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Chapter 2

Abstract

Evolutionary adaptations in metabolic networks are fundamental to evolution of
microbial growth. Studies on unneeded protein synthesis indicate reductions in
fitness upon nonfunctional protein synthesis, showing that cell growth is limited by
constraints acting on cellular protein content. Here, we present a theory for optimal
metabolic enzyme activity when cells are selected for maximal growth rate given such
growth-limiting biochemical constraints. We show how optimal enzyme levels can be
understood to result from an enzyme benefit minus cost optimisation. The constraints
we consider originate from different biochemical aspects of microbial growth, such as
competition for limiting amounts of ribosomes or RNA polymerases, or limitations
in available energy. Enzyme benefit is related to its kinetics and its importance for
fitness, while enzyme cost expresses to what extent resource consumption reduces
fitness through constraint-induced reductions of other enzyme levels. A metabolic
fitness landscape is introduced to define the fitness potential of an enzyme. This
concept is related to the selection coefficient of the enzyme and can be expressed in
terms of its fitness benefit and cost.

2.1 Introduction

Environmental conditions set the selective pressures acting on unicellular organisms.
Microbial fitness is often related to growth properties, such as biomass yield, growth
rate, or antibiotic resistance. As a large part of the available resources is spent on
the synthesis of metabolic machinery, regulation of the levels of metabolic enzymes
can have large influences on fitness [20, 23, 40, 41]. Selection on growth rate may
then direct the evolution of microorganisms to optimal allocation of resources for
fitness enhancement [15, 23]. Alternatively, evolution may be directed by metabolic
trade-offs [42, 43], which may cause sympatric speciation [44]. To improve our
understanding of the driving processes of metabolic evolution, the interplay between
selective pressures, the biochemistry and organisation of metabolic networks has to
be taken into account.

Studies on the growth effects of unneeded protein expression, sometimes called
gratuitous or nonfunctional protein expression, indicate significant reductions in
growth rate in batch cultivations of Escherichia coli [23, 41, 45, 46] and Zymomonas mo-
bilis [25] and strong selective disadvantages in chemostat cultivations using E. coli [20,
40, 47, 48]. In Saccharomyces cerevisiae, a trade-off was found related to unneeded pro-
tein expression [49]. Dong, Nilsson and Kurland found that unneeded protein can be
expressed up to 30% of the total protein content before E. coli growth halts [41]. They
concluded that growth reduction was due to competition for protein synthesis ma-
chinery between nonfunctional and growth-promoting proteins (cf. [50]). They also
found significant reductions of ribosomal activity at high unneeded-protein expres-
sion, as if the cells experience a nutrient downshift [51]. Stoebel et al. [20] discovered
that the costs of unneeded protein synthesis of E. coli’s lac operon in chemostat cul-
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Cost-benefit analysis

tures is due to the transcription and translation process, e.g. the competition for RNA
polymerases and ribosomes, rather than due to toxic effects or excessive usage of nu-
cleotide or amino acid precursors. Other studies [41, 50] also indicate that unneeded
protein synthesis is at the expense of the synthesis of other proteins that have
growth-related activities; hence, these are all experimental indications of the exis-
tence of a cellular constraint that limits the cellular protein content. Several groups
[20, 25, 41, 46] measured a linear dependency of the reduction of the growth rate on
the unneeded protein fraction whereas Dekel and Alon found a quadratic depen-
dency of the growth rate reduction on unneeded lac operon expression by E. coli [23].
In all cases, strong dependencies of fitness on unneeded (or excess) protein synthesis
was found.

From an evolutionary perspective, the high cost of unneeded protein synthesis
suggests that adjustments of protein partitioning over growth processes is an impor-
tant mechanism for fitness enhancement of bacteria [23, 51]. Studies on translation
control and the correlation between ribosome content and growth rate of E. coli in-
deed suggest that this organism aims to maximise its growth rate by optimal parti-
tioning of protein over growth processes [52–55]. This could explain why gratuitous
protein expression causes such drastic reductions in growth rate. That nonfunctional
protein expression leads to growth rate reduction is also supported by metabolic con-
trol theory, which proves that fluxes through metabolic networks scale linearly with
the entire (functional) metabolic protein content [21, 25, 56].

The evolutionary importance of optimal protein partitioning over growth pro-
cesses indicates that a better understanding of the molecular basis and consequences
of the cost of unneeded protein synthesis is needed. We offer a theoretical framework
for studying metabolic pathway evolution while the entire organism is under selec-
tion of the maximal specific growth rate in a batch cultivation. We start with an
evolutionary analysis of metabolic enzyme levels. We derive how the optimal levels
of a metabolic enzyme can be understood in terms of its direct contribution to fitness
(benefit) and its cost (usage of resources at the expense of other needed enzymes). We
show that misbalancing of these quantities leads to reductions in fitness and sets the
fitness potential (selection coefficients) of individual enzymes. Central to our frame-
work is the concept of limiting growth process, e.g. transcription or translation
machinery, which bounds the maximal protein level that can be attained by a cell and
is known to be major factor in metabolic evolution [20, 23]. We show with mechanis-
tic biochemical models that alternative processes for setting the limits of the cellular
protein content, i.e. transcription, translation, or energy usage, all lead to a
protein-constraint relation that is linearly dependent on protein concentrations.
Together with basic mathematical properties of enzyme kinetics and metabolic path-
ways, this leads to a cost of unneeded protein synthesis that is a linear function of the
protein concentration, which is in agreement with most experimental data [20, 25, 41,
46]. We define a fitness potential for every enzyme in the fitness landscape. This con-
cept indicates the importance of every enzyme for enhancing fitness and can be
expressed in terms of enzyme benefit and cost. We show that this measure is a spe-
cific formulation of the selection coefficient used in experimental studies [20] and is
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Chapter 2

related to a control coefficient of metabolic control analysis [21, 57].

2.2 Results

Growth processes set a limit to the cellular protein content

Generally, evolutionary optimisation of fitness occurs under constraints. Metabolic
networks have functional limits set by biochemical kinetics, thermodynamics, and
physics. For instance, total available ATP sets a limit to biomass synthesis [58],
diffusion time-scales limit reaction rates [59], and available membrane space sets the
maximal nutrient uptake rate [15]. Typically, several constraints act simultaneously.

We are interested in the constraints that set a bound to cellular protein content.
Such a constraint, denoted by Φj, depends in principle on all the enzyme levels, ei,
and some weight factor for every enzyme, ωi; thus, we obtain Φj(!, e) (bold letters
denote vectors). We give each constraint a bound Φj(ω, e) ≤ Rj and will generally
refer to them as resource bounds. Every weight factor, ωi, can be interpreted as the
specific resource requirement of the associated metabolic enzyme. In the simplest
case, only one constraint function occurs; defined as a weighted sum of enzyme levels,

Φ(ω, e) =
n

∑
i=1

ωiei ≤ R (2.1)

The total number of metabolic enzymes equals n. This equation implicitly sets the
total cellular protein content: etot = ∑n

i=1 ei. This constraint immediately suggests
that unneeded protein synthesis lowers the level of growth-related proteins. This is in
agreement with experimental findings [41, 50]. These authors found reduced protein
expression as a response to unneeded protein synthesis. Below we will quantify this
effect and discuss several of its origins.

Regardless of whether a limitation of the number of RNA polymerases (or ribo-
somes), or in available energy (e.g. in terms of ATP equivalents) is assumed or
whether toxic effects resulting from protein synthesis are considered, equation 2.1
emerges in each of these cases. The mathematical derivation of these scenario’s can
be found in the Appendix 2.A. The only difference between these protein limitation
scenario’s is that the ω’s in equation 2.1 have a different biochemical interpretation.
Each of these alternative limitation scenario’s have been suggested in the literature
for setting the protein content per cell [15, 20, 25, 50, 53–55]. Here we show that they
can in principle all be described with the same constraint equation.

Equation 2.1 has an important consequence for the evolution of metabolic net-
works. It is an established fact that every flux in a metabolic network, J, increases
with a factor α if the entire protein content of the network is increased with this factor
α; this is one of the findings of metabolic control theory [21, 56, 60]. Mathematically,
this means that the flux is a first-order homogeneous function of the cellular protein
content. As a consequence, having more protein expressed in a metabolic network
leads to higher fluxes. However, the total protein content is limited by constraints
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Cost-benefit analysis

such as equation 2.1. Given the existence of these constraints, if metabolic fluxes are
to be optimised in evolution, it is the partitioning of proteins over the entire
metabolic network that is being optimised.

Equation 2.1 implies a trade-off for metabolic systems and indicates the existence
of an optimal combination of enzyme levels that maximises fitness. The constraint
Φ(ω, e) ≤ R forces the use of cheap enzymes with low ω’s as this allows for an
increased cellular protein content and, as a consequence, higher fluxes. In a metabolic
network, this will inevitably lead to expensive enzymes becoming progressively
more limiting and eventually a requirement for an increase in their concentration.
This causes a reduction of the total enzyme level in the network and a reduction
of metabolic fluxes. Hence, there must exist some optimal combination of enzyme
concentrations that balances these opposing forces and maximises a specific flux given
the constraint R. Thus, the optimisation problem of a metabolic flux under a resource
constraint involves maximising J/R, which can be interpreted as maximising the
return (J) of investment (R).

Specific growth rate optimisation requires optimal protein allocation
over growth processes: maximisation of J/R

The selection pressure in serial dilution experiments of batch cultivations at mid-
exponential growth rate (balanced growth) is the maximal specific growth rate [61].
Under these conditions, all the nutrients are in excess. The specific growth rate,
denoted by µ (unit: hr−1), is a J/R measure and, therefore, it directly applies to
the constraint optimisation problem we have just introduced (this is illustrated in-
depth in Appendix 2.B). To understand this, it is instructive to analyse the units of µ.
The specific growth rate of a microorganism equals the production rate of biomass
(“itself”) expressed as gram biomass per hr per gram biomass or, equivalently (if
protein content is fixed), the synthesis rate of protein by the cell divided by total
cellular protein content. In other words, the specific growth rate just gives the rate at
which one unit organism is produced by one unit organism; i.e. the reciprocal growth
rate is directly related to the generation time (tg; tg = ln(2)/µ). Thus, the specific
growth rate is a self-replication rate. Therefore, selection for the maximal specific
growth rate is directly related to the total (functional or needed) protein content of a
cell and synthesis of unneeded protein will only reduce it.

Strictly speaking, the maximal specific growth rate is the selection pressure in
(serial) batch cultivation, the theory that we present below does therefore not directly
apply to chemostat cultivation. For evolution in chemostats, a different selection
pressure applies that is not obviously related to cellular protein content. We return to
this point in the discussion of this chapter, and more elaborately in chapter 3.

Operational definition of enzyme benefits and costs

Maximisation of the specific growth rate is achieved by expressing every metabolic
enzyme to the right level; such that none of the resources are wasted on the wrong
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Chapter 2

enzymes and none of the enzymes are expressed at a too low level. How can we figure
out what the right expression level is for a specific metabolic enzyme? Intuitively, the
right level of an enzyme is the enzyme amount at which the benefit minus the cost
of the enzyme is largest. But what would be the biochemical definitions of enzyme
benefit and cost such that if their difference is maximised the enzyme has attained its
optimal level?

In our theory, pure cost originates from protein burden without function (un-
needed protein expression). Pure benefit originates from function without burden.
Accordingly, the cost of an enzyme would be equal to the fractional reduction in flux
(fitness) when a certain amount of the inactive form of the enzyme would be added,
and the remaining enzyme concentrations (including the active form of the enzyme
under consideration) would redistribute according to the corresponding reduced re-
source constraint to a new (and necessarily lower) flux optimum. This concept of cost
exactly matches the definition of cost used in the analysis of the influences of
unneeded protein synthesis on growth [20, 23, 25, 41, 50]. When the flux and the con-
straint are homogeneous functions of the enzyme concentrations to the first order, the
new optimum simply corresponds to the same fractional distribution of all active en-
zymes, but now with a reduction in the available resource corresponding to the
amount of inactive enzyme. This predicts a linear relationship between cost and
enzyme concentrations:

Ci(ei, R) = −
J(R − ωi ēi) − J(R)

J(R)
=

ωi ēi
R

(2.2)

The derivation of this equation can be found in the Appendix 2.C. It is based on the
assumptions that the constraint function depends linearly on the enzyme concentra-
tion (equation 2.1) and the flux is a first-order homogeneous function of the cellular
protein content, which is generally valid in metabolic networks [21, 56, 60]. The nota-
tion ēi signifies that the enzyme is expressed in a nonfunctional form, it cannot con-
tribute to fitness. The resource amount R − ωi ēi corresponds to the residual resource
amount after having spent ωi ēi resource units on unneeded protein synthesis of en-
zyme i to level ēi.

Experimentally, the cost can be determined by a measurement of the reduction
in fitness upon expressing the enzyme of interest under a condition where it is
not used [20, 23, 41]. Equation 2.2 indicates that the cost of an enzyme equals its
fractional resource usage. The exact reduction in resources is dependent on the
enzyme properties as captured in the enzyme’s ω coefficient. Interestingly, we find
that enzyme-cost is entirely independent of metabolic enzyme kinetics.

In a similar fashion, we define the benefit of an enzyme as the fractional increase
in flux when the enzyme specific activity would be increased by a certain fraction
without a reduction in the available resource (R remains fixed) while all other enzymes
remain at their (optimal) levels. Thus, the benefit of an enzyme is defined as the
fractional increase in fitness upon an increase of active enzyme. This increase is not at
the expense of any of the available total resources; this is done cost free. In Appendix
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2.D, we derive that the benefit equals the following relationship,

Bi(ei, R) =
J( ˆeopt(ei, R))
J(eopt(R))

(2.3)

The notation J(eopt(ei, R)) indicates the metabolic flux when all enzymes are ex-
pressed at their optimal level; J(êopt(ei, R)) indicates the flux when all enzymes,
except for enzyme i, are kept at their optimal level and enzyme i is expressed to level,
ei. This means that the benefit equals 1 only when enzyme i is at its optimal level.

We emphasise that the benefit definition does not necessarily have to be defined
with reference to the optimal levels of all the other enzymes in the system. We take
this perspective here to simplify the discussion of the relationship of the enzyme
benefit and its fitness potential that follows later. For most practical purposes the
enzyme benefit can be better defined as: Bi(ei, R) = J(ê(ei ,R))

J(e(R)) . In this formulation,
the benefit can become higher than 1 if the expression level ei was not optimal in
the reference condition. When the benefit is measured in an experiment, as done by
Dekel and Alon [23], it is this definition of benefit that is most relevant.

The benefit, in contrast to the cost, does depend on enzyme kinetics and requires
consideration of the entire metabolic system. Dekel and Alon measured the benefit
for the lac operon in E. coli [23]. The benefit can be straightforwardly calculated for
a mathematical model of a metabolic pathway. First, the reference flux is calculated
given enzyme kinetic parameters, a characterisation of the environment, and the re-
source constraint. The benefit curve for each enzyme is then calculated by determin-
ing the steady-state flux as function of enzyme level while all other enzymes remain
fixed at their optimal values. Typically, the benefit of an enzyme will display satu-
ration behaviour with increasing concentrations. Here we have generalised Dekel
and Alon’s definitions of enzyme benefit to make them applicable general metabolic
pathways.

The enzyme benefit minus cost is maximised at the optimal enzyme
level

What remains to be shown at this stage is that a maximisation of the return on
investment, i.e. of J/R, indeed implies a maximisation of benefit minus cost. This we
derive in the Appendix 2.F by showing that the optimisation of the flux, J, under the
constraint given by equation 2.1, indeed gives rise to a maximisation of benefit minus
cost when the enzyme level is at it’s optimal level.

The fact that the benefit minus cost is maximal at the optimal level of the enzyme
can also be derived from a different perspective. The derivative of benefit minus cost
with respect to the enzyme level at the optimum should equal 0:

∂Bi(eopt
i , R)

∂ei
−

∂Ci(eopt
i , R)

∂ēi
=

∂ ln J(eopt(R))
∂ei

−
ωi
R

= 0 (2.4)
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Multiplication of this equation with eopt
i gives rise to the following expression at the

optimal state,
∂ ln J(eopt(R))

∂ ln ei
=

ωie
opt
i

R
. (2.5)

On the left hand side we identify the scaled flux control coefficient of enzyme i, CJ
i ,

as defined in metabolic control analysis (MCA) [21, 57]. Interestingly, this result
is in agreement with findings from Heinrich and co-workers, who arrived at the
same relationship by maximising the flux through a metabolic pathway under the
constraint of fixed total enzyme concentration; i.e. maximisation of J/R [5, 62–64].
Examples of this relation for other constraint functions are shown in Appendix 2.F.
We retrieve this equation via a different route: through maximisation of the difference
between benefit and cost. Thus, CJ

i is related to its fractional resource usage at an
optimal metabolic state. In a later section, we will show from the concept of a fitness
landscape that this coefficient is also related to the fitness contribution of enzyme i.

A cost-benefit analysis differentiates the importance of enzyme
kinetics and process costs

The definitions of enzyme benefits and costs address different aspects of protein
expression. The benefit exclusively addresses the contribution of the enzyme activity
to fitness (and will therefore be zero for an unneeded or nonfunctional protein)
without consideration of the cost, i.e. the consequent reduction in the levels of
other proteins upon protein expression due to a constraint (cf. [50] for experimental
evidence). The cost considers the reduction in fitness upon expression of the enzyme
when it does not contribute to fitness. In Figure 2.1, the influence of pathway kinetics
and specific enzyme costs (process costs for transcription and translation, for instance)
on the optimal enzyme level is illustrated. Changes in the benefit curve, due to
changes in kinetic parameters of any of the pathway enzymes, affect not only the
curve of enzyme of interest but also others. This can cause changes in the optimal
enzyme level. Alternatively, changes in enzyme costs can affect the optimal enzyme
levels. Changes in specific enzyme cost can, for instance, be introduced by decreasing
the life time of the enzyme such that at steady state more ribosomes will be required
to sustain the enzyme level. The optimal level of the enzyme occurs in this plot
when the slope of the benefit and cost curve are equal (equation (2.5)). The cost
slope depends linearly on the specific cost of the enzyme. The benefit slope will
depend in a nonlinear manner on kinetic properties in the metabolic network. A
sensitivity analysis of the kinetic parameters and the specific enzyme costs on the
optimal enzyme level will give additional insight into kinetic and cost contributions
in the optimum, i.e. whether the catalytic enzyme constants (KM or kcat’s) force
particular enzyme levels or whether transcription or translation costs dominate.

We emphasise that in Figure 2.1 the enzyme costs are expressed with respect to
the total resource allocated to pathway. Therefore, the costs in Figure 2.1 vary from 0
to 1. Alternatively, the total cellular resource amount could have been considered and
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Figure 2.1. Influences of enzyme kinetics and specific enzyme cost on optimal enzyme levels. Schematic
representation of the effect of different specific enzyme cost (left) and different benefit (right) on optimal en-
zyme expression. Enzyme kinetic parameters exclusively influence the benefit curve (blue) and the enzyme
costs (red) only depend on the process costs for enzyme synthesis. These two factors can independently in-
fluence the optimal enzyme level. The difference between benefit and cost is shown by the green curves.
The largest difference between benefit and cost is indicated for each scenario and corresponds to the opti-
mum of the green curves. The optimal enzyme level occurs when the slope of the benefit and cost curve in
these plots are equal (equation (2.5)).

then the costs would be been much smaller than 1, hence, the cost curves would have
been much less steep. Typically, the total cellular resource requirement is unknown
but the resource expended on a particular pathway can in principe be deduced from
experiments at the pathway level. With mathematical models of metabolic pathways
the resource allocated to the pathway can also be predicted; by fixing the metabolic
pathway flux and the subsequent minimisation of the resource requirement to achieve
this flux. The predicted enzyme levels can then be compared to measurements. If the
boundary metabolites of the pathway are fixed to measured concentrations and the
metabolic pathway flux is also chosen according to the same experiment, then the
optimal enzyme levels obtained by minimising the resources allocated to the pathway
will be in agreement with the situation when the entire cellular resource is minimised.
Thus when costs are expressed in terms of pathway level resource allocation, the
optimal enzyme levels are the same as when the costs are defined with respect to the
total cellular resource. The enzyme cost at the cellular level is then obtained from
Rpath
Rcell

ωi ei
Rpath

. The flux control coefficient of the enzyme in the optimal state at the level
of the entire cell then reduces by the same factor relative to its pathway level value;
hence, the flux control coefficient becomes

Rpath
Rcell

CJ
i .
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Exploring the relationships between selection coefficients, enzyme
costs and benefits, using a fitness landscape

A cost-benefit analysis sheds light on the optimal distribution of enzyme levels, under
a given resource constraint, in terms of enzyme costs and metabolic system kinetics
(benefit). What we do not understand at this stage, is why some enzymes are more
important than others for achieving the optimal state, i.e. for changing (or adapting)
fitness. Some enzymes therefore have a higher selection coefficient: for the same
change in enzyme level some enzymes will have a higher influence on fitness than
others. To address this issue we study the fitness landscape.

We take the steady-state flux through a metabolic pathway as our fitness function.
The fitness landscape is defined as the dependency of the pathway flux on all the
enzyme levels given a resource constraint that limits total cellular protein content.
The constraint bounds the fitness landscape (∀i : 0 ≤ ei ≤ R

ωi
). At the optimal

combination of enzyme levels, the metabolic pathway flux is maximal and the fitness
landscape displays a maximum. One sensible way to obtain an impression of such a
multi-dimensional fitness landscape is to look along an enzyme concentration axis,
say of enzyme j, and see how the maximal flux depends on the concentration of this
enzyme, taking into account the resource constraint. This can be achieved by fixing
enzyme j at some value ej and then optimising the flux under the “residual” constraint
R − wjej (and 0 < ej < R/wj). Only when ej equals its optimal value, ej = eopt

j , the
maximal flux Jopt is recovered and will all enzyme levels be at their optimal value.
The dependency of the optimal flux on ej, resulting from this procedure, is defined
as the fitness landscape of ej. We define the scaled slope of this fitness landscape for

enzyme j at some level of ej, i.e. ∂lnJopt

∂ln ej
, as the fitness contribution of enzyme j at level

ej. We will next describe an analytical expression for this fitness contribution that we
derive in the Supplemental Information.

We are interested in determining the slope of the dependency of the optimal
flux (Jopt) around the optimal enzyme distribution eopt for enzyme j. If in this
region J(êopt(ej, R)) ≈ Jopt then changes in ej hardly affect the optimal flux as the
dependency of J(êopt(ej, R)) on ej is flat and, hence, ∂Jopt/∂ej will be small in this
region. Alternatively, if ∂Jopt/∂ej is large, the dependency is steep and changes in
the level of the enzyme have a large effect near the optimal flux. This suggests that
this enzyme should evolve if it is not at its optimal expression level. The fitness
contribution of enzyme j, Fj(ej), is given by (see Appendix 2.G for a derivation and
application to a toy model),

Fj(ej) =
∂lnJopt

∂ln ej
=

CJ
j − Cj(ej, R)

1 − Cj(ej, R)
=

∂Bj
∂ ln ej

− ∂Cj
∂ ln ej

1 − Cj(ej, R)
(2.6)

This equation has an intuitive interpretation. If the term CJ
j − Cj(ej, R) is large: a large

change in the flux can be obtained at the expense of little resource investment in a
change in the enzyme concentration. This signifies an enzyme with large evolutionary
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potential. Unneeded protein synthesis can also be studied with this equation when
the flux control coefficient is set equal to 0. We note that a conservation relationship
exists for the fitness contributions at every point in the fitness landscape (Appendix
2.G).

The expression for the fitness contribution of enzyme j has some insightful prop-

erties. It equals zero when ej = eopt
j because then CJ

j =
eopt
j ωj

R (equation 2.5). The fit-

ness contribution should be positive when ej < eopt
j and negative when ej > eopt

j (be-
cause we are considering a maximum). The denominator is always positive. There-
fore we need to have CJ

j > ejωj
R when ej < eopt

j and CJ
j < ejωj

R when ej > eopt
j ; exactly

as intuition would suggest. When CJ
j = 1 (note that typically, 0 < CJ

j < 1) we retrieve

the largest fitness contribution. This means that a high CJ
j suggest a large fitness po-

tential.

2.3 Discussion

In this work, we studied the biochemical basis of the constraints that limit the evo-
lutionary adjustments in protein levels required to enhance fitness in batch growth
conditions, i.e. when selection acts on the specific maximal growth rate. This fitness
objective, maximisation of the specific maximal growth rate, can be interpreted as a
maximisation of the cellular self-replication rate. This becomes clear from its defini-
tion as the biomass synthesis flux per unit biomass or synthesis of the growth machin-
ery of a cell per growth machinery per cell. Hence, production of protein that does
not contribute to growth would enhance the amount of protein machinery but not
the synthesis flux of new synthesis machinery and therefore cause enhanced protein
costs. Thus, for this selective pressure the minimisation of resource usage to attain a
particular growth rate – i.e. effectively minimising unneeded protein synthesis – is a
relevant hypothesis with ample experimental support (see Introduction).

In this work, we found that several models of biochemical constraints acting on
protein synthesis lead to linear relations between the total available (limited) resource
and the protein concentration (equation 2.1 and Appendix 2.A). These models differ
in the mechanistic and kinetic interpretation of the specific resource requirement of
an enzyme, it’s ω coefficient. What we did not consider in these models is that at
high degrees of enzyme over-expression, additional protein toxicity influences can
play a role; such as limitations of specific amino acids, cell morphological influences
or the formation of growth-inhibiting protein aggregates. We omitted these phenom-
ena from our theoretical models because we believe their negative influences on
growth will typically be negligible when enzyme levels are changed close to their nat-
ural expression level (typically be below 1% of total cellular protein content). Such
experiments are required to determine enzyme costs of wild-type or evolved strains
in evolutionary studies. However, if enzyme costs are determined from experiments
with significant over-expression, protein toxicity cannot be excluded. Moreover, un-

21



Chapter 2

der those conditions it cannot be ruled out that the enzyme cost is no longer a linear
function of the enzyme concentration.

In chemostats, the synthesis of unneeded protein also caused a fitness reduction
[20, 40, 47, 48] as measured by the selection coefficient. This is surprising, because the
selective pressure in a chemostat is not directly linked to resource usage in contrast
to the selective pressure in batch, which is essentially expressed in terms of total
functional/needed protein. The selective pressure in chemostat is the ability to grow at
the specific growth rate set by the dilution rate at the lowest possible concentration
of the limiting nutrient in the bioreactor. Essentially, the selection pressure acts on
the affinity (or more precisely µmax/KS) where the selection pressure for the affinity
for the substrate is most pronounced at low growth rate (far below the maximal
specific growth rate of the organism, e.g. see [48]). It is not immediately evident that
under these conditions, fitness can be enhanced by adjusting protein partitioning
and whether the functional protein content should be maximised. This is partially
because selection acts on substrate affinity and not on reproduction rate (and also
not on the number of offspring; not per unit time and in terms of yield). Perhaps,
unneeded protein synthesis in chemostats leads to fitness reduction because the
nonfunctional protein produced also goes at the expense of transporter protein, which
can be expected to be important under chemostat selection conditions at low growth
rates. Alternatively, the fitness in chemostats is enhanced by increased maximal
growth rate, which is unlikely at low dilution rates, but cannot be ruled out. However,
the basic biological explanations of the importance of protein constraints in chemostat
selection are not straightforward, which is why we focussed in this paper on selection
in batch cultures. The role of protein constraints in chemostat evolution is the topic of
chapter 3 of this thesis.

The enzyme fitness potential that we have proposed is intimately linked to the
selection coefficient used in growth studies. Suppose two mutants, x and y, occur
simultaneously in a batch reactor at the same time and they differ in their fitness.
Typically a selection coefficient is defined, which addresses how quickly the fitter
mutant outgrows the other mutant. This is done by plotting the time evolution of
the quantity ln

(
x
y

)
. If mutant x derives from genotype y and only differs in the

expression level of one enzyme, ej, the rate of change of the selection coefficient,
d
dt ln

(
x
y

)
, equals µ(ej + ∆ej) − µ(ej) ≈

(
∂µ
∂ej

)
δej. In the absence of a constraint that

limits the cellular protein content ∂µ
∂ej

would be the unscaled control coefficient of

the enzyme j on fitness. In the presence of the protein constraint, ∂µ
∂ej

equals the

unscaled fitness potential of the enzyme (i.e. Jopt

ej
Fj). This indicates that the selection

coefficient in a serial batch experiment is related to the fitness potential of the mutated
enzymes and their benefits and costs. In fact, this correspondence between the control
coefficient and the selection coefficient was exploited by Steve Oliver’s group [65, 66]
when they measured the control coefficient of hundreds of enzymes on growth rate in
chemostat using a single-allele knockout library. Note that for many applications, the
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fitness potential will be close to the control coefficient (Fj ≈ CJ
j ), because the resource

usage of enzyme will often be very small R >> ωjej and negligible compared to the
value of CJ

j .
The theory described in this paper can be useful for rationalising experimental

data of metabolic evolution of microorganisms. This theory extends earlier work on
the application of metabolic control analysis to study metabolic fitness [67].

23



Chapter 2

Appendices

2.A Derivation of the enzyme production cost based on the
underlying transcription and translation network

Evolutionary optimisation of fitness will in general occur under constraints. Those
constraints can have various origins, such as physical, biochemical or thermodynamic.
For instance, total available ATP for biomass synthesis, diffusion timescales, available
membrane space, or available cell volume can act as constraints. We here aimed to
derive such constraints from underlying biochemical networks. We considered three
constraints: (1) a resource (or energy) constraint; (2) a ribosome capacity constraint
and (3) a RNA polymerase abundance constraint. In the next sections we will derive
the origins of these constraints.

Derivation of the enzyme production cost based on an energy or resources
constraint

Let us consider the gene network as depicted in Figure 2.2. In this network, the
mRNA product of gene i, indicated as mi, is synthesised and degraded with rate
constants: km

s and km
d , respectively. The mRNA mi stimulates protein synthesis of pi

and pi is degraded with rate constant kp
d . The conversion of substrate S into product

P is catalysed by pi, with steady state flux J.

S  P

Figure 2.2. Overview of biochemical network. The product of gene i, mi stimulate the synthesis of protein
pi , which in turn catalyses the conversion from S to P at the metabolic network. Both, mi and pi have
specific synthesis (s) and degradation (d) rates, with first-order rate constant k.

The enzyme production cost for enzyme i is defined as the amount of resources
required per unit enzyme per unit time. Therefore, the enzyme production cost
consists of the cost for transcription of the corresponding gene(s) and the cost of
translation of the mRNA(s). For the network depicted in Figure 2.2 this leads to

ωi =
Jpωp

i
pi

+
Jmωm

i
pi

, (2.7)
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where Jm and Jp are respectively the rate for transcription and translation, and ωm
i and

ωp
i , the corresponding cost of transcription and translation per unit rate. Assuming

mass-action kinetics for transcription and translation we can write:

ωi =
kp

d pi ωp
i

pi
+

km
d mi ωm

i
pi

. (2.8)

The characteristic life times (τ) will generally equal one over a degradation rate
constant: τ = 1/kd. As a result, we obtain the equation that characterises the enzyme
production cost:

ωi =

(
ωm

i mi

τm
i pi

+
ωp

i
τp

i

)

. (2.9)

This equation can easily be extended with relevant properties for other metabolic
networks, such as, for instance, an additional cost term for the misfolded proteins.
Note that the ratio mi/pi can be expressed in terms of rate constants, kp

d/kp
s .

Derivation of the enzyme production cost based on ribosomal occupancy
constraint

Here we assume that the amount of cellular protein is limited by the availability
of ribosomes and consequently by the competition of mRNA’s for ribosomes. The
total amount of ribosome, r, equals the free amount, rF, and the total bound pool
mr = ∑j mjr then,

r = rF + mr = rF + ∑
j

mjr. (2.10)

Note that r depends on the specific growth rate µ, we don’t need this dependency
now so it is omitted. The total fraction of occupied ribosome, φ, is approximately
fixed in E. coli and several other microorganisms across growth conditions and equals,

φ =
mr
r

= ∑
j

mjr
r

. (2.11)

The resource requirement of a mRNA, later we determine the requirement for its
protein product, is given by the fraction of all ribosomes it occupies,

Cj =
mjr
r

. (2.12)

So, we have
φ = ∑

j
Cj. (2.13)

The concentration of mjr can be approximated by with Kj as the dissociation constant
of the j-th mRNA for the ribosome,

mjr = r

mj
Kj

1 + ∑k
mk
Kk

. (2.14)
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So, we have

Cj =
mjr
r

=

mj
Kj

1 + ∑k
mk
Kk

. (2.15)

The concentration of the corresponding protein pj with translation rate constant kj
and degradation rate constant δj equals,

pj =
kj

δj
mjr. (2.16)

The ribosome resource consumption expressed for protein now becomes

Cj =
mjr
r

=
pjδj

kjr
. (2.17)

So, the constraint equation becomes

rφ = ∑
j

rCj = ∑
j

ωj pj. (2.18)

This last equation sets a bound to the protein concentration in a cell and derives from
the limited availability of ribosome for translation of mRNA. The ωj, the specific

resource consumption of protein j now equals, δj
kj

.

Derivation of the enzyme production cost based on RNA polymerase availability
constraint

The derivation of the biochemical constraint resulting from the competition for a lim-
iting pool of RNA polymerase is equivalent to the derivation in the previous section.
We start from the total pool, r, which equals the sum of the unbound polymerases, rF,
and the bound pool, ∑i ri,

r = rF + ∑
i

ri. (2.19)

At steady state, the level of mRNA j equals

mj =
km

j rj

δm
j

, (2.20)

where km
j equals the transcription activity constant and δm

j the mRNA degradation
rate constant. The protein level of enzyme j equals

pj =
kp

j mj

δp
j

=
km

j kp
j rj

δm
j δp

j
, (2.21)

26



Cost-benefit analysis

where kp
j equals the translation rate constant and δp

j the proteins degradation rate
constant. From the last equation we obtain an expression for rj in term of the protein
level,

rj =
δm

j δp
j

km
j kp

j
pj. (2.22)

If we assume that the bound RNA polymerase pool is approximately fixed then the
bound fraction φ is a constant,

rφ = r ∑i ri
r

= ∑
i

ωi pi, (2.23)

where ωi is defined as
δm

j δp
j

km
j kp

j
. Again the linear protein constraint emerges from a

biochemical constraint.

2.B The specific growth rate is a J/R measure

A central argument in our work is that the selection pressure in batch cultures of
bacteria is the specific growth rate and that this quantity is maximised in evolution
by optimal partitioning of proteins over growth processes, given a bound on the
cellular protein content that derives from a biochemical constraint in the growth
process, such as limited availability of RNA polymerases, ribosomes or energy. We
will now illustrate why the specific growth rate is so tightly linked to the biochemical
constraint, which sets a limit to a resource (R) for growth.

The specific growth rate, µ (hr−1), is related to the yield on the growth substrate,
(S), denoted by YX/S (in gram dry weight per mol substrate) and the uptake rate of
the growth substrate, JS, in mol substrate per gram dry weight per hr,

µ = YX/S JS =
JS

1/YX/S
=

JS
R∗ . (2.24)

R∗ is also a resource requirement but then for growth substrate, i.e. it’s units are mol
S per gram dry weight. But we are interested in an intracellular growth resource such
as ATP equivalents. To make this explicit we decompose R∗ into separate factors,

R∗ =
1

YATP/S

1
YX/ATP

=
1

YATP/S

R
αetot

. (2.25)

1
YATP/S

equals the amount of substrate required to make one mole of ATP; this quantity
depends on the pathways that the organism uses to make ATP. YX/ATP is the yield of
biomass expressed as gram dry weight per 1 mol of ATP. 1

YX/ATP
is the ATP resource

requirement R = ∑i ωiei divided by 1 gram dry weight; 1 gram dry weight can
be expressed in terms of the total protein content etot = ∑i ei (ei are now enzyme
concentrations) as αetot where α contains the cellular protein fraction and protein
weight.
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Consideration of equation 2.24 and 2.25 gives,

µ = YX/S JS =
JS

1
YATP/S

R
αetot

, (2.26)

which shows that µ and JS/R are linked as described in the main text.
Since, the resource equation R = ∑i ωiei does not set the protein content etot for the

same amount of resource, different protein amounts can obtained leading to changes
in flux, J. Because J is first-order homogeneous function of the protein content, i.e.
λJ = J(λetot), we have, if the YX/S is fixed, λµ = µ(λetot), which shows that analysis
of flux gives rise to same results for the cost and benefit as the analysis of µ. Therefore,
the specific growth rate can change because the flux changed at a constant yield,
which is a stoichiometric property (calculable with FBA),

δµ = YX/SδJS = YX/S ∑
i

∂J
∂ei

δei. (2.27)

If the YX/S is fixed then R∗ is fixed as well,

δR∗ =
∂R∗

∂YATP/S
δYATP/S +

∂R∗

∂R
δR +

∂R∗

∂α
δα +

∂R∗

∂etot
δetot = 0. (2.28)

We also assumed R to be fixed, i.e. same amount of ATP is available, and if we
assume in addition that the pathways are used for ATP from S then also YATP/S is
fixed and, therefore,

∂R∗

∂α
δα = −

∂R∗

∂etot
δetot. (2.29)

The protein content of the cell (part of α) must have been changed as a result of a
change in the total amount of protein per cell. Then, we have δetot = ∑i ei which leads
to a flux change of δJ = ∑i

∂J
∂ei

δei.
This section therefore showed the linkage between µ and R, and how changes in

the protein content δetot at fixed R can lead to an uptake flux change δJ, which causes
a change in the specific growth rate µ at fixed biomass yield on substrate, YX/S. This
indicates that the µ in equation 2.26 changes because Js changes due to a change in the
etot and a compensating change in α. This is the mechanism for evolutionary change
of metabolic pathway activity resulting from specific growth rate selection given a
biochemical constraint that we discuss in this paper.

A subnetwork perspective

One of the questions asked in the main text is whether we can study evolutionary
adaptation in µ at the level of a single pathway by only considering the resource
amount of the pathway and repartitioning this over pathway enzymes to enhance
fitness. Then δR = 0 = δRpathway + δRrest. If we then demand only enzyme changes
pathway then ∀i : δRrest,i = 0 and all enzymes in the remained of the network stay
fixed. Then, the enzyme changes considered in the previous section only concern
pathway enzymes.
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2.C Derivation of the cost function

We define a vector of optimal enzyme concentrations, eopt, given an available amount
of resource R that maximises the pathway flux J of interest to the value Jopt,

Jopt(R) = J(eopt(R)).

For metabolic pathways, this flux is a first-order homogeneous function of the enzyme
concentration such that αJ = J(αe) [60]. This property holds for general enzyme
kinetics as long as there are no complexes of different enzymes catalysing metabolic
reactions; i.e. in the absence of metabolic channeling [56].

Then the cost of an enzyme i is defined as

, Ci(ei, R) =
J(eopt(R)) − J(eopt(R − ωi ēi))

J(eopt(R))
, (2.30)

where J(eopt(R − ωi ēi)) denotes the maximal flux at the optimal enzyme distribution
but at a lower value of R due to the expression of dummy protein. The reduction in
“useful” resource R − ωi ēi can be written as a multiplication of the available resource
R by the factor 1 − ωi ēi

R . Because J and R are each first order homogeneous functions
with respect to the enzyme concentration (αR = R(αe)), dummy enzyme expression
leads to a reduction of Jopt by the factor 1 − ωi ēi

R . Substitution of this relationship into
equation 2.30 reveals that the functional cost of enzyme i equals its fractional resource
usage,

Ci(ei, R) =
ωi ēi
R

. (2.31)

2.D Derivation of the benefit function

To define the benefit of enzyme i at concentration ei we define the fractional change
in the flux relative to the optimal state,

f (ei) =
J(êopt(ei, R)) − J(eopt(R))

J(eopt(R))
,

where J(êopt(ei, R)) denotes the flux where all enzymes concentrations are at their
optimum corresponding to resource constraint R except for enzyme i, which is at
concentration ei. Accordingly, we define the enzyme vector,

êopt(ei, R) =
{

eopt
1 , . . . , ei, . . . , eopt

n
}

.

Hence, the following relationship holds: êopt(eopt
i , R) = eopt(R).

Since we used the optimal state as reference state, the relative flux difference is
zero at eopt

i , as indicated by the arrow (Figure 2.3). Consequently, at concentration of
ei < eopt

i the relative flux difference is negative (dashed line). To prevent this we add
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the term, without ei being present, which is denoted by f (0). The benefit function
consists thus of two terms: f (ei) + f (0).

Bi(ei, R) = f (ei) + f (0)

=
J(êopt(ei, R))
J(eopt(R))

. (2.32)

Here we used a property of linear metabolic pathways: J(êopt(ei = 0, R)) = 0. In
this formulation, benefit corresponds to intuition: it is positive and will typically be
an increasing function with enzyme concentrations. The addition of f (0) does not
influence the optimal concentration as indicated by the vertical dashed line.

Figure 2.3. Illustration of the cost and benefit function as function of dummy (ēi) and useful enzyme (ei),
respectively.

2.E Disentangling of the interplay between metabolic system kinet-
ics and enzyme production cost using cost and benefit
functions

With the general definitions of cost and benefit as described in the main text, the
interplay between pathway kinetics and enzyme costs will be addressed. We will
consider a simple toy model, which consists of two enzymatic steps, both catalysed by
irreversible product-sensitive Michaelis-Menten kinetics. We address three different
issues, all relevant for biochemical pathways: i) changing the affinity of the first
enzyme for it’s external substrate, ii) changing the maximal capacity of the first
enzyme and iii) different enzyme production costs for the enzymes in the pathway.

All simulations are carried out with the constraint function Φ(e) = ω1e1 + ω2e2,
and Φ(e) ≤ R. The resource availability R and all kinetic parameter values are fixed,
except for the perturbed parameter as just described. We then optimise the steady
state flux using the enzyme concentrations and corresponding metabolite levels as
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variables. We explain these “direct” optimisations in terms of a cost and benefit
analysis. For all three perturbations we present our results as a panel of three plots:
in the first plot the cost (red) and benefit (blue) functions are plotted, the second plot
shows the benefit minus cost (green) function and the third plot corresponds to the
direct optimisation where we plot the flux relative to the Vmax. In all three plots the
curves are plotted as function of the first enzyme. The solid thick line corresponds
to the original parameter values, with a black dot indicating the optimum, and the
dashed line to the perturbed case, with a black triangle indicating the optimum. The
maximal difference between the benefit and cost curve(s) is indicated with a dashed
grey line (Figure 2.4).

To simulate a change in the affinity of the first enzyme, we decreased the affinity
constant with a factor 10 (from 1 to 0.1). Note that a decrease in Km reflects a higher
affinity. We find that an increase in affinity leads to a lower optimal expression level.
This is reflected by a steeper benefit function, which also saturates at a lower level,
indicating that there exists a trade-off between affinity and maximal activity.

The perturbation in kcat was performed by an increase from 2 to 20 (note, that the
kcat of e2 is equal to 10). Increasing the kcat of e1, results in a lower concentration in
the optimum. However, due to the resource constraint, investing a lot resources in an
enzyme with a low catalytic capacity is at the expense of other enzyme(s). Therefore,
we observe a higher optimum at the benefit minus curve but at the same time a lower
steady-state flux.

We also simulated the effect of different enzyme cost strategies: reference values
used are ω1 = 0.25, ω2 = 0.75, and for the perturbed case we set these parameters
to: ω1 = 0.9, ω2 = 0.1. We found an inverse relation between enzyme cost and
its optimal level: upon an increase of the ω optimal level decreased. However, the
story is a bit more complicated because due to the resource constraint; a change
in the ω′s will lead to different total enzyme levels and hence different optimal
flux values. This is also reflected by the plot showing the direct optimisation: if
e1 = etot then e2=0 and hence J = 0. For the reference conditions this is achieved
at e1 = (R − e2 · w2)/w1 = (1 − 0 · 0.75)/0.25 = 4. Following a similar calculation
we obtain e1 = 10/9 for the perturbed scenario. The explanation for this behaviour
becomes apparent from inspecting the cost and benefit curves: a higher specific
enzyme costs makes a steeper cost function and consequently, the optimal enzyme
concentration decreases.

Note that for the first two perturbations, the cost line (red) is not affected, e.g. it is
entirely independent of enzyme kinetics. This is also what we found in the main text.
The benefit functions on the other hand does change for all three perturbations.
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Figure 2.4. Interplay between enzyme kinetics and enzyme production cost on the optimal enzyme
distribution. For a two-enzyme metabolic network three perturbations were applied: a change in the
affinity of the first enzyme for it’s substrate (left panel), a change in the catalytic capacity of the first
enzyme (middle panel) and a change in the enzyme production costs (right panel). In all plots the solid
line corresponds to the original parameter set and the solid line the to perturbed scenario. The upper row
of plots shows the cost (red) and benefit (blue) as function of the concentration of ei . The grey dashed
lines indicated the maximum between benefit and cost. The middle row of plots corresponds to the
benefit minus cost functions. The optimum of these curves is indicated by a solid black circle (reference
parameters) and triangle (perturbed parameters, and corresponds to the maximal difference between
benefit and cost curves. The lower row of plots shows the flux relative to the Vmax of the first enzyme.
Simulations were performed using the following reaction rate: vi = kcati · ei · s/(1 + s/Ks

m + p/Kp
m)

and unless otherwise noted, parameter values were chosen as follows: kcat1,2 = 10; KS
m1,2 = 1 and

0.1; KP
m1,2 = 5; S = 1, P = 1; R = 1, ω1,2 = 1

2.F The relationship between the flux control coefficient and the
constraint function in the optimal state

Maximisation of the return of investment

Consider the return on investment of a metabolic pathway, defined J(e)/R(e), where
e = {ei, . . . , er} is the vector of enzyme concentrations, J is the steady state flux
though the pathway and R is the amount of resources needed to maintain e.

We are interested the enzyme levels that maximise the return on investment:

Maximise :
J(e)
R(e)

(2.33)

There is a subtle difference between this objective and maximising J for a giving
amount of R. However, as we will show below, for linear cost functions the optima of
these two objectives are equivalent. Since ln x is a monotonically increasing function,
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f (x) and ln( f (x)) generally have the same maximum, i.e. ln arg(max(ln f (x))) =
arg(max( f (x))). Thus, equation 2.33 is equivalent to

Maximise : ln(
J(e)
R(e)

) = ln(J(e)) − ln(R(e)) (2.34)

Clearly, maximising equation 2.34 for enzyme i requires

0 = ei

(
∂ ln J(e)

∂ei
−

∂ ln R(e)
∂ei

)
. (2.35)

The first term we identify as the flux control coefficient of ei, CJ
i . Now, consider the

linear cost function

R =
r

∑
j=1

ωjej. (2.36)

for which we see that ei
∂ ln R(e)

∂ei
= ωiei/R. The condition for optimality of ei is thus:

CJ
i =

ωiei
R

. (2.37)

Note that this condition does not require the other enzyme, ej "=i, to be optimal.
Condition 2.37 gives the optimal level of ei for any distribution of the other enzymes.
Interestingly, this result is in agreement with findings from Heinrich and co-workers,
who arrived at the same relationship by maximising the flux through a metabolic
pathway under the constraint of fixed total enzyme concentration [5, 62–64].

Alternative derivation of relationship between flux control coefficient and
constraint function

Here, we derive the same relationship between the flux control coefficient and the
enzyme cost (equation (2.37)), but now by using Langrange multipliers.

Let us consider a linear metabolic network of r reactions under the following
constraint,

g(e) =
r

∑
i=1

ωiei =
r

∑
i=1

ci = c. (2.38)

We assume that the flux is maximal and that the above constraint is true. Using the
Lagrange multiplier, λ, we can find a relationship between the flux derivatives to the
enzyme concentrations and the enzyme constraint,

∂
∂ei

(

J − λ

(
r

∑
i=1

ωiei − c

))

= 0. (2.39)

This gives then for every ei,
∂J
∂ei

− ωiλ = 0. (2.40)
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From the definition of the flux control coefficient we obtain,

CJ
i =

∂J
∂ei

ei
J

= ωiλ
ei
J

. (2.41)

The summation theorem of flux control coefficients leads to,
r

∑
i=1

CJ
i =

λ
J

r

∑
i=1

ωiei = 1. (2.42)

Equation 2.38 then shows that,
J
λ

= c. (2.43)

So the control coefficients at optimal states becomes,

CJ
i =

ωiei
c

=
ci
c

. (2.44)

If all ωi’s are 1 and c = etot (total enzyme concentration), we obtain the familiar
relationship CJ

i = ei/etot [62].

Derivation of the relationship between flux control coefficients for a general
constraint function

Now we consider the same pathway with the more general constraint

g(e) = c. (2.45)

The Langrange multiplier now relates to the flux derivative in the optimum as

∂J
∂ei

−
∂g
∂ei

λ =
∂J
∂ei

− λ = 0. (2.46)

From the definition of the flux control coefficient we obtain

CJ
i =

∂J
∂ei

ei
J

=
∂g
∂ei

λ
ei
J

. (2.47)

The summation theorem of flux control coefficients leads to
r

∑
i=1

CJ
i =

λ
J

r

∑
i=1

∂g
∂ei

ei = 1. (2.48)

Since,
J
λ

=
r

∑
i=1

∂g
∂ei

ei, (2.49)

the flux control coefficient then becomes,

CJ
i =

∂g
∂ei

ei

∑r
i=1

∂g
∂ei

ei
(2.50)
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Maximal difference between benefit and cost corresponds to maximisation of
return of investment

What remains to be shown at this stage is that a maximisation of the return on
investment, i.e. of J/R, indeed implies a maximisation of Bi(ei, R) − Ci(ei, R).At the
optimal state (at eopt(R)) we obtain,

∂Bi(eopt
i , R)

∂ei
−

∂Ci(eopt
i , R)

∂ēi
=

∂ ln J(eopt(R))
∂ei

−
ωi
R

= 0.

Multiplication of this equation with eopt
i gives rise to the following expression at the

optimal state:
∂ ln J(eopt(R))

∂ ln ei
=

ωie
opt
i

R
. (2.51)

On the left hand side we identify the scaled flux control coefficient of enzyme i, CJ
i , as

defined in metabolic control analysis (MCA) [57]. This shows that indeed maximising
the difference between the benefit - cost function is equivalent to maximising the flux
through a pathway under a (linearl) constraint on the total enzyme concentration.

2.G Derivation of an enzyme fitness landscape

Introduction to the main concept and equations

We study the slope of the dependency of the optimal flux (Jopt) around the optimal
enzyme distribution eopt for enzyme j. If in this region J(êopt(ej, R)) ≈ Jopt then
changes in ej hardly affect the optimal flux as the dependency of J(êopt(ej, R)) on ej
is flat and, hence, ∂Jopt/∂ej will be small in this region. Alternatively, if ∂Jopt/∂ej is
large, the dependency is steep and changes in the level of the enzyme have a large
effect near the optimal flux. This suggests that this enzyme should evolve if it is not
at its optimal expression level. The fitness contribution of enzyme j, Fj(ej), is given
by (see Section 2.G for application to a toy model),

Fj(ej) =
∂lnJopt

∂ln ej
=

CJ
j − ejωj

R

1 − ejωj
R

=
CJ

j − Ci(ei, R)
1 − Ci(ei, R)

. (2.52)

This equation has an intuitive interpretation. If the term CJ
j − Ci(ei, R) is large, a large

change in the flux can be obtained at the expense of little resource investment in a
change in the enzyme concentration. This signifies an enzyme with large evolutionary
potential.

A conservation relationship exists for the fitness contributions at every point in
the fitness landscape,

n

∑
k=1

Fk(ek) = 0. (2.53)
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This relationship holds because ∑n
k=1 CJ

k = 1 [21, 57] and ∑n
k=1

ωi ei
R = 1 (equation

2.1). This equation agrees with intuition if the total cellular protein content would be
increased the specific growth rate would remain the same.

Derivation of the enzyme fitness potential

We define the steady state flux of a metabolic pathway as function of the enzyme
concentrations in this pathway as our fitness function, J(e), and demand a maximal
flux given a constraint on the enzyme concentrations, R = ∑r

k=1 ωkek. We assume that
there exists a combination of enzyme levels that satisfies the constraint and maximises
the flux, this vector of enzyme concentrations eopt is defined as,

eopt = arg max

(

J(e|R =
r

∑
k=1

ωkek)

)

. (2.54)

Here “arg” denotes argument, so “arg f (x) = x” in mathematical notation, and
“|R = ...” means “subject to R = ...” or “under the constraint R = ...”. We define the
maximal flux Jopt as J(eopt|R = ∑r

k=1 ωkek).
Now that we have defined the optimum we will define a fitness landscape and

study some of its properties. One sensible way to define a fitness landscape is to look
along an enzyme concentration axes, say of enzyme j, and see how the maximal flux
depends on the concentration of this enzyme, ej. A convenient way of doing this is
is by optimising the flux while ej is fixed at some value and the flux is optimised by
adjusting the other enzyme levels under the constraint R − ωjej (and 0 < ej < R/ωj).
Only when ej equals it optimal value, ej = eopt

j , do we recover the maximal flux, Jopt,
and for all concentrations of ej "= eo

j we have a flux smaller Jopt. The dependency of
the optimal flux on ej we define as the fitness landscape of ej; more strictly

Jopt(e∗
j ) = J(e|R − ωje∗

j =
r

∑
k=1
k "=j

ωkek ∪ ej = e∗
j ), (2.55)

and therefore Jopt = Jopt(eopt
j ) = J(eopt|R = ∑r

k=1 ωkek).

Ordering enzymes according to evolutionary urgency

Clearly if Jopt(e∗
j ) is studied around eo and in this region Jopt(e∗

j ) ≈ Jopt we are
looking at an enzyme that does not set the optimal flux to a great extent. So, then
∂Jopt

∂ej
is small in this region. On the other hand, if ∂Jopt

∂ej
is large around the optimum

the enzyme is important for the optimal flux value, Jopt, and is expected to evolve if it
is not yet at its optimal expression level.
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The slope of the fitness landscape is defined as

δ ln Jopt =



CJ
j + ∑

k=1
k !=j

CJ
k
∂ ln ek
∂ ln ej



 δ ln ej. (2.56)

Note that ∂ ln Jopt

∂ ln ej
= δ ln J

δ ln ej
= CJ

j + ∑k=1
k !=j

CJ
k

∂ ln ek
∂ ln ej

, which we will abbreviate with Fj.

When ej is fixed to some value e∗
j the other enzymes are adjusted to reach the maxi-

mum flux level under the constraint R − ωje∗
j . At those states, we can use Lagrange

multipliers to determine the control coefficients, CJ
k , of the non-fixed enzymes. We

then have the following Langrange function,

L = J(ek) + λ




r

∑
k=1
k !=j

ωkek − (R − ωjej)



 . (2.57)

For every k we have
∂L
∂ek

= 0 (2.58)

in the optimum. This leads to,
∂J
∂ek

= ωkλ (2.59)

and
CJ

k =
ωkλek

J
. (2.60)

In addition, the summation theorem of flux control coefficients dictates that
r

∑
k=1
k !=j

CJ
k =

λ(R − ωjej)
J

= 1 − CJ
j . (2.61)

Therefore

λ =
J(1 − CJ

j )
R − ωjej

. (2.62)

And the control coefficients for the adjustable enzymes (excluding enzyme j) at their
optimal levels become

CJ
k =

ωkek(1 − CJ
j )

R − ωjej
=

ωkek
R

1 − CJ
j

1 − ωjej
R

. (2.63)

This we can substitute in equation 2.56,

δ ln Jopt =



CJ
j +

(1 − CJ
j )

R − ωjej
∑
k=1
k !=j

ωkek
∂ ln ek
∂ ln ej



 δ ln ej. (2.64)
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This equation we can simplify further

δ ln Jopt =



CJ
j +

(1 − CJ
j )

R − ωjej
∑
k=1
k "=j

ωkek
∂ ln ek
∂ ln ej



 δ ln ej

= CJ
j δ ln ej +

(1 − CJ
j )

R − ωjej
∑
k=1
k "=j

ωk
∂ek
∂ej

δej

= CJ
j δ ln ej +

(1 − CJ
j )

R − ωjej
∑
k=1
k "=j

ωkδek

= CJ
j δ ln ej −

(1 − CJ
j )

R − ωjej
ωjδej

= CJ
j δ ln ej −

(1 − CJ
j )

R − ωjej
ωjejδ ln ej

=

(

CJ
j − (1 − CJ

j )
ωjej

R − ωjej

)

δ ln ej

=




CJ

j − ejωj
R

1 − ejωj
R



 δ ln ej.

Here we have used ∑k=1
k "=j

ωkδek = −ωjδej because of the conservation of resource R.

Thus, we find for the slope of the fitness landscape for enzyme j,

F J
j (ej) =

∂ ln Jopt

∂ ln ej
=

CJ
j − ejωj

R

1 − ejωj
R

. (2.65)

Let’s study this equation a bit. It is not a classical control coefficient, because all other
enzymes are allowed to change upon the perturbation in the enzyme level, ej. Fj is

zero when ej = eo
j because then CJ

j =
eopt
j ωj

R ; this makes sense. If should be positive
when ej < eo

j and negative when ej > eo
j (because we are considering a maximum).

The denominator is always positive. Therefore we need to have CJ
j > ejωj

R when

ej < eopt
j and CJ

j < ejωj
R when ej > eopt

j . Again this makes sense; at low values of ej we
have to little enzyme and the flux will increase upon an increase in the enzyme level
and at high concentration ej > eopt

j we have to much and the flux will decrease upon
an increase in ej as this will be at the expense of another enzyme that has become rate
limiting. When CJ

j = 1 (and it cannot get larger, 0 < CJ
j < 1) the slope is 1; this is the
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maximal slope. This means that the condition for a high slope of the Þtness landscape
is: a high control coefÞcient! This sounds like a trivial result but this is not the case, all
the enzyme levels (except for enzyme j) are allowed to change when a change in the
level of enzyme j is made of size ! ln ej and the chosen change in those enzyme levels
is the one that maximises the ßux at ej + ! ej . The fractional change in the optimal ßux
is then given by equation 2.65.

Comparison of equation 2.63 and 2.65 shows the relation between the control
coefÞcient of the Þxed enzyme,ej , and all the remaining enzymes, which are allowed
to attain optimal level given set a speciÞc Þxed level of enzyme j under the ÒresidualÓ
resource constraint, R ! " jej . Solving for CJ

k and CJ
j from these two equations gives

some more insight into the relation between the control coefÞcient and the slope of
the Þtness landscape,F j ,

CJ
k =

ek" k

R
(1 ! F j ) (2.66)

CJ
j = F j +

ej " j

R
(1 ! F j ) (2.67)

Note that these equations agree with the summation theorem of ßux control as they
should, i.e. ! r

k= 1
k"= j

CJ
k + CJ

j = 1 (note that: ! r
k= 1
k"= j

ek" k
R = 1 !

ej " j
R ). If F j = 1 then CJ

j = 1

and CJ
k = 0. The relative control amongst the variable enzymes is given by their

relative costs (their ek" k ratioÕs). Note also that in the optimum, F j = 0, and therefore
the control coefÞcients are deÞned as derived in the main text in the cost and beneÞt
analysis, i.e. asCJ

l = " l el
R .

Illustration of the slope of a Þtness landscape

To illustrate the equations for the slope of a Þtness landscape, we will apply them
in this section to a toy-model. The model consists of 4 enzyme-catalysed reactions
(see Figure 2.5, for model details see caption). We will create the Þtness landscape for
the second enzyme,e2. That means that we will make e2 a parameter and optimise
the other three enzymes of the model with the remaining resources. All " #s are set
to 1, resulting in the etot of 1. The Þtness landscape we obtain is shown in Figure
2.5, and reveals that theeopt

2 = 0.19. Next we calculated the slope for two different
values of e2: 0.05 and 0.6 (indicated by the black dots) using equation 2.65. The lines
corresponding to the slope at e2 = 0.05is shown by the orange line and the red line
corresponds to the slope of the Þtness landscape wheree2 = 0.6.
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Figure 2.5. Slope of the Þtness landscape. For a four enzyme metabolic system, we calculate the Þtness
landscape for the second enzyme. The model consists of 4 irreversible reactions, with a general rate
equation as given by: vi = kcati áei ás/ (1 + s/ Ks

m + p/ Kp
m), with parameter values: kcat1 = 3;KS

m,1 =
0.1;Kx1

m,1 = 1;kcat2 = 8;Kx1
m,2 = 0.5;Kx3

m,2 = 3;kcat3 = 5;Kx2
m,3 = 1;Kx3

m,3 = 0.5;kcat4 = 6;Kx3
m,4 = 2;Kp

m,4 =
0.75;S = 1;P = 0.1;! 1,2,3,4= 1;R = 1. Shown is the Þtness landscape fore2 by the blue line. In orange and
red, are two tangents shown, which have a slope that corresponds to the Þtness landscape ate2 = 0.05and
0.6, respectively.
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