The general aim of this thesis was to uncover molecular mechanisms that are critical in regulated secretion of large dense-core vesicles in adrenal CCs: from the biogenesis of vesicles at the ER and the Golgi apparatus to their final destiny at release sites at the PM. We have focused our efforts on the role of Vti1a in the biogenesis of secretory vesicles and the Munc18-1 dependent regulation of the cortical F-actin network.

Biogenesis and maturation of secretory vesicles are key aspects of the first experimental chapter. We identified Vti1a, thus far known as endosomal SNARE protein (Kreykenbohm et al., 2002; Mallard et al., 2002) and suggested to play a functional role in spontaneous release in neurons (Ramirez et al., 2012), as essential regulator of secretory vesicles biogenesis in adrenal CCs. We showed that the impaired secretion, which was observed in the absence of \textit{vti1a}, was not attributable to a function of Vti1a in steps prior to fusion, such as docking and priming, or fusion itself. Instead, the deletion of \textit{vti1a} resulted in a decrease in the number of secretory vesicles, which led to the conclusion that Vti1a plays an essential role in the biogenesis of secretory vesicles (Chapter 2).

In the studies described in the following chapters, we focused on regulated exocytosis and PM localized processes. We first developed an automatic and therefore user-bias free algorithm that allowed us to quantify PM localized fluorescent signals in a highly objective and less time-consuming manner than previously described methods. In Chapter 3 we present this algorithm called PlasMACC and a selection of potential applications. The comparison between PlasMACC and earlier methods illustrated not only its functionality, but also emphasized improvements.

In Chapter 4, we used PlasMACC to quantify Munc18-1 dependent cortical F-actin alterations. We confirmed the increase in the cortical F-actin network in the absence of \textit{munc18-1}, which was described earlier (Toonen et al., 2006; Kurps and de Wit, 2012; Kurps et al., 2014). Due to the improved resolution of this analysis method, we were able to identify Munc18-1s domain 3 in general and amino acid V263 specifically as essential for Munc18-1s role in F-actin regulation. Alignment studies led us to conclude that especially the hydrophobicity at this position is a necessary requirement to facilitate Munc18-1 dependent cortical F-actin regulation.
Finally, we suggested a potential role of the PM localized phosphoinositide PI(4,5)P$_2$ in functional linking the SM protein Munc18-1 to the subplasmalemmal F-actin network. We found an increase in PI(4,5)P$_2$ levels on the PM of munc18-1 null CCs compared to wild type CCs. We suggest that the observed F-actin phenotype in munc18-1 null CCs is a result of the dysregulation of the lipid metabolism in the absence of munc18-1 (Chapter 5).

Munc18-1 dependent cortical F-actin regulation and the role of PI(4,5)P$_2$

Munc18-1 Interactome:
An overview of candidates connecting Munc18-1 to PI(4,5)P$_2$ and/or F-actin

Munc18-1 interacts with several proteins that can be linked directly or indirectly to PI(4,5)P$_2$ and/or the actin cytoskeleton (fig6.1). The interaction between Munc18-1 and the SNARE protein Syntaxin1a is the most studied and best understood. The only hint that suggest a link between Syntaxin1a and the phospholipid PI(4,5)P$_2$ is their co-existence in clusters in lipid membranes. This electrostatic interaction was shown in synthetic lipid rafts, giant unilamellar vesicles (GUVs) and membrane sheets of PC12 cells, but not in intact cells (Murray and Tamm, 2009; van den Bogaart et al., 2011). Furthermore, PI(3,4,5)P$_3$ has an even higher ability to induce Syntaxin1a clusters than PI(4,5)P$_2$; in GUVs as well as in *Drosophila melanogaster* neuromuscular junction (NMJ) boutons (Khuong et al., 2013). The binding between Syntaxin1a and Myosin Va is a direct link between the fusion machinery and the cytoskeleton (Watanabe et al., 2005). This interaction was shown to be essential for the transport of secretory vesicles to their release sites, but not for the regulation of the subplasmalemmal F-actin network. However, the involvement of the interaction between Munc18-1 and Syntaxin1a in the Munc18-1 dependent regulation of the levels of PI(4,5)P$_2$ or the cortical F-actin network seems rather unlikely, since there are no strong functional links between Syntaxin1a and the lipid metabolism or the cytoskeleton. Also the existence of a Munc18-1 mutant (Munc18-V263T) that, when expressed in munc18-1 null MCCs, rescues the Syntaxin1a phenotype (50% reduction of Syntaxin1a and equal distribution between cytoplasm and PM in munc18-1 null MCCs (Voets et al., 2001; Kurps et al., 2014), but not the cortical F-actin phenotype, strengthens the assumption that Syntaxin1a is not involved in the Munc18-1 dependent PI(4,5)P$_2$ or F-actin regulation (Chapter 4). The expanded F-actin network that is observed in the munc18-1 null CCs cannot be explained via the interaction of Syntaxin1a with Munc18-1.

The Ca$^{2+}$ binding protein 5 (CaBP5) is a neuronal calmodulin-like Ca$^{2+}$ binding protein and another candidate to functionally link Munc18-1 to cytoskeletal components. CaBP5 interacts with Munc18-1 as well as Myosin VI. The expression of CaBP5 in PC12 cells results in increased neurite outgrowth and dopamine secretion (Sokal and Haeseleer, 2011). In contrast to Myosin V, Myosin VI plays a functional role in Actin dynamics by recruiting actin-regulating factors such as Arp2/3 and Cortactin (in *Drosophila melanogaster*) (Rogat and Miller, 2002). Studies in fibroblasts showed that the absence of Myosin VI resulted in a decrease in the size of the Golgi apparatus (Warner et al., 2003), a phenotype that was also observed in hippocampal neurons from munc18-1 null mice (unpublished data, T. Cerveira).
Even though the involvement of CABP5 in the Munc18-1 dependent cortical F-actin regulation is a plausible scenario, further research is necessary to fully understand its role.

Besides the two interactions described above, another potential Munc18-1 effector has been identified in our lab. Genetic interaction studies in our lab suggest that Dynamin is an additional Munc18-1 interactor, since Dynamin levels are decreased in brains of \textit{munc18-1} null mice. Dynamin is primarily known for its role in endocytosis (Chen et al., 1991). This function is highly dependent on the recruitment of Dynamin to PI(4,5)P\textsubscript{2} clusters at the PM. Lower levels of Dynamin might result in an increase of available PI(4,5)P\textsubscript{2}, which in turn recruits more Actin-stabilizing proteins such as MARCKS. Furthermore, Dynamin directly regulates Actin dynamics and leads to Actin filament elongation (Gu et al., 2010). Decreased Dynamin levels would therefore result in impaired elongation and a reduction in Actin filament length which is not in line with the increased F-actin network in \textit{munc18-1} null MCCs. Based on those opposing findings, a role of Dynamin in the F-actin regulating role of Munc18-1 cannot be excluded. Therefore the exact nature of the potential link with Dynamin needs to be further investigated.

Apart from proteins that directly bind Munc18-1, kinases and phosphatases that regulate the phosphorylation state of Munc18-1 are directly or indirectly involved in F-actin regulation. Examples are the tyrosine kinase Src (Olivares et al., 2014), PKC (Larsson, 2006) or calcineurin (PP2B) (Craig et al., 2003; Singh et al., 2014). The interactions of kinases or phosphatases with Munc18-1 are probably transient. Since Munc18-1 is one of several substrates, its absence is unlikely to severely affect the kinase or phosphatase function. Therefore these interactions are not likely to underlie the severe cortical F-actin phenotype, which is observed in \textit{munc18-1} null MCCs.

Lastly, Munc18-1 inhibits phospholipase D (PLD) (Lee et al., 2004), which is strongly involved in both lipid metabolism (Liscovitch et al., 1994) and regulation of the cytoskeleton (Lee et al., 2001). Based on those functional links, this interaction forms the foundation of our current working model and will be explained in detail in the following paragraph.

\textbf{The pathway hypothesis}

Munc18-1 was shown to inhibit PLD by direct interaction (Lee et al., 2004). Yeast-3-hybrid studies confirmed the direct interaction and showed its PKC-independency (Angeli Möller, unpublished data). PLD directly interacts with actin, whereby actin inhibits PLD activity (Lee et al., 2001). Furthermore, PLD catalyzes the hydrolysis of phosphatidylcholine (PC) resulting in the production of the second messenger phosphatidic acid (PA) and choline (Exton, 1997). PA generated by PLD has been shown to be a key activator for PI(4)P\textsubscript{5} kinase \textgamma (PI4P5K\textgamma), which is the primary kinase to increase PI(4,5)P\textsubscript{2} levels at the PM (Jenkins et al., 1994). The phospholipid PI(4,5)P\textsubscript{2} has a multitude of intracellular functions, including membrane anchoring of the Actin cytoskeleton and Actin regulating proteins (for review see (McLaughlin et al., 2002; Logan and Mandato, 2006)). PI(4,5)P\textsubscript{2} stabilizes the cortical F-actin network in several manners: the actin-filament-crosslinking protein MARCKS is activated when it is bound to PI(4,5)P\textsubscript{2}. Under stimulated conditions, MARCKS is phosphorylated by PKC, thereby dissociates from PI(4,5)P\textsubscript{2} and stops crosslinking Actin fibers (Glaser et al., 1996). Another example is the Actin severing protein Scinderin, which is inhibited when bound to PI(4,5)P\textsubscript{2} (Zhang et al., 1996).
Figure 6.1: Munc18 interactome showing interactors of Munc18 which directly or indirectly can be linked to PI(4,5)P$_2$ and/or the cortical F-actin network.
Based on those findings, we formulate the current hypothesis for the increased cortical F-actin in munc18-1 null CCs: the absence of Munc18-1 results in a reduced inhibition and therefore over-activation of PLD, which leads to increased levels of PA in the cell. PA in turn activates PI(4)P5Kγ, which phosphorylates its substrate PI(4)P which is localized at the PM. The increase in available PI(4,5)P₂ at the PM allows more actin-stabilizing proteins to localize at or near the PM, which in turn results in an increase in the subplasmalemmal F-actin network (fig6.2). This model can plausibly explain the observed Munc18-1 dependent alterations in PI(4,5)P₂ levels at the PM and the cortical F-actin network.
Future experiments to test our hypothesis

Experimental testing of this hypothesis is the next crucial step in unraveling the molecular mechanism underlying the Munc18-1 dependent cortical F-actin regulation. In future experiments, the inhibitory function of Munc18-1 on PLD should be further investigated. It will be particularly interesting to study the function of amino acid V263 (and strong hydrophobicity at this position respectively) and examine whether this point mutation disturbs the interaction with PLD. Furthermore, PLD inhibitors (such as 1-butanol (Hu and Exton, 2005) or FIPI (Su et al., 2009) (overview and comparison of effects by different PLD inhibitors: (Scott et al., 2009; McDavid et al., 2014)) should be used on munc18-1 null CCs to determine whether the cortical F-actin network will be decreased. Furthermore, intermediate steps between the Munc18-1 PLD interaction and the cortical F-actin network need to be investigated. Quantification and comparison of levels of free PA (e.g., by HPLC (Holland et al., 2003) or enzymatic measurements (Morita et al., 2009)) in wild type as well as munc18-1 null MCCs could be an additional indicator for the validity of our current working model. A comparison of amount, activity and localization of PI4P5Kγ in both genotypes will also be informative. Based on our working model, higher levels and/or an increased activity of the kinase are expected. The levels of PI4P5Kγ in wild type and munc18-1 null MCCs can be determined with Western blots. A shift in the localization of PI4P5Kγ towards the PM in munc18-1 null MCCs could explain the observed increase in levels of PM localized PI(4,5)P₂. The localization can be studied using immunocytochemistry approaches in fixed cells or fluorescently labeled PI4P5Kγ in live cells. To test whether the increased amount of PI(4,5)P₂ in munc18-1 null MCCs directly causes the increase in the cortical F-actin network, several strategies can be used. Overexpression of PI4P5Kγ in wild type MCCs is likely to increase PI(4,5)P₂ levels and result in an increased F-actin network when both phenotypes are directly linked. The overexpression of the phosphatase-domain of Synaptojanin reduces PM localized PI(4,5)P₂ (Milosevic et al., 2005). Therefore the overexpression of this domain in munc18-1 null MCCs might rescue the cortical F-actin phenotype. Besides overexpression of PI kinases or phosphatases, pharmacological methods can be used to alter PI(4,5)P₂ levels acutely and investigate the resulting effects on the cortical F-actin network. Furthermore, it needs to be investigated which of the known PI(4,5)P₂-binding/actin-regulating proteins are involved in this mechanism in CCs. The identification of a specific actin-regulating protein (or a set of proteins) that is involved in the cortical F-actin regulation by Munc18-1 via PI(4,5)P₂ will therefore be a key aspect. The proposed experiments will help validating our current pathway hypothesis.

Translation from adrenal chromaffin cells to neurons

If we are able to confirm the existence of this particular pathway in CCs, and show that it represents the molecular mechanism underlying the described F-actin phenotype in munc18-1 null CCs, it will be interesting to examine whether the same mechanism occurs in neurons. This might be a challenging aim for at least two reasons: (I) the function of Actin filaments in the synapse, especially at the active zone, is still not fully understood, (II) visualization of PI(4,5)P₂ via PH-PLCδ1-eGFP in neurons is much more problematic than in CCs as the LV-mediated expression of PH-PLCδ1-eGFP induces apoptosis in neurons. Circumventing this methodological difficulty will be another challenge in the future.
Addressing these issues will result in an improved basic understanding of fundamental processes in neurons and potentially uncover implications of this pathway in several pathologies, e.g., Alzheimer’s disease (AD). The destabilization of Actin filaments is one of the key symptoms of AD (Penzes and van Leeuwen, 2011). The Actin-severing and PI(4,5)P$_2$-binding protein Cofilin was shown to mediate Amyloid-beta induced neurodegeneration through the destabilization of neuronal Actin (Minamide et al., 2000; Heredia et al., 2006; Maloney and Bamburg, 2007). An increased PI(4,5)P$_2$ metabolism was suggested to be linked to AD (Landmann et al., 2006) and PLD was clearly shown to play a role during AD (Oliveira and Di Paolo, 2010). Overexpression of PLD promotes the cell surface delivery of the Amyloid precursor protein (APP, (Cai et al., 2006)). The cleavage of surface-localized APP by α-secretase generates soluble sAPPα, which is believed to be neuroprotective (Sisodia, 1992; Furukawa et al., 1996). Therefore, it might be possible that decreased levels of Munc18-1 or a reduced activity, might play a role in AD.

Integrated approaches

A key aspect of all the studies presented here is the necessity of integrated approaches. It is absolutely vital to combine knowledge from different fields of research in order to understand complex biological systems. We applied this in two ways: (I) we integrated knowledge from three biological systems with distinct cellular functions (exocytosis machinery, lipid metabolism and cytoskeleton) and (II) we connected data from several steps of the secretory vesicle pathway, from biogenesis and maturation to the regulated secretion at the PM.

(I) A triangular system of exocytosis regulation in chromaffin cells

The triangular system contains three overlapping nodes: the "exocytosis machinery", the "lipid metabolism" and the "cytoskeleton" (fig6.3). The "exocytosis machinery" hereby includes the SNARE proteins (Syntaxin1a, SNAP-25 and Synaptobrevin2) and proteins that are involved in the regulation of docking, priming and/or fusion. Membrane lipids as well as regulatory enzymes (e.g., kinases, phosphatases and lipases) are grouped as "lipid metabolism". We defined actin, myosins and a variety of regulating factors as the "cytoskeleton". The triangular representation of the groups is based on interactions shown in fig6.1. The lipid metabolism determines the composition of the PM and is therefore essential for the localization of release sites. Membrane lipids (e.g., PI(4,5)P$_2$) function as membrane anchors for cytoskeletal components and recruit actin regulating proteins to the PM. Cytoskeleton components enable transport of secretory vesicles to the PM and play a regulatory role during exocytosis. Exocytosis of secretory vesicles alters the lipid composition of the PM and the organization of the cytoskeleton. Examples for the interactions between different cellular components are listed in fig6.3. The functional synergy of these three groups is an indispensable presupposition for understanding regulated exocytosis in CCs.
(II) Importance of vesicle biogenesis on regulated secretion in chromaffin cells

Impaired secretory vesicle biogenesis can cause reduced exocytosis in CCs. For example, the absence of the SNARE protein Vti1a results in a decrease in the number and size of secretory vesicles, which causes a reduction in the number of docked vesicles (Chapter 2). This docking phenotype causes a decrease in the amount of catecholamines that is released. The same phenotype is observed in MCCs lacking the BAR protein PICK1 (Pinheiro et al., 2014). However, a reduced number of secretory vesicles does not always lead to a decrease in the number of morphologically docked vesicles. MCCs lacking all four Rab3 isoforms show a 50% reduction in the number of secretory vesicles compared to rab3a null MCCs, but docking is normal (Schonn et al., 2010). Due to an additional priming defect, secretion is reduced in MCCs from the quadruple KO. The knock down of adaptor protein AP-3 by siRNA also results in a decreased number of secretory vesicles. However, in this case regulated secretion is reduced while constitutive secretion is increased (Asensio et al., 2010; Sirkis et al., 2013). MCCs from synaptobrevin-2 null mice have an increased number of secretory vesicles, but no change in docking is observed (Gerber et al., 2008). Those studies show that impaired biogenesis can modify secretion in different directions and that these processes are not simply correlated linearly. When focusing on the correlation between the total number of secretory vesicles and the number of docked vesicles, two scenarios can be observed. In vti1a null and pick null MCCs, the reduction of the total number of secretory vesicles is reflected by a decreased number of docked vesicles, hinting at the number of vesicles as the determining factor of the docking (Walter et al., 2014; Pinheiro et al., 2014). In the second scenario, altered total numbers of secretory vesicles do not result in docking phenotypes. Even though the total number of vesicles is strongly reduced (50%) in the Rab3 quadruple knockout, the number of docked vesicles is slightly, but not significantly, decreased, showing that Rab3 isoforms are not per se essential for the docking mechanism (Schonn et al., 2010). This observation might be explained by a smaller reserve pool, which, however, is still big enough to saturate the readily-releasable pool (RRP). In CCs from synaptobrevin-2 null mice, the total number of vesicles is almost doubled compared to wild type MCCs, whereas the number of docked vesicles is only slightly, but not significantly increased. This can be explained by either a bigger reserve pool or a faster release and docking rate, which results in a faster refill of the RRP. However, for the later explanation, no indication was found when exocytosis in synaptobrevin-2 null mice was studied (Borisovska et al., 2005). The number of docked vesicles is not determined by the total number of vesicles in MCCs deficient of Rab3 isoforms or Synaptobrevin-2. Therefore an alternative explanation might be that instead of the total number of secretory vesicles, the number of available docking sites is determining the amount of docked vesicles in those cells. One could imagine a minimal amount of secretory vesicles that needs to be present to occupy the existing docking sites and only if that minimal amount is not met, the total number of vesicles becomes the determining factor for the amount of docked vesicles. However, the phenotype of the Rab3 quadruple knockout argues against this hypothesis, since those MCCs contain a smaller total number of secretory vesicles than MCC deficient of Vti1a or PICK (Schonn et al., 2010; Walter et al., 2014; Pinheiro et al., 2014).
The difference between both scenarios might also be dependent on the sample preparation. In the first scenario, in which the number of docked vesicles is directly dependent on the total number of vesicles (e.g., \textit{vti1a} null and \textit{pick} null MCCs), the secretory vesicles were analyzed in single cells that were not enclosed by other cells. In the second scenario, in which the number of docked vesicles was probably dependent on the number of docking sites, sections from whole adrenal glands were analyzed (e.g., \textit{rab3} null and \textit{synaptobrevin-2} null MCCs). The number of docking sites might be more restricted in CCs that are enclosed by other CCs (in the whole adrenal gland preparation) than in individual cells without other cells attached. To test this hypothesis, the PM composition of single cells and cells in adrenal glands need to be analyzed and compared.

Besides their total number, other characteristics (e.g., diameter and core density) of secretory vesicles might influence exocytosis. Especially the size of secretory vesicles and their core composition were shown to be altered as result of genetic modifications (Walter et al., 2014; Pinheiro et al., 2014; Hao et al., 2015). To fully understand the effect of those alterations on regulated exocytosis of secretory vesicles in neuroendocrine cells, more research is essential. Furthermore, it will be necessary to integrate knowledge from different intracellular pathways to fully understand cellular functions of secretory vesicle biogenesis and maturation.

Given the functional synergy of cellular components (fig6.3), the biggest challenge in future experiments will be the dissection of specific functions of molecules that are involved in a variety of processes and/or connect a multitude of interactors. One example is phosphatidic acid (PA), which is part of our hypothesis to explain the Munc18-1 dependent regulation of PI(4,5)P$_2$ and cortical F-actin. In this pathway, PA is involved in the regulation of secretion. However, PA is also implicated in vesicle biogenesis. Inhibition of PLD-dependent PA synthesis results in the fragmentation of the Golgi apparatus (Siddhanta et al., 2000). Depletion of the SM protein Vps45 in HeLa cells and fibroblasts leads to a condensation of the Golgi apparatus (Rahajeng et al., 2010), similar to the munc18-1 null phenotype in neurons. This might be explained by the ability of Vps45 to regulate F-actin (Chapter 4). Furthermore, Vps45 interacts with Syntaxin6, which forms a SNARE complex with Vti1a and is involved in the secretory vesicle maturation (Bock et al., 1997). These examples emphasize the necessity to combine data and knowledge from different biological systems as well as distinct cellular pathways.
Figure 6.3: Functional synergy: top: Venn diagram illustrating the close functional relation between exocytosis machinery (blue), lipid metabolism (green) and the cytoskeleton (orange) in the secretory pathway; bottom: overview of functions and examples of interactions between the groups in the Venn diagram.
6. General Discussion

Concluding remarks and perspective

The studies presented in this thesis might be a first step towards a holistic approach that includes several interwoven intracellular pathways (such as biogenesis and regulated secretion) as well as multiple molecular systems that are highly connected and crucial for regulated exocytosis in CCs: the fusion machinery (especially Munc18-1), lipid metabolism (focus on the role of PI(4,5)P₂) and the cytoskeleton (especially the cortical F-actin network). This process can only be fully understood when all parts and their impact on each other will be integrated. This is not only crucial for the understanding of this specific pathway, but a more general conclusion: integrated approaches that analyze the interplay of proteomics and lipidomics will be essential to unravel molecular pathways in the future.
References

Aronov, S. and J. Gerst

Asensio, C., D. Sirkis, and R. Edwards

Atlashkin, V., V. Kreyenbohm, E. Eskelinen, D. Wenzel, A. Fayyazi, and G. Fischer von Mollard

Aunis, D. and M. Bader

Aunis, D., B. Guerold, M. Bader, and J. Ciesielski-Treska

Aunis, D. and D. Perrin

Avery, J., D. Ellis, T. Lang, P. Holroyd, D. Riedel, R. Henderson, J. Edwardson, and R. Jahn

Bader, M., J. Ciesielski-Treska, D. Thiernse, J. Hesketh, and D. Aunis

Balla, T. and P. Varnai

Baron, C. and V. Malhotra

Bassham, D., A. Sanderfoot, V. Kovaleva, H. Zheng, and N. Raikhel

References

Colomer, V., G. Kicska, and M. Rindler

Corte, V. D., J. Gettemans, and J. Vandekerckhove

Craig, T., G. Evans, and A. Morgan

D’Angelo, G., M. Vivinanza, A. D. Campli, and M. D. Matteis

de Vries, K., A. Geijtenbeek, E. Brian, P. de Graan, W. Ghijsen, and M. Verhage

de Wit, H., L. Cornelisse, R. Toonen, and M. Verhage

de Wit, H., A. Walter, I. Milosevic, A. Gulyas-Kovacs, D. Riedel, J. Sørensen, and M. Verhage

Deak, F., O. Shin, E. Kavalali, and T. Südhof

Dean, C., H. Liu, F. Dunning, P. Chang, M. Jackson, and E. Chapman

Deng, L., P. Kaeser, W. Xu, and T. Südhof

Dhanvantari, S. and Y. Loh

Di Paolo, G. and P. De Camilli

Dickson, E., J. Jensen, and B. Hille

Dittie, A., L. Thomas, G. Thomas, and S. Tooze
1997. Interaction of furin in immature secretory granules from neuroendocrine cells with the ap-1 adaptor complex is modulated by casein kinase ii phosphorylation. *EMBO J*, 16:4859–70.

128
References

Gallwitz, D. and R. Jahn
2003. The riddle of the sec1/munc-18 proteins - new twists added to their interactions with

Ganley, I., E. Espinosa, and S. Pfeffer
2008. A syntaxin 10-snare complex distinguishes two distinct transport routes from endo-

Gerber, S., J. Rah, S. Min, H. de Wit, I. Dulubova, A. Meyer, J. Rizo, M. Arancillo, R. Hammer,
M. Verhage, C. Rosenmunder, and T. Südhof

Giner, D., P. Neco, M. F. Medel, I. López, S. Viniegra, and L. Gutiérrez

Glaser, M., S. Wanaski, C. Buser, V. Boguslavsky, W. Rashidzada, A. Morris, M. Rebecchi,
1996. Myristoylated alanine-rich c kinase substrate (marcks) produces reversible inhibition
of phospholipase c by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains.

Godi, A., A. D. Campli, A. Konstantakopoulos, G. D. Tullio, D. Alessi, G. Kular, T. Daniele,
P. Marra, J. Lucocq, and M. D. Matteis

Gracheva, E., E. Maryon, M. Berthelot-Grosiean, and J. Richmond

Gu, C., S. Yaddanapudi, A. Weins, T. Osborn, J. Reiser, M. Pollak, J. Hartwig, and S. Sever

Gutiérrez, L.
2012. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine

Hammond, G., Y. Sim, L. Lagnado, and R. Irvine
2009. Reversible binding and rapid diffusion of proteins in complex with inositol lipids serves

Han, G., N. Bin, S. Kang, L. Han, and S. Sugita
2013. Domain 3a of munc18-1 plays a crucial role at the priming stage of exocytosis. *J Cell

Han, X. and R. Gross
1994. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma

2015. Impaired maturation of large dense-core vesicles in muted-deficient adrenal chromaffin

Hata, Y., C. Slaughter, and T. Südhof
366:347–51.
Hausser, A., P. Storz, S. Märtens, G. Link, A. Toker, and K. Pfizenmaier
2005. Protein kinase d regulates vesicular transport by phosphorylating and activating

Hay, J., J. Klumperman, V. Oorschot, M. Steegmaier, C. Kuo, and RH
1998. Localization, dynamics, and protein interactions reveal distinct roles for er and golgi

Heredia, L., P. Helguera, S. de Olmos, G. Kedikian, F. S. Vigo, F. LaFerla, M. Staufenbiel,
J. de Olmos, J. Busciglio, A. Caceres, and A. Lorenzo
2006. Phosphorylation of actin-depolymerizing factor/cofilin by lim-kinase mediates amy-
lloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in alzheimers

Hinners, I., F. Wendler, H. Fei, L. Thomas, G. Thomas, and S. Tooze
2003. Ap-1 recruitment to vamp4 is modulated by phosphorylation-dependent binding of

Holland, W., E. Stauter, and B. Stith
2003. Quantification of phosphatidic acid and lysophosphatidic acid by hplc with evaporative

Holst, B., K. Madsen, A. Jansen, C. Jin, M. Rickhag, V. Lund, M. Jensen, V. Bhatia,
G. Sørensen, A. Madsen, Z. Xue, S. Moller, D. Woldbye, K. Qvruto, R. Huganir, D. Stau-
mou, O. Kjaerulf, and U. Getcher
2013. Pick1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation

Holz, R., M. Hlubek, S. Sørensen, S. Fisher, T. B. B. Ozaki, G. Prestwich, E. Stuenkel, and
M. Bittner
2000. A plekstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate
(ptdins-4,5-p2) and fused to green fluorescent protein identifies plasma membrane ptdins-

Hong, W. and S. Lev

Honingmann, A., G. van den Bogaert, E. Iraheta, H. Risselada, D. Milovanovic, V. Mueller,
S. Müllar, U. Diederichsen, D. Fusshauer, H. Grubmüller, S. Hell, C. Eggeling, K. Kühhel,
and R. Jahn
2013. Phosphatidylinositol 4,5-bisphophate clusters act as molecular beacons for vesicle

Hoopmann, P., A. Punge, S. Barysch, V. Westphal, J. Buckers, F. Opazo, I. Bethani, M. Lauter-
bach, S. Hell, and S. Rizzoli
107:19055–60.

Hu, T. and J. Exton
2005. 1-butanol interferes with phospholipase d1 and protein kinase calpha association and

Huang, C., D. Yang, C. Lin, and L. Kao
2011. Involvement of rab3a in vesicle priming during exocytosis: interaction with munc13-1
References

Huttner, W. and J. Zimmerberg

Idevall-Hagren, O. and P. De Camilli

Ito, S., D. Werth, N. Richert, and I. Pastan

Jahn, R. and R. Scheller

James, D., C. Khodthong, J. Kowalchyk, and T. Martin

James, D. and T. Martin

Janmey, P. and U. Lindberg

Jenkins, G., P. Fisette, and R. Anderson

Jockusch, B., M. B. abd M. Da Prada, J. Richards, C. Chapponier, and G. Gabbiani

Jockusch, W., D. Speidel, A. Sigler, J. Sørensen, F. Varoqueaux, J. Rhee, and N. Brose

Kabachinski, G., M. Yamaga, D. Kielar-Greyestad, S. Bruinsma, and T. Martin

Kaksonen, M., C. Toret, and D. Drubin

Karunakaran, S., T. Sasser, S. Rajalekshmi, and R. Fratti

Kawanishi, M., Y. Tamori, H. Okazawa, S. Araki, H. Shinoda, and M. Kasuga

Kearns, B., T. McGee, P. Mavinger, A. Gedvilaite, S. Phillips, S. Kagiwada, and V. Bankaitis

Khung, T., R. Habets, S. Kuenen, A. Witkowska, J. Kasprowics, J. Swerts, R. Jahn, G. van den Bogaart, and P. Verstreken

131
Khvotchev, M., I. Dulubova, J. Sun, H. Dai, J. Rizo, and T. Südhof

Kim, T., M. Lewis-Gondré, I. Arnaoutova, and Y. Loh

Kim, Y., S. Choi, M. Oh, S. Lee, M. Cho, K. Mizuno, S. Kim, and J. Lee

Klenchin, V. and T. Martin

Klumperman, J., R. Kuliawat, J. Griffith, H. Geuze, and P. Arvan

Krauss, M., M. Kinua, M. Wenk, P. De Camilli, K. Takei, and V. Haucke

Kreykenbohm, V., D. Wenzel, W. Antonin, V. Atlachkine, and G. Fischer von Mollard

Kuliawat, R., J. Klumperman, T. Ludwig, and P. Arvan

Kurps, J., J. Broeke, T. Cijouw, A. Kompatscher, J. van Weering, and H. de Wit

Kurps, J. and H. de Wit

Kwiatkowska, K.
2006. Presenilin mutations linked to familial alzheimer’s disease cause an imbalance in

Lang, T., D. Bruns, D. Wenzel, D. Riedel, P. Holroyd, C. Thiele, and R. Jahn
2001. Snares are concentrated in cholesterol-dependent clusters that define docking and

Lang, T., M. Margittai, H. Holzer, and R. Jahn
2002. Snares in native plasma membranes are active and readily form core complexes with

Lang, T., I. Wacker, I. Wunderlich, A. Rohrbach, G. G. T. Soldati, and W. Almers
2000. Role of actin cortex in the subplasmalemmal transport of secretory granules in pc-12

Laufman, O., A. Kedan, W. Hong, and S. Lev
2008. Direct interaction between the cog complex and the sm protein, sly1, is required for

2000. Gap43, marcks and cap23 modulate pi(4,5)p2 at plasmalemmal rafts, and regulate cell

Lee, H., J. Park, I. Jang, Y. Chae, J. Kim, I. Kim, P. Suh, and S. Ryu
2004. Munc18-1 inhibits phospholipase d activity by direct interaction in an epidermal growth

Lee, R. and J. Trifaró
1981. Characterization of anti actin antibodies and their use of immunocytochemical studies

Lee, S. and R. Dominguez

Lee, S., J. Park, J. Kim, Y. Kim, J. Kim, K. Shin, J. Lee, S. Ha, P. Suh, and S. Ryu
276:28252–6.

Lejen, S. R. T., L.Casaletti, R. Larson, T. Pene, and J. Trifaró
2003. Myosins ii and v in chromaffin cells: myosin v is a chromaffin vesicle molecular motor

Lemmon, M., K. Ferguson, R. O’Brien, P. Sigler, and J. Schlessinger
1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin ho-

Lindberg, I.

Liscovitch, M., V. Chalifa, P. Pertile, C. Chen, and L. Cantley
1994. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain mem-

Litvak, V., N. Dahan, S. Ramachandran, H. Sabanay, and S. Lev
2005. Maintenance of the diacylglycerol level in the golgi apparatus by the nir2 protein is

Medigeshi, G. and P. Schu

Michell, R.

Miki, H., K. Mirura, and T. Takenawa

Mills, I., G. Praefcke, Y. Vallis, B. Peter, L. Olesen, J. Gallop, P. Butler, P. Evans, and H. McMahon

Milosevic, I., S. Giovedi, X. Lou, A. Raimondi, C. Collesi, H. Shen, S. Paradise, E. O’Toole, S. Fergusson, O. Cremona, and P. De Camilli

Milosevic, I., J. Sørensen, T. Lang, M. Krauss, G. Nagy, V. Haucke, R. Jahn, and E. Neher

Minamide, L., A. Striegl, J. Boyle, P. Meberg, and JR.

Misura, K., R. Scheller, and W. Weis

Miyamoto, S.

Mohrmann, R., H. de Wit, E. Connell, P. Pinheiro, C. Leese, D. Bruns, B. Devletov, M. Verhage, and J. Sørensen

Mohrmann, R., H. de Wit, M. Verhage, E. Neher, and J. Sørensen

Mohrmann, R. and J. Sørensen

Morales, M., MA. Colicos, and Y. Goda

Moreau, V., A. Madania, R. Martin, and B. Winson
Morgan, A. and R. Burgoyne

Morita, S., K. Ueda, and S. Kitagawa

Morris, R. and P. Hollenbeck

Morvan, I. and S. Tooze

Mulholland, J., A. Wesp, H. Riezman, and D. Botstein

Murray, D. and L. Tamm

Nakata, T. and N. Hirokawa

Neco, P., A. Gil, M. D. M. France, S. Viniegra, and L. Gutiérrez

Niggli, V., D. Dimitrov, J. Brunner, and M. Burger

Nightingale, T., D. Cutler, and L. Cramer

Oheim, M., D. Loerke, R. Chow, and W. Stühmer

Olivares, M., A. Gonzalez-Jamett, M. Guerra, X. Baez-Matus, V. Haro-Acuna, N. Martinez-Ouiles, and A. Cardenas
Oliveira, T. and G. Di Paolo

Papadopulos, A., V. Tomatis, R. Kasula, and F. Meunier

Peden, A., G. Park, and R. Scheller

Penzes, P. and J. van Leeuwen

Pevsner, J., S. Hsu, J. Braun, N. Calakos, A. Ting, M. Bennett, and R. Scheller

Pinheiro, P., H.de Wit, A. Walter, A. Groffen, M. Verhage, and J. Sørensen

Poupon, V., A. Stewart, S. Gray, R. Piper, and J. Luzio

Pryor, P., B. Mullock, N. Bright, M. Lindsay, S. Gray, S. Richardson, A. Stewart, D. James, R. Piper, and J. Luzio

Rahajeng, J., S. Caplan, and N. Naslavsky

Raingo, J., M. Khvotchev, P. Liu, F. Darios, Y. Li, D. Ramirez, M. Adachi, P. Lemieux, K. Toth, B. Davletov, and E. Kavalali

Rajan, S., J. Torres, M. Thompson, and L. Philipson

Ramirez, D., M. Khvotchev, B. Trauterman, and E. Kavalali

Rettig, J. and E. Neher
Richardson, S., S. Winistorfer, V. Poupon, J. Luzio, and R. Piper
2004. Mammalian late vacuole sorting protein orthologues participate in early endosomal

Rindler, M.
1998. Carboxypeptidase e, a peripheral membrane protein implicated in the targeting of
hormones to secretory granules, co-aggregates with granule content proteins at acidic ph. *J

Rizo, J. and C. Rosenmund

Rodríguez Del Castillo, A., S. Lemaire, L. Tchakarov, M. Jeyapragasan, J. Doucet, M. Vitale,
and J. Trifaró

Rogat, A. and K. Miller
2002. A role for myosin vi in actin dynamics at sites of membrane remodeling during

Rosa, P., F. Barr, J. Stinchcombe, C. Binacchi, and W. Huttner
1992. Brefeldin a inhibits the formation of constitutive secretory vesicles and immature

Rosenmund, C., A. Sigler, I. Augustin, K. Reim, N. Brose, and J. Rhee

Rowe, T., C. Dascher, S. Bannykh, H. Plutner, and W. Balch
279:696–700.

Rozelle, A., L. Machesky, M. Yamamoto, M. Driessens, R. Insall, M. Roth, K. Luby-Phelps,
G. Marriott, A. Hall, and H. Yin
2000. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched

Rudolf, R., T. Kögel, S. Kuznetsov, T. Salm, O. Schlucker, A. Hellwig, J. Hammer, and
H. Gerdes
2003. Myosin va facilitates the distribution of secretory granules in the f-actin rich cortex of

Rudolf, R., T. Salm, A. Rustom, and H. Gerdes
2001. Dynamics of immature secretory granules: role of cytoskeletal elements during trans-

Saarikangas, J., E. N. Zhao, and P. Lappalainen
2010. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.
Physiol Rev, 90:259–89.

Sahoo, P., S. Soltani, K. Wong, and Y. Chen
41:233–60.

Scales, S., Y. Chen, B. Yoo, S. Patel, Y. Doung, and R. Scheller

Schermelleh, L., R. Heintzmann, and H. Leonhardt

Sisodia, S.

Sokac, A. and W. Bement

Sokal, I. and F. Haeseleer

Söllner, T., M. Bennett, S. Whiteheart, R. Scheller, and J. Rothman

Sombers, L., M. Maxson, and A. Ewing

Sørensen, J., R. Fernandez-Chacon, T. Südhof, and E. Neher

Sørensen, J., G. Nagy, F. Varoqueaux, R. Nehring, N. Brose, M. Wilson, and E. Neher

Stauffer, T., S. Ahn, and T. Meyer

Steegmaier, M., J. Klumperman, D. Foletti, J. Yoo, and R. Scheller

Steiner, D., S. Smeekens, S. Ohagi, and S. Chan

Struthers, M., S. Shanks, C. MacDonal, L. Carpp, A. Drozdowska, D. Kioumourtzoglou, M. Furgason, M. Munson, and N. Bryant

Subramanian, S., C. Woolford, and E. Jones
2004. The sec11/munc18 protein, vps33p, functions at the endosome and the vacuole of

Südhof, T.

Südhof, T.
80:675–90.

Südhof, T., M. Baumert, M. Perin, and R. Jahn
1989. A synaptic vesicle membrane protein is conserved from mammals to drosophila. *Neu-

Südhof, T. and J. Rothman

Suh, B., K. Leal, and B. Hille
2010. Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinos-

Sutton, R., D. Fasshauer, R. Jahn, and A. Brunger

Takenawa, T. and T. Itoh
2001. Phosphoinositides, key molecules for regulation of actin cytoskeleton organization and

J. Rettig, and Z. Sheng
2005. The role of snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-

Toonen, R., O. Kochubey, H. de Wit, A. Gulyas-Kovacs, B. Konijnenburg, J. Sørensen, J. Klin-
gauf, and M. Verhage
2006. Dissecting docking and tethering of secretory vesicles at the target membrane. *EMBO J*,

Toonen, R. and M. Verhage

Tooze, J. and S. Tooze
1986. Clathrin coated vesicular transport of secretory proteins during the formation of acth-

Tooze, S., T. Flatmark, J. Tooze, and W. Huttner
1991. Characterization of the immature secretory granule, an intermediate in the granule

Tooze, S., G. Martens, and W. Huttner

Trifaró, J., S. Gasman, and L. Gutiérrez
192:165–72.

Trifaró, J., A. Rodríguez del Castillo, and M. Vitale
Trifaró, J., S. Rose, T. Lejen, and A. Elzagallaa

Unsicker, K.

Unsicker, K., K. Huber, A. Schober, and C. Kalcheim

Verhage, M. and J. Sørensen

Vicinanza, M., G. D’Angelo, A. D. Campli, and M. D. Matteis

Vitale, M., A. Rodriguez Del Castillo, L. Tchakarov, and J. Trifaró

Vitale, M., E. Seward, and J. Trifaró

Vlahos, C., W. Matter, K. Hui, and R. Brown

Voets, T.

Voets, T., E. Neher, and T. Moser

Yanagisawa, L., J. Marchena, Z. Xie, X. Li, P. Poon, R. Singer, G. Johnston, P. Randazzo, and V. Bankaitis

Yin, H. and P. Janmey

Zhang, L., M. Marcu, K. Nau-Staudt, and J. Trifaró

Zhang, T. and W. Hong

Zwilling, D., A. Cypionka, W. Pohl, D. Fasshauer, P. Walla, M. Wahl, and R. Jahn