Measuring and modeling negative emotions for virtual training

JEROEN DE MAN

VU University Amsterdam
SIKS Dissertation Series No. 2016-07.

The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research School for Information and Knowledge Systems.

Furthermore, the research has been carried out in collaboration with the NSCR, the Netherlands Institute for the Study of Crime and Law Enforcement.

Copyright 2016, Jeroen de Man. All rights reserved.

Cover artwork by Gisella Goppel.
Measuring and modeling negative emotions for virtual training
promotor: prof.dr. J. Treur
copromotor: dr. T. Bosse
In crisis situations, policemen and other emergency workers regularly face difficult decision making problems. Even though clear instructions on how to act are usually given, they often have difficulties in making appropriate decisions, due to a combination of factors including time pressure and heavy emotions. Learning to cope with these situations is done with on-the-job training or using role-play where either co-students or professional actors recreate similar scenarios. Although reasonably successful, these types of training have important drawbacks. First, they are very costly, both in terms of money and time. As a result, the frequency by which they are offered is low. And second, there are large differences in the successfulness of role-play-based training: for some students the learning effect is substantial, whereas for others it is minimal.

The project Simulation-based Training of Resilience in Emergencies and Stressful Situations (STRESS) aims at developing a Virtual Reality training as a supplement to these methods. Trainees will be placed in a virtual emergency scenario, in which they have to make difficult decisions while negative emotions are induced. During the scenario, Human Computer Interaction techniques will be applied to measure aspects of their mental state. An important asset of the VR approach is that the system can adapt various aspects of the training (e.g. scenarios or difficulty level) at runtime based on an estimation of the trainee’s mental state. In this way, by selecting training scenarios with an appropriate context in terms of difficulty level and providing useful feedback, the system can improve the trainee’s decision making behavior, and by selecting scenarios with an appropriate context in terms of stress level, the system can improve the trainee’s emotion regulation skills.

The research presented in this thesis revolves around these objectives, focused on evoking and measuring negative emotions and using models thereof in a virtual training. In the first part, various experiments are described to investigate the potential for inducing negative emotions with virtual stimuli. Physiological measurements such as heart rate, skin conductance or brain activity are compared with subjective ratings of a participant’s mental state. Subsequently, the results acquired using virtual stimuli are compared with those that arise in a real-life setting. A first implementation of a virtual training for aggression de-escalation is evaluated by target users who worked with the system during a period of 4 weeks. The chapters of the second part discuss the use of (cognitive) models in a virtual training as well as methods to include adaptivity and physiological measurements.
Contents

5.4 Results .. 97
5.5 Discussion .. 102

6 Evaluation of a virtual training environment for aggression de-escalation
6.1 Introduction .. 108
6.2 Learning goals .. 109
6.3 Training environment 110
6.4 Method .. 112
6.5 Results .. 116
6.6 Discussion .. 119
6.7 Conclusion .. 120

II Using computational models in virtual training
7 Learning emotion regulation strategies: A cognitive agent model
7.1 Introduction .. 126
7.2 Background .. 127
7.3 Computational model 128
7.4 Simulation results 132
7.5 Mathematical analysis 136
7.6 Preliminary results 137
7.7 Discussion .. 139

8 Agent-based simulation as a tool for the design of a virtual training
8.1 Introduction .. 146
8.2 Project overview 148
8.3 Modeling approach 152
8.4 Computational model 154
8.5 Simulation results 159
8.6 Formal analysis .. 160
8.7 Conclusion .. 163

9 A cognitive model for social role compliant behavior of virtual agents
9.1 Introduction .. 168
9.2 Background research 169
9.3 Social compliant behavior model 171
9.4 Model implementation 175
Contents

9.5 Exploring the model’s validity ... 177
9.6 Conclusion ... 178

10 Adaptive training for aggression de-escalation 183
 10.1 Introduction ... 184
 10.2 Aggression de-escalation ... 185
 10.3 Adaptive training ... 186
 10.4 Conceptual model ... 187
 10.5 Implementation .. 192
 10.6 Preliminary evaluation ... 194
 10.7 Discussion ... 196

11 Discussion 201
 11.1 Research questions ... 201
 11.2 Software ... 207
 11.3 Ethical considerations ... 211
 11.4 Future work ... 213

Samenvatting (Dutch) 217

Appendices 219

A L2-matlab 221
 A.1 Manual ... 221
 A.2 Introductionary examples .. 236

B SIKS dissertation series 251