Nonlinear Mechanics of Fibrous Networks
Licup, A.J.

2016

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
Contents

1 Introduction
1.1 Biopolymer Networks: Life’s Woven Fibers 5
1.2 Elasticity of Biopolymers .. 6
1.3 Network Mechanics and Nonlinear Effects 8
 1.3.1 Nonlinear stiffening .. 9
 1.3.2 Negative normal stress ... 9
1.4 Experimental and Theoretical Approaches 9
 1.4.1 Rheology experiments .. 10
 1.4.2 Theoretical models .. 11
1.5 Outline of the Thesis ... 12

2 Modeling athermal sub-isostatic fiber networks
2.1 Introduction ... 17
2.2 Network Architecture ... 18
 2.2.1 Lattice-based phantom network 18
 2.2.2 Mikado network ... 19
2.3 Network Elasticity .. 20
 2.3.1 Fiber elasticity: the extensible worm-like chain model 20
 2.3.2 Affine/non-affine network response 21
 2.3.3 Network elastic energy density 22
 2.3.4 Rheology simulation ... 23
 2.3.5 Quantitative comparison of measurements 24
2.4 Results ... 25
 2.4.1 Distinct elasticity regimes ... 25
 2.4.2 Fiber buckling .. 27
 2.4.3 Linear regime ... 28
 2.4.4 Bending correlation length 30
 2.4.5 Prefactors to the modulus 30
 2.4.6 Nonlinear stiffening .. 31
 2.4.7 Stretch-dominated elasticity 34
2.5 Discussion and Implications ... 35
2.6 Appendix: Line Density Calculation of Lattice-Based Networks 37

3 The role of normal stress in collagen network mechanics
3.1 Introduction ... 41
3.2 Results and Discussion ... 43
3.2.1 Physical picture ... 45
3.2.2 Modeling collagen networks 45
3.2.3 Features of linear and nonlinear elasticity 48
3.2.4 Concentration independence nonlinear stiffening 49
3.2.5 Role of network geometry 50
3.2.6 Stiffening mechanism ... 52
3.2.7 Onset of strain stiffening 54
3.2.8 Generalized onset of stiffening 56
3.2.9 Normal stress controls nonlinear stiffening 59
3.3 Concluding Remarks .. 63
3.4 Appendix A: Materials and Methods 66
3.5 Appendix B: Shear and Normal Stresses in Networks 67

4 Mechanically-controlled criticality in fiber networks 71
4.1 Introduction ... 73
4.2 Models of Sub-isostatic Athermal Fiber Networks 75
4.2.1 Network construction ... 75
4.2.2 Network elasticity .. 75
4.2.3 Fiber rigidity and volume fraction 77
4.3 Strain-driven Criticality under Simple Shear 77
4.3.1 Continuous rigidity transition 77
4.3.2 Analogy with the ferromagnetic transition 79
4.3.3 Divergent non-affine fluctuations 80
4.3.4 Finite-size scaling ... 82
4.3.5 Crossover between elastic regimes 83
4.3.6 Evidence of crossover from collagen networks 84
4.3.7 Crossover function and model fitting 87
4.3.8 Evolution of critical exponents 90
4.4 Nonlinear Mechanics under Isotropic Expansion 92
4.5 Critical Slowing Down .. 96
4.6 Discussion and Conclusions 96
4.7 Appendix A: Materials and Methods 99
4.8 Appendix B: Distorted Honeycomb Lattice Model 100

5 The mechanics of floppy rope networks under stress 103
5.1 Introduction ... 105
5.2 The Sub-isostatic Rope Network 107
5.3 Network Elasticity ... 108
5.4 Results and Discussion ... 110
5.4.1 Rope network response 110
5.4.2 Rope networks stabilized by prestress 110
5.4.3 Stiffening mechanism .. 112
5.5 Concluding Remarks ... 114

6 Decoupling of shear and Young’s moduli in extracellular networks 117
6.1 Introduction ... 119
6.2 Materials and Methods .. 122
6.3 Modeling and Rheology Simulation .. 122
6.4 Results ... 124
 6.4.1 Shear response under external axial stress 124
 6.4.2 Shear response under internal contractile stresses 127
 6.4.3 Stiffening mechanism .. 128
6.5 Discussion and Implications .. 130
6.6 Appendix: Materials and Methods 134

Bibliography .. 137
List of Publications ... 155
Summary .. 156
Samenvatting .. 159
Acknowledgements .. 163