29 for mothers with a youngest child 4–7 years of age and more likely to be larger than 0.16 for mothers with a youngest child 8-11 years of age. Unfortunately, we do not have information on the enrollment rate of formal childcare for the subgroups of single mothers and mothers in couples, so we can not do the calculation for these subgroups.

Baker et al. (2008, pp.711-713) report an additional increase in the enrollment rate in formal childcare in Quebec of 14 percentage points relative to the rest of Canada. This suggests a 0.55 (0.077/0.14) percentage point increase in the participation rate of mothers per percentage point increase in the enrollment rate of children in formal childcare.

Blau and Kahn (2007) and Heim (2007) show that labour supply elasticities of women in the US have fallen over time as their participation rate has increased. Cross-country support for the hypothesis that labor supply elasticities are lower when participation rates are higher can be found in Bargain et al. (2014).

Indeed, when comparing the treatment effects with placebo reforms, Baker et al. (2008, p.731) note that ”[B]y this method, the increase in care in Quebec is far outside anything seen in other provinces, but the increase in mothers’ employment lacks significance.”

Working parents and individuals actively looking for work or enrolled in active labor market policies.
studies (Gelbach, 2002; Fitzpatrick, 2010, 2012), noting that for the US studies we should compare the treatment effects with e.g. our back-of-the-envelope calculation of the ‘IV’ treatment effect (multiplied by 100) of 19 percentage points for mothers with a youngest child 0–3 years of age. These studies all focus on pre-school reforms, the (implicit) subsidy therefore does not have a work requirement on the part of the parents.

Turning to the effect on hours worked per week, again our results take an intermediate position. However, the effect we find for hours worked per week is relatively large when compared to the effect on the participation rate. This may be related to the large share of women that work part-time in the Netherlands. Indeed, despite the relatively high participation rate, the hours worked per week per person in the treatment group (including the zeros for non-participants) is still rather low. This leaves a lot of room for the intensive margin to respond.

In line with the other studies (e.g. Cascio, 2009; Goux and Maurin, 2010; Fitzpatrick, 2012) we find that the treatment effect is larger for single mothers than for women in couples.

Finally, there is one other study that also reports effects on fathers. Using differences in enforcement of out-of-school care in neighboring cantons in Switzerland, Felfe et al. (2013) find that whereas the share of full-time working women is higher when there is more out-of-school care, the share of full-time working men is lower. This is in line with our finding for fathers, they seem to have reduced their working hours in response to the Dutch reform. However, note that the effect is only statistically significant for men with a youngest child 0–3 years age.

5.7 Conclusion

Many countries seek to increase formal labor force participation of mothers. Policy-makers often point to Scandinavia, where public spending on childcare is high and the maternal employment rate is high as well. However, our analysis of a large recent reform

131 Again, we can do a back-of-the-envelope calculation of the effect on hours worked per week per percentage point increase in the enrollment rate of children in formal childcare. For mothers with a youngest child 0–3, 4–7 and 8–11 years of age this yields respectively 10.6 (1.4/0.132), 12.5 (1.2/0.096) and 4.2 (0.4/0.096). This is on average somewhat higher than Nollenberger and Rodriguez-Planas (2015) who calculate an effect of 7.53 hours per week per percentage point increase in the enrollment rate of children in childcare. According to Meghir and Phillips (2010) it is a stylized fact of empirical labor economics that single parents are relatively responsive to financial incentives.
in the Netherlands, which cut the parental fee for formal childcare in half, suggests that such a correlation can not necessarily be interpreted as a causal relation. We conclude that the large policy reform in the Netherlands increased participation of women with young children by a modest 2.3 percentage point or 3.0%. The hours worked effect is larger though, an increase of 1.1 hours per week or 6.2%. This is partly counteracted by a decrease in average hours worked by men of –0.3 per week, although the estimate for men is not significantly different from zero. Recall that all these effects should be interpreted as joint effects, as the government also increased EITCs for parents with young children over the same period.

Our findings are quantitatively in between the findings of recent studies for Sweden (Lundin et al., 2008) and Norway (Havnes and Mogstad, 2011a) that find very small effects, and studies for Canada (Baker et al., 2008; Lefebvre and Merrigan, 2008) and some other countries that find substantial effects. We believe that our results are particularly relevant for many other highly developed OECD countries that face quite similar starting conditions in terms of the maternal employment rate and public spending on childcare. We have also shown that it is important to look beyond participation and also look at hours worked per week.

In this chapter we use the Dutch reform to study the relation between childcare subsidies and labor force participation. However, the reform could also be used to investigate a number of other relevant questions. Indeed, Baker et al. (2008) argue that a full evaluation of publicly financed childcare requires answers to three questions, which we take up below.

First, how does public financing affect the quality and quantity of formal childcare, and to what extent does it lead to substitution of informal childcare? This requires microdata on the price and use of formal and informal childcare over time. One of the side effects of the policy reform is that since 2005 we have potentially good microdata on the use of formal childcare, since all subsidies now run via the Tax Office. However, finding reliable informal childcare data remains a challenge.

Second, how do childcare subsidies affect labor force participation and what is the net cost to the government? We have answered the first part of this question. For the second part one needs to link the labor force participation data to the childcare data, and to link these data to a tax-benefit calculator to determine the effects on government
receipts and expenditures.133 We do not have the data to do this exercise. However, the expansion seems to have been rather costly. Between 2005 and 2009 expenditures on childcare subsidies and EITCs for parents with young children increased by 2.6 billion euro in total. This seems a rather large amount given that the increase in participation in persons and in fulltime equivalents was about 30 thousand.134 Even after controlling for some trend growth in these expenditures, the additional public expenditure per additional working person or per additional working fulltime equivalent seems rather large.

Third, what is the effect of expanding formal childcare on children and families? There are a number of papers that use the same reforms used in the analysis of labor force participation to study the effects on children and families (see e.g. Loeb et al., 2007; Baker et al., 2008; Havnes and Mogstad, 2011b). For the moment no such study exists for the Netherlands. However, a number of recent studies suggest that this might be an important element to consider in the Dutch reform. Vermeer et al. (2005) and Kruijf et al. (2009) use a large number of internationally comparable indicators for the quality of daycare, and find a disturbing trend.135 On a scale from 1 (bad) to 7 (excellent), their sample scored on average 4.8 in 1995, 4.3 in 2001, 3.2 in 2005 and a meager 2.8 in 2008. Furthermore, in 2008, 49\% of daycare centers got a rating ‘insufficient’ and 51\% got a rating of ‘poor’, while none of the 200 daycare centers got a rating of ‘good’. Hence, it seems important to study how the policy reform affected children and families, and how participation in formal childcare affects children and families in general.

We are also interested in how these effects may differ in the short- and long-run. In particular, we have used data up to 2009. Since the major changes in the parental fee took place in 2006 and 2007, we consider our results medium-run effects. It would be interesting to study what happened after 2009. Faced with the dramatic rise in public expenditures on formal childcare, the current government has substantially decreased subsidies for formal childcare. Indeed, by 2015 the average parental fee will rise to 34\% (Ministry of Social Affairs and Employment, 2011). However, this will provide us with

133 Despite the substantial rise in female participation found in Baker et al. (2008) they still calculate the net effect on government finances to be negative, in part due to substantial substitution of informal care by formal care.

134 Part of the increase in hours worked by mothers is counteracted by the drop in hours worked by fathers.

135 Specifically, they use the ITERS-R (Infant/Toddler Environment Rating Scale - Revised) for 0-2.5 year olds, and the ECERS-R (Early Childhood Environment Rating Scale - Revised) for 2.5 to 5 year olds.
an interesting new natural experiment, to study e.g. whether the response of parents is symmetric for decreases and increases in the parental fee.
Summary and Conclusions

This thesis consists of four chapters that empirically investigate the effects of labor market policies on individual outcomes. In this final chapter, each chapter is summarized and some conclusions are presented.

Chapter 2 compares different evaluation methods for estimating the effects of activation programs on job finding. In particular, it investigates whether selective participation in job search assistance programs remains a problem when a wide set of individual characteristics are observed and can be conditioned on. To answer this question, a large policy discontinuity in program provision in the Netherlands in 2010 is exploited. The discontinuity provides exogenous variation in program participation and can therefore be seen as a natural experiment and used to estimate how participation in the program affects job finding. Using non-experimental methods, such as matching or the timing-of-events model, the same program effects can be estimated. These methods do not exploit the policy discontinuity, but rely on conditioning on a wide set of observable characteristics to identify the program effect. A comparison of the results of two approaches provides evidence on the plausibility of the identifying assumptions of the non-experimental methods.

The experimental estimates show that enrollment in the program reduces outflow to work during the first three to five months after the program starts, while after five months there is no effect on job finding. The matching estimator also finds that the effect on job finding is negative in the short-run, but in addition suggests that the effect is significantly negative even after 12 months. We conclude that, especially in the case
of activation programs, where selectivity in participation is a large issue, even a large set of observed characteristics may not suffice to correct for the selection bias. A useful next step would be to investigate whether “soft” variables such as motivational measures or personality traits, which are less likely to be available in administrative data, are relevant for program participation and can solve the selection bias.

Chapter 3 describes the results of a field experiment on job search behavior. It investigates the effects of a web-based information intervention on employment prospects. Job seekers were invited to search for jobs in a computer lab for 12 consecutive weekly sessions. They searched for real jobs using a web interface that allowed to observe job search behavior in great detail. After three weeks, a manipulation of the interface was introduced for half of the sample. The manipulation consisted of providing suggestions of alternative occupations to consider, based on the profile of the job seeker. These suggestions were made using background information from readily available labor market transitions data.

Job seekers that used the alternative interface changed their search strategies. Those that were initially searching narrow (in terms of occupations) became significantly broader in their search, sent more applications, and have more job interviews. Those that were initially searching broad became more narrow, but their number of job interviews did not change. This implies that a policy of providing information based on labor market statistics might be beneficial to many job seekers, while being low cost and relatively simple to implement.

Chapter 4 focuses on spillover effects of job search assistance programs. Randomized experiments provide policy-relevant treatment effects if there are no spillovers between participants and nonparticipants. In this chapter it is shown that this assumption is violated for a Danish activation program for unemployed workers. Using a difference-in-difference model we find that the nonparticipants (in the regions where the program was offered) find jobs slower after the introduction of the activation program (relative to workers in other regions). This suggests that the increase in job finding of the participants is crowding out job finding of non-participants in the same region.

To investigate what this finding implies for a large-scale role out of the program, we extend an equilibrium job search model to include program participation. The model parameters are estimated to replicate the main empirical findings on the effects of the program. Simulation of the model suggests that if every unemployed job seeker
participates in the program, the program has no effect on job finding. Furthermore, a large-scale role out of the activation program would decrease welfare while a standard partial microeconometric cost-benefit analysis concludes the opposite.

Chapter 5 investigates whether a higher level of childcare subsidies increases labor supply of mothers with young children. By exploiting a reform in the Netherlands that substantially increased childcare subsidies, the paper estimates the effect on labor force participation and hours worked. We find that, despite the substantial budgetary outlay, the reform had only a modest impact on employment. The joint reform increased the maternal employment rate by 2.3 %-points (3.0%) and maternal hours worked by 1.1 hours per week (6.2%). The results further suggest that the reform slightly reduced hours worked by fathers. We conclude that, given the large budgetary expansion of the childcare subsidies, the effect on labor supply of mothers with young children is modest.
Bibliography

Samenvatting (Dutch summary)

Deze dissertatie bestaat uit vier hoofdstukken die elk empirisch het effect van arbeids- markt beleid op individuele uitkomsten onderzoeken. In dit laatste hoofdstuk worden de voorgaande hoofdstukken samengevat en enkele conclusies gepresenteerd.

Hoofdstuk 2 vergelijkt verschillende evaluatie methoden voor het schatten van de effecten van activeringsprogramma's op het vinden van werk. Het evalueren van zulke programma's wordt gecompliceerd door selectieve participatie. In dit hoofdstuk wordt onderzocht of het controleren voor een groot aantal individuele karakteristieken voldoende is om het selectie probleem op te lossen. Om deze vraag te beantwoorden wordt gebruik gemaakt van een discontinuïteit in het aanbod van deze programma's in Nederland in 2010. De discontinuïteit veroorzaakt exogene variatie in participatie, waardoor ze gezien kan worden als een natuurlijk experiment. Dit experiment kan vervolgens gebruikt worden om het effect van de programma's op het vinden van werk te schatten. Dezelfde effecten kunnen ook met non-experimentele methodes worden geschat, zoals met 'matching' of het 'timing-of-events model'. Deze methodes maken geen gebruik van de discontinuïteit in het aanbod van de programma's, maar controleren voor een groot aantal individuele karakteristieken om het effect te identificeren. Een vergelijking van de non-experimentele met de experimentele methodes geeft de mogelijkheid om de identificerende aannames van de niet-experimentele methoden te testen.

De experimentele schattingen laten zien dat deelname in een programma de kans op werk verkleint tijdens de eerst drie tot vijf maanden na het starten van het programma. Na vijf maanden is er geen effect op de kans werk gevonden te hebben. De 'matching' schatter vindt een soortgelijk (negatief) effect op de korte-termijn, maar suggereert dat het negatieve effect blijvend is, zelfs na 12 maanden. We concluderen dat voor activeringsprogramma's waarbij deelname zeer selectief is, zelfs een groot aantal geobserveerde karakteristieken niet voldoende is om te corrigeren voor de selectie bias. Een nuttig vervolg zou zijn om te onderzoeken of variabelen zoals motivatie maatstaven
Samenvatting (Dutch summary)

of persoonlijkheidskenmerken, die over het algemeen niet in administratieve data beschikbaar zijn, bepalend zijn voor deelname in activeringsprogramma's en dus selectie bias kunnen oplossen.

Hoofdstuk 3 beschrijft de resultaten van een veldexperiment in het zoeken naar werk. Er wordt onderzocht wat het effect is van het aanbieden van arbeidsmarkt informatie via internet op de kans op het vinden van werk. Werkzoekenden werden uitgenodigd om gedurende 12 weken naar werk te zoeken tijdens een wekelijkse sessie in een computer lab. Ze zochten in een database van echte vacatures en gebruikten een zoekmachine die het mogelijk maakte om zoekstrategieën zeer gedetailleerd te volgen. Na drie weken kreeg de helft van de deelnemers een andere zoekmachine, die suggesties gaf voor alternatieve beroepen gebaseerd op het persoonlijke profiel van de werkzoekende. Deze suggesties werden gebaseerd op arbeidsmarkt data die publiekelijk beschikbaar is.

De deelnemers die de alternatieve zoekmachine gebruikten veranderden hun zoekstrategie. Degenen die oorspronkelijk ‘nauw’ zochten (in termen van het aantal beroepen dat ze bekeken), gingen ‘breder’ zoeken, stuurden meer sollicitaties en kregen meer sollicitatiegesprekken. Degenen die oorspronkelijk al breed zochten gingen nauwer zoeken, maar hun aantal sollicitatiegesprekken veranderde niet. Dit suggereert dat het verstrekken van informatie gebaseerd op arbeidsmarkt statistieken bevorderlijk kan zijn voor werkzoekenden, terwijl de kosten van zulk beleid laag zijn en de implementatie relatief eenvoudig.

In hoofdstuk 4 wordt gekeken naar algemene evenwichtseffecten van activeringsprogramma’s. Gerandomiseerde experimenten leiden tot een zuivere schatting van het effect van een programma, zolang er geen externe effecten zijn van het programma op werkzoekenden die niet deelnemen. In dit hoofdstuk wordt aangetoond dat deze aanname niet houdt in het geval van een activeringsprogramma in Denemarken. Door middel van een ‘difference-in-difference’ analyse vinden we dat de werkzoekenden die niet deelnemen, maar wel naar werk zoeken in de regio waar het programma aangeboden wordt, langzamer werk vinden (ten opzichte van werkzoekenden in de regio’s waar het programma niet aangeboden wordt). Het positieve effect op de deelnemers van het programma gaat dus ten koste van andere werkzoekenden in de regio.

Om te bepalen wat dit resultaat betekent voor grootschalige programma’s, gebruiken we een evenwichtswerkzoekmodel en voegen er activeringsprogramma’s aan toe. We schatten de parameters van het model zodanig dat het de bovenstaande empirische
resultaten replicateert. Simulatie van het model laat vervolgens zien dat wanneer alle
werkzoekenden deel zouden nemen aan het programma, er geen effect op het vinden
van werk zou zijn. Dit betekent dat het grootschalig aanbieden van het programma
de welvaart zou verlagen, terwijl een standaard micro-econometrische kosten-baten
analyse het tegenovergestelde concludeert.

Hoofdstuk 5 onderzoekt of een verhoging van de kinderopvangsubsidie leidt een
stijging van de arbeidsparticipatie van moeders met jonge kinderen. Door gebruik te
maken van een hervorming in Nederland die leidde tot substantieel hogere kinderop-
vangsubsidies, schatten we het effect op zowel arbeidsparticipatie als aantal gewerkte
uren per week. We vinden dat, ondanks een grote verhoging van het overheidsbudget
voor subsidies, de hervorming een beperkt effect had. De hervorming leidde tot en
stijging van de arbeidsparticipatie van vrouwen met jonge kinderen van 2.3 procent-
punt (3.0 procent) terwijl het aantal gewerkt uren per week steeg met 1.1 uur (6.2
procent). Verder suggereren de resultaten een kleine daling van het aantal gewerkte
uren per week van vaders. We concluderen dat in verhouding tot de hoge budgettaire
costen van de subsidieverhoging, het beleid slechts een klein effect heeft gehad op het
arbeidsaanbod van moeders met jonge kinderen.
The Tinbergen Institute is the Institute for Economic Research, which was founded in 1987 by the Faculties of Economics and Econometrics of the Erasmus University Rotterdam, University of Amsterdam and VU University Amsterdam. The Institute is named after the late Professor Jan Tinbergen, Dutch Nobel Prize laureate in economics in 1969. The Tinbergen Institute is located in Amsterdam and Rotterdam. The following books recently appeared in the Tinbergen Institute Research Series:

585. Y. DAI, *Efficiency in Corporate Takeovers*
586. S.L. VAN DER STER, *Approximate feasibility in real-time scheduling: Speeding up in order to meet deadlines*
587. A. SELIM, *An Examination of Uncertainty from a Psychological and Economic Viewpoint*
588. B.Z. YUESHEN, *Frictions in Modern Financial Markets and the Implications for Market Quality*
589. D. VAN DOLDER, *Game Shows, Gambles, and Economic Behavior*
590. S.P. CEYHAN, *Essays on Bayesian Analysis of Time Varying Economic Patterns*
591. S. RENES, *Never the Single Measure*
593. Y. YANG, *Laboratory Tests of Theories of Strategic Interaction*
594. M.P. WOJTOWICZ, *Pricing Credits Derivatives and Credit Securitization*
595. R.S. SAYAG, *Communication and Learning in Decision Making*
596. S.L. BLAUW, *Well-to-do or doing well? Empirical studies of wellbeing and development*
598. P. ROBALO, *Understanding Political Behavior: Essays in Experimental Political Economy*
599. R. ZOUTENBIER, *Work Motivation and Incentives in the Public Sector*
600. M.B.W. KOBUS, *Economic Studies on Public Facility use*
601. R.J.D. POTTER VAN LOON, *Modeling non-standard financial decision making*
603. S. GUBINS, *Information Technologies and Travel*
604. D. KOPÁNYI, *Bounded Rationality and Learning in Market Competition*
605. N. MARTYNOVA, *Incentives and Regulation in Banking*
606. D. KARSTANJE, *Unraveling Dimensions: Commodity Futures Curves and Equity Liquidity*

607. T.C.A.P. GOSENS, *The Value of Recreational Areas in Urban Regions*

608. Ł.M. MARC, *The Impact of Aid on Total Government Expenditures*

609. C. LI, *Hitchhiking on the Road of Decision Making under Uncertainty*

610. L. ROENZDAHL HUBER, *Entrepreneurship, Teams and Sustainability: a Series of Field Experiments*

611. X. YANG, *Essays on High Frequency Financial Econometrics*

612. A.H. VAN DER WEIJDE, *The Industrial Organization of Transport Markets: Modeling pricing, Investment and Regulation in Rail and Road Networks*

614. C. DIETZ, *Hierarchies, Communication and Restricted Cooperation in Cooperative Games*

615. M.A. ZOICAN, *Financial System Architecture and Intermediation Quality*

616. G. ZHU, *Three Essays in Empirical Corporate Finance*

617. M. PLEUS, *Implementations of Tests on the Exogeneity of Selected Variables and their Performance in Practice*

618. B. VAN LEEUWEN, *Cooperation, Networks and Emotions: Three Essays in Behavioral Economics*

620. X. WANG, *Time Varying Risk Premium and Limited Participation in Financial Markets*

621. L.A. GORNICKA, *Regulating Financial Markets: Costs and Trade-offs*

622. A. KAMM, *Political Actors playing games: Theory and Experiments*

623. S. VAN DEN HAUWE, *Topics in Applied Macroeconometrics*

624. F.U. BRÄUNING, *Interbank Lending Relationships, Financial Crises and Monetary Policy*

626. M. POPLAWSKA, *Essays on Insurance and Health Economics*

627. X. CAI, *Essays in Labor and Product Market Search*

628. L. ZHAO, *Making Real Options Credible: Incomplete Markets, Dynamics, and Model Ambiguity*
629. K. BEL, *Multivariate Extensions to Discrete Choice Modeling*
630. Y. ZENG, *Topics in Trans-boundary River sharing Problems and Economic Theory*
631. M.G. WEBER, *Behavioral Economics and the Public Sector*
632. E. CZIBOR, *Heterogeneity in Response to Incentives: Evidence from Field Data*
633. A. JUODIS, *Essays in Panel Data Modelling*
634. F. ZHOU, *Essays on Mismeasurement and Misallocation on Transition Economies*