
VU Research Portal

Beyond the average

Aarts, E.

2016

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Aarts, E. (2016). Beyond the average: Choosing and improving statistical methods to optimize inference from
complex neuroscience data. [, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 10. Aug. 2025

https://research.vu.nl/en/publications/3daade04-2329-42e4-8ed3-18b49538c0c2


6 | Summary, discussion, and fu-
ture directions

215



216 Chapter 6. Summary, discussion, and future directions



217

Statistical analysis is a critical element in the research process: it allows one to draw
appropriate research conclusions from sets of collected data. Using the correct sta-
tistical approach, i.e., one that fits the nature and structure of the data, is of utter
importance in this process. The ever-increasing complexity of data, prompted by
advances in experimental techniques available to the field of neuroscience, calls for
statistical approaches that go beyond the standard statistical tests. To optimally ex-
ploit the information present in experimental data, the statistical methods of choice
should not only ensure the reliability and validity of the research conclusions, but
also optimally describe and/or accommodate the complexity of the data. In this
PhD-project, we aimed to elucidate statistical methods that optimally fit the com-
plex data obtained presently within the field of neuroscience, and to develop a novel
statistical model that fully exploits the information contained within intensive longi-
tudinal behavioral mouse data. In addition, we describe a novel method for testing
anxiety in a home-cage environment (PhenoTyper).

In Chapter 2 and Chapter 3 of this thesis, we demonstrated that it is crucial to
accommodate in statistical analyses the clustered nature of data, which arises when
multiple observations are collected from each research object. This not only prevents
an increased false positive rate but also optimizes statistical power. In case of a study
design in which all observations within a research object pertain to the same experi-
mental condition (design A), it has been pointed out before that the false positive rate
increases when the clustered nature of the data is not accommodated in the analysis,
both within the neuroscience literature and beyond [72, 73, 75, 91, 93, 94]. However,
the prevalence of nested data, and the amount of dependency due to nestedness that
can be expected in the field of neuroscience had not been assessed previously. For
a study design in which the obtained observations within a research object can per-
tain to di�erent experimental conditions (design B), the discussion in neuroscience
literature was limited to the gain in statistical power when accommodating variation
in the average baseline outcome [72, 91]. However, in design B not only the average
baseline outcome, but also the e�ect of the experimental manipulation may vary over
research objects. Not accommodating variation in the experimental e�ect may result
in an increased false positive rate. By means of a simulation study, we demonstrated
the degree of inflation given systematic variation in either only the experimental ef-
fect, or in both the experimental e�ect and the baseline condition. These results are
a valuable addition to the few previous (theoretical) studies [75, 151, 152] in which
researchers showed with a example case or cases, or by considering the equation of
the standard error of the experimental e�ect, that not accommodating this variation
may result in an increased false positive rate.
In Chapter 4, we described and pharmacologically validated a new anxiety test
that allows for unsupervised, automated, high-throughput testing of mice in a home-
cage system. The development of this test was motivated by a pressing need for
reliable, high-throughput methods for comprehensive behavioral phenotyping to op-
timally benefit from the increasing availability of experimentally engineered mouse
lines as expressed by e.g. [24, 34, 35], and nicely adds to the automated home-cage
task developed by Kas et al. [52] to assess anxiety related behaviors.
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In Chapter 5, a statistical tool based on Markov modeling - a hierarchical hidden
semi Markov model (HSMM) - was developed and implemented in a Bayesian context
to describe the temporal organization of behavior that can be observed when mice
are studied in home-cage systems over a prolonged period of time. While simula-
tion studies showed that the developed model still requires some adjustment if it is
to be applied to data that resemble the observed mouse data, a real data example,
comparing the behavioral pattern of young adult and aged C57BL/6J mice already
clearly illustrated the advantage of the hierarchical HSMM over standard summary
statistical tests. A Markov model including hidden behavioral states has been used
once before to analyze longitudinal mouse data [59]. These researchers did not use a
hierarchical model. In contrast, they used a two-step procedure in which they first
assume that the underlying model that generates the observed behavior is similar
over all mice in all groups, but then continue to investigate possible di�erences be-
tween groups based on the parameters obtained in the first step. The hierarchical
model that we developed, however, allows for heterogeneity in model parameters
both within and between groups. As a consequence, more information on individual
di�erences between mice is retained, and group di�erences are better discernible and
can be tested formally. In addition, the model we developed is not based on the
generally untenable assumption that the probability of spending more time in the
current behavioral state does not depend on the time already spent in that state.
Moreover, although HMMs with a hierarchical structure have received some atten-
tion in literature [133–136], a hierarchical HSMM, allowing for random e�ects in all
model parameters while utilizing the favorable properties of the Gibbs sampler, has
not been presented before [132,137].

All in all, the studies reported in these four chapters demonstrate the importance of
applying statistical and methodological methods that fully exploit the complex struc-
ture of data generated by the novel experimental techniques that conquer the field of
neuroscience. In the following paragraphs, I will discuss challenges and opportunities
when collecting multiple observations from research objects, validity of automated
home-cage systems and recommended developments, and the added value and future
directions of the developed hierarchical hidden semi Markov model.

6.1.1 Challenges and opportunities when collecting multiple
observations from each research object

The possibility to study increasingly smaller biological entities facilitated by advances
in experimental techniques have shifted the n from the animal or tissue level to the
cellular or even subcellular level. This makes it possible to obtain multiple measure-
ments from each animal (for example, measurements on multiple neurons harvested
from the same animal), allowing researchers to reduce the number of sacrificed an-
imals while still obtaining a reasonable number of observations. Measuring at this
lower level is thus advantageous for scientific, economic, and ethical reasons. Experi-
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mental designs, in which multiple observations or measurements are clustered within
research objects, are, as we showed in Chapter 2, common in neuroscience research.
Following our study presented in Chapter 2, we observe that in neuroscience and
related scientific areas the interest in multilevel analysis has grown, as did the aware-
ness of the significance of accommodating dependency resulting from nested designs.
Boisgontier and Cheval [153] underline the need to transition towards multilevel mod-
els instead of classical analysis methods (i.e., ANOVA) to increase the reliability of
the field of neuroscience, and point out that although the ratio between using these
two methods have started to increase, the field of neuroscience is lagging behind com-
pared to other scientific areas. In the field of primatology, Pollet et al. [154] discuss
the conceptual advantages of using multilevel models compared to not accommodat-
ing the nested structure of the data or aggregating multiple observations taken from
the same individual. Magezi [155] stresses the need to use multilevel models in case
of within-participant data and presents a free, simple, graphical user interface to do
so, and Moen et al. [156] discuss the need to account for multiple observations nested
within a study participant in detail.
The use of multilevel analysis also provides opportunities in terms of novel research
questions that can be probed, and has implications for the number of observations
that need to be collected. In addition, collecting multiple observations per research
object raises several theoretical and statistical issues, some of which will be discussed
below.

People or plants? When it comes to nested designs, an important theoretical
question is what the actual biological unit of interest is: are we interested in what
happens at the level of the cluster (e.g., mouse), or are we actually interested in
what happens at the lower level, i.e., the level of the observations within the clus-
ters (e.g., neuron or cell). The tradition of multilevel analysis originates from the
social sciences, in which nearly always individual people constitute the lowest level
in a hierarchical model. Despite the fact that the people are clustered – e.g., chil-
dren clustered in schools, or patients clustered in treatment facilities – the people
are generally the unit of interest within these studies, not the higher order clusters.
That is, social science researchers are interested in drawing conclusions about people
while statistically accommodating the fact that the people from the same cluster
can show additional similarity, which violates the assumption of independence. This
contrasts with the statistical tradition in biological sciences, where much of ANOVA
was developed and first applied within agricultural research [157, 158]. Here, early
research focused on measuring e.g. the yield of a plot of land as a function of various
experimental interventions that a�ected individual plants on the plot. Within this
research design, the total yield of the plot of land is the unit of interest, and not the
yield of the individual plants in the plot. In this context, measurements from plants
are often referred to as subsamples, or pseudoreplicates, and are assumed not to con-
tribute any new information. Hence, in these analyses the number of observations
equals the number of clusters (i.e., plots of land), and standard statistical analysis is
performed on the aggregated individual measurements over clusters [92].
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Within neuroscience studies, the question whether the individual observations (e.g.,
neurons, cells) are the unit of interest, possibly contributing individual information,
or whether these rather represent pseudo-replicated measurements of the same re-
search object (e.g., animal; viewing them as plants), can be topic of discussion.
However, the rise of, for example, single-cell biology strongly advocates the stance
that neurons and cells can contribute individual information and should at least in
some studies be treated as the unit of interest [159]. Until recently, it was largely
unknown how heterogeneous phenotypically/morphologically similar cell populations
are. However, advances in experimental techniques have allowed researchers to probe
variability at the molecular level. For example, transcriptome in vivo analysis (TIVA)
allows determination of gene-expression patterns at the single cell level and even
of subcellular compartments [160], multiplexed error-robust fluorescence in situ hy-
bridization (MERFISH) not only allows the quantification of RNA transcripts for
single cells, but also its location [161], and recent advances in mass spectrometry
methods allows one to quantify metabolites at the single-cell level (see e.g. [162]).
These techniques have demonstrated that subtle di�erences at the molecular level
can yield significant di�erences in cellular behavior (see e.g., [163, 164]), and that
cell populations are much more heterogeneous than previously thought. In addition,
in many neuroscience studies not all observations within a cluster receive by defini-
tion the same treatment, as is generally the case in the context of subsampling or
pseudoreplicates. For example, when vesicle release is investigated in response to
trains of electricity, the manipulation (i.e., trains of electricity) is conducted on each
individual cell separately, and not on a group of cells. As such, we adhere to the
stance that the unit of interest in neuroscience studies is typically at the level of the
individual observations (i.e., we are truly interested in characteristics of the neuron
or cell itself) in this PhD-project.
We emphasize that the individual observations anticipated in this thesis are of a dif-
ferent order than (technical) replicates often taken to monitor the performance of the
experiment, for example repeating western blots or measuring mRNA levels multiple
times within the same animal, as described by for example Vaux et al. [165, 166].
In the case of technical replicates, treating measurements from the same animal as
pseudoreplicates is indeed the fitting procedure. We acknowledge that in biological
neuroscience the boundaries between true technical replicates and multiple measure-
ments that can contribute individual information and are themselves the unit of
interest, can be fuzzy. We note, however, that in the specific case that individual
observations originating from the same cluster are indeed exact replicates, multilevel
analysis will pick this up and correct for this by setting the e�ective sample size
equal to the number of clusters, as such rendering the clusters (rather than e.g. the
neurons within clusters) the focus of the analysis. However, if not, individual ob-
servations originating from the same cluster, either or not intended as pseudo- or
technical replicates, are allowed to contribute unique information.

More than 2 levels For the sake of simplicity, we only discussed hierarchical
models with 2 levels in Chapter 2 and Chapter 3, for example measuring multiple
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neurons within each animal. However, the possibility to study increasingly smaller
biological entities results in data that sometimes comprises more than 2 levels of
nesting. For instance, when collecting multiple measurements per cell, often more
than one cell is obtained per mouse. In that case, characteristics of the cell may
depend on the pup the cells were harvested from, rendering pups a third level. As
advances in experimental techniques proceed, it only becomes more likely that data
comprises more than 2 levels. As such, the question of how to deal with a more
extensive multileveled structure becomes essential. Fortunately, multilevel techniques
allow for the classification of many di�erent levels. Of course, for stable parameter
estimates, a su�cient number of observations are required at every level. If the
number of third level clusters is small, another possibility is to use the third level
variable (e.g., pup) as a covariate. This is an adequate way to accommodate the
dependency if the number of clusters at the third level is too small (e.g., not more
than 4) to model properly.
Should all levels be incorporated in the analysis? To model the e�ects of all the
levels properly, identifiers of all possible levels of nesting need to be present in the
data. In addition, when ignoring a level of nesting does not influence the reliability
of the estimated e�ect, we might overcomplicate our model by including all levels.
Some work has been done on the consequences of ignoring a level of nesting [167],
demonstrating that ignoring a level of nesting can decrease the power to detect the
experimental e�ect of interest. That is, when a level of nesting is ignored, variation
between clusters at this level cannot be accommodated in the statistical model. The
ignored variation ends up as noise in the lower modeled level of nesting, yielding an
increased standard error of estimated e�ects at this level. Using the current example,
we may ignore the cell level (i.e., the intermediate level) or the pup level (i.e., the
top level). Let us assume that the experimental e�ect does not vary over clusters
when the experimental manipulation is performed at one of the lower levels. In that
case, ignoring the intermediate level results in a decreased power to detect the e�ect
of a predictor at the lowest level (i.e., the experimental manipulation is varied at the
level of the individual observations within the cell), but does not a�ect a predictor
at the top level (i.e., the experimental manipulation is varied at the mouse level).
Ignoring the top level results in a decreased power to detect the e�ect of a predictor
at the intermediate level, but does not a�ect the estimation of e�ects of predictors
at the lowest level.
However, more research is needed in case that the experimental e�ect does vary over
clusters. For instance, in case of design B data, it is as yet not known how ignoring
a level of nesting influences the estimation of the experimental e�ects at lower levels.
As the complexity of data continues to increase, questions like these becomes more
urgent, especially as it will often proof impossible (financially, ethically, time-wise)
to collect data that contain su�cient clusters at all levels to allow comprehensive
multilevel modeling.

Implications and opportunities Post hoc choosing a statistical analysis method
suited to the data collected within a specific research design is important in optimally
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exploiting research data and in the acquisition of trustworthy research conclusions.
However, a priori considering the possibilities and requirements of the envisioned sta-
tistical method when designing and conducting a study, is essential for the success
of a scientific study. For instance, neuroscience studies that utilize a nested design
currently generally encompass several to many observations within each cluster, col-
lected over only a few clusters. However, not only does the statistical power to detect
the experimental e�ect of interest largely depend on the number of clusters rather
than the number of observations within each cluster, a minimum of 10 clusters is
recommended to obtain unbiased estimates of the overall experimental e�ect and
its standard error [76, 97]. As multilevel analysis requires more clusters than are
presently conventionally sampled, it is crucial to recognize a nested design before
data collection starts such that the inclusion of a su�cient number of clusters can
be warranted. The number of clusters should be such that not only unbiased esti-
mates can be obtained, but also such that statistical power is su�cient to detect the
experimental e�ect of interest. In practice, this may imply that more animals need
to be sacrificed than is currently customary for a study to obtain reliable parameter
estimates and reach adequate statistical power. Of course, the appropriate balance
between using as few animals as possible and obtaining reliable research conclusions,
should be topic of debate. However, we believe it is crucial to appreciate the waste
associated with studies that yield unreliable research conclusions due to a (too) small
sample size, and/or with studies that are characterized by low statistical power, i.e.,
a too low probability to detect experimental e�ects that are actually present [14–16].
Multilevel analysis can provide more than a means to obtain reliable research results
in case of nested designs, and it can be rewarding in future studies to adjust the study
design and data collection such that it is possible to explore these venues. Multilevel
analysis, for instance, allows one to quantify and test the statistical significance of
the cluster-related variation in the experiential e�ect, which provides a valuable test
of the generalizability of the experimental e�ect [95] (i.e., whether the impact of the
experimental manipulation is similar across (biologically intrinsically) di�erent set-
tings). One can also quantify and assess the statistical significance of cluster-related
variation in the average (baseline) outcome. Both types of cluster-related variation
are indicative of structural variation over clusters, which can be scientifically and
biologically interesting. As such, it would be useful to gain knowledge on the amount
of cluster-related variation typically observed in certain experimental designs. In
addition to being scientifically and biologically interesting, this will also aid a priori
power analysis. Testing the statistical significance of cluster-related variation, how-
ever, requires a minimum of 30 clusters [76,97].
As recently also pointed out by [156], even more interesting is that multilevel analysis
facilitates studies into the factors underlying the cluster related variation by includ-
ing them in the model as a covariate. An important implication of this possibility
within the context of neuroscience studies is that it enables the research of gene/gene
and gene/environment interactions. For example, mice can be randomized over var-
ious environmental settings, while knocking down a specific gene in some, but not
all, of the neurons in each mouse (e.g., using shRNA). Infection of the neurons can
be quantified by using a fluorescent marker. Subsequently, one can assess whether
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the e�ect of the gene (i.e., the di�erence between infected and not infected neurons)
is influenced by the varying environmental settings. Traditional studies typically in-
vestigate the e�ect of only one genetic or one environmental factor, but it becomes
more and more clear that the interaction between genetic factors, and the interac-
tion between genes and environment, are critical in normal and abnormal functioning
of the central nervous system. Multilevel analysis provides a means to study these
questions directly.

6.1.2 Validity of automated home-cage systems and
recommended developments

Automated home-cage systems allow the study of various aspects of spontaneous be-
havior, and yield unbiased long-term continuous observations of both novelty-induced
and habituated behavior in mice with minimal human intervention [24]. However,
these systems have only been developed recently, and as such their validity still needs
to be established. In the following paragraphs, I will evaluate how well automated
home-cage testing, and the PhenoTyper in particular, translates observed behavior
into measurable factors, and how this can possibly be improved. I will distinguish
between ecological validity – is the mouse behavior observed in the home-cage truly
representative for mouse behavior in natural conditions, construct validity – are the
measurements an accurate and a su�cient representation of mouse behavior, and
criterion validity – how well does information obtained in the home-cage correspond
to information obtained using other, already validated, instruments.

Ecological validity Automated home-cage testing allows for an animal-centered
behavioral phenotyping method: the mouse is allowed to actively manage the timing
and amount of participation to the test [33]. This contrasts with the experimenter-
centered approach of classical behavioral tests, in which mice are introduced to the
test setting at the convenience of the experimenter. In this perspective, automated
home-cage testing in general, and the light spot test described in Chapter 4 in par-
ticular, can be considered more ecologically valid compared to classical behavioral
tests: in natural settings mice also manage the timing and amount of exposure to
various stimuli themselves.
In addition, the aversive stimulus used in Chapter 4 is a mild light spot (2000 Lx,
comparable to the light of a typical overcast day). As a result, the manipulation
can be considered ecologically valid: such mild aversive stimuli that do no explicitly
involve pain or discomfort are encountered in natural settings and the observed re-
sponse can therefore likely be generalized more easily to natural behavior. The use
of such milder, ecologically more valid, experimental manipulations is facilitated by
the powerful design of automated home-cage testing: it includes multiple habitua-
tion days that can feature as a baseline condition in the evaluation of subsequent
experimental manipulations. This within-subjects design, in which the response of a
mouse can be evaluated in the light of its own baseline behavior, is statistically more
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powerful compared to a between-subjects design in which evaluation of experimental
manipulations is based on comparisons between di�erent groups.
A limitation of automated home-cage testing in terms of ecological validity is that
mice are housed individually, whereas mice are social animals with a structured hi-
erarchy. The problem lies in the tracking of the animals: it is as yet problematic to
track multiple animals at once at a detailed x-y coordinates resolution. Until now, all
setups providing this detailed resolution use single housing [36–42,46]. The systems
that do allow group housing with individual recognition (e.g. the IntelliCage [43–45])
used RFID (radio-frequency identification) chips implanted subcutaneously in the an-
imals, and only provide information on the animal being in a particular compartment.
This information is, for example, not su�cient to classify the recorded behavior into
mutually exclusive behavioral acts as done in Chapter 5.

Construct validity In Chapter 5, we modeled spontaneous behavior, which was
operationalized in terms of a set of mutually exclusive behavioral acts: move, linger,
sit, eat, on the shelter, short time in shelter, medium time in shelter, and long time
in shelter. The question in terms of construct validity is whether this operational-
ization of spontaneous behavior is accurate and su�cient. Spontaneous behavior of
mice is composed of many more components than can currently be recorded by the
PhenoTyper, such as grooming, rearing, digging, climbing, and hanging. By record-
ing a more detailed account of murine behavior, construct validity of spontaneous
behavior can be improved, facilitating research on mouse models of e.g., OCD and
ADHD.
Newly developed automated home-cage systems like the Spectrometer [46] or the
system of Jhuang et al. [48] can extract many more behavioral acts (e.g., grooming,
rearing, climbing). The Spectrometer includes accelerometers embedded in the floor
supports, which capture the mouse’s vibrations and infrared beams detecting when
an animal rears, enabling a highly detailed representation of the spontaneous behav-
ior of a mouse in an open field. The system of Jhuang et al. includes a front camera,
facilitating the use of a trainable computer vision system that automatically anno-
tates complex mouse behaviors. However, also other, less technologically advanced
alterations to current home-cage systems would increase the amount of information
obtained about spontaneous behavior. For instance, enlarging the cage would allow
mice to display running behavior (i.e., with the current dimensions – 30 x 30 cm –
running for more than a split second is not possible and as such di�cult to record),
and thus facilitate the dissection of slow and fast movement as shown in [168,169]. In
addition, in a larger cage di�erent distances from the wall categories can be meaning-
fully dissected, which is indicative of e.g. anxiety [115, 169]. Furthermore, a camera
in the shelter would reveal what the mouse does in all the hours that it resides there.
And including an infrared beam in front of the bars of the feeding station and the
nozzle of the drinking spout would allow a more reliable measurement of eating and
drinking behavior.
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Criterion validity Theoretically, criterion validity can be further dissected into
predictive validity – the degree to which a test predicts what it should predict ac-
cording to theory, and concurrent validity – the degree to which the test outcomes
correlate with other measures of the same construct. The behavioral response to the
light spot test discussed in Chapter 4 was blunted by treatment with an anxiolytic
drug (Diazepam), demonstrating predictive validity of the assay, by indicating that
the observed behavioral response has a significant anxiety component. To assess the
concurrent validity of the light spot test, one could subject mice to both the light
spot test and a classical anxiety test, such as the dark-light box or the elevated plus
maze [21, 22], and correlate these measures, an experiment we did not perform. De-
spite the fact that we showed that the light spot is equally e�ective as classical anxiety
tests from a pharmacological perspective, it remains to be tested whether previous
results assessing mutant/wild-type di�erences in classical anxiety tests can be repli-
cated in anxiety tests within an automated home-cage system. In the light spot test,
the anxiogenic stimulus is provided within a habituated home cage environment, dis-
entangling unspecific arousal states from the anxiogenic stimulus. In classical anxiety
tests, however, both human-animal interactions as well as the general novelty of the
apparatus itself will impact the arousal state of the mouse, possibly amplifying the
behavioral di�erences between mutants and wild types. For example, Fonio et al. [31]
demonstrated that the di�erence in anxiety between an inbred strain typically char-
acterized as anxious (BALB/c) and a wild derived strain (CAST) was reversed after
habituation. As such, it would be informative in the context of behavioral genetics
studies to compare mutant/wild-type di�erences in both classical anxiety tests and
anxiety tests within an automated home-cage system. Both type of tests measure
anxiety within a specific context instead of generic anxiety, and as such providing
di�erential information. A low correlation between the outcome measures of classical
anxiety tests and newly developed tests like the light spot test would be indicative of
this, i.e., displaying low concurrent validity. Important to note, however, is that low
concurrent validity does not imply low construct validity of any of the tests involved.
It can simply mean that the tests tap the construct of interest from a di�erent, but
equally valid, angle.
Predictive validity of modeling the pattern of spontaneous behavior as described in
Chapter 5 has been assessed to some extent by comparing the behavior of young
adult and aged mice. We showed that aged mice display a less active pattern of
behavior compared to young adult mice, in line with what according to theory is ex-
pected. Future studies are however needed to fully assess the construct, predictive,
and concurrent validity of our approach to modeling the pattern of spontaneous be-
havior. Further assessment of predictive validity can for example be performed using
pharmacological compounds or using well characterized mouse models of neurologi-
cal, psychiatric, or neurodegenerative disorders. Demonstrating concurrent validity
will be challenging, however: our developed statistical method describes behavior
from a dynamic angle, while classical statistical methods describe behavior from a
static, segregated point of view. It is therefore questionable how informative a cor-
relation between the results of our method and classical analysis methods would be
in terms of concurrent validity.
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6.1.3 Added value and future directions of the developed
hierarchical hidden semi Markov model

The developed hierarchical hidden semi Markov model provides a comprehensive de-
scription of mouse behavior over time, resulting in new and more detailed information
on behavior, both revealing di�erences not observed with conventional analysis, and
providing information on why di�erences occur (Chapter 5). Using the proposed
model, di�erences in behavior can be established and understood. As such, modeling
the dynamics of behavior in mouse models may shed new light on the pathophys-
iology and treatment of neurological, psychiatric, and neurodegenerative disorders
that often characterize changes in day-to-day behavior [53]. The development of
models that describe mouse behavior over time has only recently become relevant,
as innovations in automated detection of rodent behavior via a tracking system (for
example video tracking [3] or transponder technology [43]) have eased the collection
of prolonged observations in e.g. automated home-cage systems.

Applicability of the hierarchical HSMM Prompted by technological advances,
the collection of (intense) longitudinal data has also become more frequent in other
scientific areas. For example, user-friendly wearable measuring devices that can au-
tomatically keep track of person related measurements (e.g., the number of steps
walked, heart rate, the quality and amount of sleep, or a persons body temperature,
see for example the fitbit, https://www.fitbit.com/, and temptraq, https://www.temp
traq.com/), or environment related measurements (e.g., temperature of the environ-
ment, exposure to light and UV, or air quality, see for example sunsprite, https://www.
sunsprite.com/, and TZOA, http://www.tzoa.com/) are now commercially available.
In addition, the use of hand held computers, mobile phones, and web interfaces have
greatly increased the possibilities to keep a diary of psychological or other (health
related) measures, in which the measurements are densely spaced in time and col-
lected over a prolonged period of time.
Typically, time series analysis is used to describe the within-subjects processes cap-
tured in such data (see e.g., [170–174]], ). Time series analysis is concerned with
describing the relationship of a variable with itself over time, and/or with the rela-
tionship of a variable with other variables over time (see e.g., [175,176]). Examples are
autoregressive (AR) models, which describe the degree to which the current observa-
tion can be predicted from the previous observation, and multivariate autoregressive
models (VAR), which investigate the causal relationship between measured variables.
Another popular time series model is the regime switching model, in which the (V)AR
model is extended to include multiple structures (equations) that describe the time
series in di�erent "regimes". The regimes are unobserved (i.e., they are inferred from
the data), and the switching mechanism between these regimes is a Markov model.
Hence, the regime switching model is a hidden Markov model, in which the obser-
vations generated in each state (here called regime) are characterized by an (V)AR
model. Conventional time series analysis models are suited to describe the data of a
single case. However, with the improved possibilities to collect many repeated mea-
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sures from many individuals, hierarchical extensions of these autoregressive models
are highly contemporary and a lively topic in current research (see e.g., [177–183].
These models allow the study of group e�ects, while allowing the within-subjects dy-
namics to vary. Consider for example the application of a multilevel autoregressive
model to study relationship-specific positive and negative a�ect in males and females.
Here, one can quantify the overall mean levels of relationship-specific positive and
negative a�ect for males and females, and the overall carryover e�ect of positive
and negative a�ect in males and females, while allowing for heterogeneity between
individuals. In addition, one can investigate whether a predictor measured at the
individual level (i.e., only measured once for each subject, for example relationship
satisfaction) can explain individual di�erences observed in the mean and carryover
e�ect of positive and negative a�ect in males and females [183].
Our developed model nicely adds to these novel methods available to describe longi-
tudinally collected data. In the regime switching model, it is implicitly assumed that
the probability of spending more time in the current regime does not depend on the
time already spent in that regime (i.e., the regime switches are characterized by a
Markov process). It is likely that this assumption, just like in mouse behavior, is un-
tenable in many of the longitudinally collected data. It is relatively straightforward
to specify an autoregressive state-dependent process in our developed model instead
of a model that describes the probability of observing categories of events. In this
case, one obtains a hierarchical regime switching model, which allows for the quan-
tification of group e�ects while allowing for between-person di�erences, and which
models the duration of the regimes explicitly using a duration distributions that can
deviate from the exponential distribution.
Even when retaining a categorical state-dependent distribution, the developed model
described in Chapter 5 can provide an interesting description of many types of lon-
gitudinally collected data. For example, consider longitudinal data on sleep stages
collected in subjects that do or do not su�er from insomnia. In this example, the
hidden states can be used to filter out "measurement error" in the sleep stages, ad-
vantageous when for example using automatic classification of sleep stages based on
EEG measurements. Using the hierarchical HSMM, one can investigate whether in
general individuals that do and do not su�er from insomnia di�er in the duration of
the sleep states and the probability to switch between sleeping states. In addition,
the model allows for heterogeneity between individuals in the duration of the di�erent
sleep stages, the switching between the sleep stages, and the amount of measurement
error. In summary, the developed model is not only relevant to behavioral mouse
data, but applicable to a much wider variety of longitudinally collected data.

Future extensions of the hierarchical HSMM The developed hierarchical
HSMM model still requires some adjustment when applying it to the observed mouse
data. That is, the developed model does not accommodate the durations that char-
acterize the observed behavioral acts, which results in biased parameter estimates.
A possible solution is to include the duration of the current act as a covariate in the
model, but further research is required to show the viability of this solution. When
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this extended model is obtained, further studies are required to establish the min-
imal number of mice, and/or minimal duration of the time series to obtain robust
parameter estimates and reasonable levels of statistical power to detect di�erences
between (experimental) groups.
In addition, the developed model assumes that parameters that describe behavior are
stable over time (i.e., time-homogeneous). In the current mouse data, this limited
the selection of behavioral data to a habituated episode of several hours. To enable
the analysis of longer sequences of mouse behavior (e.g., one complete day where
the level of activity changes throughout the 24 hours due to changes in circadian
rhythm), additional adjustments to the model are required. One option would be to
include time-varying covariates: one can design a model in which model parameters
(e.g., di�erent transition probabilities between states) vary across di�erent observa-
tional periods. Additionally, for some types of data (e.g., longitudinal data collected
on humans using wearables) it might be di�cult to determine whether the chosen
selection is indeed time-homogenous, making extending the model to accommodate
non time-homogenous data expedient. Also, the inclusion of time-varying covariates
allows for within-subject comparisons of behavior. For example, comparing mouse
behavior before and after an experimental manipulation, or comparing behavior of
patients before and after medication or therapy.
Moreover, additional studies comparing mutant/wild-type di�erences are required
to demonstrate the usefulness of the developed model in the context of behavioral
genetics studies.

6.1.4 Final remarks

The importance of using optimal statistical methods received suitable attention over
the past few years (see e.g., [69–71,184,185]). Here, the focus is mainly on using the
correct analysis method to obtain valid research conclusions. For example, Nature
recently issued a special collection devoted to reproducibility [186], including several
(new) publications on improving used statistical methods and experimental designs
[187,188], and better understanding of analysis results [189,190]. As we have shown,
going beyond the application of univariate models and optimally utilizing the rich
data generated by novel experimental techniques o�ers additional advantages: besides
obtaining correct research conclusions new biologically relevant information can be
revealed. The complexity of experiments will continue to grow, as will the required
statistical techniques. The work discussed in this thesis demonstrated once again
that statistical methodology is truly key in optimizing the extent to which the field
of neuroscience can profit from the marvelous technological advances that found
scientific development.


