Chapter 3

Exposing Information Sharing as Strategic Behavior: Power as Responsibility and ‘Trust’ Buttons

Online collaborative platforms’ success depends on individual’s information sharing (IS) but primarily on trust, important enabler of IS. However, previous research showed IS as strategic behavior: individuals share relatively unimportant information keeping the important private information for themselves; ‘knowledge is power’ is default-perception in organizations. We examined the role of power construed as responsibility for others’ outcomes and of a ‘Trust’ button, a theory-inspired technological feature, using a 2(power construals: opportunity vs. responsibility) x 2(buttons: ‘Like’ vs. ‘Like-or-Trust’) x 2(information sharedness as within-subjects factor: public vs. private) design. Main results: construing power as responsibility and the presence of the ‘Trust’ button increased the sharing of private information; clicking behavior yielded insights into the underlying mechanisms. Theoretical and practical implications are discussed.

Keywords: strategic information sharing, power as responsibility, power as opportunity, trust, technological features
3.1. Introduction
Knowledge is an intangible asset (Grant, 1996) and, in today’s knowledge-intensive economy, organizations progressively invest in new communication technologies such as enterprise social media (Leonardi, Huysman, & Steinfield, 2013). Knowledge sharing is as much an interpersonal as a technological process (Fulk & Yuan, 2013), mainly because knowledge is also a source of power for individuals in organizations. IS at the individual level is a mixed-motive situation (De Dreu, Nijstad, & Van Knippenberg, 2008). People often tend to share relatively unimportant information, keeping the important private information for themselves (Steinel, Utz, & Koning, 2010): it is a real challenge to understand and constantly encourage IS.

Over the past 30 years, since the seminal study of Stasser and Titus (1985), research persistently sought answers for why people tend to discuss information that is shared (i.e., known to all members) at the expense of information that is unshared (i.e., known to a single/few member(s)) (Wittenbaum, Hollingshead, & Botero, 2004). Prior research mainly focused on cognitive explanations such as the information sampling bias, the evaluation bias (e.g., Brodbeck, Kerschreiter, Mojzisch, & Schulz-Hardt, 2007). Against this traditional cognitive explanation, an increasingly adopted perspective shapes IS as a motivated process whereby members deliberately select what information to share (De Dreu et al., 2008; Wittenbaum et al., 2004). Steinel et al. (2010) were the first to demonstrate that IS is strategic behavior, driven by social motivation. In several experiments, they found that prosocials (i.e., individuals concerned with joint outcomes) shared more private information than proselhs (i.e., individuals concerned with own outcomes only); proselhs shared public and unimportant information to make a cooperative impression and concealed or even lied about their private and important information.

The goal of this study is to extend research on strategic information sharing (SIS) (Osatuyi, Hiltz, & Fjermestad, 2012a; Steinel et al., 2010; Toma & Butera, 2009; Utz, Muscanell, & Goeritz, 2014) because 1) there is little research and empirical substance to define and consolidate SIS having key implications for interpersonal relations (Webster et al., 2008), knowledge building (e.g., Kraut et al., 2012) and performance outcomes (e.g., Nijstad, Stroebe, &
Lodewijkx, 2003); 2) so far, research has mainly focused on stable personality characteristics such as social motives and neglected contextual factors such as power construals or trust that play an important role in organizational settings (Utz et al., 2014) and 3) prior research has neglected the role of technological features to stimulate IS. Specifically, we firstly investigate the role of power construals on SIS. The popular saying “knowledge is power” indicates that IS can result in power loss. Indeed, power often propels people toward egocentrically focused goals (Galinsky, Magee, Rus, Rothman, & Todd, 2014) and this is a default perception in organizations (Rus, Van Knippenberg, & Wisse, 2010). However, power can also mean heightened responsibility for others’ outcomes, to pursue social goals (Sassenberg, Ellemers, & Scheepers, 2012). Essentially, we expect power as responsibility to stimulate the sharing of more (unique) information than power as opportunity (Sassenberg et al., 2012). Secondly, we build on the literature documenting trust as an important enabler of knowledge sharing and investigate how a ‘Trust’ button, as a theory-inspired technological feature, affects power holders’ sharing of (private) information. Specifically, complementing research on designing online communities (Ren et al., 2012) to stimulate knowledge sharing (Fulk & Yuan, 2013; Leonardi et al., 2013), we investigate how a ‘Trust’ button next to the default ‘Like’ button affects SIS; in other words, we investigate how the presence of buttons as specific technological features affect SIS; overall, we look at how much and especially at what type of information (public vs. private) people share.

3.1.1. Theoretical Background
Although it is often acknowledged that knowledge sharing is a social dilemma and a mixed-motive situation (e.g., Cabrera & Cabrera, 2002), empirical research has largely studied it in cooperative contexts (Kollock, 1998; Mesmer-Magnus & DeChurch, 2009; Stasser & Stewart, 1992; Stasser & Titus, 1985, 1987) and thereby neglected the strategic aspects of IS\(^1\). Some studies offered

\(^1\) Previous research on information and knowledge sharing emphasized that there is not much practical utility in distinguishing between knowledge and information (for a review, see Wang & Noe, 2010); they are not radically different from each other because “once information is processed through the user’s brain, it becomes the user’s knowledge. When the user articulates knowledge with
merely *indications* that individuals are selective in encoding and retrieving information (see De Dreu et al., 2008), they lie, deceive (Steinel & De Dreu, 2004) and spin preference-consistent information (Scholten, Van Knippenberg, Nijstad, & De Dreu, 2007).

In their information pooling game, Steinel et al. (2010) varied the importance (important vs. less important) and sharedness (public vs. private) of information and were able to detect strategic behaviors such as sharing several pieces of relatively unimportant information but keeping the important private information for oneself. To disentangle motivational effects from cognitive biases such as considering shared or own information as more relevant (Brodbeck et al., 2007), subjects were presented only with labels (e.g., important, private) and not with actual information (Steinel et al., 2010). Each participant had 12 pieces of information, 6 private (i.e., from their own network) or 6 public (i.e., from the internet). Half of the information was labeled as important, the other half as less important. By telling participants how many pieces of information were needed to solve the task at hand, an anchor for cooperative behavior based on the equality norm was created (Messick, 1993). Social motive (Van Lange, Otten, De Bruin, & Joireman, 1997) affected both the amount and type of the information shared: prosocials shared more private and more important information than proselfs who shared public and unimportant information to create a cooperative impression and concealed or even lied about their private and important information.

This paper firstly provides a comprehensible *definition* of SIS that has been only implicitly referred to in previous literature (Osatuyi, Hiltz, & Fjermestad, 2012b; Steinel et al., 2010; Toma & Butera, 2009; Utz et al., 2014). We define SIS as *the individual behavior of deliberately sharing especially a particular type of information, as a motivated response to an expectation (or request) of sharing information*. Task interdependence and sharer’s expertise are underlying assumptions of this strategic behavior while individuals consciously and deliberately decide on the amount and especially on the type of information they share. In other words, SIS leaves the team member no

the intent of transmitting it, it becomes information” (Shin, Holden, & Schmidt, 2001, p. 336). In a similar vein, hereafter, information and knowledge are used interchangeably.
possibility to refuse the act of sharing: one needs to share at least some information and thus can only decide how much and what information to share (e.g., sharing important and private information positively impacting the collective outcome or unimportant information just to make cooperative impressions, not contributing at all or even worsening the collective outcome). The focus in SIS is on the amount of a particular type of information that is shared and less on the fact that, simply, an amount of information is shared; SIS is essentially different from other information-related behaviors such as knowledge hiding2 (Connelly et al., 2012), knowledge sharing3 (Wang & Noe, 2010), and knowledge hoarding4 (Hislop, 2003; Lee, Kim, & Hackney, 2011; Van Den Hooff, 2012).

We chose power because power is implicitly associated with having information and explains why people usually refrain from sharing it. For instance, people refrain from sharing what they know with their colleagues, for instance, to avoid power loss (Kankanhalli, Tan, & Wei, 2005), not being promoted or even losing the job. Previous research also indicated that people with power often act in their own benefit (Anderson & Galinsky, 2006),

1 Knowledge hiding is the “intentional attempt by an individual to withhold or conceal knowledge that has been requested by another person” (Connelly, Zweig, Webster, & Trougakos, 2012, p. 65). In this case the individual has the possibility to choose either to reveal (certain) information or not and s/he may have access to knowledge without owning it (i.e., without being an expert). For example, when a project team member from a department asks for the draft of an upcoming general meeting performance report to a secretary in another department that is expected to deliver a similar report, this happens outside a team context, the information that is being requested is related to a task that does not (directly) involves the sharer (i.e., no task interdependence) and the information the sharer decides to (not) share may favor an outcome the sharer has less clarity about (i.e., although there is a strategic intent of asking information, SIS cannot take shape).

3 Knowledge sharing is defined as the provision or receipt of task information, know-how and feedback regarding a product or procedure (Cummings, 2004) and it may happen without the expectation (or request) of sharing information, it may or may not be task- or person-directed (e.g., corridor conversations after a meeting) and one may lack the awareness about the (potential) value of the shared information and about the (potential) receivers of information (e.g., the audience of public meetings). Also, as with knowledge hiding, knowledge sharing may happen outside a team context and/or unrelated to a task that does not (directly) involve the sharer.

4 Knowledge hoarding is the act of accumulating knowledge that may or may not be shared at a later date (Connelly et al., 2012, p. 66; Hislop, 2003). The existence or not of a request is not applicable, knowledge hoarding is not directed to a person or task although the individual hoarding knowledge does this with an intention. This intention may be linked to the willingness to increase one’s expertise in a certain domain, for instance, given the fact that gaps in expertise is a factor affecting knowledge hoarding (Van Den Hooff, 2012). The individual hoarding knowledge has (but not necessarily) awareness about the (potential) value of the information (as one may become aware of the value once it is shared) and about the (potential) receivers of the information; a possible impact on the collective outcome is not applicable.
exploiting power differences (Connelly et al., 2012), taking resources for themselves (Rucker, Dubois, & Galinsky, 2011), withholding information from others to maintain positions (Maner & Mead, 2010; Webster et al., 2008). All these studies offer indications that power might explain SIS.

We focus on trust because it might engender cooperation and promote knowledge flow (Hashim & Tan, 2015) Distrust – being afraid that a colleague competing for promotion might take your ideas – leads to ineffective social exchanges (Blau, 1964) and knowledge hiding (Webster et al., 2008). Overall, trust has been shown to play a positive role in IS (for a review, see Hashim & Tan, 2015; Hung, Lai, & Chou, 2015), So far, trust has been shown to influence not only the quantity but also the quality of IS (Chiu, Hsu, & Wang, 2006), that is has either direct (e.g., Kankanhalli et al., 2005) or indirect (Xu, Li, & Shao, 2012) influence on knowledge sharing or is a mediator, for instance, on the relationship between knowledge management system quality and knowledge sharing (e.g., Ho, Kuo, & Lin, 2012).

3.1.2. Power Construals and the Sharing of Private Information

Power is defined, by and large, as the ability to affect others’ beliefs, attitudes, or behaviors (Pierro, Kruglanski, & Raven, 2012) by administering, for instance, social resources such as knowledge, decision-making opportunities (Keltner, Gruenfeld, & Anderson, 2003). A large body of research has often argued that power negatively affects IS. Webster et al. (2008) argued that knowledge is a source of power and employees, for instance, engage in knowledge withholding to avoid losing uniqueness, thereby maintaining their position; as people gain unique knowledge and perform specific roles in the organization they increase others’ dependency on them (Webster et al., 2008). Kankanhalli et al. (2005), for instance, theorized that when knowledge sharing is associated with loss of power, individuals are less likely to contribute knowledge to electronic knowledge repositories; moreover, the most common association with power (e.g., Raven, 1992; Raven, Schwarzwald, & Koslowsky, 1998) is to seek to achieve own goals resulting from the control over others’ outcomes (Keltner et al., 2003). However, most studies (Anderson & Galinsky, 2006; Inesi, Botti, Dubois, Rucker, & Galinsky, 2011) simply compared a low power and a high
power condition not taking into account that there are different power construals possible also. Previous research did indicate that different power concepts are served by different mindsets, such as stereotyping others versus learning the individuating needs of others (Torelli & Shavitt, 2010). For instance, in two studies, Torelli and Shavitt (2011) showed that different culturally based concepts of interpersonal power have distinct implications for information processing. People with a vertical individualist cultural orientation view power in personalized terms (i.e., power is for gaining status over and recognition by others), whereas people with a horizontal collectivist cultural orientation view power in socialized terms (i.e., power is for benefitting and helping others) (Torelli & Shavitt, 2011). Moreover and regardless of the cultural aspect, it has been shown that using perspective-taking makes power holders act away from the egocentric self and move toward more socially aware ends (Galinsky et al., 2014). Chen, Lee-Chai, and Bargh (2001), for instance, showed that power-primes activate chronic goals and that communals (i.e., individuals focused on responding to the needs and interests of others) tended to act more responsibly, choosing from a list of fictitious exercises those exercises requiring more minutes to complete, to compensate for another participant who ostensibly signed up for the same session but was being late; instead, exchangers (i.e., individuals focused on keeping a tally of the giving and receiving benefits) made choices more in line with their self-interests, choosing those exercises requiring fewer minutes to complete. However, so far, no systematic research focused on how power perceptions affect knowledge sharing. Sassenberg et al. (2012) argued that social power implies having the opportunity to shape one’s situation in line with own goals and interests (i.e., power as opportunity). On the other hand, social power can also be conceived as heightened responsibility for the outcomes of others who depend on the self (i.e., power as responsibility). We argue that different construals of power, either as responsibility or as opportunity, affect IS. Specifically, on the one hand, in the context of SIS, people construing power as responsibility pursue social goals (Bolle & Vogel, 2011). This means sharing more of their private information with the group; private information is usually the one that positively influences the quality of decision-making in teams (Devine, 1999;
Stasser & Titus, 1987). Conversely, people construing power as opportunity act in their self-interest, which makes them share less of their private information. Thus, we expect individuals who construe power as responsibility to not simply share more pieces of information, but to share mainly more private (i.e., unique) information than individuals construing power as opportunity.

Hypothesis 1 (H1): Construing power as responsibility results in a higher likelihood of sharing private information than construing power as opportunity.

3.1.3. How a ‘Trust’ Button can Increase Sharing of Private Information

Trust has been defined as the willingness of a party, the trustee (i.e., the trusting party), to be vulnerable to the actions of another party, the trustor (i.e., the party to be trusted) (Mayer, Davis, & Schoorman, 1995). A considerable amount of research (for details, see Schoorman, Mayer, & Davis, 2007) has examined trust especially since the publication of the seminal article of Mayer et al. (1995), constantly enforcing trust as a ubiquitous construct. A well-established body of research has consistently shown that trust is an important enabler of knowledge sharing (Chen & Hung, 2010; Hung et al., 2015), allowing individuals to share that knowledge that is critical to the success of collaboration (Wang & Noe, 2010) or encouraging them to continuously share knowledge within online communities (Hashim & Tan, 2015). Building on this well-established line of research, we examine the role of a ‘Trust’ button, as a theory-inspired technological feature, to stimulate the sharing of private information.

So far, a large body of research investigated the role of technology in stimulating (Hsu & Lin, 2008; Van Den Hooff & De Ridder, 2004) or hindering IS (e.g., Barley, Meyerson, & Grodal, 2011; Paroutis & Al Saleh, 2009). However, in most of these studies technology has been considered from a broad perspective (e.g., introducing a database or knowledge management system). Only recently, research attention has moved to technological features (Ren et al., 2012; Ren & Kraut, 2014), taking social psychological theories and translating them into design features. Ren et al. (2012), for instance, tested how
two sets of features such as a group profile page, a recent group activity page and group communication channels can strengthen member attachment. In a similar vein, we focus on the effects of a ‘Trust’ button. Social buttons such as the ‘Like’ button in Facebook are common in social media and associated with sharing information (Gerlitz & Helmond, 2013). We argue that a ‘Trust’ button might stimulate the sharing of (private) information for various reasons.

First, the repeated exposure to a ‘Trust’ button might render trust salient by a simple priming effect. Priming refers to the “incidental activation of knowledge structures ... by the current situational context” (Bargh, Chen, & Burrows, 1996, p. 230). Priming can have perceptual, motivational and behavioral effects (Bargh & Chartrand, 2000). Trust salience may trigger, for instance, evaluations of the information as trustworthy and this, in turn, would positively affect especially the sharing of private information. Trust salience may also trigger the perception of the interaction partners as trustworthy. Essentially, representations either of trustworthy information or of collaboration with trustworthy others may motivate people to share (private) information.

Previous studies on social buttons (e.g., Gerlitz & Helmond, 2011) discuss mainly the ‘Like’ button, well-known from Facebook. The ‘Like’ button (and not any button) is used for our control condition because it is the ‘default’ button nowadays whereas the display of a ‘Trust’ button next to a ‘Like’ button constitutes our treatment condition. We also focus on the two buttons as mutually exclusive – i.e., either the ‘Trust’ or the ‘Like’ button can be clicked – because, in this study, we want to clearly disentangle the function of the two buttons, to investigate how the presence of the ‘Trust’ button, in particular, stimulates the sharing of private information. Based on the argumentation above, we expect:

Hypothesis 2 (H2): Displaying a ‘Trust’ button next to a ‘Like’ button results in a higher likelihood of sharing private information than the display of the ‘Like’ button alone.
Until now, this paper has focused on how social power construals and the presence of information-judging buttons affect the sharing of private information. We have argued, so far, that the ‘Trust’ button increases the sharing of private information, but it was unclear whether this happens because the sheer presence of the ‘Trust’ button primes trust or whether judging the trustworthiness of a specific piece of information increases the likelihood of sharing this specific piece of information. In the first case, higher sharing of private information regardless of actual clicking the ‘Trust’ button would be expected whereas in the second case, a relationship between clicking the ‘Trust’ button and sharing a piece of information would be expected. However, before looking at the relationship between clicking and sharing, we take a step back and examine the extent to which power construals affect actual clicking.

Before turning to the effects of power construals on trust- and like-clicking, we examine whether there are differences in the number of clicks (clicking count), regardless of button type. A second button might increase the number of overall clicks simply because of the click-affordance of the button. Moreover, power construals might impact the clicking behavior. Opposing lines of argumentation are possible. When construing power as responsibility, people might click on the information-judging buttons because they: 1) feel responsible to engage in the process of decision-making and 2) seek to make use of whatever resources (i.e., clicking) they have available to eventually help others. Conversely, clicking might happen less often since this type of power is perceived as less attractive (Sassenberg et al., 2012) and also due to power’s inhibiting effects (Anderson & Galinsky, 2006).

When construing power as opportunity, people might click on the information-judging buttons because: 1) power activates the behavioral approach system that justifies why people are tempted to exert influence (Keltner et al., 2003), to take action (Anderson & Galinsky, 2006) and 2) taking action strengthens their power position. Conversely, people act in their self-interest, not being concerned about others and therefore might click less the information-judging buttons. Because of these competing arguments, we formulate an open research question:
RQ1: How do power construals affect overall clicking?

More interesting is of course whether different power construals are also differentially related to ‘Like’- and ‘Trust’-clicking. One could argue that people construing power as responsibility would be more inclined to click on the ‘Trust’ button because they feel morally responsible for others (Sassenberg et al., 2012). At the same time, people construing power as opportunity (Sassenberg et al., 2012) would be more inclined to click on the ‘Like’ button because they seek to preserve a positive self-image. Based on these arguments, the present research poses our second research question:

RQ2: How does a) power construed as responsibility and b) power construed as opportunity affect ‘Trust’ clicking and ‘Like’ clicking, respectively?

Clicking may happen for various reasons (Gerlitz & Helmond, 2013; Hayes, Carr, & Wohn, 2015). For instance, the sheer presence of the ‘Trust’ button primes trust but it can also allow, through clicking, judging the trustworthiness of a specific piece of information which, subsequently, people may consider to share. People may also follow the ‘Facebook habit’ of clicking the ‘Like’ button before sharing a piece of information; the relationship between clicking and sharing might even be moderated by power, e.g., power as opportunity might mean clicking the ‘Like’ button but still keeping the information for oneself. We are therefore interested to also look at how clicking affects IS and this becomes our third research question:

RQ3: How does clicking affect information sharing?

In sum, this paper aims to investigate how social power construals (as responsibility vs. as opportunity) and (clicking) information-judging buttons (‘Like’ vs. ‘Like-or-Trust’) affect the amount and type of information shared.
3.2. Method

3.2.1. Participants and Design
A convenience sample of 96 Dutch participants (38 males, 58 females; $M_{age} = 31.20$, $SD = 10.94$; 30.20% higher professional education (in Dutch, HBO), 29.20% university (in Dutch WO), 25.00% vocational education (in Dutch MBO) and 15.60% other levels of education) completed, on a voluntarily basis, an online experiment, spending around 20 minutes on the task ($M_{timetask} = 21.42$, $SD = 17.10$). The experiment used a 2 (power construals: as responsibility vs. as opportunity) x 2 (information-judging buttons: ‘Like’ vs. ‘Like-or-Trust’) between-subjects design, participants being randomly assigned to the experimental conditions; information sharedness (public vs. private) was used as a within-subjects factor.

3.2.2. Procedure
Participants were recruited face-to-face, via Facebook, e-mail and by spreading flyers. Participants first read that the study was about information processing while organizing a sports event, divided in two parts, taking approximately 15 to 20 minutes to complete. It was also stressed out that there were no right or wrong answers, all the data would be saved anonymously to ensure confidentiality. After this description, the actual experiment started.

In the first part, social power construals were manipulated and then participants answered the manipulation check items. In the second part, they had to imagine being the leader of the Planning Department of an event-planning company, having to coordinate a team of eight persons for a task meant to serve the requirements coming from the Implementation Department. The team task was to make a sketch of the spatial visualization of a sports event to help the Implementation Department to visualize where all the (decoration) elements had to be placed. Participants were told that they would have an online meeting with the team to discuss about and prepare the sketch. The participant firstly received, one by one, pieces of information about several decoration elements (e.g., wide screens, tables, chairs) that could be placed in the hall hosting sports events. This information was meant to help the team to prepare for the meeting. Individuals anticipating future interaction often desire to focus
on exchanging information about similarities to appear competent and because it promotes greater uncertainty reduction (Insko et al., 2001; Kellermann, 1986). Priming power as opportunity is expected to make particularly these concerns salient and motivate individuals to share especially their public information, considering also the additional work and responsibility that goes with sharing the private information. On the contrary, priming power as responsibility is expected to stimulate especially sharing of private information also given the concern of providing enough input.

For each piece of information, participants could choose whether to share it (i.e., using the ‘Share’ button) or not (i.e., using the ‘Don’t Share’ button) with the subordinates; to enable interaction with the content, the participants were told that they could also click to express evaluative responses of that piece of information using, depending on condition, a ‘Like’ button or either a ‘Trust’ or a ‘Like’ button; the evaluative responses of the pieces of information were not made visible to the other participants. After the IS task was completed, participants answered the demographic questions (e.g., age, gender, level of education). Then, they were debriefed and thanked for taking part in the online experiment.

3.2.3. Independent Variables

Power construals were manipulated according to Sassenberg et al. (2012). Specifically, participants had to imagine being the leader of an Organizational Committee and had to make decisions about twelve measures concerning a sports event (e.g., “Extensive security checks at the venue should be implemented to reduce the danger of terrorist attacks. These checks partly interfere with the preparation of the athletes”). In the power as opportunity condition participants judged whether each measure would contribute to the success of the event whereas in the power as responsibility condition they judged whether each measure would be an ethically responsible action. Answers were given on a 6-point scale, ranging from 1 “not at all helpful” to 6 “very helpful” and from 1 “not at all justified” to 6 “completely justified”, respectively.

The information-judging button display manipulation was done by displaying buttons the participants could click on, under each piece of
information. Specifically, the participants had the possibility to only ‘Like’ (i.e., in the ‘Like’ button-condition) or to either ‘Like’ or ‘Trust’ (i.e., in the ‘Like-or-Trust’ button-condition) each piece of information.

Information sharedness was manipulated by telling participants that each team member had access to both public and private information. They were told that the public information was retrieved from advertising material of previous events, from the internet; the private information was made accessible only to the participant and the information was provided by an independent market research agency. The information pieces (24 in total) the participants received were labeled either as ‘public’ (e.g., #PUBLIC – Wide-screens are a must for every sport-event but they should not be placed or made visible to the audience outside the sports hall.) or as ‘private’ (e.g., #PRIVATE – The independent survey has shown that a lot of people prefer tables and chairs at the sport-event and they don’t necessarily appreciate to be of the same color with the floor.); the order of information pieces were randomized between-subjects.

3.2.4. Dependent Measures

Information sharing is the first dependent variable in this study. IS was scored by counting how many pieces of each type of information (i.e., public and private) the participant shared by clicking the ‘Share’ button.

Clicking information-judging buttons is the second dependent variable in this study. It was scored by considering the pieces of information (i.e., public and private) the participants judged through clicking. In the ‘Like’ condition, there was only a ‘Like’ button; in the ‘Trust’ condition, participants could choose between a ‘Like’ and a ‘Trust’ button. To be able to compare the act of clicking between conditions, we created an overall measure – i.e., overall clicking – counting the number of clicks per condition (regardless of button type). For more fine-grained analyses within the ‘Trust’-button condition, we counted the number of ‘Like’- and ‘Trust’-clicks separately.

Two statements adapted from the study of Sassenberg et al. (2012) were used as *power construals manipulation check items*. The two statements were: “As the leader of the Organization Committee, I helped with the success of the
event” and “As the leader of the Organization Committee, I thought about the consequences of my own decisions on others”. Answers were given on a 7-point scale ranging from 1 “Not at all” to 7 “Very much”; the two items measure two different power construals (Sassenberg et al., 2012) and are used separately.

3.3. Results
3.3.1. Manipulation Checks
To check the effectiveness of the power construals manipulation, a multivariate analysis of variance with power construals and button presence as independent variables and the two manipulation check items for power construals as dependent variables was performed. Results\(^5\) yielded a significant overall effect of power construals, \(F(2, 91) = 20.44, p < 0.001, \eta^2_p = .31.\) Specifically, participants reported that they helped less with the success of the event when power was construed as responsibility than when power was construed as opportunity \((F(1, 92) = 17.98, p < .001, \eta^2_p = .16, M = 4.56, SD = 1.61 \text{ vs. } M = 5.82, SD = 1.39)\) and also thought about the consequences of their own decisions on others more when power was construed as responsibility than when power was construed as opportunity \((F(1, 92) = 24.10, p < .001, \eta^2_p = .21, M = 5.98, SD = 1.31 \text{ vs. } M = 4.52, SD = 1.62).\) Overall, these results indicate that the manipulation of the power construals was successful.

No manipulation check items were used to manipulate the information-judging buttons display (O’Keefe, 2003). Perdue and Summers (1986) argue that when the independent variable is concrete, observable (e.g., price, color) it is relatively simple to confirm that it was manipulated as intended (O’Keefe, 2003); its statistical significance should not be a concern. The information-judging button conditions were clearly different and were used accordingly.

3.3.2. Descriptive Statistics
Table 1 shows that the sharing of private information positively correlated with

\(^5\) Although the overall interaction effect between power and button was significant, \(F(2, 91) = 3.34, p < .05, \eta^2_p = .07,\) the effect of power was significant for the first item only, in the ‘Like’ button condition, i.e., participants reported to help more with the success of the event when power was construed as opportunity than when power was construed as responsibility, \(F(1, 92) = 5.51, p < .05, \eta^2_p = .06 (M = 6.29, SD = 0.56 \text{ vs. } M = 4.28, SD = 1.62).\)
1) construing power as responsibility as well as with 2) the display of the additional ‘Trust’ button. Overall clicking positively correlated with all independent variables and dependent measures.

Table 1.
Means, standard deviations and intercorrelations of the dependent measures and independent variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Power construals</td>
<td>.54</td>
<td>.50</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Button display</td>
<td>.52</td>
<td>.50</td>
<td>-.00</td>
<td>-</td>
<td>.06</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3. Sharing of public information</td>
<td>8.22</td>
<td>3.03</td>
<td>.21*</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sharing of private information</td>
<td>7.09</td>
<td>3.41</td>
<td>.40**</td>
<td>.24*</td>
<td>.46**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5. Overall clicking</td>
<td>9.57</td>
<td>8.20</td>
<td>.21**</td>
<td>.34**</td>
<td>.46*</td>
<td>.42**</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. The variable power construals is recoded from the experimental manipulation (0 = as opportunity, 1 = as responsibility) as well as the variable button display (0 = ‘Like’, 1 = ‘Like-or-Trust’). N = 96, ** p < .01, * p < .05

3.3.3. Analytical Strategy

To test the hypotheses and to find answers to the research questions, restructuring our data set from a wide into a long format, we conducted a series of mixed-effects binary logistic regression analyses. In a first step, we predicted the likelihood of sharing a specific piece of information from the power construals (as opportunity vs. as responsibility), button display (‘Like’ vs. ‘Like-or-Trust’) and, information sharedness (public information vs. private information). In a second step, we examined how these variables affected the likelihood of clicking. We first examined overall clicking (click vs. no click). Additionally, we analyzed the likelihood of clicking the ‘Trust’ vs. the ‘Like’ button for the ‘Trust-or-Like’ button condition separately. In the last step, we used again sharing as dependent variable but added overall clicking as additional between-subjects factor. Subsequently, instead of overall clicking we also used ‘Trust’ clicking and ‘Like’ clicking, in separate analyses, as between-subjects factor, for the ‘Trust-or-Like’ button condition separately; we also used

6 Gender, age and level of education were used as control variables to account for possible confounding effects; we found non-significant effects and these variables were therefore not included in further analyses.
'Like’ clicking as between-subjects factor for the ‘Like’ button condition separately. Participants were included as a random factor while the number of information pieces was included as a repeated measure in all analyses.

We opted for the multilevel approach for two main reasons. First, the information pieces are nested within individuals. Second, to determine, at the information level, the relationship between clicking and information sharing, the long format of the data set is required. Overall, information pieces served as the central level of analysis (N = 2304 in total) and results can be generalized across subjects and information pieces.

3.3.4. Information Sharing

3.3.4.1. Hypotheses Testing

In the first step of our analyses, we tested the likelihood of sharing a specific piece of information from the *power construals* (as opportunity vs. as responsibility), *button display* (‘Like’ vs. ‘Like-or-Trust’) and, *information sharedness* (public information vs. private information). The main effect of information sharedness was not significant, $B = -0.03, p = .86$; power construals, $B = -1.61, p < .001$, and button display, $B = -1.14, p < .01$, separately, affected the sharing of information in general (Table 8, first column). Specifically, construing power as responsibility (76%) increased the likelihood of sharing information compared with construing power as opportunity (55%); similarly, the display of the additional ‘Trust’ button (71%) increased the likelihood of sharing information compared with the display of the ‘Like’ button alone (60%). These findings qualified the two-way significant interactions between 1) power construals and information sharedness, $B = 0.54, p < .01$, and 2) button display and information sharedness, $B = 0.47, p < .05$, respectively.

7 B’s, the fixed coefficients reported in this paper, indicate mean differences and have a negative value when the mean of the referent category is lower than the mean of the category compared with the referent category.
8 The grey areas in all tables highlight the main findings about the hypotheses and research questions, respectively.
Table 2.
The impact of Power Construals and Button Display on the Dependent Variables

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Information sharing</th>
<th>Overall Clicking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-effects binary logistic regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.58(0.25)</td>
<td>3.62(0.90)</td>
</tr>
<tr>
<td>Independent variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power construal (reference = power as opportunity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as responsibility</td>
<td>-1.61(0.35)</td>
<td>** -2.05(1.30)</td>
</tr>
<tr>
<td>Button display (reference = ‘Like’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Like-or-Trust’</td>
<td>-1.14(0.35)</td>
<td>** -4.91(1.26)</td>
</tr>
<tr>
<td>Information Sharedness (reference = public information)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private information</td>
<td>-0.03(0.17)</td>
<td>-0.32(0.21)</td>
</tr>
<tr>
<td>Interaction effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power construal*Button display</td>
<td>0.89(0.49)</td>
<td>3.34(1.83)</td>
</tr>
<tr>
<td>Power construal*Information Sharedness</td>
<td>0.54(0.18)</td>
<td>0.68(0.22)</td>
</tr>
<tr>
<td>Button display*Information Sharedness</td>
<td>0.47(0.18)</td>
<td>0.21(0.23)</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>10.565</td>
<td>14.353</td>
</tr>
<tr>
<td>AIC</td>
<td>10.569</td>
<td>14.357</td>
</tr>
</tbody>
</table>

*Note: N = 2304, Sharing (0 = No Share; 1 = Share), Overall Clicking (0 = No Click; 1 = Click), Power construal (0 = as opportunity; 1 = as responsibility), Button display (0 = ‘Like’; 1 = ‘Like-or-Trust’), Information Sharedness (0 = public information; 1 = private information), SE = Standard Error, † p < .10, p < .05**, p < .01**, p < .001***.
In line with **H1**, as illustrated in Figure 1, power construals affected the sharing of private information, $B = -0.27$, $p < .001$: construing power as responsibility increased the likelihood of sharing private information (73%) compared with construing power as opportunity (46%). This effect was much larger than the effect for public information, $B = -0.13$, $p < .05$: construing power as responsibility increased the likelihood of sharing public information (77%) only slightly compared with construing power as opportunity (64%) (all other significant effects are also marked in Figure 1).

![Figure 1](image)

Figure 1. Mean estimates for information sharing as a function of power construals and information sharedness

In line with **H2**, as illustrated in Figure 2, button display affected the sharing of private information, $B = -0.16$, $p < .01$: the display of the additional ‘Trust’ button (68%) increased the likelihood of sharing private information compared with the display of the ‘Like’ button alone (52%). We found that button display did not affect the sharing of public information, $B = -0.05$, $p = .39$: the display of the additional ‘Trust’ button (73%) neither increased nor decreased the likelihood of sharing public information compared with the display of the ‘Like’ button alone (69%) (all other significant effects are also marked in Figure 2).
As illustrated in Figure 3, the marginally significant interaction between power construals and button display, $B = 0.89, p = .07$, (Table 2, first column) indicated that power construals affected the sharing of information when the additional ‘Trust’ button was displayed, $B = -0.27, p < .001$, i.e., construing power as responsibility (83%) increased the likelihood of sharing information compared with construing power as opportunity (56%). We found that power construals did not affect the sharing of information when the ‘Like’ button was displayed alone, $B = -0.11, p = .19$, i.e., construing power as responsibility (66%) neither increased nor decreased the likelihood of sharing information compared with construing power as opportunity (55%) (all other significant effects are also marked in Figure 3).

3.3.4.2. Answering Research Questions
In the second step of our analyses, we examined how power construals (as opportunity vs. as responsibility), button display (‘Like’ vs. ‘Like-or-Trust’) and, information sharedness (public information vs. private information) affected the likelihood of clicking. We first examined overall clicking (click vs. no click).
Button display affected clicking, $B = -4.91, p < .001$. Specifically, the additional display of the ‘Trust’ button (93%) increased the likelihood of clicking compared with the display of the ‘Like’ button alone (37%). For RQ1 (Table 2, second column), we found that power construals alone did not affect overall clicking, $B = -2.05, p = .11$. However, we found a significant interaction effect between power construals and information sharedness, $B = 0.68, p < .01$. The interaction viewed from the power construals perspective revealed that information sharedness affected overall clicking, when construing power as opportunity, $B = 0.09, p < .05$: the likelihood of overall clicking was lower for private (69%) than for public information (78%); when construing power as responsibility, information sharedness did not affect overall clicking, $B = -0.04, p = .20$: the likelihood of overall clicking was about the same for private (76%) and for public information (72%).

The interaction between power construals and button display on clicking was also marginally significant, $B = 3.34, p = .07$. As illustrated in Figure 3, when construing power as responsibility, $B = -0.76, p < .001$, the additional display of the ‘Trust’ button (97%) increased the likelihood of clicking compared with the display of the ‘Like’ button alone (21%). When construing power as opportunity, button display did not affect overall clicking, $B = -0.28, p = .28$, i.e., the additional display of the ‘Trust’ button (85%) did not significantly increase the likelihood of overall clicking compared with the display of the ‘Like’ button alone (57%).
More interesting than the total number of clicks is whether people in the two-button condition click the ‘Like’ or the ‘Trust’ button. Therefore, we also analyzed the likelihood of clicking the ‘Trust’ vs. the ‘Like’ button for the ‘Trust-or-Like’ button condition separately. For RQ2 (Table 3), we found that power construals affected ‘Trust’ clicking, B = -2.63, p < .001. Specifically, construing power as responsibility (55%) increased the likelihood of ‘Trust’ clicking compared with construing power as opportunity (10%). Information sharedness also affected ‘Trust’ clicking, B = -0.45, p < .05. Specifically, the likelihood of ‘Trust’ clicking was higher for private (29%) than for public (25%) information. Although we found a marginally significant effect showing that power construals affected ‘Like’ clicking, B = 1.39, p = .06 (i.e., construing power as responsibility (17%) tended to decrease the likelihood of ‘Like’ clicking compared with construing power as opportunity (37%)), these findings were

In the two-button condition (N = 1200 pieces of information), the ‘Trust’ button was clicked for 37.10%, the ‘Like’ button was clicked for 35.20% whereas no button was clicked for 27.70% of the total pieces of information.
qualified by the significant interaction effect between power construals and information sharedness, B = -0.66, p < .05.

Table 3.

The impact of Power Construals on the Dependent Variables

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>'Trust' Clicking</th>
<th>'Like' Clicking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-effects binary logistic regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>B(SE)</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>0.43(0.45)</td>
<td>-1.86(0.50)</td>
</tr>
</tbody>
</table>

Independent variables

Power construal (reference = power as opportunity)

as responsibility | -2.63(0.67) | *** | 1.39(0.74) | †

Information Sharedness (reference = public information)

Private information | -0.45(0.18) | * | 0.53(0.19) | **

Interaction effects

Power construal*Information Sharedness | 0.52(0.28) | * | -0.66(0.29) |

Log Likelihood | 6.166 | 6.247 |

AIC | 6.170 | 6.251 |

Note: N = 1200, when both buttons (i.e., ‘Like-or-Trust’) were displayed, ‘Trust’ Clicking (0 = No Click/’Like’ Click; 1 = ‘Trust’ Click), Like’ Clicking (0 = No Click/’Trust’ Click; 1 = ‘Like’ Click), Power construal (0 = as opportunity; 1 = as responsibility), Information Sharedness (0 = public information; 1 = private information), SE = Standard Error, † p < .10, p < .05, p < .01**, p < .001***.
Specifically, information sharedness affected ‘Like’ clicking, when power was construed as responsibility, \(B = 0.07, p < .05 \): i.e., the likelihood of ‘Like’ clicking was lower for private (14%) than for public information (21%). When construing power as opportunity, \(B = 0.03, p = .55 \), the pattern is non-significant, i.e., the likelihood of ‘Like’ clicking was similar for private (38%) and for public (35%) information.

Table 4.

The impact of Overall Clicking on Information Sharing

<table>
<thead>
<tr>
<th>Dependent Variable →</th>
<th>Information Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-effects binary logistic regression</td>
<td>B(SE)</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.76(0.29)</td>
</tr>
</tbody>
</table>

Independent variables

- **Power construal (reference = power as opportunity)**
 - as responsibility: \(-1.74(0.41) \), ***
- **Button display (reference = ‘Like’)**
 - ‘Like-or-Trust’: \(-0.03(0.43) \)
- **Information Sharedness (reference = public information)**
 - Private information: \(0.13(0.18) \)
- **Overall Clicking (reference = No Click)**
 - Click: \(-0.80(0.34) \), *

Interaction effects

- **Power construal*Button display**: \(0.33(0.57) \)
- **Power construal*Information Sharedness**: \(0.46(0.19) \), *
- **Power construal*Overall Clicking**: \(0.71(0.35) \), *
- **Button display*Information Sharedness**: \(0.56(0.19) \), **
- **Button display*Overall Clicking**: \(-1.12(0.35) \), **
- **Overall Clicking*Information Sharedness**: \(-0.33(0.20) \), †

Log Likelihood: 10.720

AIC: 10.724

*Note: N = 2304, Sharing (0 = No Share; 1 = Share), Power construal (0 = as opportunity; 1 = as responsibility), Button display (0 = ‘Like’; 1 = ‘Like-or-Trust’), Information Sharedness (0 = public information; 1 = private information), Overall Clicking (0 = No Click; 1 = Click), SE = Standard Error, † \(p < .10 \), * \(p < .05 \), ** \(p < .01 \), *** \(p < .001 \).*
In the last step of our analyses, we used again information sharing as dependent variable but added overall clicking as additional between-subjects factor. For RQ3 (see Table 4), we found that clicking affected the sharing of information in general, $B = -0.80$, $p < .05$. Specifically, the likelihood of sharing information was higher when the information-judging buttons were clicked (78%) than when the information-judging buttons were not clicked (53%). Since it is more important to present how ‘Trust’ and ‘Like’ clicking affected information sharing, we do not go into details about the interaction effects. In addition, results confirmed, once more, the expectations formulated in H1; once overall clicking is considered in the analysis, the effect of button display disappears and, instead, overall clicking predicts sharing.

Subsequently, instead of overall clicking, we also used ‘Trust’ clicking and ‘Like’ clicking, in separate analyses (Table 5), as additional between-subjects factor, for the ‘Trust-or-Like’ button condition separately; we also used ‘Like’ clicking as between-subjects factor only for the ‘Like’ button condition. These further investigations revealed that ‘Trust’ clicking affected the sharing of information, $B = 1.20$, $p < .001$. Specifically, ‘Trust’ clicking (52%) decreased the likelihood of sharing information compared with ‘Like’ clicking and no clicking taken together (81%). When the additional ‘Trust’ button was displayed, ‘Like’ clicking also affected the sharing of information, $B = -2.24$, $p < .001$. However, ‘Like’ clicking (90%) increased the likelihood of sharing information compared with ‘Trust’ clicking and no clicking taken together (60%). Similar results were found when the ‘Like’ button was displayed alone, $B = -1.28$, $p < .001$. Specifically, ‘Like’ clicking (80%) increased the likelihood of sharing information compared with no clicking (44%). This effect was qualified by the interaction effect between information sharedness and ‘Like’ clicking, $B = -0.71$, $p < .05$. Specifically, ‘Like’ clicking affected information sharing dependent on the type of information, i.e., more private information was shared when it was ‘Like’-clicked (70%) than when it was not (39%), $B = -0.31$, $p < .001$, and more public information was shared when it was ‘Like’-clicked (88%) than when it was not (49%), $B = -0.39$, $p < .001$.
Table 5.
The impact of ‘Trust’/’Like’ Clicking on Information Sharing

<table>
<thead>
<tr>
<th>Condition</th>
<th>‘Like-or-Trust’ (N = 1200)</th>
<th>‘Like’ (N = 1104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-effects binary logistic regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.13(0.35) **</td>
<td>3.42(0.47) ***</td>
</tr>
</tbody>
</table>

Independent variables

Power construal (reference = power as opportunity)
- as responsibility: -2.31(0.54) *** -2.58(0.59) *** -0.93(0.46) *

Information Sharedness (reference = public information)
- Private information: -0.06(0.25) -0.17(0.36) 0.95(0.27) ***

‘Trust’ Clicking (reference = No Click and ’Like’ Click)
- ‘Trust’ Click: 1.20(0.30) ***

‘Like’ Clicking (reference = No Click and ’Trust’ Click)
- ‘Like’ Click: -2.24(0.39) *** -1.28(0.34) ***

Interaction effects

Power construal*Information Sharedness: 0.49(0.30) 0.60(0.30) 0.34(0.27)
Power construal*’Trust’ Clicking: 0.25(0.38)
Information Sharedness*’Trust’ Clicking: 0.08(0.31)
Power construal*’Like’ Clicking: 0.74(0.44) 0.02(0.45)
Information Sharedness*’Like’ Clicking: 0.14(0.35) -0.71(0.28) *
Log Likelihood

<table>
<thead>
<tr>
<th></th>
<th>5.874</th>
<th>6.030</th>
<th>4.995</th>
</tr>
</thead>
</table>

| | 5.878 | 6.034 | 4.999 |

Note: Sharing (0 = No Share; 1 = Share), Power construal (0 = as opportunity; 1 = as responsibility), Information Sharedness (0 = public information; 1 = private information), ‘Trust’ Clicking (0 = No Click and ‘Like’ Click; 1 = ‘Trust’ Click), ‘Like’ Clicking (0 = No Click and ‘Trust’ Click; 1 = ‘Like’ Click), SE = Standard Error, † p < .10, * p < .05*, ** p < .01**, *** p < .001***.

3.4. Discussion

This paper investigated how power construals (i.e., either as opportunity or as responsibility), and the display of an additional ‘Trust’ button affect SIS and, in particular, the sharing of private information. In line with Hypothesis 1, we found that construing power as responsibility (vs. as opportunity) increased mainly the likelihood of sharing private information (Figure 1). In line with Hypothesis 2, we found that the display of an additional ‘Trust’ button (vs. the display of the ‘Like’ button alone) increased the likelihood of sharing private information (Figure 2). The likelihood of sharing information was higher when the information-judging buttons were clicked compared with when they were not clicked (Table 4); however, the sharing of information was predicted rather by ‘Like’ clicking than by ‘Trust’ clicking.

Other findings showed that 1) the additional display of the ‘Trust’ button (vs. the display of the ‘Like’ button alone) increased the likelihood of overall clicking (Table 2), especially when power was construed as responsibility (Figure 3); 2) construing power as responsibility (vs. construing power as opportunity) increased the likelihood of ‘Trust’ clicking; 3) ‘Trust’ clicking was higher for private than for public information; 4) ‘Like’ clicking was lower for private than for public information (i.e., public information was ‘Liked’ more), especially when power was construed as responsibility.
3.4.1. Theoretical and Practical Implications

The results of this study have several implications for research in the area of SIS. We demonstrated that construing power as responsibility increased the sharing of private information. With this finding we expanded the view of IS as strategic behavior (Osatuyi et al., 2012a; Steinel et al., 2010) going beyond studies that looked, so far, at social motivation (Steinel et al., 2010; Toma & Butera, 2009; Utz et al., 2014). The effects of social power construals on SIS seem to parallel the effects that social motives were shown to have on SIS (Steinel et al., 2010). It should also be noted that power and also power construals are more context dependent than personality (Sassenberg, Ellemers, Scheepers, & Scholl, 2014). It might be interesting therefore to investigate whether the link from power construals to information sharing is more contingent than fundamental. For instance, building also on previous studies (e.g., Van Kleef, Homan, Finkenauer, Blaker, & Heerdink, 2012), proselves primed with power as responsibility may share the same amounts of private information as prosocials as they may have diminished reliance on competitive heuristics (e.g., “your gain is my loss”); cooperative heuristics (e.g., “equal split is fair”) are seen as morally appropriate while competitive heuristics are seen as effective (De Dreu & Boles, 1998). We contributed to the power literature also because most studies (Anderson & Galinsky, 2006; Inesi et al., 2011) simply compared a low power and a high power condition: instead of investigating power differentials in relation to information sharing, we considered different facets of power (Sassenberg et al., 2012) showing that construals of power affect the sharing of information and in particular the sharing of private information. To consolidate our findings, current results should be related to the previous findings (Galinsky et al., 2014) showing that combining a high power position with perspective-taking facilitated the sharing of critical information in decision-making dyads. In other words, the similarities between a high power position combined with perspective-taking and power construed as responsibility should be further investigated.

We examined trust as a theory-inspired technological feature and demonstrated that the ‘Trust’ button helps to reduce the problem created by IS as strategic behavior (Steinel et al., 2010). Our findings allowed us to extend the
line of research that translates theories in effectively implemented technological features to affect behavior (e.g., Kraut et al., 2012; Ren et al., 2012; Ren & Kraut, 2014). From a conceptual perspective, we shed light on the underlying processes by analyzing clicking behavior. Specifically, we had two opposing lines of argumentation: one formulated in terms of general priming effects and one formulated at the information level. We found that the sheer presence of the ‘Trust’ button increased the likelihood of sharing private information but that ‘Trust’ clicking was negatively related to the sharing of information. This implies that it was the process of priming trust in general that determined IS and less the act of actually clicking the ‘Trust’ button (i.e., the second line of argumentation). It seems that a ‘Trust’ button has not only behavioral effects on clicking, but also on information sharing, maybe via the expectation of trustworthy cooperation partners. Interestingly, we found that ‘Like’ clicking was positively related to the sharing of information. This may be due to the strong association with sharing activities the ‘Like’ button has on Facebook. From a technological perspective, interestingly, our findings may also be due to the mere presence of two information-judging buttons (i.e., ‘Like’ and ‘Trust’); in this respect, our results showed that more affordances inviting to click pieces of information result in more clicks or, more precisely, in not the same amount of clicks distributed across two buttons. Taking the conceptual and technological perspectives together may significantly inform future studies contributing to this underdeveloped line of research.

The findings have practical implications for organizations: despite the fact that previous research showed that power is less attractive to leaders when they associate it with responsibility (Sassenberg et al., 2012), managers should consider emphasizing more the responsibilities than the opportunities when appointing for leading positions; organizations should not continue to ‘encourage’ the perception of power as opportunity to achieve one’s goals because otherwise it’s being done at the expense of sharing unique and valuable information.

The results have also important implications for designers of online platforms (e.g., enterprise social media). Compared with the display of the ‘Like’ button alone, the display of the ‘Like’ and ‘Trust’ buttons together was shown to
increase the sharing of private information; also ‘Like’ clicking was positively related to information sharing. This research brought scientific answers to the need of considering developing the design of the new technologies (e.g., Kraut et al., 2012; Ren & Kraut, 2014) since there are various debates in practice (e.g., Guha, Kumar, Raghavan, & Tomkins, 2004) and also because ‘I wish I could have an additional button to...’ still is a frequent claim users of online collaborative platforms make nowadays (Donston-Miller, 2012).

3.4.2. Limitations and Strengths
A potential limitation of this study was that we conducted an online experiment in which one cannot control the influence of external factors (e.g., noise, dropouts) that might have caused interruptions while completing the study. However, participants were randomly assigned to the experimental conditions and only completed cases were included in the analyses; participants also completed the study in “perfectly voluntary” situations as they had the freedom to ‘leave’ the online experiment with the touch of a button (Birnbaum, 2000, p. 96). Another limitation lies in the fact that the information-judging buttons did not imply sharing as they do, for instance, on Facebook (i.e., the use of the ‘Like’ button is visible in the real time activity feed). However, our design allowed us to examine whether clicking a piece of information determines sharing that particular piece of information. When clicking ‘Like’ or ‘Trust’ automatically implies sharing, this type of analysis is not possible. Another limitation is that participants had to click either the “Share” or the “Don’t Share” button in the current study and could not simply do nothing; not having this latter option too (i.e., the act of omission) makes the act of pressing a ‘Don’t Share’ button a commission (Spranca, Minsk, & Baron, 1991). However, the explicit presence of the ‘Don’t Share’ button is in line with previous research (e.g., Steinel et al., 2010) and it also justifies real-world necessities for power holders who, in general, exert influence (Pierro et al., 2012) by administering punishments or withholding social resources (e.g., knowledge, decision-making opportunities) as a deliberate decision (Keltner et al., 2003).

An important strength of this study was taking an experimental approach. A relatively recent meta-analysis indicated that only 8% of the studies
on knowledge sharing are experiments while 89% were based on surveys (Witherspoon, Bergner, Cockrell, & Stone, 2013). Experiments allow us to formulate causal inferences about the relationships under investigation. As another important strength, this research used the information pooling paradigm developed by (Steinel et al., 2010). This paradigm allowed investigating SIS by objectively measuring both the amount and the type of information shared (i.e., public vs. private); we objectively measured information sharing as well as clicking information-judging buttons and took therefore a behavioral approach. Another important strength is that this research made a first step to capture the complexity of the interactions between different psychological constructs online (Kraut et al., 2012) by simultaneously priming power construals and trust. Two structurally different manipulations were used: the ‘traditional’ manipulation of the power construals similar to the one used by Sassenberg et al. (2012) and a technology-embedded manipulation (e.g., Ren et al., 2012) of trust through the ‘Trust’ button.

3.4.3. Future Research Directions and Conclusions

In our research, we manipulated power construals by specifically referring to a leader position in an event-planning company in which the perception of power as responsibility might predominate. For generalizability reasons, future research should consider using scenarios about other professional environments since either one or the other power perception might be predominant in a particular professional environment (Sassenberg et al., 2014). Furthermore, the results from priming research relying on spontaneous construals of power do not necessarily inform conclusions about the use of power within a specific professional environment. Future research could replicate these findings by measuring instead of manipulating power construals. To better understand SIS, future research should also distinguish between person-related and more job-related responsibility when manipulating the construal of power as responsibility; responsibility also has different connotations, e.g., moral standard, obligation, concern about consequences, self-judgment (Winter & Barenbaum, 1985).

In terms of button use, future research could distinguish between
different forms of sharing, i.e., dependent and independent of clicking information-judging buttons. This would better capture the practical implications of design implementations of the ‘Like’ button or even a new button such as the ‘Trust’ button. For instance, a button condition which allows participants to make visible, in a real time activity feed, the use of a ‘Like’ (i.e., similar functionality as with Facebook) or even of a ‘Trust’ button, independent of sharing; this would allow investigating the role of having visibility of the ‘Trust’ clicks in an activity stream on SIS. Future research could also focus on different associations or cognitive heuristics people have toward the ‘Like’ and the ‘Trust’ buttons. In this paper, the display of the ‘Trust’ button shifts the focus more on the social aspects of IS. Future research however, should control for this and also investigate whether trust is more people- and/or content-related. Moreover, clicking the ‘Trust’ button might be related to specific personality variables (e.g., Big Five characteristics) and future research could tackle these aspects too; it should also investigate SIS when the sender knows, for instance, about the receiver’s personality characteristics (e.g., trustworthy). A key take-away message from our study is that construing power as responsibility as well as the sheer presence of the ‘Trust’ button stimulate the sharing of private information.

Acknowledgments
We are thankful to Soraya Alibux for her contribution to the data collection.

References

quality. *Journal of Experimental Social Psychology, 43*(4), 539-552. doi:10.1016/j.jesp.2006.05.010

Steinel, W., Utz, S., & Koning, L. (2010). The good, the bad and the ugly thing to do when sharing information: Revealing, concealing and lying depend on social motivation, distribution and importance of information. *Organizational Behavior and Human Decision Processes, 113*(2), 85-96. doi:10.1016/j.obhdp.2010.07.001

