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Chapter 1

Introduction

‘[People] want to believe that somebody really knows. A world in which

nobody really knows can be frightening.’
— Alfred Cowles, as quoted by Bernstein (1993)

Heraclitus of Ephesus (535–475 BC), a pre-Socratic Greek philosopher, is widely be-

lieved to have said that ‘ever-newer waters flow on those who step into the same rivers’.

The ever-changing nature of the world is not limited to the physical layer alone as the

literal reading would suggest. It also reflects the evolution of our own convictions—both

as individuals and as societies. The ability to adapt and change one’s behaviour is an

intrinsic quality of all successful living organisms, embedded in us through millennia of

evolution. Our adaptability to the changing environment underpins the so-called Lu-

cas (1976) critique. Lucas argues that static econometric models run a risk of being

uninformative if the modelled quantity is affected by actions of economic agents who

dynamically change their behaviour in response to (or in anticipation of) market, regu-

latory, or technological changes. The question is not whether time-variation occurs, but

whether (i) we have the data necessary to show evidence of the changes, (ii) tools to

surface them, and (iii) if these changes are economically and statistically significant.

In this spirit, this thesis consists of four self-contained essays in finance and financial

econometrics. Each of the chapters which follow this introduction attempts to contribute
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towards a better understanding of sources and consequences (or profit opportunities) of

the continuous changes in the financial markets. The nature of the changes differs

throughout the thesis. Chapter 2 looks at time-varying interest rates and documents

an equally time-varying ability of simple, mis-specified models to fit data generated by

possibly complicated processes. Chapter 3 provides tools to investigate, among others,

stability of the relative risk aversion. In Chapter 4, I propose a method to measure

statistical significance of such changes. Finally Chapter 5 documents the evolution of

a whole segment of the financial industry and the various economic motives which have

been driving the changes.

Score-driven dynamic Nelson-Siegel models

Chapter 2, based on Koopman, Lucas, and Zamojski (2016), is devoted to mod-

elling the term-structure of interest rates. The chapter starts with a detailed discussion

of observation- and parameter-driven methods. In this way, it also sets the stage for

Chapters 3 and 4 where I work further with observation-driven methods. The distinction

between the approaches is originally due to Cox (1981) who defines the two ways a time-

varying parameter can be included in an econometric model. In fact, the names of the

approaches identify the source of randomness which ‘drives’ the dynamic parameter, i.e.,

what determines the changes in parameter values between two adjacent points in time.

In parameter-driven models, both observations and latent variables can evolve indepen-

dently. The latter are thus ‘parameter’-driven as it is necessary to impose additional

distributional assumptions on them as well. A typical example of this class of mod-

els is the stochastic volatility model for which Shephard (2005) provides an overview.

In contrast, there is only a single source of error in observation-driven models. The

dynamic parameters are tied to the distribution which drives the observations. A typ-

ical example of an observation-driven model is the family of generalised autoregressive

conditional heteroskedasticity (GARCH) models originated by Engle (1982) and Boller-

slev (1986). Among other things, the two approaches take a clear stance on what kind

of behaviour is possible for the dynamic parameter. For instance, a parameter-driven
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volatility can remain low even after a relatively long series of large price changes while

such behaviour would be highly unlikely in the observation-driven framework. An ad-

vantage of observation-driven models is their computational simplicity. This is because

values of dynamic parameters are perfectly predictable one-step-ahead given past infor-

mation which makes evaluation of a chosen criterion function (e.g., likelihood function

or inner product of moment conditions) straightforward.

In Chapter 2, we look at the performance of parameter-driven models and score-

driven models in explaining the evolution of the yield curve in time. First proposed by

Creal, Koopman, and Lucas (2013) and Harvey (2013), score-driven models are a sub-

class of the observation-driven family. The dynamic parameters are driven by a scaled

first derivative of the local criterion function. The chapter focuses on the parsimonious

yield curve model of Nelson and Siegel (1987) which is extended within a dynamic setting

by Diebold and Li (2006) and Diebold, Rudebusch, and Aruoba (2006). We investigate

in-sample and out-of-sample performance for two data sets and for simulated data. In

a univariate setting, score-driven models were shown to offer competitive performance to

parameter-driven models in terms of in-sample fit and quality of out-of-sample forecasts

but at a lower computational cost (Koopman, Lucas, and Scharth, 2016). We investigate

whether this performance and the related advantages extend to more general and higher-

dimensional models.

Although conceptually simple, the dynamic Nelson-Siegel models we consider in this

chapter involve time-varying parameters in means, variances, and covariances. Further-

more, apart from having disturbances from a multivariate Gaussian distribution, we also

allow disturbances to come from fat-tailed distributions, namely from the multivariate

Student’s t distribution. The computational simplicity of observation-driven models

allows us to implement a wide range of models. We are able to allow for specifica-

tions whose counterparts in the parameter-driven framework are, in terms of computing

power, too costly to consider. Based on an extensive Monte Carlo study, we show that

in multivariate settings the advantages of score-driven models can even be more pro-
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nounced than in the univariate setting. We find that allowing for heteroskedasticity in

pricing errors produces the highest incremental gain in performance. Furthermore, the

inclusion of more features in the model appears to benefit mostly the short maturity

yields. Finally, Chapter 2 proposes a novel way of obtaining multi-period forecasts for

both the dynamic factors and the interest rates. The method uses previous, normalised

score adjustments. This may improve performance when the model is mis-specified. As

the forecast horizon is extended, we observe a gradual decay in relative performance of

the simple models with the short-term maturities being, again, especially affected.

Generalised autoregressive Method of Moments

Chapter 3, based on Creal, Koopman, Lucas, and Zamojski (2015), continues with

the score-driven models and generalises the approach to the method of moments frame-

work. The chapter provides a unified framework for modelling parameter instability in

a context where the model and its parameters are only specified through (conditional)

moment conditions. The new estimation method extends the Generalised Method of Mo-

ments (GMM) of Hansen (1982) to settings where a subset of the parameters vary over

time with unknown dynamics. Unlike other attempts to extend GMM estimators in this

manner, the GaMM does not require simulation. Estimation is similarly straightforward,

easy to implement, and computationally inexpensive as the likelihood based score-driven

methods in Chapter 2. Furthermore, because the GaMM falls entirely within the stan-

dard set-up of GMM estimation, inference can be based on the asymptotic normality

and consistency results which were previously established for these estimators. We label

the approach as the Generalised autoregressive Method of Moments (GaMM).

We include three different example applications of the GaMM that are increasing in

complexity. The models we consider highlight settings where traditional approaches are

either extremely difficult to implement or no alternative technique is readily available.

We start with the estimation of stable distributions with time-varying scale parameters.

In this case, a closed-form expression for the density function is generally not known
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which renders likelihood based estimation challenging. In contrast, GaMM can be di-

rectly applied by leveraging the fact that the characteristic function—which is known

for this family of distributions—can be rewritten as a set of moment conditions. Results

of an extensive Monte Carlo study indicate that GaMM is able to successfully track

the unknown path of the time-varying parameter, despite being partially mis-specified.

We also apply the model to a real-world time-series of daily returns. We use S&P

500 data from the period 1988–2013 and we benchmark our results with two likelihood

based models—GARCH and generalised autoregressive score model with Student’s t

disturbances (t-GAS) of Creal, Koopman, and Lucas (2011). The filtered path of the

time-varying scale shares similar dynamic properties with the paths in the benchmark

models. It is, however, considerably smoother as the GaMM is more cautious in ascrib-

ing the realisation of a large positive or negative return to an increase in the time-varying

scale parameter. The smoothness is, in part, also due to the low, estimated value of the

tail index that suggests returns are drawn from heavy-tailed conditional distributions

even after correcting for changes in scale.

For the second application of the GaMM, we consider a standard consumption-

based asset pricing model in which we allow the relative risk aversion to change over

time. Without the added flexibility to accommodate changes in this parameter, results

of many studies suggest that estimates of a static relative risk aversion parameter are

typically too high when compared to results obtained from experimental data. Further-

more, the static model fails in explaining the cross-sectional variation in stock returns,

see, e.g., Ludvigson (2011) for a recent summary of the literature. The poor perfor-

mance of the static model led to other modelling approaches, many of which replace the

constant relative risk aversion (CRRA) utility function in the standard model with more

complicated functions. A popular choice is to allow for habit formation which, on the

one hand, adds an additional source of variation to the stochastic discount factor, see,

e.g., Campbell and Cochrane (1999). On the other hand, it explicitly allows the relative

risk aversion to be a time-varying quantity. GaMM allows us to easily implement such

time variation also in the standard utility function. Similarly to the previous example,
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we provide simulation results which testify to the GaMM’s ability to filter out the path

of the time-varying parameter. We also bring the model to U.S. data from the period

1947–2015. There, we find that the estimates of the discount factor and the relative

risk aversion are plausible and consistent with both common sense and experimental

results. Furthermore, the results suggest that the relative risk aversion has indeed been

changing in the U.S. There are two components that contribute to the dynamics. First,

a short-term cycle which appears to follow the business cycle. More interestingly, we

see a long-term, decreasing trend in the risk aversion.

The third example application of GaMM is presented in Appendix 3.D to Chapter 3.

We look at the estimation of linear regression models with time-varying coefficients when

a subset of the covariates are endogenous. As a benchmark model, we use an ordinary

state space model which we estimate using standard Kalman Filter methods. In a static

context, this would be close to comparing performance between an instrumental variables

(IV) estimator and an ordinary least squares (OLS) estimator. We find that the trade-

off between the Kalman Filter and the GaMM approach seems to mirror the differences

between OLS and IV estimation. The Kalman Filter produces results which are biassed

but with low sampling variability, whereas paths estimated by GaMM appear to be

unbiassed, but at the cost of a higher sampling variance.

Finally, even though GaMM performs well in the three examples, it is possible to

improve the results in scenarios where the true time-varying parameter exhibits sudden,

structural changes. To that end, we introduce a penalty to the criterion function. The

functional form of the penalty is reminiscent of the least absolute shrinkage and selection

operator (LASSO) of Tibshirani (1996). In contrast to that method, we do not apply

the penalty to static parameters but to the scores of the criterion function which drive

the dynamic parameter. This approach favours dynamics that adjust the value of the

time-varying parameter to a lesser extent at every point in time, not only on average.

On the one hand, penalisation induces smoother paths and prevents over-fitting. On

the other hand, the estimated path may react more quickly after large changes in the
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value of the parameter. The penalisation seems to lead to estimates of the time-varying

paths that have much lower root mean square error (RMSE) at a cost of a slight bias.

Filtering With Confidence

The issue of modelling changes in time-varying parameters without imposing rigid

distributional assumptions, which is addressed in Chapter 3, is not the only challenge

in the literature. A big disadvantage of the observation-driven approach is the lack

of precision measures for the time-varying parameter. The perfect predictability of

the time-varying parameters’ values one period ahead, makes it seemingly not relevant

to think about uncertainty around the path. However, an observation-driven model

is unlikely to be the true data-generating process—at least to the extent of correctly

specifying the transition dynamics. Instead, one could look at the method as filter, i.e.,

a clever way of approximating and extracting the unknown path. In this case, multiple

sources of uncertainty are involved. Chapter 4, based on Zamojski (2016), is the first

to propose a robust method of computing in-sample confidence bands for time-varying

parameters estimated with misspecified observation-driven models. As an example of

this class, I look at the family of GARCH models which are used to estimate time-

varying variances and covariances. I propose a novel bootstrap procedure and a new

moving-window resampler which together generate confidence bands around estimated

volatility paths. The procedure is labelled as Local In TimE (LITE) bootstrap and

resampler.

Due to the assumed mis-specification of the model, the estimated path of the time-

varying parameter can be expected to lag behind the true path creating random misfit.

Thus, a special attention needs to be given to finding valid replicates for innovations

in the bootstrap world. The role of the LITE resampler is to select, at every point t

in time, replicating residuals which suffer from a similar misfit. The LITE bootstrap

is then able to generate valid bootstrap samples conditional on the data, by explicitly

including the estimated path of the time-varying parameter. In contrast, traditional
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approaches would discard the estimated path and simulate new paths of the time-varying

parameter in every bootstrap sample unconditionally from the observation-driven model,

effectively treating it as a correctly specified data-generating process. The LITE is

able to generate pseudo time-series which sufficiently recreate the true—unobserved—

dependence structure in the data. In this way, the bootstrap world poses the same

challenges for the filter as the real world.

The approach accounts for various sources of uncertainty, including parameter and

filtering uncertainty. I illustrate the method by applying it to S&P 500 returns. More-

over, I investigate finite sample properties of the confidence bands and their convergence

in a range of simulation experiments. I find that the average coverage is close to the

nominal level in finite samples and that it converges to the nominal level as the sampling

frequency is increased. The confidence bands proposed in Chapter 4 behave remarkably

similar to those which could have been obtained in Monte Carlo experiments, i.e., when

both the true path of the time-varying parameter and the true conditional densities are

known. As in the case of GaMM, the new method is easy to implement and does not

significantly increase the computational burden.

Hedge Fund Innovation

One common feature of Chapters 2 to 4 is the focus on modelling the changing

market environment with time-varying parameter models. In contrast, Chapter 5, based

on Siegmann, Stefanova, and Zamojski (2014), is devoted to finding out how institutional

investors react to the changing market conditions. In particular, we investigate the hedge

fund industry which promises high, absolute returns in exchange for hefty fees. Due to

light regulation, hedge funds are able to invest in instruments and regions which are

not available to other investors. Furthermore, they are able to quickly change exposures

in reaction to (or in anticipation of) changing market conditions, see, e.g., Criton and

Scaillet (2011) or Patton and Ramadorai (2013). They can be seen as an innovative

force in seeking out new profit opportunities and achieving diversification for investors.
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In Chapter 5, we are interested in identifying factors that motivate fund managers

to innovate. We also look at whether some of the benefits of innovation are shared with

investors. To that end, we study first-mover advantages in the hedge fund industry.

The benefits of early entry are a typical object of study in the literature on industrial

organisation and there is already a strand of literature which focuses on the financial

industries, see, e.g., Tufano (1989); Herrera and Schroth (2011); Lounsbury and Crumley

(2007); Makadok (1998); Lopez and Roberts (2002). There, the findings are that first-

movers are able to acquire a higher market share, but do not necessarily obtain higher

margins or higher fees. A common feature in past research is that innovation is identified

based on the public information. This is not the case for hedge funds, which are secretive

about their strategies. Hedge funds disclose little information to potential investors,

enough for the purpose of advertising, but (ideally) not enough for less talented managers

to easily copy them and remove their advantage by increasing market efficiency. The

data that is available to us identifies the type of assets and instruments hedge funds

trade in; sector, geographical, and investment focus; as well as other fund details. In

particular, we do not directly observe the innovation or the underlying changes in the

market or regulatory environment which prompt the managers to innovate. It is thus

necessary to identify the newly created product categories through inference. The high

dimensionality and the nature of the data require us to use a custom clustering algorithm,

which we call the Fast Binary Clustering. Existing algorithms are either not suitable to

binary data or exhibit problems with the high dimensionality.

Our results show that the reported characteristics can be used to infer strategy-

related information and suggest that specific first-mover advantages do exist in the hedge

fund industry. Early entry is associated with higher excess returns, longer survival,

higher incentive fees, and lower management fees compared to funds that arrive later.

Managers’ motives to innovate seem to be clear—by creating new product categories

(strategies) they are able to not only earn higher returns but also to keep a bigger

portion of these for themselves. Investors may prefer innovative funds as they offer

better performances than funds which imitate established strategies.


