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Abstract	

Background:	 Parkinson’s	 disease	 is	 one	 of	 the	 most	 widespread	 neurodegenerative	
disorders	and	affects	brain	metabolism.	Although	changes	in	gene	expression	during	the	
disease	 are	 often	 measured,	 it	 is	 difficult	 to	 predict	 metabolic	 fluxes	 from	 gene	
expression	data.	Here	we	apply	a	new	computational	method	to	predict	metabolic	flux	
changes	from	post-mortem	gene	expression	measurements	in	Parkinson’s	disease	(PD)	
brain.	

Results:	 We	 use	 a	 network	 model	 of	 central	 metabolism	 and	 optimize	 the	
correspondence	between	relative	changes	in	fluxes	and	in	gene	expression,	taking	flux	
balance	 and	 reaction	 reversibility	 constraints	 into	 account.	 To	 this	 end	we	 apply	 the	
Least-squares	with	Equalities	and	 Inequalities	algorithm	 integrated	with	Flux	Balance	
Analysis	 (Lsei-FBA).	 We	 predict	 for	 PD	 (1)	 decreases	 in	 glycolytic	 rate	 and	 oxygen	
consumption	and	an	increase	in	lactate	production	in	brain	cortex	that	correspond	with	
measurements	 (2)	 relative	 flux	 decreases	 in	 ATP	 synthesis,	 in	 the	 malate-aspartate	
shuttle	and	midway	in	the	TCA	cycle	that	are	substantially	larger	than	the	decreases	in	
glucose	 uptake	 in	 the	 substantia	 nigra,	 dopaminergic	 neurons	 and	 most	 other	 brain	
regions	(3)	shifts	in	redox	shuttles	between	cytosol	and	mitochondria	(4)	in	contrast	to	
Alzheimer’s	disease:	little	activation	of	the	gamma-aminobutyric	acid	shunt	pathway	in	
compensation	 for	 decreased	 alpha-ketoglutarate	 dehydrogenase	 activity	 (5)	 in	 the	
globus	 pallidus	 internus,	 metabolic	 fluxes	 are	 predicted	 to	 be	 increased,	 reflecting	
increased	 functional	 activity.	 During	 PD,	 decreases	 in	 brain	 ATP	 synthesis	 may	 be	
substantially	larger	than	suggested	by	the	reduced	glucose	uptake.		

Conclusion:	 The	 results	 from	 our	 method	 indicate	 that	 prediction	 of	 changes	 in	
metabolic	fluxes	from	gene	expression	data	is	feasible,	at	least	for	Parkinson’s	disease.	
The	 computational	 predictions	 correspond	with	 independent	measurements	 of	 brain	
metabolism	 where	 available.	 The	 new	 computational	 method	 enables	 to	 extrapolate	
predictions	 to	 metabolic	 pathways	 in	 neurons	 and	 brain	 regions	 where	 accurate	
measurements	of	metabolic	fluxes	are	not	yet	available.	

	Keywords:	Metabolic	fluxes,	metabolic	network,	brain	metabolism,	Parkinson’s	disease,	
neurodegeneration	
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Background	

Many	human	diseases	 are	 associated	with	 changes	 in	 central	metabolism.	 Changes	 in	
expression	 of	 metabolic	 genes	 during	 disease	 are	 often	 measured,	 even	 in	 small	
anatomical	 regions	 or	 specific	 cell	 types.	 Unfortunately	 it	 was	 considered	 difficult	 to	
predict	changes	in	metabolic	fluxes	from	the	gene	expression	changes	(Daran-Lapujade	
et	 al.	 2007).	 However,	 recently	 it	was	 reported	 that	metabolic	 fluxes	 in	 yeast	 can	 be	
meaningfully	 predicted	 based	 on	 absolute	 gene	 expression	 in	 yeast	 (Lee	 et	 al.	 2012).	
Here	 we	 apply	 an	 approach	 to	 predict	 changes	 in	 metabolic	 flux	 distribution	 during	
disease	 from	changes	 in	gene	expression	 in	human	tissue.	Our	approach,	 termed	Lsei-
FBA,	was	described	and	demonstrated	on	one	data	set	for	Alzheimer’s	disease	recently	
(Gavai	et	al.	2015).	 It	 is	not	meant	to	be	an	exact	calculation	based	on	enzyme	kinetic	
equations,	 enzyme	 activities	 and	 metabolite	 concentrations,	 but	 a	 bioinformatic	
prediction	of	changes	at	the	network	level	based	on	the	tendencies	suggested	by	gene	
expression	 changes.	 In	 this	 regard	 it	 builds	 on	 the	 idea	 that	 it	 is	 possible	 to	 predict	
changed	 activity	 of	 biological	 pathways	 from	 associated	 gene	 expression	 changes,	
extending	this	in	the	direction	of	rough	quantitative	predictions	for	flux	distributions	in	
metabolic	networks.	The	Lsei-FBA	approach	is	applied	here	to	gene	expression	data	for	
Parkinson’s	disease.	

Parkinson’s	 disease	 (PD)	 is	 one	 of	 the	 most	 widespread	 neurodegenerative	
disorders.	PD	is	characterized	among	others	by	movement	disorder,	rigidity	and	tremor	
caused	by	the	loss	of	dopaminergic	neurons	in	the	substantia	nigra	pars	compacta	(SNc)	
of	 the	 brain.	 Although	 several	 genes	 have	 been	 identified	 in	 familial	 cases	 and	 by	
genome	wide	association	analysis,	 the	mechanisms	 for	 the	PD	progression	are	 largely	
unknown.	Damage	to	the	mitochondria	resulting	in	failure	to	generate	energy	possibly	
contributes	to	PD	(Banerjee	et	al.	2009;	Schapira	2010).	Several	gene	products	linked	to	
PD	 show	 mitochondrial	 localizations.	 Mitochondrial	 dysfunction	 has	 also	 been	
implicated	 in	 other	 neurodegenerative	 diseases	 such	 as	 Alzheimer’s	 disease	 (AD),	
Huntington’s	disease	(HD)	and	Amyotrophic	Lateral	Sclerosis	(ALS)	(Lin	&	Beal	2006).	

PD	 is	often	associated	with	disturbed	mitochondrial	 function	 in	 the	neurons	 in	
the	 SNc	which	 are	 the	most	 conspicuous	 target	 of	 the	 disease.	Decrease	 in	 complex	 I	
activity	 in	 the	 electron	 transport	 chain	 (ETC)	 during	 PD	 has	 been	 measured	 in	 the	
substantia	nigra	(Schapira	et	al.	1989)	and	 frontal	cortex	(Parker	et	al.	2008)	of	post-
mortem	brain.	Reduction	of	other	ETC	complexes,	namely	complex	II,	III	and	IV	has	also	
been	reported	for	the	substantia	nigra,	platelets	and	muscle	(reviewed	in	Banerjee	et	al.	
2009;	Zhu	&	Chu	2010).	

Statistical	analysis	of	gene	expression	also	suggests	that	mitochondrial	electron	
transport	 and	 glucose	 metabolism	 in	 the	 SNc	 and	 other	 brain	 regions	 are	 affected	
(Zheng	 et	 al.	 2010).	 However,	 the	 pattern	 and	 the	 magnitude	 of	 the	 changes	 in	
metabolic	flux	distribution	are	unknown.	Accurate	measurements	of	metabolic	fluxes	in	
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the	 small	 brain	 regions	 and	 cell	 types	 targeted	 by	 PD	 are	 presently	 impossible.	
Measurements	of	oxygen	and	glucose	uptake	with	positron	emission	tomography	(PET)	
in	PD	patients	have	been	done	 in	 larger	brain	 regions	 (Borghammer	et	al.	2010),	 and	
increased	lactate	accumulation	has	been	measured	with	NMR	spectroscopy	(Henchcliffe	
et	al.	2008).	Because	it	is	difficult	to	measure	metabolic	reaction	rates	directly	in	small	
brain	regions	or	in	specific	cell	types,	it	is	useful	to	predict	redistribution	of	metabolism	
from	mRNA	expression	measured	in	the	small	regions	affected	by	PD,	such	as	the	SNc	
and	specifically	in	dopaminergic	neurons.	

The	Lsei-FBA	approach	to	predict	changes	in	central	energy	metabolism	during	
PD	start	with	establishing	the	metabolic	flux	distribution	in	the	normal	brain	based	on	
measured	 data	 for	 the	 uptake	 and	 production	 of	metabolites	 in	 healthy	 human	 brain	
(Gavai	et	al.	2015).	This	data	is	analysed	using	flux	balance	analysis	(FBA)	of	a	network	
model	of	central	energy	metabolism	to	predict	the	flux	distribution	in	normal	brain.	The	
change	in	flux	distribution	during	PD	is	then	calculated	based	on	our	assumption	that,	
on	 average,	 the	 flux	 carried	 by	 each	 enzyme	 tends	 to	 change	 proportionally	 to	 the	
change	 in	mRNA	 expression	 between	 controls	 and	 PD	 patients.	 Note	 that	 we	 do	 not	
assume	that	every	reaction	rate	changes	in	proportion	to	the	gene	expression	level,	but	
that	on	average	the	reaction	fluxes	tend	to	follow	gene	expression.	In	the	next	step,	also	
for	the	diseased	state,	we	maintain	the	assumption	of	balance	of	fluxes	in	the	metabolic	
network	because	metabolites	 that	 are	 not	 exchanged	between	brain	 tissue	 and	blood	
cannot	keep	on	accumulating	steadily	during	chronic	disease	and	their	production	and	
consumption	 must	 therefore	 be	 approximately	 balanced.	 The	 changes	 in	 mRNA	
expression	provide	a	first	rough	prediction	of	the	change	in	metabolic	fluxes	based	on	
the	assumption	that	the	relative	change	in	gene	expression	and	in	metabolic	flux	for	the	
genes	tend	to	correspond.	This	initial	rough	estimate	is	refined	by	using	the	consistency	
and	 balance	 of	 fluxes	 in	 the	 metabolic	 network	 as	 additional	 constraints.	 The	
assumption	of	proportionality	between	gene	expression	and	enzymatic	flux,	at	least	on	
average,	will	be	discussed	below.		

The	 final	 prediction	 of	 metabolic	 fluxes	 in	 the	 network	 is	 subject	 to	 1)	 flux	
balance	 for	 metabolites	 which	 are	 not	 exchanged	 between	 brain	 and	 blood	 2)	
restriction	 to	 forward	 flux	 through	 irreversible	 reactions	 3)	 maximization	 of	
correspondence	between	 relative	 changes	 in	mRNA	expression	and	 changes	 in	 fluxes.	
We	 include	expression	datasets	 from	the	SNc	and	 from	 laser	captured	microdissected	
(LCM)	 dopaminergic	 neurons,	 in	 which	 neuronal	 damage	 usually	 occurs	 most	
prominently	 during	 PD.	 These	 SNc	 measurements	 are	 compared	 with	 other	 brain	
regions	 that	 show	 abundant	 Lewy	 bodies	 (LB)	 in	 PD	 without	 neuronal	 loss,	 such	 as	
frontal	cortex,	prefrontal	cortex	Brodmann	area	9	(BA9)	and	basal	ganglia	structures.	A	
statistical	meta-analysis	at	the	gene-set	level	of	these	datasets	(Zheng	et	al.	2010)	was	
already	 done,	 showing	 significant	 changes	 in	 mitochondrial	 electron	 transport	 and	
glucose	 metabolism,	 was	 already	 reported	 and	 is	 not	 repeated	 here.	 In	 the	 present	
study	we	report	quantitative	predictions	of	the	changes	in	the	distribution	of	fluxes	in	
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central	energy	metabolism	in	these	specific	brain	regions	and	in	dopaminergic	neurons	

in	PD.	

Methods	

Metabolic	model	reconstruction	for	brain	metabolism	

A	 metabolic	 reaction	 network	 was	 constructed	 consisting	 of	 the	 major	 pathways	

representing	central	carbon	and	energy	metabolism	in	the	brain.	The	rationale	for	using	

this	model	and	an	extensive	comparison	with	a	 larger	model	of	brain	metabolism	has	

been	 described	 in	 Gavai	 et	 al.	 (2015).	 Metabolites	 and	 enzymatic	 reactions	 were	

distributed	 over	 the	 extracellular,	 cytosolic	 and	 mitochondrial	 compartments.	 In	

summary,	 the	 pathways	 include	 glycolysis,	 pentose	 phosphate	 pathway	 (PPP),	 TCA	

cycle,	oxidative	phosphorylation	 (OxPhos),	 reducing	equivalent	 shuttling	mechanisms,	

gamma-aminobutyric	 acid	 (GABA)	 shunt	 and	 transport	 of	 metabolites	 across	 the	

membranes	 which	 separate	 the	 compartments.	 We	 updated	 this	 model	 by	 adding	

glutamate-glutamine	 cycle,	 pyruvate	 carboxylase	 reaction	 and	 ammonium	 transport	

across	 the	mitochondrial	membrane.	 The	 selected	 reactions	were	 imported	 from	 the	

BiGG	 database	 (Schellenberger	 et	 al.	 2010).	 Complete	 lists	 of	 the	 reactions	 in	 the	

network	along	with	the	lists	of	metabolite	are	given	in	Supplementary	Tables	S1	and	S2.	

The	Supplementary	Figure	S1	shows	the	network	scheme.		

Analysis	of	mRNA	expression	data	

Datasets	 containing	 the	 CEL	 files	 containing	 gene	 expression	 data	 of	 individual	 post-

mortem	 brain	 samples	 for	 neuropathologically	 confirmed	 PD	 patients	 and	 normal	

controls	 from	 the	 same	 study	 were	 downloaded	 from	 the	 Gene	 Expression	 Omnibus	

(GEO)	 database	 (Edgar	 et	 al.	 2002)	 and	 the	 National	 Brain	 Databank	 (NBD;	

http://national_databank.mclean.harvard.edu/brainbank/Main)	and	are	summarized	in	

Supplementary	Table	S3.	The	datasets	are	given	in	(Grünblatt	et	al.	2004;	Hauser	et	al.	

2005;	 Zhang	 et	 al.	 2005;	Moran	 et	 al.	 2006;	 Papapetropoulos	 et	 al.	 2006;	 Vogt	 et	 al.	

2006;	Scherzer	et	al.	2007;	Zheng	et	al.	2010).	The	dataset	from	Cantuti-Castelvetri	et	al.	

(Cantuti-Castelvetri	et	al.	2007)	(GEO	accession	GSE24378)	was	excluded	from	the	flux	

analysis	presented	in	this	paper	for	reasons	given	in	the	Discussion,	although	the	result	

of	the	Lsei-FBA	analysis	is	given	separately	in	Supplementary	Table	S4.	

All	 Affymetrix	 CEL	 files	 were	 pre-processed	 and	 normalized	 in	 the	 R	

programming	 environment	 using	 the	 RMA	 method	 (Irizarry	 et	 al.	 2003).	 Log2	

transformed	 values	 were	 used	 to	 calculate	 differences	 in	 expression	 levels	 of	 PD	

patients	against	the	healthy	controls.	
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Mapping	of	expression	data	on	a	pathway	map	

Based	on	the	reactions	in	our	network,	a	visual	map	was	drawn	incorporating	pathways	
downloaded	from	KEGG	(Kanehisa	&	Goto	2000)	and	WikiPathways	(Kelder	et	al.	2009)	
and	 modified	 manually	 in	 the	 pathway	 visualization	 tool	 PathVisio	 (van	 Iersel	 et	 al.	
2008).	 Log2	 transformed	 gene	 expression	 data	were	mapped	 onto	 the	 pathway	map	
using	the	visualization	options	within	the	PathVisio	tool.		

Analysis	of	flux	distribution		

A	 list	 of	 reaction	 equations	 was	 prepared	 according	 to	 the	 reaction	 list	 in	 the	 BiGG	
database	(Supplementary	Table	S1).	The	metabolic	system	 is	assumed	to	be	 in	steady	
state.	 Substrate	 uptake	 measurements	 for	 the	 healthy	 elderly	 (55-65	 years)	 human	
brain	were	 taken	 from	 (Lying-Tunell	 et	 al.	 1980),	which	 reported	 the	uptake	 rates	 of	
glucose,	 and	 release	 of	 lactate,	 glutamine	 and	 pyruvate	 for	 the	 brain	 to	 be	 0.203,	 -
0.0092,	 -0.011	 and	 -0.0024	 µmol	 g	 wet	 brain-1	 min-1	 respectively.	 A	 small	 flux	 is	
measured	in	the	PPP	in	the	normal	brain,	which	amounts	to	6.9%	of	glycolysis	(Dusick	
et	al.	2007).	Pyruvate	carboxylation	and	glutamate-glutamine	cycling	fluxes	amount	to	
13%	and	62%	of	the	value	of	the	total	glucose	uptake	in	the	brain,	respectively	(Hyder	
et	al.	2006)	while	the	GABA	shunt	flux	is	32%	of	the	glucose	uptake	value	(Patel	et	al.	
2005).	These	values	are	used	as	constraints	in	the	model.	

Flux	 balance	 analysis	 for	 the	 normal	 brain	was	 done	 assuming	 a	 cost	 function	
which	 maximizes	 ATP	 synthesis.	 The	 rationale	 for	 this	 assumption	 was	 discussed	
extensively	 in	Gavai	 et	 al.	 (2015).	Assuming	maximal	 growth,	which	 is	 often	used	 for	
flux	balance	analysis	of	bacterial	metabolism,	 is	 inappropriate	because	brain	 tissue	 in	
adults	 does	not	 show	net	 growth;	 some	material	may	be	 turned	over,	 but	 the	 overall	
change	in	mass	is	negligible.	Because	ATP	synthesis	in	the	mitochondria	is	driven	by	the	
proton	motive	force	across	the	inner	membrane,	the	balance	of	mitochondrial	protons	
determines	 the	 synthesis	 of	 ATP.	 Internal	 metabolites	 which	 are	 not	 exchanged	 are	
assumed	 to	 be	 balanced,	 which	 means	 that	 the	 fluxes	 producing	 and	 consuming	 the	
internal	metabolite	sum	up	to	zero,	i.e.	flux	balance	is	enforced.	The	flux	distribution	in	
the	healthy	brain	was	subsequently	solved	using	the	linear	programming	routine	Linp	
from	 the	 package	 LIM	 (Soetaert	 &	 van	 Oevelen	 2009)	 for	 the	 R	 programming	
environment.		

The	flux	distribution	in	the	PD	patients	is	estimated	using	the	Lsei-FBA	method,	
based	on	the	changes	in	gene	expression	data	and	the	flux	distribution	in	normal	brain	
(Gavai	et	al.	2015).	In	brief,	for	each	reaction,	the	average	fold	change	from	controls	was	
computed	for	the	expression	of	each	gene	associated	with	the	biochemical	reactions	in	
the	model	 (Supplementary	Figure	 S2).	The	 fold	 change	 for	 gene	 expression	 in	 the	PD	
patients	times	the	flux	estimated	for	the	associated	biochemical	reaction	for	the	healthy	
brain	yields	the	initial	rough	estimate	of	the	flux	for	every	reaction	in	the	model.		
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In	the	next	step,	flux	estimation	was	refined	based	on	flux	balance	in	the	model	
(Supplementary	 Figure	 S1).	 Under	 the	 assumption	 of	 absolute	 flux	 balance	 of	 the	
internal	metabolites	in	the	model	and	of	zero	backflux	for	the	irreversible	reactions	as	
given	in	Supplementary	Table	S1,	a	cost	function	was	minimized	consisting	of	the	sum	
of	the	squared	deviations	between	final	estimated	flux	and	initial	rough	estimate	of	the	
flux	as	calculated	above.	

The	equations	of	this	problem	of	least	squares	with	equalities	(balanced	fluxes)	
and	 inequalities	 (irreversible	 reactions)	 were	 solved	 using	 the	 least	 squares	 with	
equality	and	inequality	conditions	(lsei)	method	from	the	limSolve	package	(Soetaert	et	
al.	 2009).	 This	method,	 termed	Lsei-FBA,	 has	 been	described	 in	detail	 in	 (Gavai	 et	 al.	
2015)	and	is	a	special	case	of	quadratic	programming.	The	steps	describing	the	method	
are	summarized	in	Figure	1.	

	

	

Figure	1.	Flow	diagram	for	the	Lsei-FBA	approach	

Flow	diagram	of	the	steps	to	predict	metabolic	fluxes	for	the	normal	brain	(green	boxes)	and	for	
diseased	brain	based	on	gene	expression	data	(red	boxes)	described	in	the	Methods	section.	For	
the	normal	brain,	 the	 flux	distribution	was	 computed	 from	a	 reconstructed	model	of	 cerebral	
central	 carbon	metabolism.	For	 the	diseased	brain,	mRNA	gene	expression	 fold	 changes	were	
first	 computed	 for	 patients	 with	 Parkinson’s	 disease	 (PD)	 versus	 controls.	 An	 initial	 flux	
estimate	 is	 computed	 for	 each	 reaction	 in	 the	 network	 by	 multiplying	 gene	 expression	 fold	
changes	with	 the	 FBA	 flux	 predictions	 for	 the	 normal	 brain.	 The	 final	 flux	 estimate	 is	 solved	
subject	to	 i)	 forward	flux	 in	 irreversible	reactions,	 ii)	maintaining	the	balance	of	 fluxes	during	
chronic	 disease	 and	 iii)	 a	 least	 squares	 cost	 function	 to	 minimize	 the	 sum	 of	 the	 squared	
deviation	between	the	initial	and	the	final	flux	estimate.	
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Cerebral metabolic 
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Statistical	test	for	change	of	flux	during	disease	

The	difference	 in	 flux	was	 calculated	 for	n=8	 studies	of	 gene	expression	 in	 the	whole	
substantia	 nigra	 or	 dopaminergic	 neurons	 from	 that	 region.	 The	 significance	 of	 the	
difference	 in	 flux	 between	normal	 controls	 and	 the	 eight	 predictions	 (whole	 SNc	 and	
dopaminergic	neurons)	was	tested	using	a	one-sample	t-test	(p	<	0.05).	To	control	for	
multiple	comparisons	the	Family-wise	Type	1	error	(FWER)	was	calculated.	Because	the	
flux	in	a	sequence	of	reactions	that	contains	no	side-branch	is	absolutely	the	same	and	
therefore	completely	dependent,	only	one	t-test	was	done	per	each	group	of	such	fluxes,	
e.g.	 R_GLCt1r	 and	R_HEX1	 form	 one	 group,	 R_PGK,	 R_PGM,	 R_ENO	 and	R_PYK	 form	 a	
group,	 etc.	 For	 comparison	 the	 test	was	 also	 calculated	 for	 the	 six	 SNc	 study	 groups,	
excluding	the	dopaminergic	neurons.	

Results	

PD	gene	expression	pattern	across	brain	regions	

Fold	changes	of	mRNA	expression	of	patients	with	PD	against	their	healthy	controls	are	
shown	 mapped	 on	 the	 reaction	 network	 in	 the	 substantia	 nigra	 and	 dopaminergic	
neurons	in	Supplementary	Figure	S2A	(SN	datasets),	while	fold	changes	for	the	internal	
segment	 of	 the	 globus	 pallidus	 (GPi),	 putamen,	 frontal	 cortex,	 cerebellum,	 blood	 and	
lymphoblastoid	 cells	 are	 shown	 in	 Supplementary	 Figure	 S2B	 (non-SN	 datasets).	
Downregulated	genes	are	shown	in	green,	upregulated	genes	in	red.		

The	 SN	 data	 for	 the	 expression	 in	 the	 glycolytic	 pathway	 shows	 mostly	
downregulation	 except	 for	 the	 hexokinases	HK2	 and	HK3,	 phosphofructokinase	 PFKL	
and	 aldolase	 ALDOB	 genes.	 The	 solute	 carriers	 for	 glucose	 and	 lactate	 in	 the	 cell	
membrane	 tend	 to	 show	 upregulation.	 The	 expression	 changes	 in	 the	 pentose	
phosphate	 pathway	 (PPP)	 are	 small	 and	 mixed.	 Pathways	 in	 the	 mitochondria	 are	
generally	 downregulated,	 including	 the	 TCA	 cycle,	 oxidative	 phosphorylation	 and	
transfer	 of	 reducing	 equivalents	 across	 the	 mitochondrial	 membrane.	 However,	 the	
pyruvate	dehydrogenase	kinase	PDK4,	which	participates	in	the	regulation	of	pyruvate	
dehydrogenase	 activity,	 tends	 to	 show	 upregulation.	 Interestingly,	 the	 expression	 of	
mitochondrially	encoded	genes	(mtDNA)	in	the	electron	transport	chain	(ETC)	such	as	
ND1,	ND2,	ND3,	ND4,	ND4L,	ND5,	ND6,	CYTB,	COX1,	COX2,	COX3,	ATP6	and	ATP8	are	
increased.	

Outside	the	substantia	nigra,	transcription	level	changes	are	in	general	similar	as	
in	the	SN	datasets,	with	the	GPi	region	(GSE20146)	forming	a	clear	exception.	The	GPi	
shows	 upregulation	 in	 most	 glycolytic	 genes	 while	 TCA	 cycle	 and	 oxidative	
phosphorylation	 genes	 are	 not	 downregulated	 and	 even	 show	 a	 tendency	 of	 slight	
upregulation	(Supplementary	Figure	S2B).		
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Predicted	flux	distribution	in	the	healthy	brain	

Measurements	show	that	0.203	µmol	g	brain	(wet)-1	min-1	of	glucose	is	taken	up	in	the	
normal	brain	of	elderly	people,	and	a	small	amount	of	lactate	is	excreted	under	baseline	
conditions	 (Lying-Tunell	 et	 al.	1980).	Based	on	 this	metabolic	 input,	we	estimate	 that	
5.39	 µmol	 g	 brain	 (wet)-1	 min-1	 ATP	 is	 produced	 in	 the	 brain	 mitochondria.	 The	
predicted	 flux	 distribution	 is	 given	 in	 Figure	 2A.	 The	 malate-aspartate	 shuttle	
transports	reducing	equivalents	into	the	mitochondria.	The	glycerol	phosphate	shuttle	
is	predicted	to	be	inactive.	

	 To	 investigate	 if	 the	FBA	yields	unique	values,	we	performed	a	Flux	Variability	
Analysis	 (FVA)	 (Mahadevan	&	 Schilling	 2003),	 to	 estimate	 the	 feasible	minimum	 and	
maximum	of	all	fluxes.	The	FVA	proved	that	the	fluxes	calculated	give	indeed	a	unique	
solution	for	this	model	(data	not	shown).	

Predicted	flux	distribution	during	Parkinson’s	disease	

We	 now	 predict	 changes	 in	 the	metabolic	 flux	 distribution	 from	 the	 changes	 in	 gene	
expression	data	between	the	normal	brain	and	PD.	In	most	cases,	fluxes	are	decreased	
from	control	based	on	the	substantia	nigra	and	dopaminergic	neuron	gene	expression	
datasets.	 A	 full	 list	 of	 flux	 predictions	 for	 the	 substantia	 nigra	 and	 its	 dopaminergic	
neurons	 is	 given	 in	 Supplementary	 Table	 S4.	 The	 glycolytic	 flux	 is	 predicted	 to	 be	
reduced	by	10%	on	average	during	PD,	while	flux	into	the	TCA	cycle	decreases	by	12%	
and	 6	 percent	 of	 pyruvate	 influx	 is	 used	 to	 produce	 lactate	 (Figure	 2B).	 The	malate-
aspartate	 shuttle	 carrying	 reducing	 equivalents	 into	 the	 mitochondria	 is	 reduced	 by	
18%.	In	addition,	the	glycerol	phosphate	shuttle	becomes	slightly	active.	Total	export	of	
ATP	from	the	mitochondria	decreases	by	20%	to	4.307	µmol	g	wet	brain-1	min-1.	In	PD,	
on	average,	 the	GABA	shunt	 is	 increased	slightly	 (about	10%),	partially	compensating	
for	the	measured	reduction	in	alpha	ketoglutarate	dehydrogenase	(AKGDH)	expression,	
whose	flux	is	reduced	by	20%.	It	is	striking	that	the	modest	decrease	in	glucose	uptake	
leads	to	an	appreciably	larger	relative	decrease	in	ATP	production.	

	Flux	 changes	 in	 the	 frontal	 cortex,	 BA9,	 putamen	 and	 cerebellum	 during	 PD	
follow	the	same	pattern	as	 in	the	SN	although	the	changes	 in	these	regions	tend	to	be	
slightly	smaller	compared	to	the	SN	regions.	Their	average	is	given	in	Figure	2C	and	the	
predicted	flux	distribution	for	non-SN	brain	regions	is	given	in	the	Supplementary	Table	
S5.	 The	 change	 in	 fluxes	 in	 the	 globus	 pallidus	 internus	 is	 quite	 different	 from	 the	
substantia	 nigra	 and	 all	 other	 regions.	 In	 the	 GPi,	 increased	 flux	 from	 the	 normal	
condition	 is	 predicted	 in	most	 of	 the	 pathways:	 glycolysis	 increased	 by	 16%,	 lactate	
production	is	(17%	of	glycolytic	flux),	malate-aspartate	shuttle	is	5%	higher),	TCA	cycle	
and	OxPhos	are	on	average	5%	higher	 (Figure	2D).	An	 increase	 in	ATP	production	 to	
5.35	µmol	g	wet	brain-1	min-1	through	oxidative	phosphorylation	is	predicted,	utilizing	
1.17	µmol	g	wet	brain-1	min-1	of	oxygen.	In	this	case	the	AKGDH	flux	is	not	reduced	as	in	
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other	 brain	 regions,	 but	 slightly	 increased	 while	 the	 GABA	 shunt,	 AKGDH’s	 potential	
bypass,	is	slightly	reduced.		

	

Figure	2.	Flux	distribution	in	healthy	brain	and	during	Parkinson’s	disease	

Flux	distribution	in	healthy	brain	(A)	and	during	Parkinson’s	disease	in	the	substantia	nigra	(B,	
average	 from	 seven	 SN	 data	 sets),	 averaged	 value	 for	 frontal	 cortex,	 BA9,	 putamen	 and	
cerebellum	(C)	and	value	for	globus	pallidus	internus	region	(D)	in	µmol	g	(wet)	brain-1	min-1.	
Black	numbers,	flux	during	normal	condition;	green	numbers,	flux	decreased	during	PD	and	red	
numbers,	increased	from	the	normal	condition.	Note	that	for	clarity	not	all	separate	biochemical	
steps	 are	 plotted:	 oxaloacetate	 is	 for	 instance	 first	 transaminated	 to	 aspartate	 before	 being	
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transported	 across	 the	mitochondrial	membrane	 as	part	 of	 the	malate-aspartate	 shuttle.	GLC,	
glucose;	G3P,	 glyceraldehyde	3-phosphate;	RU5PD,	 ribulose-5-phosphate;	PYR,	pyruvate;	LAC,	
lactate;	CIT,	citrate;	AKG,	alpha-ketoglutarate;	SUCC,	succinate;	MAL,	malate;	OAA,	oxaloacetate;	
GLU,	 glutamate;	 GLN,	 glutamine,	 GABA,	 4-aminobutanoate	 (synonym	 of	 gamma-
aminobutyrate);	 O2,	 oxygen;	 OxPhos,	 oxidative	 phosphorylation.	 Flux	 values	 from	 GLC	 to	
RU5PD	and	 from	RU5PD	to	G3P	represent	6-carbon	units	 leaving	 the	GLC	pool	 rather	 than	3-
carbon	units	entering	the	G3P	pool.	

Discussion	

Comparison	of	computational	predictions	and	cerebral	metabolic	measurements	

To	test	our	new	method	to	calculate	changes	in	metabolism	from	changes	in	expression	
of	metabolic	 genes,	 we	 compare	 changes	 predicted	with	 direct	measurements	 to	 the	
extent	 that	 these	 were	 possible	 in	 relatively	 large	 brain	 regions.	 Measurements	 of	
cerebral	metabolism	in	PD	by	positron	emission	tomography	(PET)	have	recently	been	
meta-analysed	 (Borghammer	 et	 al.	 2010;	 Borghammer	 2012).	 In	 11	 out	 of	 the	 14	
studies	 that	were	 reviewed,	 2-32	%	decreases	 in	 cerebral	 glucose	 consumption	were	
reported,	although	in	only	four	of	these	cases	the	change	was	reported	to	be	significant.	
In	 only	 two	 of	 the	 meta-analysed	 studies	 there	 was	 a	 very	 small	 (2-4%)	 and	 non-
significant	increase.	From	the	gene	expression	changes	in	cortical	areas	analysed	in	the	
present	 study	 (GSE8397	 and	 GSE20168;	 see	 Supplementary	 Table	 S5)	 we	 predict	 a	
decrease	in	glucose	consumption	of	about	11%,	which	is	of	the	same	order	as	the	8.5	%	
average	decrease	seen	in	the	meta-analysis	of	the	PET	measurements.	

In	 the	 meta-analysis,	 the	 decrease	 in	 oxygen	 consumption	 in	 three	 PD	 study	
groups	measured	by	PET	ranged	from	6-34%	(average	19%	decrease).	From	the	gene	
expression	changes	in	the	two	cortical	areas,	we	computationally	predict	a	decrease	of	
17.5	 and	 22%	 in	 oxygen	 consumption.	 Our	 predictions	 for	 changes	 in	 glucose	 and	
oxygen	consumption	for	the	cortical	areas	agree	with	direction	and	size	of	change	in	the	
PET	measurements	in	PD	patients.	Our	computational	predictions	are	compatible	with	
the	conclusion	from	the	meta-analysis	of	PET	measurements	that	in	PD	there	is	cortical	
hypometabolism	(Borghammer	et	al.	2010;	Borghammer	2012).	

The	spatial	resolution	of	PET	measurements	is	characterized	by	a	Full	Width	at	
Half	 Maximum	 of	 at	 least	 5	 mm,	 which	 in	 practice	 is	 often	 even	 considerably	 larger	
(Borghammer	 et	 al.	 2010).	 In	 contrast,	 gene	 expression	 measurements	 were	 even	
feasible	 for	 laser-excised	 cells	 which	made	 computational	 predictions	 specifically	 for	
dopaminergic	neurons	possible.	Further,	in	addition	to	glucose	and	oxygen	uptake,	our	
computational	 method	 describes	 the	 metabolic	 pattern	 in	 the	 entire	 network	 and	
therefore	 has	 a	 high	 ‘biochemical	 resolution’	 while	 with	 PET	 only	 uptakes	 of	 single	
metabolites	are	measured.	Examples	are	the	computational	prediction	from	the	present	
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study	that	the	relative	decrease	in	ATP	synthesis	is	larger	than	the	decrease	in	glucose	
or	 oxygen	uptake,	 the	prediction	 that	 the	 flux	 in	 the	middle	 of	 the	TCA	 cycle	 is	more	
reduced	 than	at	 the	start	and	end,	 limited	metabolic	 rerouting	around	downregulated	
enzymes,	 shifts	 in	 redox	 shuttles	 and	 emergence	 of	 lactate	 production,	 the	 latter	 in	
agreement	with	NMR	measurements	(see	below).	

Predicted	Metabolic	Fluxes	During	Parkinson’s	disease		

ATP	 synthesis	 is	 driven	 by	 protons	 which	 are	 pumped	 by	 the	 ETC	 complexes	 from	
mitochondrial	matrix	 to	 cytosol	 and	 flow	back	 through	ATP	synthase.	 In	our	network	
model,	 protons	 in	 the	 mitochondrial	 matrix	 are	 balanced	 and	 ATP	 synthesis	 by	 the	
mitochondrial	 ATP	 synthase	 is	 determined.	 Our	 computational	 analysis	 predicts	 that	
the	proton	fluxes	through	all	ETC	complexes	and	ATP	synthase	in	the	SNc	during	PD	are	
reduced	by	the	same	proportion	(average	18%)	relative	to	the	healthy	brain.	As	a	result,	
the	predicted	uptake	of	oxygen	into	the	brain	and	the	ratio	of	oxygen	to	glucose	uptake	
are	reduced.		

Our	 computational	 analysis	 predicts	 that	 the	 reduced	 pyruvate	 flux	 into	 the	
mitochondria	 is	 associated	 with	 production	 of	 lactate,	 accounting	 for	 about	 10%	 of	
pyruvate	 in	 the	 GPi	 region	 and	 for	 about	 6%	 in	 the	 substantia	 nigra	 and	 other	 brain	
regions.	 Increase	 in	 cerebral	 lactate	 in	 PD	has	 indeed	 been	measured	 using	magnetic	
resonance	spectroscopy	in	various	parts	of	the	brain	(Bowen	et	al.	1995;	Henchcliffe	et	
al.	2008).		

Rerouting	of	pathways	

In	 the	GABA	 shunt	pathway,	 the	 flux	 of	 alpha-ketoglutarate	 to	 succinate	 in	 the	
TCA	 cycle	 via	 alpha-ketoglutarate	 dehydrogenase	 (AKGDm)	 and	 succinate-CoA	 ligase	
(SUCOAS1m)	is	rerouted	through	decarboxylation	of	glutamate	to	GABA	via	glutamate	
decarboxylase	 (GLUDC)	 in	 the	 cytosol,	 and	 subsequently	 to	 succinate	 via	 GABA	
transaminase	 (ABTArm)	 and	 succinate	 semialdehyde	dehydrogenase	 (SSALxm)	 in	 the	
mitochondria	 (Supplementary	 Figure	 S1).	 The	 GABA	 shunt	 is	 active	 in	 GABAergic	
neurons	(Hassel	et	al.	1998),	providing	a	mechanism	for	synthesis	of	GABA	which	is	an	
inhibitory	neurotransmitter.	The	GABA	shunt	 in	general	accounts	 for	 less	 than	half	of	
the	 total	TCA	cycle	 flux	 in	GABAergic	neurons	 (Balázs	et	al.	1970;	Hassel	et	al.	1998).	
GABAergic	neurons	account	for	about	18%	of	total	neuronal	glucose	oxidation	(Hyder	et	
al.	 2006).	 The	 GABA	 shunt	 flux	 is	 present	 in	 glutamatergic	 and	 cholinergic	 neurons,	
although	it	is	small	there	(Lewis	et	al.	2010).		

In	 PD,	 a	 marked	 reduction	 in	 alpha-ketoglutarate	 dehydrogenase	 (AKGDm)	
complex	by	 immunostaining	has	been	 reported	 in	 the	 substantia	nigra	of	PD	patients	
(Mizuno	 et	 al.	 1995).	 Gene	 expression	 data	 associated	 with	 AKGDm	 also	 show	
downregulation	in	PD	patients	(Supplementary	Figure	S2).	Consistent	with	this	reduced	
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activity,	 the	 computational	 analysis	 also	 predicts	 lower	 flux	 through	 AKGDm.	 This	
reduction	 can	be	 compensated	by	 rerouting	 of	 alpha-ketoglutarate	 through	 the	GABA	
shunt.	For	Alzheimer’s	disease	(AD),	Lewis	et	al.	(Lewis	et	al.	2010)	applied	a	metabolic	
model	 and	 inferred	 that	 the	 about	 50%	 reduced	AKGDm	 activity	measured	 for	 AD	 is	
compensated	 by	 increases	 in	 GABA	 shunt	 flux	 in	 AD.	 We	 confirmed	 this	 prediction	
based	on	the	Lsei-FBA	analysis	of	gene	expression	changes	in	an	AD	data	set	(Gavai	et	al.	
2015).	 However,	 in	 the	 present	 study	 the	 upregulation	 of	 flux	 in	 the	 GABA	 shunt	
pathway	during	PD	was	predicted	to	be	much	smaller	than	for	AD.	

Flux	in	Globus	Pallidus	internus	is	increased	

The	present	flux	analysis	predicted	total	cellular	ATP	production	in	the	GPi	region	to	be	
higher	 during	 PD,	 accompanied	 by	 increased	 fluxes	 in	 all	 pathways	 (Figure	 2D).	 This	
may	 be	 associated	 with	 the	 role	 of	 GPi	 in	 the	 neural	 circuits	 that	 regulate	 human	
movement.	In	PD,	loss	of	dopaminergic	neurons	in	the	striatum	causes	hyperactivation	
of	the	subthalamic	nucleus	(STN)	and	GPi,	leading	to	increased	neuronal	firing	rates	in	
the	GPi	(Hutchison	et	al.	1994)	and	disturbed	regulation	of	motor	neurons	(Dostrovsky	
et	 al.	 2002;	 Baunez	 &	 Gubellini	 2010).	 This	 theory	 has	 been	 the	 basis	 of	 deep	 brain	
stimulation	 (DBS)	 treatment	 in	 PD	 patients	 targeting	 the	 GPi	 and	 STN	 region	
(Dostrovsky	 et	 al.	 2002).	 There	 is	 therefore	 a	 striking	 correspondence	 between	 the	
increase	in	metabolic	fluxes	in	the	GPi	and	increased	neuronal	activity	in	this	region.	A	
remarkable	detail	is	that	in	spite	of	increased	oxygen	uptake,	lactate	efflux	in	the	GPi	is	
predicted	to	be	increased.		

Limitations	and	prospects	of	the	study	

By	computational	analysis	we	predicted	changes	in	metabolic	fluxes	in	small	regions	in	
the	brain,	such	as	the	substantia	nigra.	In	relatively	large	cortical	regions	the	metabolic	
rates	 for	 glucose	 and	 oxygen	 were	 measured	 with	 PET	 and	 agree	 with	 our	
computational	 predictions.	Metabolic	 changes	 in	 small	 regions	 such	 as	 the	 substantia	
nigra,	 and	 in	 particular	 in	 dopaminergic	 neurons	 in	 this	 region,	 could	 not	 a	 priori	 be	
assumed	to	be	the	same	as	changes	determined	in	larger	regions	which	are	accessible	to	
experimental	 flux	 measurements	 with	 low	 spatial	 resolution.	 However,	 the	 present	
computational	 analysis	 predicts	 changes	 in	 the	 SN	 that	 are	 similar	 to	 other	 brain	
regions.	 Also	 the	 results	 for	 laser-captured	 dopaminergic	 neurons	 are	 similar	 to	 the	
whole	SN	and	most	other	brain	regions.	In	contrast,	one	particular	brain	region,	the	GPi,	
shows	different	metabolic	changes	than	the	other	brain	regions,	including	the	SN,	which	
usually	 is	 most	 prominently	 affected	 by	 PD.	 Our	 computational	 prediction	 therefore	
suggests	 that	 during	 PD,	 metabolism	 is	 decreased	 similarly	 in	 most	 brain	 regions.	
However,	 the	GPi	represents	a	small	region	where	metabolism	is	 increased	 in	parallel	
with	increased	neuronal	activity.	
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The	predicted	changes	in	metabolism	are	averages	for	the	region	sampled	based	
on	 gene	 expression	 changes	 measured	 for	 the	 sample	 as	 a	 whole.	 There	 are	 several	
distinct	cell	types	inside	these	regions.	The	disease	may	have	progressed	much	more	in	
some	of	the	cells	than	in	others,	and	damage	may	even	be	heterogeneous	in	cells	of	the	
same	type.	The	changes	 in	metabolic	 fluxes	may	therefore	be	 larger	 in	a	subset	of	 the	
cells	than	in	the	tissue	as	a	whole.	Because	neurons	and	glia	are	 lumped	in	the	mRNA	
expression	measurements,	we	also	used	a	model	which	 lumps	metabolism	of	neurons	
and	glia.	Models	of	brain	metabolism	with	separate	compartments	for	neurons	and	glial	
cells	 exist	 (Cakir	 et	 al.	 2007;	Lewis	 et	 al.	 2010),	 but	have	no	added	value	 in	 this	 case	
because	the	available	gene	expression	measurements	reflect	a	weighted	average	of	cell	
types.	 For	 the	present	 analysis	 a	 lumped	model	was	 therefore	used	with	 biochemical	
reactions	 not	 compartmentalized	 in	 distinct	 cell	 types.	 The	 use	 of	 a	metabolic	model	
with	one	compartment	for	tissues	which	contain	several	cell	types	means	that	limitation	
of	metabolism	by	exchange	processes	between	the	cells	is	assumed	to	be	negligible.	The	
correspondence	between	metabolic	rate	measurements	and	computational	predictions	
for	cortical	regions,	see	above,	suggests	that	this	assumption	is	reasonable.	

Among	the	SN	expression	datasets	included	in	the	study	by	Zheng	et	al.	(Zheng	et	
al.	 2010),	 the	 dataset	 from	 Cantuti-Castelvetri	 et	 al.	 (Cantuti-Castelvetri	 et	 al.	 2007)	
(GEO	 accession	GSE24378)	 differs	 from	 the	 rest	 by	 displaying	 overexpression	 during	
Parkinson’s	 disease	 in	most	 of	 the	 genes	 in	 the	metabolic	 pathways.	 As	 suggested	 by	
(Zheng	et	al.	2010),	this	may	be	caused	by	the	use	of	the	non-standard	X3P	microarray	
chip,	which	differs	from	the	rest	of	the	platforms	used.	For	this	reason	this	data	set	was	
not	 included	 in	 the	 final	 analysis	 of	 the	present	 study.	Our	 analysis	 on	 the	GSE24378	
data	 set	 indeed	 predicted	 that	 most	 metabolic	 fluxes	 are	 upregulated	 (see	
Supplementary	Table	S4),	which	differs	from	the	results	for	all	other	SN	data	sets.		

The	 present	 prediction	 is	 based	 on	 gene	 expression	 changes.	 Regulation	 of	
translation	 of	 mRNAs	 in	 proteins	 and	 breakdown	 and	 posttranslational	 modification	
and	allosteric	regulation	of	enzymes	in	the	metabolic	network	may	modify	the	relation	
between	mRNA	expression	and	flux.	The	relation	between	changes	in	gene	expression	
and	 metabolic	 fluxes	 was	 investigated	 for	 glycolysis	 in	 yeast	 (Daran-Lapujade	 et	 al.	
2007).	Only	a	fraction	of	the	enzymes	involved	in	yeast	glycolysis	showed	clear	changes	
in	gene	expression	in	the	same	direction	as	the	change	in	flux	carried	by	that	particular	
enzyme.	 A	 more	 recent	 approach	 presents	 flux	 prediction	 based	 on	 absolute	 gene	
expression	data	on	a	 large	scale	yeast	network	(Lee	et	al.	2012).	The	 latter	method	 is	
able	 to	meaningfully	predict	 flux	 compared	 to	exo-metabolome	measurements.	 In	our	
study,	 the	 changes	 in	 gene	 expression	 in	 metabolic	 pathways	 in	 PD	 (Supplementary	
Figure	 S2)	 appeared	 to	 be	 more	 consistent	 and	 uniform	 than	 in	 the	 study	 on	 yeast	
glycolysis.	 This	 may	 explain	 why	 the	 computational	 predictions	 based	 on	 gene	
expression	 changes	 in	 the	 present	 study	 agree	 with	 the	 changes	 in	 metabolic	 rate	
measured	by	PET	(see	above).		
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The	 approach	 by	 Lee	 et	 al.	 (2012)	 in	 yeast	 and	 our	 present	 approach	 have	 a	
common	 assumption	 that	 metabolic	 fluxes	 tend	 to	 be	 related	 to	 gene	 expression	
without	assuming	a	rigid	relation	for	each	individual	reaction.	Both	studies	suggest	that	
it	 is	 useful	 to	 take	 the	 metabolic	 network	 connectivity	 into	 account	 to	 estimate	 an	
overall	effect	of	gene	expression	on	the	metabolic	flux.	

Several	other	algorithms	exist	to	predict	metabolic	fluxes	from	gene	expression	
data.	These	 algorithms,	 such	 as	 iMAT	 (Shlomi	 et	 al.	 2008),	GIMME	 (Becker	&	Palsson	
2008)	 ,	GX-FBA	 (Navid	&	Almaas	2012),	E-Flux	 (Colijn	 et	 al.	 2009),	 Lee-12	 (Lee	et	 al.	
2012),	 RELATCH	 (Kim	 &	 Reed	 2012)	 have	 recently	 been	 extensively	 reviewed	 and	
benchmarked	 on	 yeast	 and	 E.	 coli	 data	 (Machado	 &	 Herrgård	 2014).	 In	 the	 original	
publication	 on	 Lsei-FBA,	 the	 algorithms	 tested	 by	 Machado	 were	 tested	 on	 gene	
expression	data	for	brain	tissue	(Gavai	et	al.	2015)	and	appeared	to	perform	better	for	
this	 application	 than	 the	 algorithms	 benchmarked	 by	 Machado	 et	 al.	 (2014).	 The	
characteristics	 of	 Lsei-FBA	 in	 comparison	 with	 these	 other	 algorithms	 have	 been	
extensively	discussed	by	Gavai	et	al.	(2015).		

Our	approach	has	a	 limitation	which	is	specific	to	brain	tissue:	a	fraction	of	the	
enzymes	which	are	 formed	 from	the	measured	messenger	RNAs	are	 transported	over	
relatively	 long	 distances	 to	 catalyse	 metabolism	 in	 axonal	 terminals.	 Many	
dopaminergic	 neurons	 in	 the	 SNc	 receive	 for	 instance	 input	 via	 GABAergic	 synapses	
from	 relatively	 distant	 GABAergic	 neuronal	 cell	 bodies	 (Bolam	 and	 Smith	 1990).	 The	
predicted	metabolic	changes	therefore	apply	to	the	cells	whose	gene	expression	levels	
are	 measured,	 which	 includes	 distant	 nerve	 terminals	 of	 those	 cells,	 but	 excludes	
metabolic	changes	in	nerve	terminals	from	distant	neuronal	cell	bodies	that	extend	into	
the	 region	where	mRNAs	 are	 sampled.	 This	means	 that	metabolic	 changes	 predicted	
from	 gene	 expression	 changes	 on	 the	 one	 hand,	 and	 directly	 measured	 in	 the	 same	
region	on	the	other	hand,	may	diverge	to	a	certain	extent.	

Conclusion	

This	 paper	 describes	 application	 of	 a	 recent	 method	 to	 predict	 changes	 in	
metabolic	 fluxes	 based	on	 changes	 in	 gene	 expression	 in	 patient	material.	 From	gene	
expression	changes	during	Parkinson’s	disease,	metabolic	fluxes	through	central	carbon	
metabolism	are	predicted	to	be	reduced	in	the	substantia	nigra	and	other	brain	regions	
including	frontal	cortex,	cerebellum	and	putamen.	A	striking	result	is	that	the	predicted	
relative	changes	in	ATP	synthesis	are	larger	than	the	changes	in	glucose	uptake.	We	also	
predicted	 increase	 of	 lactate	 production	 and	 shifts	 in	 redox	 shuttles.	 Reduced	
metabolism	via	alpha	ketoglutarate	dehydrogenase	in	the	middle	of	the	TCA	cycle	is	less	
compensated	via	the	GABA	shunt	than	is	the	case	in	Alzheimer’s	disease.	In	contrast	to	
the	 decreases	 in	 metabolism	 in	 substantia	 nigra	 and	 most	 other	 brain	 regions,	 the	
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globus	pallidus	internus	part	of	the	brain	is	predicted	to	show	increased	metabolic	flux	
compared	to	normal	controls.		
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