Chapter 1

General Introduction

While your eyes instantly fall on these first lines, probably, you are also wondering: What is this dissertation about? My immediate answer is: “I could tell you but then I’d have to kill you”. Certainly, even by far, this is not an intention to threaten you or to chase away the interest I hope you have in reading this piece of work. I use Tom Cruise’s popular line from the movie Top Gun because it suggestively hints to the idea that some information one owns is so important that the act of sharing takes place after close consideration of what to share, when and with whom: the answer I put forward is one way of saying that the research I present in this dissertation is about individuals’ strategic information sharing (SIS) behavior.

Before I define more precisely and elaborate on what this behavior is, please think about the following simple fact: some of us know more about some things than others. This is not a surprising fact but behind it, there is the reality that people often exploit this advantage. Economists and social scientists define this reality as information asymmetries (Akerlof, 1970) which describe the situation when one party has more or better information than the other when making decisions and transactions. For instance, in case of acquiring a health insurance, the buyer has private information about his own health levels. Similarly, one knows more about own driving habits than the car insurance company. On the other hand, in case of buying a used car, the seller has private information about its quality. In case of taking a car to an auto repair shop, the car mechanic knows more about the car’s problems and therefore the costs for reparation than the owner of the car. Ultimately, information asymmetries create conflicting opportunities that may result, for instance, in (unethical) exploitation of these opportunities (e.g., lying), in an imbalance of power, distrust, loss of social, economic resources etc. In other words, simply having the ability to share information does not guarantee that people will do so: mixed-motives and competitive orientations may influence individuals to
manage strategically the information they are willing to share with others (Wittenbaum, Hollingshead, & Botero, 2004).

What is often the case is that individuals share relatively unimportant information, keeping the important private information for themselves. For instance, in case of planning to apply for a particular grant, one might withhold important and private grant information (e.g., original ideas formulated in the grant proposal) and share only unimportant and public information (e.g., guidelines for application, links to websites) with other parties, possibly interested in applying for the same grant as well. In any case, information asymmetries are a given. On the one hand, information asymmetries may exist because “knowledge is power”, an intangible asset and key to competitive advantage (Grant, 1996). Undeniably, this saying governs today’s knowledge intensive economy and steers individual behavior. Employees in organizations, for instance, often strive for power and sharing what they know becomes a dilemma (Cabrera & Cabrera, 2002), an internal negotiation among contradictory motives, i.e., to serve either self or collective interests (De Dreu, Nijstad, & Van Knippenberg, 2008).

On the other hand, it may be the case that the Internet and new communication technologies have greatly diminished the asymmetries of who knows what. However, even with all the technological progress, it is not possible to know or to have (access to) all the relevant information. Even though knowledge management has been presented as a compelling strategy for organizations to improve their business and gain competitiveness (Kogut & Zander, 1992), it is often the case that individuals do not contribute enough valuable information causing, for instance, many online knowledge sharing projects to fail; i.e., ‘no content, no knowledge management’ (Chua & Lam, 2005, p. 14) and practitioners can only speculate why they succeed or fail. Importantly, it has been previously argued that the design of online communities affects how people can interact, the information they receive about one another and the community, and how they can participate in community activities (Ren, Kraut, & Kiesier, 2007). Design decisions (e.g., focused on constraining or promoting off-topic discussions) but more importantly technological features can lead to different levels and forms of community
participation (Ren et al., 2007); we argue that technological features can help to overcome SIS.

Primarily, all these aspects suggest that information sharing is anything but random, it is strategic behavior. Diminishing information asymmetries and, subsequently, the exploitation of their conflicting opportunities and consequences (e.g., loss of power, social, economic resources, and failure of knowledge sharing projects) are dependent on individuals’ information sharing behavior. Likewise, it is a real challenge to stimulate especially the sharing of private important information since a mixture of motivational, cognitive but also technological aspects underpins SIS; private important information is critical, for instance, for the quality of decision-making (Wittenbaum & Park, 2001) and negotiation outcomes (De Dreu et al., 2008). The aim of the research presented in this dissertation is twofold: 1) to increase understanding of what strategic information sharing is and 2) to provide answers on how to stimulate the sharing of private important information. Although these are twin functions of the same research aim that mutually inform each other, investigating the impact of individual motivations and ability on SIS especially contributes to a better understanding of what SIS is while investigating the role of technological features on SIS especially helps to identify ways to stimulate the sharing of private important information.

Current research has been guided by the following main research question: How do motivational and cognitive processes, separately and in interaction with technological features, affect strategic information sharing? The current chapter continues with defining what strategic information sharing is, positioning SIS in a broader research context and distinguishing it from other information-related behaviors. The theoretical background part discusses the

1 In line with previous research (Wang & Noe, 2010; Witherspoon, Bergner, Cockrell, & Stone, 2013), I agree that there is no practical utility to distinguish between knowledge and information since these concepts are not radically different from each other (Bartol & Srivastava, 2002), they represent different aspects of the same, freely convertible into each other (Shin, Holden, & Schmidt, 2001). Once information is processed through the user’s brain, it becomes the user’s knowledge; once articulated with the intent of transmitting it, knowledge becomes information (Churchman, 1971). Throughout this dissertation, the two concepts are going to be used interchangeably (Wang & Noe, 2010). However, I refer to strategic information (instead of knowledge) sharing because explicit knowledge, thus articulated, is actual information; knowledge can also be conceived as private important information.
relevant literature around SIS highlighting what is known so far and how this research advances understanding and applicability of SIS. Finally, I present the general methodological approach for the studies that have been conducted as well as the synopsis of the subsequent chapters.

1.1. Strategic Information Sharing
Since there is little research on SIS (Osatuyi, Hiltz, & Fjermestad, 2012; Steinel, Utz, & Koning, 2010; Toma & Butera, 2009; Utz, Muscanell, & Goeritz, 2014), in this dissertation I firstly provide a comprehensible definition of this behavior that has been only implicitly referred to in previous literature. I define strategic information sharing as the individual behavior of deliberately sharing especially a particular type of information, as a motivated response to an expectation (or request) of sharing information. Task interdependence and sharer’s expertise are important underlying assumptions of SIS. In other words, the deliberate act of sharing a particular type of information comes from a knowledgeable team member with certain expertise and information sharing serves the accomplishment of a particular task to which other team members are also expected/required to contribute. SIS also assumes that there is awareness about the (potential) value of one’s own (un)shared information as well as awareness about the (potential) receiver(s) of information, otherwise, SIS would not take shape; the act of sharing may have a positive or even a negative impact for the task (e.g., a poor-quality decision making) or toward the receivers of information who may be more or less motivated to contribute their information in return. To draw clear theoretical boundaries of the definition and to illustrate (Figure 1) the extent to which SIS is similar but also different from other types of information-related behavior identified in the literature, SIS is contrasted with knowledge hiding (Connelly, Zweig, Webster, & Trougakos, 2012), knowledge sharing (Wang & Noe, 2010), and knowledge hoarding (Hislop, 2003; Lee, Kim, & Hackney, 2011; Van Den Hooft, 2012).
Knowledge hiding is the “intentional attempt by an individual to withhold or conceal knowledge that has been requested by another person” (Connelly et al., 2012, p. 65). Individuals consider the act of not sharing information in the light of serving future personal goals (Kelley & Thibault, 1978). However, this is more in line with what SIS entails since losing time or too much effort could also lead to knowledge hiding. In the case of SIS, the individual is expected/required to share at least some (kind of) information, given one’s own expertise; in the case of knowledge hiding the individual may have access to the requested knowledge without being an expert.

For example, when a project team member from a department asks for the draft of an upcoming general meeting performance report to a secretary in
another department that is expected to deliver a similar report, this happens outside a team context. The information that is being requested is related to a task that does not (directly) involves the sharer (i.e., no task interdependence) and the information the sharer decides to (not) share may also favor an outcome the sharer has less clarity about; in other words, although there is a strategic intent of asking information, SIS cannot take shape.

Knowledge sharing is defined as the provision or receipt of task information, know-how and feedback regarding a product or procedure (Cummings, 2004) and it may happen without the expectation (or request) of sharing information, it may or may not be task- or person-directed (e.g., corridor conversations after a meeting) and one may lack the awareness about the (potential) value of the shared information (as one may become aware of the value once it is shared) and about the (potential) receivers of information (e.g., the audience during public meetings). Also, as with knowledge hiding, knowledge sharing may happen outside a team context, it may not be task-related or it may not involve the sharer (directly).

Knowledge hoarding is the act of accumulating knowledge that may or may not be shared at a later date (Connelly et al., 2012, p. 66; Hislop, 2003). The existence or not of a request is not applicable, knowledge hoarding is not directed to a person or task although the individual hoarding knowledge does this with an intention. This intention may be linked to the willingness to increase one’s expertise in a certain domain, for instance, given the fact that gaps in expertise is a factor affecting knowledge hoarding (Van Den Hooff, 2012). The individual hoarding knowledge has (but not necessarily) awareness about the (potential) value of the information (as one may become aware of the value once it is shared) and about the (potential) receivers of the information; a possible impact on the collective outcome is not applicable.

1.2. Theoretical Background

Over the past 30 years, since the seminal study conducted by Stasser and Titus (1985), much research (e.g., Stasser & Titus, 2003) has been stimulated to seek answers for why people tend to discuss information that is shared (i.e., known to all members) at the expense of information that is unshared (i.e., known to a
A generally accepted explanation is that withholding information is caused by cognitive biases such as the information sampling bias, the evaluation bias, the ownership bias (e.g., Brodbeck, Kerschreiter, Moijzisch, & Schulz-Hardt, 2007; Van Swol, Savadori, & Sniezek, 2003). The information sharing literature developed in line with the research direction initiated by Stasser and Titus (1985) simply reflected whether information was mentioned or not and “this all-or-nothing approach to viewing information exchange limits the array of processes related to communicating information” (Wittenbaum et al., 2004, p. 300). At the same time, with few exceptions (e.g., in case of expertise assignment and influencing beliefs about knowledge ownership) (for a review, see Wang & Noe, 2010), most of previous research focused less on explicitly pointing to actual ways to stimulate especially the sharing of private information. Contrary to these traditional cognitive explanations, an increasingly adopted perspective shapes information sharing as a motivated process whereby members deliberately select what information to share (Wittenbaum et al., 2004). Moreover, previous research has offered indications that individuals lie, deceive (Steinel & De Dreu, 2004) and spin preference-consistent information (Scholten, Van Knippenberg, Nijstad, & De Dreu, 2007).

Steinel et al. (2010) were the first to investigate the impact of social motivation on SIS; social motivation rests on the idea that individuals are either prosocial-motivated (i.e., individuals concerned with collective welfare and joint success) or proself-motivated (i.e., individuals concerned with self-interests, ignoring others’ needs, interests and beliefs) (De Dreu, Nijstad, & Van Knippenberg, 2008). In their information pooling paradigm, Steinel et al. (2010) labeled the information by varying its importance (important vs. less important) and sharedness (public vs. private) and were thus able to detect strategic behaviors such as sharing several pieces of relatively unimportant information but keeping the important private information for oneself. Each participant had 12 pieces of information, 6 private (e.g., from their own network) and 6 public (e.g., from the internet); half of the information was labeled as important, the other half was less important. Subjects were presented only with labels (e.g., important, private) or with short pieces (e.g., “not in the northwestern part of the cemetery…”) and not with actual information (Steinel
et al., 2010). By telling participants how many pieces of information were needed to solve the task at hand, an anchor for cooperative behavior based on the equality norm was created (Messick, 1993). The findings showed that social motive affected both the amount and type of information such that prosocials shared more private (i.e., unique) and more important (i.e., task-relevant) information than proselfs while proselfs strategically shared public and unimportant information to create a cooperative impression and concealed or even lied about their private and important information.

The deliberate choice of what to share involves some up-front information processing as well. De Dreu et al. (2008), for instance, theorized about how social and epistemic motivation alone, and in combination, affect group judgment and decision making, developing the motivated information processing in groups (MIP-G) model. While social motivation is defined as the individual preference for outcome distributions between oneself and other group members, epistemic motivation is primarily about information search and processing, about the willingness to expend effort to achieve a thorough, rich and accurate understanding of the world (De Dreu et al., 2008); individuals may have either high (i.e., deep and deliberate information search and processing) or low (i.e., shallow and heuristic information search and processing) epistemic motivation.

As previously argued, varying labels indicating the type of information allowed researchers to detect strategic behaviors such as sharing several pieces of relatively unimportant information but keeping the important private information for oneself (Steinel et al., 2010). Importantly, social motivation refers to the bias in information processing, influencing the type of information (e.g., important, unique) searched, encoded, retrieved, and shared, while epistemic motivation drives the amount and depth of information processing (De Dreu et al., 2008). To better clarify the distinction between a focus on processing the type versus the amount of information (De Dreu et al., 2008), similarly, the literature on attitudes (e.g., Bohner & Wänke, 2002) distinguishes between the so-called objective versus biased processing, on the one hand, and amount of processing, on the other hand. Although it is seen on a continuum, the former type of processing mirrors the one corresponding to the umbrella
concept of social motivation discussed by De Dreu et al. (2008) while the latter type of processing mirrors the one corresponding to the umbrella concept of epistemic motivation, as part of the same MIP-G model (De Dreu et al., 2008). Specifically, on the one hand, objective processing involves an open-minded consideration of the information (Visser & Cooper, 2007) with validation intents (Wood, Rhodes, & Biek, 1995) while biased processing is directed in such a way as to favor an existing attitude schema or current goal (Petty & Wegener, 1999). On the other hand, amount of processing implies either effortful or low-effort processing, be it either in an objective or biased way (Visser & Cooper, 2007); social and epistemic motivation are also conceptualized as orthogonal factors by De Dreu et al. (2008).

The MIP-G model expands the view of groups as information processors (Hinsz, Tindale, & Vollrath, 1997) and also highlights specific antecedents for social motivation (e.g., prosocialness, disposition to trust, cooperative reward system) as well as for epistemic motivation (e.g., time pressure, need for cognitive closure, power preponderance). Although the MIP-G model theoretically explains many group processes (e.g., group judgment, decision making), only few studies tested the MIP-G model in the area of SIS and only with the focus on social motivation; overall, as previously mentioned, these studies showed that prosocials shared more private important information than proselfs while proselfs strategically shared public unimportant information to create a cooperative impression and concealed or even lied about their private important information (e.g., Steinel et al., 2010; Toma & Butera, 2009; Utz et al., 2014).

Firstly, I argue that research consideration should be given to both classes of motivation to better understand SIS. With the main focus on varying labels indicating the type of information, in my research, I particularly looked at how social motivation, social power construals (i.e., either as opportunity or as responsibility), and time pressure impact SIS; to better understand the influence of social power construals on SIS I also looked at the moderating role of perceived ability since power and ability are confounded in previous research (Sturm & Antonakis, 2015) and entangled in real work settings.
Secondly, I consider the interaction of individual motivations and cognitions with specific technological features given that information and knowledge sharing is as much an interpersonal as a technological process (Fulk & Yuan, 2013). In this respect, I investigated how information display (e.g., push vs. pull) and social buttons (e.g., ‘Like’, ‘Trust’) impact SIS. This research direction advances the line of research considering technology from a broad perspective (e.g., knowledge management systems). For instance, databases or electronic knowledge repositories make it difficult for members to clear away the information clutter and access the relevant information in hundreds or thousands of discussion threads; this, in turn, makes it difficult for contributors to also share information with other parties (e.g., colleagues from a different department). However, the newer Web 2.0 technologies (e.g., social networking sites, weblogs) try to overcome this problem by developing push information designs having embedded more subtle sharing options (e.g., ‘Share’, ‘Like’ buttons). It is the pervasiveness of these new communication technologies and the fast-paced technological advancement nowadays that justified my research interest. Since I also focus on trust as a theory inspired technological feature (i.e., ‘Trust’ button), current research complements the previous scholarly attention paid to the line of research translating social psychological theories into design features (Kraut et al., 2004; Kraut et al., 2012; Ren et al., 2012; Ren et al., 2007; Ren & Kraut, 2014). I argue that technological features can be designed in such a way as to decrease the negative effects of SIS, i.e., to stimulate individuals to share especially their private important information.

People are not only strategic about what information they share but also with whom they share it (Wittenbaum et al., 2004). Although one would expect familiarity to be positively related to information sharing because of the expectation for reciprocity (Wasko & Faraj, 2005), for instance, other studies showed that people share useful information also with strangers (Constant, Sproull, & Kiesler, 1996) because this brings, for instance, personal benefits (e.g., increased self-esteem, reputation). In this respect, to capture additional strategic aspects, current research also examined the extent to which individuals share information either with people they know (i.e., familiar people) or with people they do not know (i.e., strangers). With regard to the characteristics of
information (e.g., important/unimportant, private/public), my aim was to investigate antecedents of SIS sharing a particular type of information and not to investigate SIS across several types of information. I limited myself therefore to considering especially information sharedness (public vs. private) and, to a smaller extent, information importance (important vs. unimportant).

Conclusively, the research presented in this dissertation investigated the role of human motivations and cognitions and of specific (theory-inspired) technological features on SIS, providing thus an integrative motivational-technological framework meant to enhance understanding about SIS and to offer ways to stimulate private important information sharing. Figure 2 illustrates the overall research model; the synopsis of the chapters provides the details with regard to the specific factors displayed underneath each umbrella concept.

![Figure 2. Overall Research Model](image-url)
1.3. Methodological Considerations

1.3.1. Information Pooling Paradigm

Information sharing is only partially observable by nature. While one can point toward the information that has been shared, it is less clear how much and what type of information has not been shared. Steinel et al. (2010) developed the information pooling paradigm that allows to capture the strategic aspects of information sharing given the labeling of information by varying its importance (important vs. less important) and sharedness (public vs. private); this paradigm (Figure 3) has been employed across all experimental studies that make the subject of the current dissertation.

Figure 3. Screenshot illustration applying the Information Pooling Paradigm (Steinel et al., 2010)

However, in all studies, a variation of the information pooling paradigm has been used. With regard to the studies considering information importance, in particular, all information pieces have been pre-tested in terms of importance to prevent cognitively biased information processing since actual pieces of information instead of labels were used. In addition and unlike in the studies of Steinel et al. (2010), no anchor or equality norm of sharing was mentioned (i.e., participants were not told how many pieces of information were needed to solve the task at hand). The sources of information (e.g., from the Internet, from own
network) have been clearly specified for the pieces of information that have been labeled as public and private; varying sharedness of information does not come in conflict with explanations pertaining to cognitive biases since the distinction between public and private information represents the core of defining information sampling bias, the evaluation bias as well as the ownership bias.

1.3.2. **Research Approach**

In order to address the overall research aim, I focused on a mixed-method approach. To test causal effects, five experimental studies had been carried out, complemented by one filed survey testing the external validity of the findings. To check for robustness of the findings and to be able to generalize them to other situations as well, different cover stories have been used across all six studies; tasks varied from solving the mystery of a stolen painting, applying for a study-abroad scholarship, making decisions within an event-planning company and taking part in a meeting at work where other colleagues ask you to share information. To ensure that the findings can be generalized to other categories of people as well, I focused on a dual sample, student- and non-student participants. Being often the most accessible to researchers and generally less expensive, students represented the major part of the study samples; one experimental study used a convenience sample while another experimental study and the field survey used a specific professional group (i.e., scientists). Additionally, I adopted a mixed analytical strategy using, for instance, the analysis of variance, mixed-effects of binary logistic regressions as well as hierarchical regressions.

1.3.3. **The Sharer and SIS**

Information sharing is a complex behavior that can be tackled from different angles: my research, in particular, is about the team member who shares and not about the one who receives information (Figure 4). Across all experimental studies, no identifying information has been given to the sharer about the other team members, information sharing being based only on sharer’s judgments of information (i.e., not person-related). The field survey took however a step
further and tackled the strategic aspects of information sharing related to a person one knows (i.e., a familiar person) or does not know (i.e., a stranger), respectively, given also the mixed effects with regard to sharing ‘with whom’ found in the literature (e.g., Constant et al., 1996; Wasko & Faraj, 2005).

Since task interdependence is one important assumption of SIS with key implications to reach important outcomes, participants, across all studies, were told to expect to have online interactions and future collaboration with the other team members. In other words, the sharer’s information sharing behavior has been examined in a context in which the sharer had the expectation to interact online and collaborate with other team members, on a particular task.

1.4. Synopsis of the Dissertation Chapters
Overall, Chapter 2 aimed to examine the interactive effects of social motivation, time pressure and information display on SIS (Figure 4). Firstly, using a similar social motivation manipulation – i.e., using a cooperative reward system assigning participants either to the prosocial or to the proself condition

Figure 4. Research focus & Overview of the chapters
– but more and concrete pieces of information compared with the studies of Steinel et al. (2010), the findings replicated and extended this prior research indicating that SIS is affected by social motives (Study 2.1). Secondly, by investigating the role of time pressure, as one antecedent of epistemic motivation, I tested the complete MIP-G model (De Dreu et al., 2008) in the area of SIS. Study 2.1 did not provide conclusive results with regard to the role of time pressure. Therefore, in Study 2.2 I investigated again the role of time pressure, using a different manipulation. I further explored this research direction for two main reasons, mainly to assess 1) whether perceived time pressure (i.e., epistemic motivation) and not actual time pressure has an impact on SIS and 2) whether to keep the focus on epistemic motivation in future studies. Specifically, in Study 2.1 time pressure was manipulated by telling participants that they either have a limited amount of time – i.e., 10 minutes – to complete the task or that they can take all the time they need to complete the task; in Study 2.2 participants were told that they have the same amount of time in both conditions – i.e., 10 minutes – but that the time is either ‘more than enough’ or ‘quite tight’ to complete the task. The findings showed that actual and not perceived time pressure impacts the sharing of (private) information, informing the decision to drop epistemic motivation from further studies.

Thirdly, we investigated the interaction of the motivational factors with information display – i.e., information displayed either in a push- or in a pull-format – as a specific technological feature and identified how it can stimulate the sharing or private information (Study 2.1 and Study 2.2): push-information displays increased the sharing of private information, especially for individuals with a prosocial motivation.

Overall, Chapter 3 aimed to go a step further from social motivation addressed in Chapter 2 and focused, firstly, on examining the effects of power construals on SIS (Figure 4). Since previous research simply compared a high and low power condition (e.g., Galinsky, Gruenfeld, & Magee, 2003), I focused on power construals (as opportunity to achieve one’s own goals vs. as responsibility for others’ outcomes) as a different facet of power. Moreover, power construed as opportunity is a power perception constantly enforced in most work settings while the saying ‘knowledge is power’ is particularly popular
nowadays affecting individuals’ information sharing behavior. Secondly, I examined the role of social buttons (‘Like’ vs. ‘Like-or-Trust’) on SIS, in particular, the role of a ‘Trust’ button, as a theory-inspired technological feature, on SIS (Figure 4). For each piece of information, participants either viewed displayed the ‘Trust’ button next to the ‘Like’ button or only the ‘Like’ button alone. Trust has been repeatedly found to be an important enabler of knowledge sharing, to contribute, for instance, to the success of online collaborative platforms (Kraut et al., 2012; Wang & Noe, 2010); the ‘Like’ button is a default feature of most of the social media environments nowadays. The findings showed that construing power as responsibility and the presence of the ‘Trust’ button increased the sharing of private information; additionally, the likelihood of sharing information was higher when social buttons were clicked compared with when they were not clicked.

Overall, Chapter 4 aimed to replicate the findings reported in Chapter 3 and strengthen the view of information sharing as strategic behavior affected by social power construals by looking at the moderating role of perceived ability (Figure 4). Specifically, an experimental study disentangled individuals’ power perception and perceived ability since they are confounded in previous research and entangled in real work settings. When in a power position, it is one’s ability in terms of skills and competences that makes a difference for organizational outcomes. High individual ability often results in power gain, and high power implies often the ability to reward or punish. In addition, it is more the power perception than the power position that drives the behavior of decision-makers.

Examining, in particular, how power construals (as opportunity vs. as responsibility) and ability feedback (high vs. low) affect especially the sharing of private information, the findings showed that construing power as responsibility (vs. as opportunity) increased the sharing of private information only when people received high ability feedback. These findings replicated the ones reported in Chapter 3 and demonstrated that explaining and understanding how SIS is affected by social power construals is dependent on individuals’ perceived ability; in other words, power and ability are dependent on each other when it comes to explaining the sharing of private information.
Overall, **Chapter 5** aimed to find empirical evidence from the field to strengthen and expand the view of information sharing as strategic behavior. A field study, having both an experimental and a survey component, tested the main assumptions investigated in the studies presented in Chapter 2 – Chapter 4. Specifically, a field survey and a field experiment among academics investigated the ‘what’ of sharing (e.g., private important information, grant proposals, tips, advice, feedback) but also the sharing ‘with whom’ (familiar people vs. strangers) (Figure 4) and found 1) no social value orientation effects, 2) construing power as responsibility and not construing power as opportunity was a significant predictor of the sharing of private important information, the sharing with familiar people and with strangers and 3) ability to write grant proposals was a predictor of the sharing with familiar people and moderated the relationship between power as responsibility and the sharing with familiar people. Overall, the way power is construed (i.e., as responsibility) plays an important role on SIS, an even more important one than SVO while ability explains underlying mechanisms.

Chapter 6 presents the general discussion points across all studies, elaborating on the scientific and practical implications of the findings, as well as on the limitations and strengths; the chapter ends with recommendations for practice and with the most interesting ideas for future research.

References

Steinel, W., Utz, S., & Koning, L. (2010). The good, the bad and the ugly thing to do when sharing information: Revealing, concealing and lying depend

